Date,Activity,Duration,Mood 2024-09-13,Work,3,5 2024-09-13,Exercise,1,4 2024-09-16,Work,3,4 2024-09-16,Exercise,1,5 import pandas as pd import matplotlib.pyplot as plt # Load the data data = pd.DataFrame({ 'Date': ['2024-09-13', '2024-09-13', '2024-09-16', '2024-09-16'], 'Activity': ['Work', 'Exercise', 'Work', 'Exercise'], 'Duration': [3, 1, 3, 1], 'Mood': [5, 4, 4, 5] }) # Convert 'Date' column to datetime format data['Date'] = pd.to_datetime(data['Date']) # Display the first few rows of the dataset print("Data Overview:") print(data) # Basic Statistics print("\nBasic Statistics:") print(data.describe(include='all')) # Additional Statistics mean_duration = data['Duration'].mean() median_mood = data['Mood'].median() print(f"\nAverage Duration: {mean_duration:.2f}") print(f"Median Mood: {median_mood:.2f}") # Plot Duration Over Time using Matplotlib plt.figure(figsize=(12, 6)) for activity in data['Activity'].unique(): subset = data[data['Activity'] == activity] plt.plot(subset['Date'], subset['Duration'], marker='o', linestyle='-', label=activity) plt.title('Daily Duration of Activities') plt.xlabel('Date') plt.ylabel('Duration (hours)') plt.legend(title='Activity') plt.xticks(rotation=45) plt.tight_layout() plt.show() # Histogram of Mood Ratings using Matplotlib plt.figure(figsize=(8, 6)) plt.hist(data['Mood'], bins=5, color='skyblue', edgecolor='black') plt.title('Distribution of Mood Ratings') plt.xlabel('Mood Rating') plt.ylabel('Frequency') plt.show()