starting exo3 on CO2

parent 96684436
......@@ -261,30 +261,30 @@
"</div>"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 1,
......@@ -324,115 +324,10 @@
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Date</th>\n",
" <th>Count</th>\n",
" <th>Temperature</th>\n",
" <th>Pressure</th>\n",
" <th>Malfunction</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>11/12/81</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>50</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>2/03/84</td>\n",
" <td>6</td>\n",
" <td>57</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>4/06/84</td>\n",
" <td>6</td>\n",
" <td>63</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>8/30/84</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>1/24/85</td>\n",
" <td>6</td>\n",
" <td>53</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>10/30/85</td>\n",
" <td>6</td>\n",
" <td>75</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>1/12/86</td>\n",
" <td>6</td>\n",
" <td>58</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"1 11/12/81 6 70 50 1\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"13 1/24/85 6 53 200 2\n",
"20 10/30/85 6 75 200 2\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"data = data[data.Malfunction>0]\n",
"data"
"#data = data[data.Malfunction > 0]\n",
"#data"
]
},
{
......@@ -448,12 +343,20 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py:203: UserWarning: 'color' and 'colormap' cannot be used simultaneously. Using 'color'\n",
" warnings.warn(\"'color' and 'colormap' cannot be used \"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHNBJREFUeJzt3X2QXXWd5/H3pzvPDw5sIq2TkEk0KTUrIYY2wIBOZxUW3BoybsYBV8XSYSKrGQvWXaFcl2UcZ0pYH3aoQUNksYQtJqNiNLtGA6gtg4okODEBhLE3QdJEEtIGSUMeutPf/eOe1pvO7e7f7b7nPvXnVdXV5/zO73f6+72nb3/7PNxzFBGYmZmNpqXWAZiZWWNwwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSWZVOsAKmnu3LmxcOHCWodxkhdffJGZM2fWOoyKc16Np1lzc17j88gjjxyMiJen9G2qgrFw4UK2b99e6zBO0tnZSUdHR63DqDjn1XiaNTfnNT6Sfpna14ekzMwsSa4FQ9Ilkp6U1CXp+hLLV0vaKWmHpO2SLixa9pSkXYPL8ozTzMxGl9shKUmtwK3ARUA3sE3S5oh4vKjbd4HNERGSlgFfAV5btHxVRBzMK0YzM0uX5x7GSqArInZHxHFgI7C6uENE9Mbv7q8+E/C91s3M6lSeBWMesLdovjtrO4mkt0t6AvgW8P6iRQHcK+kRSWtzjNPMzBIorwcoSXoH8G8j4qps/j3Ayoj4y2H6vxm4ISLems3/fkTsk3QGcB/wlxHxQIlxa4G1AG1tbeds3Lgxl3zGqre3l1mzZtU6jIpzXo2nWXNzXuOzatWqRyKiPaVvnpfVdgNnFs3PB/YN1zkiHpD0aklzI+JgROzL2g9I2kThENcpBSMiNgAbANrb26PeLq/zJX+NpVnzgubNzXlVT56HpLYBSyQtkjQFuALYXNxB0mJJyqZXAFOAHkkzJc3O2mcCFwOP5hirmZmNIrc9jIjol7QO2Aq0AndExGOSrs6WrwfWAFdK6gOOAJdnV0y1AZuyWjIJuDsivpNXrGZmNrpcP+kdEVuALUPa1hdN3wTcVGLcbuDsPGMzM7Py+JPeZmaWxAUD6Ok9xs/2Pk9P77Fah2JmZejpPcaRvhN+71bJhC8Y39zxDBfc9D3efftPuOCm77F5xzO1DsnMEgy+d/c896Lfu1UyoQtGT+8xrrtnJ0f7Bjh8rJ+jfQN89J6d/m/FrM4Vv3dPRPi9WyUTumB0HzrC5JaTX4LJLS10HzpSo4jMLIXfu7UxoQvG/NOn0zcwcFJb38AA80+fXqOIzCyF37u1MaELxpxZU7l5zTKmTW5h9tRJTJvcws1rljFn1tRah2ZmIyh+77ZKfu9WSVM9cW8sLls+jwsWz6X70BHmnz7dv3BmDWLwvfvwjx/kh5dd6PduFUz4ggGF/1b8y2bWeObMmsr0ya1+/1bJhD4kZWZm6VwwzMwsiQuGmZklccEwM7MkLhhmZpbEBcPMzJK4YJiZWRIXDDMzS+KCYWZmSVwwzMwsSa4FQ9Ilkp6U1CXp+hLLV0vaKWmHpO2SLkwda2Zm1ZVbwZDUCtwKXAosBd4paemQbt8Fzo6I5cD7gdvLGGtmZlWU5x7GSqArInZHxHFgI7C6uENE9EZEZLMzgUgda2Zm1ZVnwZgH7C2a787aTiLp7ZKeAL5FYS8jeayZmVVPnrc3V4m2OKUhYhOwSdKbgb8G3po6FkDSWmAtQFtbG52dnWONNxe9vb11F1MlOK/G06y5Oa/qybNgdANnFs3PB/YN1zkiHpD0aklzyxkbERuADQDt7e3R0dExzrArq7Ozk3qLqRKcV+Np1tycV/XkeUhqG7BE0iJJU4ArgM3FHSQtlqRsegUwBehJGWtmZtWV2x5GRPRLWgdsBVqBOyLiMUlXZ8vXA2uAKyX1AUeAy7OT4CXH5hWrmZmNLtdHtEbEFmDLkLb1RdM3ATeljjUzs9rxJ73NzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyS5FgxJl0h6UlKXpOtLLH+XpJ3Z148knV207ClJuyTtkLQ9zzjNzGx0k/JasaRW4FbgIqAb2CZpc0Q8XtRtD/BHEXFI0qXABuDcouWrIuJgXjGamVm6PPcwVgJdEbE7Io4DG4HVxR0i4kcRcSibfQiYn2M8ZmY2DnkWjHnA3qL57qxtOH8OfLtoPoB7JT0iaW0O8ZmZWRlyOyQFqERblOworaJQMC4sar4gIvZJOgO4T9ITEfFAibFrgbUAbW1tdHZ2jjvwSurt7a27mCrBeTWeZs3NeVVPngWjGzizaH4+sG9oJ0nLgNuBSyOiZ7A9IvZl3w9I2kThENcpBSMiNlA490F7e3t0dHRUMIXx6+zspN5iqgTn1XiaNTfnVT15HpLaBiyRtEjSFOAKYHNxB0kLgK8D74