diff --git a/module2/exo3/exercice_R_fr.org b/module2/exo3/exercice_R_fr.org
index 1bb8f61f1d11b486ceb724afcdd14d11e5329545..5dd3e63d5ae96db859d3ba1d4a1b5c40df069aeb 100644
--- a/module2/exo3/exercice_R_fr.org
+++ b/module2/exo3/exercice_R_fr.org
@@ -1,84 +1,59 @@
-#+TITLE: Votre titre
-#+AUTHOR: Votre nom
-#+DATE: La date du jour
-#+LANGUAGE: fr
-# #+PROPERTY: header-args :eval never-export
+---
+title: "Module 2, exos 2"
+author: "Fanny De Carvalho"
+date: "30/11/2023"
+output: html_document
+---
+
+# En demandant à la lib maths
+Mon ordinateur m'indique que π vaut *approximativement*
+```{r}
+pi
+```
+# En utilisant la méthode des aiguilles de Buffon
+Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**:
+
+```{r}
+set.seed(42)
+N = 100000
+x = runif(N)
+theta = pi/2*runif(N)
+2/(mean(x+sin(theta)>1))
+```
+# Avec un argumant "fréquentiel" de surface
+Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [méthode de Monte Carlo sur Wikipédia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
+```{r, message = FALSE, warning = FALSE}
+set.seed(42)
+N = 1000
+df = data.frame(X = runif(N), Y = runif(N))
+df$Accept = (df$X**2 + df$Y**2 <=1)
+library(ggplot2)
+ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
+```
+
+
+Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, X2 + Y2 est inférieur à 1:
+```{r}
+4*mean(df$Accept)
+```
+
+```{r}
+data <- c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)
+
+mean(data)
+sd(data)
+min(data)
+max(data)
+median(data)
+
+```
+```{r}
+data <- c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)
+
+plot(data, type='l', col ="blue", lwd = 2, xlim= c(0, 100), ylim = c(0, 25))
+grid(nx = 5, ny = 5,lty = 2,col = "gray",lwd = 1)
+
+hist(data, col ="blue", lwd = 2, xlim= c(0, 25), ylim = c(0, 25))
+grid(nx = 5, ny = 5,lty = 2,col = "gray",lwd = 1)
+```
-#+HTML_HEAD:
-#+HTML_HEAD:
-#+HTML_HEAD:
-#+HTML_HEAD:
-#+HTML_HEAD:
-#+HTML_HEAD:
-
-* Quelques explications
-
-Ceci est un document org-mode avec quelques exemples de code
-R. Une fois ouvert dans emacs, ce document peut aisément être
-exporté au format HTML, PDF, et Office. Pour plus de détails sur
-org-mode vous pouvez consulter https://orgmode.org/guide/.
-
-Lorsque vous utiliserez le raccourci =C-c C-e h o=, ce document sera
-compilé en html. Tout le code contenu sera ré-exécuté, les résultats
-récupérés et inclus dans un document final. Si vous ne souhaitez pas
-ré-exécuter tout le code à chaque fois, il vous suffit de supprimer
-le # et l'espace qui sont devant le ~#+PROPERTY:~ au début de ce
-document.
-
-Comme nous vous l'avons montré dans la vidéo, on inclut du code
-R de la façon suivante (et on l'exécute en faisant ~C-c C-c~):
-
-#+begin_src R :results output :exports both
-print("Hello world!")
-#+end_src
-
-#+RESULTS:
-: [1] "Hello world!"
-
-Voici la même chose, mais avec une session R (c'est le cas le
-plus courant, R étant vraiment un langage interactif), donc une
-persistance d'un bloc à l'autre (et on l'exécute toujours en faisant
-~C-c C-c~).
-
-#+begin_src R :results output :session *R* :exports both
-summary(cars)
-#+end_src
-
-#+RESULTS:
-: speed dist
-: Min. : 4.0 Min. : 2.00
-: 1st Qu.:12.0 1st Qu.: 26.00
-: Median :15.0 Median : 36.00
-: Mean :15.4 Mean : 42.98
-: 3rd Qu.:19.0 3rd Qu.: 56.00
-: Max. :25.0 Max. :120.00
-
-Et enfin, voici un exemple de sortie graphique:
-#+begin_src R :results output graphics :file "./cars.png" :exports results :width 600 :height 400 :session *R*
-plot(cars)
-#+end_src
-
-#+RESULTS:
-[[file:./cars.png]]
-
-Vous remarquerez le paramètre ~:exports results~ qui indique que le code
-ne doit pas apparaître dans la version finale du document. Nous vous
-recommandons dans le cadre de ce MOOC de ne pas changer ce paramètre
-(indiquer ~both~) car l'objectif est que vos analyses de données soient
-parfaitement transparentes pour être reproductibles.
-
-Attention, la figure ainsi générée n'est pas stockée dans le document
-org. C'est un fichier ordinaire, ici nommé ~cars.png~. N'oubliez pas
-de le committer si vous voulez que votre analyse soit lisible et
-compréhensible sur GitLab.
-
-Enfin, pour les prochains exercices, nous ne vous fournirons pas
-forcément de fichier de départ, ça sera à vous de le créer, par
-exemple en repartant de ce document et de le commiter vers
-gitlab. N'oubliez pas que nous vous fournissons dans les ressources de
-ce MOOC une configuration avec un certain nombre de raccourcis
-claviers permettant de créer rapidement les blocs de code R (en
-faisant ~