From 04bff19d325a5817914b895a9715c33a1a3512ff Mon Sep 17 00:00:00 2001 From: c5a8efde7aa19c91f1106b179d98e799 Date: Fri, 7 Feb 2025 08:57:47 +0000 Subject: [PATCH] Third version of exo1 python notebook + comit --- module2/exo1/toy_notebook_fr.ipynb | 24 +++--------------------- 1 file changed, 3 insertions(+), 21 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index bd8ffb2..1df8fe9 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -11,13 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## En demandant à la lib maths" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "## En demandant à la lib maths\n", "Mon ordinateur m’indique que $\\pi$ vaut approximativement:" ] }, @@ -43,13 +37,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## En utilisant la méthode des aiguilles de Buffon" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "## En utilisant la méthode des aiguilles de Buffon\n", "Mais calculé avec la méthode des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme approximation :" ] }, @@ -82,13 +70,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Avec un argument \"fréquentiel\" de surface" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "## Avec un argument \"fréquentiel\" de surface\n", "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X2+Y2 ≤1]=π/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, -- 2.18.1