mIfylqnylp9uA0cDHwaI6xmpnZKHLbw4iIfknrgK1AK3BHRDwm6eps+XrgBmAO8HlJAP0R0Q60AZuytknA3RHxnbxiNTOz0eV5SIqI2AJsGdK2vmj6KuCqEuN2A2cPbTczs9rxJ73NzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCxJUsGQ9Pq8AzEzs/qWuoexXtLDkj4o6bRcIzIzs7qUVDAi4kLgXcCZwHZJd0u6aLRxki6R9KSkLknXl1j+Lkk7s68fSTo7dayZmVVX8jmMiPgF8HHgOuCPgFskPSHp35fqL6kVuBW4FFgKvFPS0iHd9gB/FBHLgL8GNpQx1szMqij1HMYySZ8Dfg78G+CPI+J12fTnhhm2EuiKiN0RcRzYCKwu7hARP4qIQ9nsQ8D81LFmZlZdkxL7/T3wReBjEXFksDEi9kn6+DBj5gF7i+a7gXNH+Bl/Dny73LGS1gJrAdra2ujs7BzhR1Rfb29v3cVUCc6r8TRrbs6relILxtuAIxFxAkBSCzAtIl6KiLuGGaMSbVGyo7SKQsG4sNyxEbGB7FBWe3t7dHR0DJdDTXR2dlJvMVWC82o8zZqb86qe1HMY9wPTi+ZnZG0j6aZwknzQfGDf0E6SlgG3A6sjoqecsWZmVj2pBWNaRPQOzmTTM0YZsw1YImmRpCnAFcDm4g6SFgBfB94TEf9SzlgzM6uu1ENSL0paERE/BZB0DnBkpAER0S9pHbAVaAXuiIjHJF2dLV8P3ADMAT4vCaA/ItqHGzuG/MzMrEJSC8Y1wFclDR4WeiVw+WiDImILsGVI2/qi6auAq1LHmplZ7SQVjIjYJum1wGsonJB+IiL6co3MzMzqSuoeBsAbgYXZmDdIIiLuzCUqMzOrO0kFQ9JdwKuBHcCJrDkAFwwzswkidQ+jHVgaESU/C2FmZs0v9bLaR4FX5BmImZnVt9Q9jLnA45IeBo4NNkbEZblEZWZmdSe1YNyYZxBmZlb/Ui+r/YGkPwCWRMT9kmZQ+ECdmZlNEKm3N/8L4GvAbVnTPOAbeQVlZmb1J/Wk94eAC4AX4LcPUzojr6DMzKz+pBaMY9mDjACQNIlhbjdu+erpPcbP9j5PT++xivZtNM2cWx669h/m0Et9dO0/XOtQrIGlnvT+gaSPAdOzZ3l/EPg/+YVlpXxzxzNcd89OJre00DcwwM1rlnHZ8nnj7ttomjm3PNzwjV3c+dDTfOSsfq793ANcef4CPrH6rFqHZQ0odQ/jeuA5YBfwAQo3BRzuSXuWg57eY1x3z06O9g1w+Fg/R/sG+Og9O0v+h11O30bTzLnloWv/Ye586OmT2u788dPe07AxSSoYETEQEV+MiHdExJ9m0z4kVUXdh44wueXkzTW5pYXuQ6feZb6cvo2mmXPLw469z5fVbjaS1HtJ7aHEOYuIeFXFI7KS5p8+nb6BgZPa+gYGmH/69HH1bTTNnFselp95WlntZiNJPSTVTuFutW8E3gTcAvzvvIKyU82ZNZWb1yxj2uQWZk+dxLTJLdy8ZhlzZk0dV99G08y55WFx22yuPH/BSW1Xnr+AxW2zaxSRNbLUD+71DGn6n5IepPDEPKuSy5bP44LFc+k+dIT5p08f8Y9kOX0bTTPnlodPrD6LK89byK5HHuL+a89zsbAxSz0ktaJotoXCHod/62pgzqypyX8gy+nbaJo5tzwsbptN94zJLhY2LqmX1X6maLofeAr4s4pHY2ZmdSv1kNSqsaxc0iXA31G479TtEfGpIctfC3wJWAH814j4dNGyp4DDFB7Y1B8R7WOJwczMKiP1kNR/Gml5RHy2xJhW4FbgIqAb2CZpc0Q8XtTt18CHgT8ZZtWrIuJgSoxmZpavcq6S+o8Ubjo4D7gaWErhPMZwB0VXAl0RsTu7rchGYHVxh4g4EBHbgL4xxG5mZlVUzgOUVkTEYQBJNwJfjYirRhgzD9hbNN8NnFtGbAHcKymA2yJiQ6lOktYCawHa2tro7Ows40fkr7e3t+5iqgTn1XiaNTfnVT2pBWMBcLxo/jiwcJQxKtFWzqfDL4iIfZLOAO6T9EREPHDKCguFZANAe3t7dHR0lPEj8tfZ2Um9xVQJzqvxNGtuzqt6UgvGXcDDkjZR+KP/duDOUcZ0A2cWzc8H9qUGFhH7su8Hsp+7EjilYJiZWXWk3kvqb4D3AYeA54H3RcTfjjJsG7BE0iJJU4ArgM0pP0/STEmzB6eBi4FHU8aamVk+UvcwAGYAL0TElyS9XNKiiNgzXOeI6Je0DthK4bLaOyLiMUlXZ8vXS3oFsB14GTAg6RoKJ9PnApskDcZ4d0R8ZywJmplZZaReVvvfKVwp9RoKn5uYTOFeUheMNC4itlC4FXpx2/qi6WcpHKoa6gXg7JTYzMysOlIvq307cBnwIvz2/ILvMWBmNoGkFozj2fMvAn57XsHMzCaQ1ILxFUm3AadJ+gvgfuCL+YVlZmb1JvVeUp/OnuX9AoXzGDdExH25RmZmZnVl1IKR3RNqa0S8FXCRMDOboEY9JBURJ4CXJP1eFeIxM7M6lfo5jKPALkn3kV0pBRARH84lKjMzqzupBeNb2ZeZmU1QIxYMSQsi4umI+HK1AjIzs/o02jmMbwxOSLon51jMzKyOjVYwim9R/qo8AzEzs/o2WsGIYabNzGyCGe2k99mSXqCwpzE9myabj4h4Wa7RmZlZ3RixYEREa7UCMTOz+pZ6LykzM5vgXDDMzCyJC4aZmSVxwTAzsyQuGGZmliTXgiHpEklPSuqSdH2J5a+V9GNJxyT953LGmplZdeVWMLLnaNwKXAosBd4paemQbr8GPgx8egxjzcysivLcw1gJdEXE7og4DmwEVhd3iIgDEbEN6Ct3rJmZVVfq7c3HYh6wt2i+Gzi30mMlrQXWArS1tdHZ2Vl2oHnq7e2tu5gqwXk1nmbNzXlVT54FQyXaUu9HlTw2IjYAGwDa29ujo6Mj8UdUR2dnJ/UWUyU4r8bTrLk5r+rJ85BUN3Bm0fx8YF8VxpqZWQ7yLBjbgCWSFkmaAlwBbK7CWDMzy0Fuh6Qiol/SOmAr0ArcERGPSbo6W75e0iuA7cDLgAFJ1wBLI+KFUmPzitXMzEaX5zkMImILsGVI2/qi6WcpHG5KGmtmZrXjT3qbmVkSFwwzM0vigmFmZklcMMzMLIkLhpmZJXHBMDOzJC4YZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklcMMzMLIkLhpmZJXHBMDOzJC4YZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklyLRiSLpH0pKQuSdeXWC5Jt2TLd0paUbTsKUm7JO2QtD3POM3MbHST8lqxpFbgVuAioBvYJmlzRDxe1O1SYEn2dS7whez7oFURcTCvGM3MLF2eexgrga6I2B0Rx4GNwOohfVYDd0bBQ8Bpkl6ZY0xmZjZGue1hAPOAvUXz3Zy89zBcn3nAr4AA7pUUwG0RsaHUD5G0FlgL0NbWRmdnZ0WCr5Te3t66i6kSnFfjadbcnFf15FkwVKItyuhzQUTsk3QGcJ+kJyLigVM6FwrJBoD29vbo6OgYR8iV19nZSb3FVAnOq/E0a27Oq3ryPCTVDZxZND8f2JfaJyIGvx8ANlE4xGVmZjWSZ8HYBiyRtEjSFOAKYPOQPpuBK7Orpc4DfhMRv5I0U9JsAEkzgYuBR3OM1czMRpHbIamI6Je0DtgKtAJ3RMRjkq7Olq8HtgBvA7qAl4D3ZcPbgE2SBmO8OyK+k1esZmY2ujzPYRARWygUheK29UXTAXyoxLjdwNl5xmZmZuXxJ73NzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyS5FgxJl0h6UlKXpOtLLJekW7LlOyWtSB1rVks9vcf42d7n6ek9Nmrf7Xt6+Oy9T7J9T09F11tO3679hzn0Uh9d+w+P2jdVXrGWG8ORvhPJr8HXtu9tytcgj/WWMimvFUtqBW4FLgK6gW2SNkfE40XdLgWWZF/nAl8Azk0ca1YT39zxDNfds5PJLS30DQxw85plXLZ8Xsm+7779IR7sKhSKW77XxZsWz+Guq84b93rL6XvDN3Zx50NP85Gz+rn2cw9w5fkL+MTqs8aQef6xjiWGD7+uj2tv+l7SazCo2V6DSq93OHnuYawEuiJid0QcBzYCq4f0WQ3cGQUPAadJemXiWLOq6+k9xnX37ORo3wCHj/VztG+Aj96zs+R/d9v39Py2WAz6p66eknsa5ay3nL5d+w+f9IcS4M4fPz2u/7LzinWsMZyImPCvQSXXOxJFRD4rlv4UuCQirsrm3wOcGxHrivr8X+BTEfFgNv9d4Dpg4Whji9axFlgL0NbWds7GjRtzyWesent7mTVrVq3DqLiJmteRvhPsee5FThS9b1olFr18JtMnt57Ud/8Lxzhw+Ogp6zhj9jTaXjZ1zOstp++hl/roPvQSAG3TYf+RQvv802dw+ozJw+Y5krxiHWsMg3mlvAbF6v01qOTv4khWrVr1SES0p/TN7ZAUoBJtQ6vTcH1SxhYaIzYAGwDa29ujo6OjjBDz19nZSb3FVAkTNa+e3mNce9P3ONo38Nu2aZNb+OFlFzJn1slFYPueHq677aFT1vG1D7TTvmjOmNdbTt+u/Ye59nMPAPCRs/r5zK7CW/7+a89jcdvsYfMcSV6xjjWGwbxSXoNi9f4aVPJ3sVLyPCTVDZxZND8f2JfYJ2WsWdXNmTWVm9csY9rkFmZPLfyRunnNspJv0PZFc3jT4pMLw5sWzzmlWJS73nL6Lm6bzZXnLzip7crzF4z5D2WesY41hlZpwr8GlVzviCIily8Key+7gUXAFOBnwL8e0uffAd+msEdxHvBw6thSX+ecc07Um+9///u1DiEXEz2vg4ePxo6nD8XBw0dH7btt98H4zNYnYtvugxVdbzl9f/HsC/H1b90bv3j2hVH7psor1nJj2HLv/cmvwVe3Pd0wr0Eev4ulANsj8e96boekIqJf0jpgK9AK3BERj0m6Olu+HtgCvA3oAl4C3jfS2LxiNSvXnFlTk/+Ta19Ueq9ivOstp+/ittl0z5g8rv+qx/Pzy+lbbgzTJ7cmrXtx2+yK5j/48+vhNch1r6JInucwiIgtFIpCcdv6oukAPpQ61szMasef9DYzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyQuGGZmliS352HUgqTngF/WOo4h5gIHax1EDpxX42nW3JzX+PxBRLw8pWNTFYx6JGl7JD6cpJE4r8bTrLk5r+rxISkzM0vigmFmZklcMPK3odYB5MR5NZ5mzc15VYnPYZiZWRLvYZiZWRIXjAqS9JSkXZJ2SNqetd0o6ZmsbYekt9U6znJJOk3S1yQ9Iennks6X9K8k3SfpF9n302sd51gMk1tDbzNJrymKfYekFyRd0+jbbIS8Gnp7AUi6VtJjkh6V9A+SptXj9vIhqQqS9BTQHhEHi9puBHoj4tO1imu8JH0Z+KeIuF3SFGAG8DHg1xHxKUnXA6dHxHU1DXQMhsntGhp8mw2S1Ao8A5xL4XHIDb/N4JS83kcDby9J84AHgaURcUTSVyg8nnopdba9vIdhI5L0MuDNwP8CiIjjEfE8sBr4ctbty8Cf1CbCsRsht2byFuD/RcQvaYJtVqQ4r2YwCZguaRKFf1r2UYfbywWjsgK4V9IjktYWta+TtFPSHfWwW1mmVwHPAV+S9M+Sbpc0E2iLiF8BZN/PqGWQYzRcbtDY26zYFcA/ZNPNsM0GFecFDby9IuIZ4NPA08CvgN9ExL3U4fZywaisCyJiBXAp8CFJbwa+ALwaWE7hl+EzNYxvLCYBK4AvRMQbgBeB62sbUsUMl1ujbzMAskNslwFfrXUslVQir4beXlmBWw0sAn4fmCnp3bWNqjQXjAqKiH3Z9wPAJmBlROyPiBMRMQB8EVhZyxjHoBvojoifZPNfo/BHdr+kVwJk3w/UKL7xKJlbE2yzQZcCP42I/dl8M2wzGJJXE2yvtwJ7IuK5iOgDvg78IXW4vVwwKkTSTEmzB6eBi4FHBzd45u3Ao7WIb6wi4llgr6TXZE1vAR4HNgPvzdreC3yzBuGNy3C5Nfo2K/JOTj5s0/DbLHNSXk2wvZ4GzpM0Q5Io/B7+nDrcXr5KqkIkvYrCXgUUDnXcHRF/I+kuCrvKATwFfGDwuGSjkLQcuB2YAuymcFVKC/AVYAGFX/h3RMSvaxbkGA2T2y00/jabAewFXhURv8na5tDg22yYvJrhPfZXwOVAP/DPwFXALOpse7lgmJlZEh+SMjOzJC4YZmaWxAXDzMySuGCYmVkSFwwzM0syqdYBmOUtu5z0u9nsK4ATFG4JAoUPVx6vSWAjkPR+YEv2WRGzuuDLam1Cqae7B0tqjYgTwyx7EFgXETvKWN+kiOivWIBmQ/iQlE1okt4r6eHsOQqfl9QiaZKk5yX9D0k/lbRV0rmSfiBp9+DzFiRdJWlTtvxJSR9PXO8nJT0MrJT0V5K2Zc9BWK+Cyyl8EO0fs/FTJHVLOi1b93mS7s+mPynpNkn3UbiJ4iRJn81+9k5JV1X/VbVm5YJhE5ak11O4lcQfRsRyCodor8gW/x5wb3YzyePAjRRu2fAO4BNFq1mZjVkB/AdJyxPW+9OIWBkRPwb+LiLeCJyVLbskIv4R2AFcHhHLEw6ZvQH444h4D7AWOBARK4E3UrgJ5oKxvD5mQ/kchk1kb6XwR3V74RY+TKdw2wmAIxFxXza9i8Itp/sl7QIWFq1ja0QcApD0DeBCCu+r4dZ7nN/dQgbgLZL+CzANmAs8Any7zDy+GRFHs+mLgddJKi5QSyjcWsJsXFwwbCITcEdE/LeTGgsPsSn+r34AOFY0Xfy+GXoSMEZZ75HIThxm90X6ewp3yH1G0icpFI5S+vndEYGhfV4cktMHI+K7mFWYD0nZRHY/8GeS5kLhaqoxHL65WIXngs+g8EyDH5ax3ukUCtDB7E7Ha4qWHQZmF80/BZyTTRf3G2or8MGsOA0+B3t6mTmZleQ9DJuwImJXdpfQ+yW1AH3A1RQej5nqQeBuCg/wuWvwqqaU9UZEjwrPFH8U+CXwk6LFXwJul3SEwnmSG4EvSnoWeHiEeG6jcHfTHdnhsAMUCpnZuPmyWrMxyq5Aen1EXFPrWMyqwYekzMwsifcwzMwsifcwzMwsiQuGmZklccEwM7MkLhhmZpbEBcPMzJK4YJiZWZL/D+TWzOgkFsXDAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
......@@ -462,6 +365,30 @@
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHOxJREFUeJzt3X+8VXWd7/HXm18KHEyTPJpgUJBexh8EJ5SrU+fkj7CZpK422e1qv4hLE3Z1xjvi2INpmmsPrWbsNmMRld1sps7DfmiYTIg8PDGZGOAQvxQ7gcoJwR9RcAAF5HP/WIvcHM+P7+GctfdC38/HYz/OWt/1/e713pyz94f1Y6+liMDMzKwnA2odwMzMjgwuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsySDah2gP40cOTLGjBlT6xgA7Nq1i+HDh9c6RrfKnrHs+aD8GcueD5yxP/Ql38qVK5+NiNcldY6IV8xj8uTJURb3339/rSP0qOwZy54vovwZy54vwhn7Q1/yASsi8TPWu6TMzCxJoQVD0jRJGyS1SprTyfLpklZLWiVphaTzKpY9LmnNwWVF5jQzs54VdgxD0kDgVuBCoA1YLmlBRKyv6LYEWBARIelM4A7gtIrlTRHxbFEZzcwsXZFbGFOA1ojYGBF7gWZgemWHiGjP96EBDAd8rXUzs5IqsmCcDGyumG/L2w4h6b2SHgXuAT5asSiAeyWtlDSzwJxmZpZAL/0Hv5+fWHof8M6ImJHPXwFMiYiruuj/NmBuRFyQz78+IrZIOgFYDFwVEUs7GTcTmAlQX18/ubm5uZDX01vt7e3U1dXVOka3yp6x7Pmg/BnLng+csT/0JV9TU9PKiGhI6px6OlVvH8BUYFHF/PXA9T2M2QSM7KT9M8C1Pa3Tp9X2Ttkzlj1fRPkzlj1fhDP2h1fCabXLgfGSxkoaAlwOLKjsIGmcJOXTk4AhwHOShksakbcPBy4C1haY1czMelDYWVIRsV/SbGARMBC4LSLWSZqVL58HXApcKWkfsAd4f0SEpHrgzryWDAK+GxE/LSqrmZn1rNBLg0TEQmBhh7Z5FdM3Azd3Mm4jcFaR2czMrHf8TW8zM0vigmFmdgRr3baT7bv30bptZ+HrcsEwMztCzb1rDRfcspS27bu54JalzP3xmkLX54JhZnYEat22k9uXPXlI2+0PPlnoloYLhpnZEWjV5t/3qr0/uGCYmR2BJo4+tlft/cEFw8zsCDSufgRXTj3lkLYrp57CuPoRha3zFXWLVjOzV5PPTj+DK88Zw5qVy7jvmnMKLRbgLQwzsyPauPoRHDdscOHFAlwwzMwskQuGmZklccEwM7MkLhhmZpbEBcPMzJK4YJiZWRIXDDMzS+KCYWZmSVwwzMwsiQuGmZklKbRgSJomaYOkVklzOlk+XdJqSaskrZB0XupYMzOrrsIKhqSBwK3AxcAE4AOSJnTotgQ4KyImAh8FvtGLsWZmVkVFbmFMAVojYmNE7AWagemVHSKiPSIinx0OROpYMzOrriILxsnA5or5trztEJLeK+lR4B6yrYzksWZmVj1F3g9DnbTFyxoi7gTulPQ24B+AC1LHAkiaCcwEqK+vp6Wl5XDz9qv29vbSZOlK2TOWPR+UP2PZ84Ez9odq5SuyYLQBoyvmRwFbuuocEUslvUnSyN6MjYj5wHyAhoaGaGxs7GPs/tHS0kJZsnSl7BnLng/Kn7Hs+cAZ+0O18hW5S2o5MF7SWElDgMuBBZUdJI2TpHx6EjAEeC5lrJmZVVdhWxgRsV/SbGARMBC4LSLWSZqVL58HXApcKWkfsAd4f34QvNOxRWU1M7OeFXpP74hYCCzs0DavYvpm4ObUsWZmVjv+preZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyQuGGZmlqTQgiFpmqQNklolzelk+Qclrc4fv5B0VsWyxyWtkbRK0ooic5qZWc8GFfXEkgYCtwIXAm3AckkLImJ9RbdNwNsjYruki4H5wNkVy5si4tmiMpqZWboitzCmAK0RsTEi9gLNwPTKDhHxi4jYns8uA0YVmMfMzPqgyIJxMrC5Yr4tb+vKx4B/r5gP4F5JKyXNLCCfmZn1giKimCeW3ge8MyJm5PNXAFMi4qpO+jYBXwHOi4jn8rbXR8QWSScAi4GrImJpJ2NnAjMB6uvrJzc3Nxfyenqrvb2durq6WsfoVtkzlj0flD9j2fOBM/aHvuRrampaGRENSZ0jopAHMBVYVDF/PXB9J/3OBH4DvLmb5/oMcG1P65w8eXKUxf3331/rCD0qe8ay54sof8ay54twxv7Ql3zAikj8XC9yl9RyYLyksZKGAJcDCyo7SDoF+BFwRUQ8VtE+XNKIg9PARcDaArOamVkPCjtLKiL2S5oNLAIGArdFxDpJs/Ll84C5wPHAVyQB7I9s06geuDNvGwR8NyJ+WlRWMzPrWWEFAyAiFgILO7TNq5ieAczoZNxG4KyO7WZmVjv+preZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVxwTAzsyQuGGZmlsQFw8zMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCyJC4aZmSVJKhiSTi86iJmZlVvqFsY8Sb+U9JeSji00kZmZlVJSwYiI84APAqOBFZK+K+nCnsZJmiZpg6RWSXM6Wf5BSavzxy8knZU61szMqiv5GEZE/Br4NHAd8Hbgy5IelfTfOusvaSBwK3AxMAH4gKQJHbptAt4eEWcC/wDM78VYMzOrotRjGGdKugV4BHgH8O6I+C/59C1dDJsCtEbExojYCzQD0ys7RMQvImJ7PrsMGJU61szMqksR0XMnaSnwdeAHEbGnw7IrIuI7nYy5DJgWETMO9gPOjojZXazjWuC0iJjRm7GSZgIzAerr6yc3Nzf3+Hqqob29nbq6ulrH6FbZM5Y9H5Q/Y9nzgTP2h77ka2pqWhkRDSl9ByU+57uAPRHxIoCkAcDREbG7s2KRUydtnVYnSU3Ax4Dzejs2IuaT78pqaGiIxsbGrl5DVbW0tFCWLF0pe8ay54PyZyx7PnDG/lCtfKnHMO4DhlbMD8vbutNGdpD8oFHAlo6dJJ0JfAOYHhHP9WasmZlVT2rBODoi2g/O5NPDehizHBgvaaykIcDlwILKDpJOAX4EXBERj/VmrJmZVVfqLqldkiZFxMMAkiYDe7obEBH7Jc0GFgEDgdsiYp2kWfnyecBc4HjgK5IA9kdEQ1djD+P1mZlZP0ktGFcD35d0cLfQScD7exoUEQuBhR3a5lVMzwBmpI41M7PaSSoYEbFc0mnAqWQHpB+NiH2FJjMzs1JJ3cIAeCswJh/zFklExO2FpDIzs9JJKhiSvgO8CVgFvJg3B+CCYWb2KpG6hdEATIiUb/mZmdkrUupptWuBE4sMYmZm5Za6hTESWC/pl8ALBxsj4pJCUpmZWemkFozPFBnCzMzKL/W02p9JegMwPiLukzSM7At1Zmb2KpF6efOPAz8AvpY3nQzcVVQoMzMrn9SD3p8EzgV2wB9vpnRCUaHMzKx8UgvGC/mNjACQNIguLjd+JHqu/QV+tfn3PNf+Qs+dzcxKZMn6rfx2+x6WrN9a+LpSD3r/TNLfAkPze3n/JXB3cbGq58erfst1P1zN4AED2HfgAJ+/9EwumXhyrWOZmfXooltaeGzbLv76jP3ccPtKTq0fzqJrGgtbX+oWxhzgGWAN8D/JLgr46aJCVctz7S9w3Q9X8/y+A+x8YT/P7zvA3/xwtbc0zKz0lqzfymPbdh3StmHbrkK3NFLPkjpAdovWrxeWpAbatu9h8IABPM+BP7YNHjCAtu17OL7uqBomMzPr3r3rt3XZfv6EYr5nnXqW1CZJGzs+CklURaOOG8q+AwcOadt34ACjjhvaxQgzs3K4aEJ9r9r7Q+ouqQayq9W+FfhT4MvAvxYVqlqOrzuKz196JkcPHsCIowZx9OABfP7SM711YWald/6EEzm1fvghbafWDy9s6wLSd0k916HpS5J+TnbHvCPaJRNP5txxI2nbvodRxw11sTCzI8aiaxpZsn4rWzf8J9+88i2FFgtIv7z5pIrZAWRbHCMKSVQDx9cd5UJhZkek8yecSMvTQ2ksuFhA+mm1/1gxvR94HPiLfk9jZmallbpLqulwnlzSNOD/kl136hsRcVOH5acB3wImATdExBcrlj0O7CS7YdP+iGg4nAxmZtY/UndJ/VV3yyPinzoZMxC4FbgQaAOWS1oQEesruv0O+BTwni6euikink3JaGZmxerNWVKfILvo4MnALGAC2XGMro5lTAFaI2JjflmRZmB6ZYeIeDoilgP7DiO7mZlVkVLuuirpXuDSiNiZz48Avh8R07oZcxkwLSJm5PNXAGdHxOxO+n4GaO+wS2oTsJ3smlVfi4j5XaxnJjAToL6+fnJzc3OPr6ca2tvbqaurq3WMbpU9Y9nzQfkzlj0fOGN/6Eu+pqamlam7/FMPep8C7K2Y3wuM6WGMOmnrzQULz42ILZJOABZLejQilr7sCbNCMh+goaEhGhsbe7GK4rS0tFCWLF0pe8ay54PyZyx7PnDG/lCtfKkF4zvALyXdSfah/17g9h7GtAGjK+ZHAVtSg0XElvzn0/l6pwAvKxhmZlYdSccwIuJG4CNku4h+D3wkIj7Xw7DlwHhJYyUNAS4HFqSsT9LwfLcXkoYDFwFrU8aamVkxUrcwAIYBOyLiW5JeJ2lsRGzqqnNE7Jc0G1hEdlrtbRGxTtKsfPk8SScCK4BjgAOSriY7mD4SuFPSwYzfjYifHs4LNDOz/pF6Wu3fkZ0pdSrZ9yYGk11L6tzuxkXEQrJLoVe2zauY3kq2q6qjHcBZKdnMzKw6Uk+rfS9wCbAL/nh84RVzaRAzM+tZasHYG9n5twF/PK5gZmavIqkF4w5JXwOOlfRx4D5eYTdTMjOz7qVeS+qL+b28d5Adx5gbEYsLTWZmZqXSY8HIrwm1KCIuAFwkzMxepXrcJRURLwK7Jb2mCnnMzKykUr+H8TywRtJi8jOlACLiU4WkMjOz0kktGPfkDzMze5XqtmBIOiUinoyIb1crkJmZlVNPxzDuOjgh6YcFZzEzsxLrqWBUXqL8jUUGMTOzcuupYEQX02Zm9irT00HvsyTtINvSGJpPk89HRBxTaDozMyuNbgtGRAysVhAzMyu31GtJmZnZq5wLhpmZJXHBMDOzJC4YZmaWxAXDzMySFFowJE2TtEFSq6Q5nSw/TdKDkl6QdG1vxpqZWXUVVjDy+2jcClwMTAA+IGlCh26/Az4FfPEwxpqZWRUVuYUxBWiNiI0RsRdoBqZXdoiIpyNiObCvt2PNzKy6Ui9vfjhOBjZXzLcBZ/f3WEkzgZkA9fX1tLS09DpoEdrb20uTpStlz1j2fFD+jGXPB87YH6qVr8iCoU7aUq9HlTw2IuYD8wEaGhqisbExcRXFamlpoSxZulL2jGXPB+XPWPZ84Iz9oVr5itwl1QaMrpgfBWypwlgzMytAkQVjOTBe0lhJQ4DLgQVVGGtmZgUobJdUROyXNBtYBAwEbouIdZJm5cvnSToRWAEcAxyQdDUwISJ2dDa2qKxmZtazIo9hEBELgYUd2uZVTG8l292UNNbMzGrH3/Q2M7MkLhhmZpbEBcPMzJK4YJiZWRIXDDMzS+KCYWZmSVwwzMwsiQuGmZklccEwM7MkLhhmZpbEBcPMzJK4YJiZWRIXDDMzS+KCYWZmSVwwzMwsiQuGmZklccEwM7MkLhhmZpbEBcPMzJIUWjAkTZO0QVKrpDmdLJekL+fLV0uaVLHscUlrJK2StKLInGZm1rNBRT2xpIHArcCFQBuwXNKCiFhf0e1iYHz+OBv4av7zoKaIeLaojGZmlq7ILYwpQGtEbIyIvUAzML1Dn+nA7ZFZBhwr6aQCM5mZ2WFSRBTzxNJlwLSImJHPXwGcHRGzK/r8BLgpIn6ezy8BrouIFZI2AduBAL4WEfO7WM9MYCZAfX395Obm5kJeT2+1t7dTV1dX6xjdKnvGsueD8mcsez5wxv7Ql3xNTU0rI6IhpW9hu6QAddLWsTp11+fciNgi6QRgsaRHI2LpyzpnhWQ+QENDQzQ2NvYhcv9paWmhLFm6UvaMZc8H5c9Y9nzgjP2hWvmK3CXVBoyumB8FbEntExEHfz4N3Em2i8vMzGqkyIKxHBgvaaykIcDlwIIOfRYAV+ZnS50D/CEinpI0XNIIAEnDgYuAtQVmNTOzHhS2Syoi9kuaDSwCBgK3RcQ6SbPy5fOAhcC7gFZgN/CRfHg9cKekgxm/GxE/LSqrmZn1rMhjGETEQrKiUNk2r2I6gE92Mm4jcFaR2czMrHf8TW8zM0vigmFmZklcMMzMLIkLhpmZJXHBMDOzJC4YZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklcMMzMLIkLhpmZJXHBMDOzJC4YZmaWxAXDzMySuGCYmVkSFwwzM0vigmFmZklcMMzMLEmhBUPSNEkbJLVKmtPJckn6cr58taRJqWP7010Pb2bGt5dz18Obi1yN9ULrtp1s372P1m07ax3FrNRuvHstj27dyY13ry18XYUVDEkDgVuBi4EJwAckTejQ7WJgfP6YCXy1F2P7xTmfW8zVd6zmvkee5uo7VjP1c4uLWI31wty71nDBLUtp276bC25Zytwfr6l1JLNSeuOce/j6A0+w78UDfP2BJ3jjnHsKXV+RWxhTgNaI2BgRe4FmYHqHPtOB2yOzDDhW0kmJY/vsroc3s3XH3kPantqx11saNdS6bSe3L3vykLbbH3zSWxpmHdx491oOdGg7kLcXRRFRzBNLlwHTImJGPn8FcHZEzK7o8xPgpoj4eT6/BLgOGNPT2IrnmEm2dUJ9ff3k5ubm5IxPPLebHc/ve1n7MUcP5g3HD0t+ns60t7dTV1fXp+coWhkzbt+9j7btuwGoHwrb9mTto44bxnHDBtcwWefK+G9Yqez5wBkP16Nbd7LvxaxkVL5XBg8cwGknjkh+nqamppUR0ZDSd1DvYyZTJ20dq1NXfVLGZo0R84H5AA0NDdHY2Jgc8K6HN/N3d6x+WfuX/uIMGieNTn6ezrS0tNCbLLVQxoyt23ZyzS1LAfjrM/bzj2uyP9H7rjmHcfXpb4JqKeO/YaWy5wNnPFwP3L2Wrz/wBHDoe+Xj576BxsbTC1lnkbuk2oDKT91RwJbEPilj++w9k0Zz0jFDDmk76ZghvKePxcIO37j6EVw59ZRD2q6cekopi4VZLd3w7tNf9gE+IG8vSpFbGMuB8ZLGAr8FLgf+e4c+C4DZkpqBs4E/RMRTkp5JGNsvHvzbC7nr4c38ZM1W/vyME10sSuCz08/gynPGsGblstJuWZiVwcab/owb717L4F2b+Pi5byi0WECBBSMi9kuaDSwCBgK3RcQ6SbPy5fOAhcC7gFZgN/CR7sYWlfU9k0a7UJTMuPoRtA0b7GJh1oMb3n06LS3PFrYbqlKRWxhExEKyolDZNq9iOoBPpo41M7Pa8Te9zcwsiQuGmZklccEwM7MkLhhmZpbEBcPMzJK4YJiZWRIXDDMzS+KCYWZmSVwwzMwsiQuGmZklKex+GLWQX7TwiVrnyI0Enq11iB6UPWPZ80H5M5Y9Hzhjf+hLvjdExOtSOr6iCkaZSFqRelOSWil7xrLng/JnLHs+cMb+UK183iVlZmZJXDDMzCyJC0Zx5tc6QIKyZyx7Pih/xrLnA2fsD1XJ52MYZmaWxFsYZmaWxAWjH0g6VtIPJD0q6RFJUyW9VtJiSb/Ofx5X44zXSFonaa2k70k6utYZJd0m6WlJayvauswk6XpJrZI2SHpnjfJ9If89r5Z0p6Rja5Wvq4wVy66VFJJGljGjpKvyHOskfb5WGbv4PU+UtEzSKkkrJE2pYb7Rku7PP1vWSfpfeXv13ysR4UcfH8C3gRn59BDgWODzwJy8bQ5wcw3znQxsAobm83cAH651RuBtwCRgbUVbp5mACcCvgKOAscBvgIE1yHcRMCifvrmW+brKmLePBhaRfS9pZNkyAk3AfcBR+fwJJfs93wtcnE+/C2ipYb6TgEn59AjgsTxH1d8r3sLoI0nHkP3BfRMgIvZGxO+B6WSFhPzne2qT8I8GAUMlDQKGAVuoccaIWAr8rkNzV5mmA80R8UJEbAJagSkUqLN8EXFvROzPZ5cBo2qVr6uMuVuAvwEqD1KWKeMngJsi4oW8z9O1ythFvgCOyadfQ/Z+qVW+pyLi4Xx6J/AI2X8Cq/5eccHouzcCzwDfkvSfkr4haThQHxFPQfYLB06oVcCI+C3wReBJ4CngDxFxb5kyVugq08nA5op+bXlbLX0U+Pd8ujT5JF0C/DYiftVhUWkyAm8G/lTSQ5J+JumteXtZMl4NfEHSZrL3zvV5e03zSRoDvAV4iBq8V1ww+m4Q2ebsVyPiLcAuss3D0sj3bU4n2zx9PTBc0v+obapeUydtNTvFT9INwH7g3w42ddKt6vkkDQNuAOZ2triTtlr9Gw4CjgPOAf43cIckUZ6MnwCuiYjRwDXkexCoYT5JdcAPgasjYkd3XTtp65eMLhh91wa0RcRD+fwPyArINkknAeQ/n+5ifDVcAGyKiGciYh/wI+C/lizjQV1laiPbL3/QKF7aTVBVkj4E/Dnwwch3GlOefG8i+4/BryQ9nud4WNKJlCcjeZYfReaXwAGy6yGVJeOHyN4nAN/npV06NcknaTBZsfi3iDiYq+rvFReMPoqIrcBmSafmTecD64EFZH905D9/XIN4Bz0JnCNpWP6/uPPJ9oOWKeNBXWVaAFwu6ShJY4HxwC+rHU7SNOA64JKI2F2xqBT5ImJNRJwQEWMiYgzZh8ek/O+0FBlzdwHvAJD0ZrKTRZ4tUcYtwNvz6XcAv86nq54vf89+E3gkIv6pYlH13ytFHt1/tTyAicAKYDXZG+E44HhgCdkf2hLgtTXO+PfAo8Ba4DtkZ1DUNCPwPbJjKvvIPtg+1l0msl0tvwE2kJ/BUoN8rWT7h1flj3m1ytdVxg7LHyc/S6pMGckKxL/mf48PA+8o2e/5PGAl2dlGDwGTa5jvPLJdSqsr/u7eVYv3ir/pbWZmSbxLyszMkrhgmJlZEhcMMzNL4oJhZmZJXDDMzCzJoFoHMCsbSS8Ca8jeH48AH4pDv3Nh9qrkLQyzl9sTERMj4nRgLzCrcqEyVXvvSBpYrXWZdccFw6x7/wGMkzQmvx/BV8i+aDZa0kWSHpT0sKTv59f6QdJNktbn98z4Yt72PmX3IvmVpKV524cl/cvBFUn6iaTGfLpd0mclPQRMlTQ5v0jfSkmLDl4SwqyaXDDMupBfCv5ist1TAKcCt8dLF5n8NHBBREwi+6b/X0l6LfBe4E8i4kzg/+Rj5wLvjIizgEsSVj+c7P4MZ5N90/ifgcsiYjJwG3Bjf7xGs97wMQyzlxsqaVU+/R9k1/F5PfBERCzL288hu1HNA9mlfhgCPAjsAJ4HviHpHuAnef8HgP8n6Q5euqhdd14ku9gcZIXqdGBxvq6BZJeyMKsqFwyzl9sTERMrG/IP6l2VTcDiiPhAx8H57TzPBy4HZpNdJ2mWpLOBPwNWSZpIdnn0yq38oyumn4+IFyvWtS4ipvbtZZn1jXdJmR2eZcC5ksZBdh8KSW/Oj2O8JiIWkt2EZ2K+/E0R8VBEzCW7KutosgsDTpQ0QNJour4r2gbgdZKm5s81WNKfFPnizDrjLQyzwxARz0j6MPA9SUflzZ8GdgI/lnQ02ZbBNfmyL0gan7ctIbsKKmT3Wl/DS1dt7WxdeyVdBnxZ0mvI3rdfAtb1+wsz64avVmtmZkm8S8rMzJK4YJiZWRIXDDMzS+KCYWZmSVwwzMwsiQuGmZklccEwM7MkLhhmZpbk/wNMXCyfmBbh1QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAADxCAYAAADbaUyMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XucVWXZ//HPd2YYYAAFREYEFCzymJIimloNeULTh6w0qNQ8UT5iaT0VWWlqByufTB8PiEVqJXQS42coojWeKhUMD6AoIMTI+ajDwJz29ftjrcHNsGfvNTP7sPZwvV+v9ZrZ63RfMy9e19xc6173LTPDOedc8SspdADOOeeywxO6c851EZ7QnXOui/CE7pxzXYQndOec6yI8oTvnXBfhCd0553JE0lBJf5f0mqSFkr6a4hxJuk3SEkkvSzo66dhYSYvDY5MztecJ3TnncqcJ+LqZHQocD1wh6bBW55wBjAi3icBdAJJKgTvC44cBE1JcuwtP6M45lyNmttrMXgy/fxd4DRjc6rRxwP0W+BfQV9IgYDSwxMyWmVkDMCM8t01lWf8JcmDAgAE2bNiwyOdv27aNXr165S6gLIh7jHGPD+IfY9zjg64Z4/z58zeY2b6dafP0Mb1s46bmzG29XL8Q2JG0a6qZTU11rqRhwIeA51odGgysTPpcE+5Ltf+4dPEURUIfNmwY8+bNi3x+dXU1VVVVuQsoC+IeY9zjg/jHGPf4oGvGKGlFZ9vcuKmZ5+cckPG80kFv7jCzURFi6g38GbjKzN5pfTjFJZZmf5uKIqE751w+GZAgkZV7SepGkMx/Z2YPpjilBhia9HkIsAoob2N/m7yG7pxzrRhGozVn3DKRJOBXwGtm9vM2TpsFXBCOdjke2Gpmq4EXgBGShksqB8aH57bJe+jOOZdClnroJwLnA69IWhDuuwY4AMDMpgCzgTOBJUAdcFF4rEnSJGAOUApMM7OF6RrzhO6cc60YRnMWphY3s2dIXQtPPseAK9o4Npsg4UfiCd0551JIpH/+GEue0J1zsfTmi8t488W3oLIBMyMoR+eHAc1FmND9oahzLnZm3TWHqz/6Pe686tesWrKGn37xdvK9uloCy7jFjSd051ys1G+vZ8rV91Jf10B9XT2WMJ558Dlef35J3mIwoNEs4xY3XnJxzsXKu5u3odJd+5olpSVsXrMlbzEY5iUX55zrrP779aVP/94kl8wTTQnef/Tw/AVh0BxhixtP6M65WCkpKeFnj1/LfsMrkURJaQnXPfgNBg4dkLcYgjdFM29x4yUX51zsDD14MPcvuZ3Ghkae/cezjKo6Ks8RiOb0w8djKac9dElXh5O6vyppuqQekvpLmivpzfBrv1zG4JwrXt3KuxWk3eChqDJucZOzhC5pMPAVYJSZHUHw6up4YDLwhJmNAJ4IPzvnXGwE49CVcYubXNfQy4CeksqACoKZwsYB94XH7wM+meMYnHOu3RKmjFvcKJeD9cP1834IbAceM7PPS9piZn2TztlsZruVXSRNJFiOicrKymNmzJgRud3a2lp69+7d6fhzKe4xxj0+iH+McY8PumaMY8aMmR9ljvJ0Djuy3H778H4ZzzvmwJWdbiubcvZQNKyNjwOGA1uAP0r6QtTrw1U/pgKMGjXK2jPBfVectD/f4h4fxD/GuMcHHmNbDNFchIMAcznK5RTgLTNbDyDpQeAEYK2kQWa2Olw3b10OY3DOuQ6JY0klk1wm9P8Ax0uqICi5nAzMA7YBFwI3hV//ksMYnHOu3QzRYKWFDqPdcpbQzew5SX8CXgSagH8TlFB6A3+QdAlB0j83VzE454rXupUbWLFwJQ005r3t4MUiL7nswsyuA65rtbueoLfunHMpPf3gc/zkgv+jrFsJZ107hmnPTOfiH0zIawxxHJaYSfH9CXLOdWmNDY385PzbqK+rZ9vW7VjCePAXD7P0peV5i8FMNFtJxi1u4heRc26PtnX9O7vtKy0rZc1b+R0/kUAZtygkTZO0TtKrbRz/hqQF4faqpGZJ/cNjyyW9Eh6bl6ktT+jOuVjpV9mX8h67vvLf3NjMsCOG5i2G4KFoWcYtonuBsW22ZfYzMxtpZiOBbwNPmtmmpFPGhMczjnf3hO6ci5XSslJ+OPs79O7Xix69uqMS8ZW7LmPw+wflLYaWh6KZtkj3MnsK2JTxxMAEYHoHw/bZFp1z8XPocSP4w+p72PD2Jl5/axFjPl6V9xia8zwOPRziPRaYlLTbgMckGXB3+MJlmzyhO+diafu7O9i0egvNTc15b7sdb4oOaFXbnpop6aZxNvBsq3LLiWa2StJAYK6k18Mef0qe0J1zsfPCnAXc8JmbKSkt5ezrqvj9gof47DfzO49fItoolg1ZnMtlPK3KLWa2Kvy6TtJMYDTQZkL3GrpzLlaaGpu44dz/Zce2eureqcMSxm+u/yPLF67MWwzB9LklGbdskbQ38DGS3pyX1EtSn5bvgdOAlCNlWngP3TkXK1vWbcWad13grbRbKW+/uZphh+dnpIshGrP06r+k6UAVQXmmhuBly24AZjYlPO0cghlptyVdWgnMVLC4ahnwgJk9mq4tT+jOuVjpO3BvSruVBjNAhZobmxl6yOC8xWBG1l4cMrOMr7ia2b0EwxuT9y0D2rX2npdcnHOxUtatjBse+hYVfXpSsVdPVCIu/ekXOCCPCZ0ILxVFfbEon7yH7pyLnaOqDmd6zd2sXraW5euXcvIp+Z3+ycheDz2fii9i59weoaJPT9531DBKywozjW0+H4pmi/fQnXOuFSOea4Zm4gndOedaMaAx+lwtsVF8ETvnXM6pKOdD94TunHOtGJHfFI0VT+jOOZeC99Cdc64LMJP30J1zLlt21O1g6b+Xk2g1DUA+BA9FCzNcsjOK70+Qc67Le+y+v3N2n/O56iPfY+mC5fzi8rvzHIGvKeqcc53WsKOBmy++M+gmh/569+P8+2+v5C2G4KGoMm5x4wndORcry1/9D2a7758/9+W8xuFvijrnXCcN/sD+Kfe/b+SwvMVQrG+Kxu9PjHNuj9Zrrwo+/bWzdtl3yOj3M+azJ+Y1jmwtEp1P3kN3zsXOl2++kI+ccxzz575E//f15rJ/XZzX9s2gMRG/hJ1JzhK6pIOB3yftOgi4FugLXAasD/dfY2azcxWHc644HfrhD3DAoXsx/+U38t52UHIpvoSes4jNbLGZjTSzkcAxQB0wMzx8S8sxT+bOudZqFlWz6dUjKa8dQ6JhIYuevDPvMTSH87mk2+ImX3+CTgaWmtmKPLXnnCtSzU0NVCSuoO+ABrqVGyUlxrADbmPdipfyFoMPW0xvPDA96fMkSS9LmiapX55icM4VgS3r3qJnryZKkrJTc5PYuOIfeYwiKLlk2iLdKchz6yS92sbxKklbJS0It2uTjo2VtFjSEkmTM7ZlqQZ8ZpGkcmAVcLiZrZVUCWwg+CN4IzDIzHZ74iFpIjARoLKy8pgZM2ZEbrO2tpbevXtnI/yciXuMcY8P4h9j3OODeMZoloDG11BJkJtqt1dS0X0dTc1DKe+5V8brx4wZM9/MRnUmhn0PG2Dj7j8r43m/Ova+jG1J+ihQC9xvZkekOF4F/I+ZndVqfynwBnAqUAO8AEwws0VttZWPUS5nAC+a2VqAlq8Aku4BHk51kZlNBaYCjBo1yqqqqiI3WF1dTXvOL4S4xxj3+CD+McY9PohvjC8/9k9GvO83NDfD88uuZJ+Gao466495az8Y5ZKduVzM7ClJwzpw6WhgiZktA5A0AxgHtJnQ81FymUBSuUXSoKRj5wAp/xvinNtzHXnad9hUfw/LV1xKY9PgvCZzeO/Fogg19AGS5iVtEzvY5IclvSTpEUmHh/sGAyuTzqkJ97Uppz10SRUE/134UtLun0oaSVByWd7qmHPOATD4kI8w+JCPsKG6uiDtJ6KNYtnQ2fIO8CJwoJnVSjoTeAgYASkDSFsjz2lCN7M6YJ9W+87PZZvOOddZLaNc8tKW2TtJ38+WdKekAQQ98qFJpw4heB7ZJn9T1DnnUsjXi0WS9gPWmplJGk1QCt8IbAFGSBoOvE0wWvBz6e7lCd0551oxE01ZSuiSpgNVBPX2GuA6oFvQjk0BPgNcLqkJ2A6Mt2D4YZOkScAcoBSYZmYL07XlCd0551LIVsnFzCZkOH47cHsbx2YDkd+m94TunHOt5LOGnk2e0J1zLgVP6M451wX4AheuS3jur/M5b9ClvPniW3zj5OvZuuGdzBc51wUlUMYtbjyhu51WLFrJjef9nM1rt4IZrz7zGted87NCh+Vc3plBU6Ik4xY3XnJxO7385K5TRDQ1NrPon4tJJBKUlMTvH69zuVSMJRdP6G6nvfbpg0p3/Ufco6K7J3O3x/Eauit6J3zyWA48dAg9enUHQfeKcq6849JCh+VcQZgp4xY33kN3O3Ur78YtT9/I36c/y7YeW/nZE9/n0ONGFDos5woijg89M/EeuttFt/JunHZhFf0q9/Zk7vZYZr4EXcHN/c2TjB8ykaUvLee2Sb+kqbGp0CE554qSaE6UZNzipsuUXF58/GVuvXwq9XUNJJoSPHbv3+nWrZTLb7mo0KE554pQHGvkmcTvT0wHPf3gc9TXNez8XF/XwNN/fq6AETnnilXLXC7FVnLpMj30vfbpTWlZCc1NiZ37KvbqWcCInHNFy4I6erHpMj30cVeMpXe/3pSVB3+juleUc/ktXyxsUM65olWMr/53mR56//36cc8rP2fufdWU7p/gF0//gPd/aHihw3LOFSELH4oWm+KLOI1+A/fmvG+MY59B/TyZO+c6xSzzFjeRErqkIZLGhN93l9Qrt2E551xhFeObohkTuqSLgVnAL8NdBwJ/yWVQzjlXSEEPPDsJXdI0SeskvdrG8c9Lejnc/iHpqKRjyyW9ImmBpHmZ2orSQ/8KcDzwTvCD2hvAwEg/iXPOFaksDlu8Fxib5vhbwMfM7EjgRmBqq+NjzGykmY3K1FCUh6I7zKxBCoKXVAoxfLzrnHNZlK0auZk9JWlYmuP/SPr4L2BIR9uK0kN/VtI3gR5hHf33wMMdbdA55+LOEIlEScYNGCBpXtI2sZNNXwI8skso8Jik+VHuHaWH/k1gIvA68FVgDnB3BwJ1zrmiEbGDviFKKSSKsMN8CXBS0u4TzWyVpIHAXEmvm9lTbd0jbUIPyyvTzOxC4K5sBO2cc7Fn+Z3LRdKRBANPzjCzjTvDMFsVfl0naSYwGmgzoactuZhZMzBIUrcOBHhw+GS2ZXtH0lWS+kuaK+nN8Gu/9t67Lc/8ZwXjZvyWNzdt5O75z2NxHCgac2+9soKvVV3H8oUrufOqX9NQ31jokNweaP3GrZx3+jWcMuhClry2kgWvLM1/EBZhywJJBwAPAueHg05a9veS1Kfle+A0IOVImRZRSi7LgKcl/QXY1rLTzG5Ld5GZLQZGhsGUAm8DM4HJwBNmdpOkyeHnb0WII62X1qxm4sMPsaOpiVP3G8Jdz/2TpkSCK449vrO33mOsr9nIVSd9j+212zn07AOZfc8TbF67he9Mv7rQobk9SCKR4PyTvkXj0k2UNBmJuka+ftL3+O2bdzBoYNb6fxllq4cuaTpQRVBvrwGuA7oFbdgU4FpgH+DOcPBJU1jGqQRmhvvKgAfM7NF0bUVJ6OuBuUBFuHXEycBSM1shaRzBDwdwH1BNFhL6Q4tfY0fTe/Ofb29qYsarL3tCb4cXHvk3zc3NO5/u128PZqz0RaJdPq1YuY6mMJlDOKSuMcHDf/0nl110Zl5iMCCRyE5CN7MJGY5fCuy21qOZLQOO2v2KtikfZQlJ04AXzex2SVvMrG/Ssc1mttuf3fCJ7kSAysrKY2bMmJG2jTW1tWyoC/4DUdmtnLWNDZSXlvKBfQZk80fJmtraWnr37l3oMHbxzsZa1v1nPZYw+g3Zm801W5HE+4+O5zQKcfwdJot7fBDPGBubmnnr5RUoTE39huzNpre3ss+wfdmnf5+M148ZM2Z+Zx9Udj9osA350RUZz1s24TudbiubMvbQJc0lRbXIzE6L0oCkcuC/gG+3JzAzm0o4wH7UqFFWVVWV9vwVW7Zw9vTfsK2xgav3G8KdG9Zw08mnUXXwoe1pNm+qq6vJ9DPl27at27j0iK+xZd1WPvWj05j1/b/xqavOil2cLeL4O0wW9/ggvjGe+5PJbHr6LUoaEpx78xn88RfP8NDiu+jVs3veYijGR3BRSi7fTfq+B/BpoL4dbZxB0DtfG35eK2mQma2WNAhY1457tenAvn35y4Qv8MsX57F3bR13nflffGxYPHuWcdVr717c9eJPmf7jmfTu15NJt1/CaRdUFTostwf63ewfcN13p/H6P9+gR/9eTF/wi7wmcyBrDz3zKWNCN7PWy/48KenJdrQxAZie9HkWcCFwU/g1a/PCDO/bjx9+/FSqq6s9mXdQ33335vKffzG2PTe3ZyjvVsaPfxK8R1NdXc2A/nvlOYJ4Tr6VSZTJufZK2vpKOhkYFOXmkiqAUwmG5LS4CThV0pvhsZs6EHdKi/65mG+eegMrX3+bv94z14ctOuc6Lk/DFrMpSsllIUHoApoIJpK5LMrNzayOYDhO8r6NBKNesmrJgrf45qk3Ul9Xz4ixQ5hy3X3U1zXwqa9+IttNOee6OgPL0iiXfIoyFu0gMzvAzIaa2XAz+zjwbK4Da6/H7qumvu690v6Ounpm3jq7gBE554qbImzxEiWht66hAzyf7UA6q6SkZLffr0ri9wt3zhWJIiy5tJnQJQ0MJ1rvKemDko4Mt5Po+AtGOXPGpSfTo+K9p+DdK7ozfvInCxiRc66oFWFCT1dD/wRwMcHcvHcm7X8X+F4ug+qIAw8dwq3P/pAHfvhnKvau4BvT/puPnXdCocNyzhUjA4pwlEubCd3Mfg38WtJ5ZvaHPMbUYQcdeSDf/f3XgmGLVZ7MnXMdV4yD5KKMQ/+DpNOBwwleLGrZ/6NcBtYRS19azu9+8Gfed9r+VK99lqrPnljokJxzxaoIR7lEefX/TqAv8FHg1wRviv4rx3G124rXarjqpO+yY1s9g44/g5uvvou6d7dz5qWnFDo051wRUhH20KOMcjnJzD4HbDSz7wHH0Yk173LlkV8+wY5t7w1brK+rZ8ZNMwsYkXOuaEV5IBrDhB9pkeiWr5L2AzYCw3IWUQclEond9hVjDcw5FwcqyoeiUXrosyX1BW4GFgDLgT/lMqiOOP2LY+jeatjiOV/Jz9zJzrkuqAh76GkTuqQS4BEz22JmfwSGAx80s2vyEl07vO+oYfz08Ws5+tQj6dG7B//9iy96QnfOdVwiwhYzmdYUTQC3Jn3ebmabch5VBx12/Af4yZzvMfTg/Tnz0lMIl25yzrn2aRmHnmmLmSgll7nhsnGxV/PGKn4+cQpr3lrH84/8u9DhOOc6qKGhkes//TPGD5nIytffZsOq/PcjZZm3SPeRpklaJynlAs8K3CZpiaSXJR2ddGyspMXhscmZ2oqS0CcRLFS6XdImSZslxa6XvmrpGq44djKP/upvvLuplhvOvZm/PfB0ocNyznXAJYdexTMzn2fjqs3s2FbPBe+7gm3v1OU3iOzV0O8FxqY5fgYwItwmAncBSCoF7giPHwZMkHRYuoaiJPQBBCtU9wb2DT/vG+G6vHr47sfYXrtj5xzo9XUN3H99Ubzg6pxLsnbFOta8tetCZo31TTw85bECRdQ5ZvYUkK4TPA643wL/AvqGq7mNBpaY2TIzawBmhOe2KWNCN7Nm4FzgW+H3g4CR0X6U/GnY0bTbghaNDU0FisY511E76hpS7q/fnnp/rkQsuQyQNC9pm9iBpgYDK5M+14T72trfpigrFt0OjAHOD3fVAVPaEWxenPKFj9C9onzn5x4V3fnEZacWMCLnXEcMPXh/Kvbqucs+SYy9aEz+gjCCV/8zbbDBzEYlbVM70Fqqp6uWZn+bopRcTjCzLxG+YBSOcilPf0n+HTJ6BDf8ZTIHj34/5T3LOf/75zHh2+cUOiznXDuVlJTwq0W/YPCI/SjrVkppWSm3PHUDAw/Ic6U3f+PQa4ChSZ+HAKvS7G9TlDdFG8Px6AYgaR9iOQITjj75gxx98o99gWPnityA/ftz7+L/A4JFog8/8ZC8x5DHuVxmAZMkzSCYWmWrma2WtB4YIWk48DYwHvhcuhtFSeh3AH8G9pV0PXAecH1nos+Vdf9Zz6w757DX4T145enX+OBHDi10SM65YpWlhC5pOlBFUG+vAa4jGGiCmU0BZgNnAksIStoXhceaJE0C5gClwDQzW5iurSjT594vaT7QMm3huWaWcjxlIa1buYEvjfwGde9u5zM3nc63L/8B1/zuKk4Yd2yhQ3POFaMsJXQzm5DhuAFXtHFsNkHCjyRKDR2Cvw6NQEM7rsmrWXfOoe7d7SSag2pQfV0Dv/z2bwsclXOuGEUZ4RLH6XWjjHL5DjAd2J+gKP+ApG/nOrD22l77XjJvUd/G8CfnnMso2iiXWInS2/4CcKyZfdfMvkMw2P2C3IbVfmM+eyLde743+KZ7RXdOOf+jBYzIOVfMumQPHVjBrrX2MmBZbsLpuCNOOpRrHriKoYfsT1l5GZ+++hNc8P3zCh2Wc65YFeH0uVFGudQBCyXNIfgRTgOekfRzADP7Wg7ja5cTxh3LCeOO9WGLzrnOiWkPPJMoCf2v4dYi8nqi4cIYvwSOIPhjcDFwOnAZsD487ZrwSa5zzsVHV0zoZvarTtz/VuBRM/uMpHKggiCh32JmN3fivs45l1OK5euT6UUZ5TJW0gvhfL6Rp8+VtBfwUeBXAGbWYGZbOh+yc865VKKUXG4neDv0Fdr3yv9BBGWVX0s6CpgPfDU8NknSBcA84Otmtrn1xeGsZRMBKisrqa6ujtxwbW1tu84vhLjHGPf4IP4xxj0+8BjT6oolF4IJYhaEy9G1995HA1ea2XOSbgUmE/yBuJHg13Uj8L8EtfVdhLOWTQUYNWqUtechZzE8FI17jHGPD+IfY9zjA4+xTV34oeg3gf8nqRqob9lpZrdluK4GqDGz58LPfwImm9nalhMk3QM83K6InXMuH4owoUcZh3490Az0JVipqGVLy8zWACslHRzuOhlYFK7E0eIcIHbzwjjnXFcdhz7QzI7p4P2vBH4XjnBZRjCL2G2SRhL8OpYDX+rgvZ1zLidEcY5yiZLQn5D0cTP7W3tvbmYLgFGtdp+f6lznnIuNIq2hRym5XAY8Lqm2PcMWnXOuqHXRksuAnEfhnHNxE8OEnUnGHrqZNQPnAt8Kvx8EjMx1YM45V0hdcrZFSbcDY3iv9l0HTMllUM45V3BFWHKJUkM/wcy+BOwAMLNNQHn6S5xzrohZMMol0xZFOH3KYklLJE1OcfwbkhaE26uSmiX1D48tl/RKeGxeprai1NAbJZUQ/j2StA/tmwLAOefa7aU1q3ll3Vr2bmjAzJDyvEJQFnrgkkqBO4BTCV62fEHSLDNbtLMZs58BPwvPPxu4Ouw4txhjZhuitNdmD11SS7K/A/gzsK+k64FngJ9E/5Gcc6597l3wIp978A/86OknWbl1C1fNmU2wlnL+ZKmGPhpYYmbLzKwBmAGMS3P+BIIlPzskXcnleQAzux/4LnAzsBk418xmdLRB55xLZ0dTIz9+5km2NzWxo7mJhBlPLFvKgjWr8xtItBr6AEnzkraJre4yGFiZ9Lkm3LcbSRXAWIIOdHIUj0man+Leu0lXctn5/xszWwgszHQz55zrrK076ilpVV4pKREb6uryF0T0h54bzKz1y5PJUtWJ2rrz2cCzrcotJ5rZKkkDgbmSXjezp9pqLF1C31dSm8vLmdnP01zrnHMdsm+vXvTvWcGa2nd3Zr7mRIIjBlbmLQaRtWGJNcDQpM9DgFVtnDueVuUWM1sVfl0naSZBCafNhJ6u5FIK9Ab6tLE551zWlUj89lPnMrxfPwSUlpQw9exPMqhPftNOlmroLwAjJA0P57QaD8zarS1pb+BjwF+S9vWS1Kfle4L1nNNOZpiuh77azG6IFLJzzmXR8L79ePz8i2lOJHj6qac4ceiB+Q8iCz10M2uSNAmYQ9BJnmZmCyV9OTze8k7POcBjZrYt6fJKYGY4uqcMeMDMHk3XXqQaunPOFUJpSZRXZXIkS4NqzGw2MLvVvimtPt8L3Ntq3zLgqPa0lS6hn9yeGznnXJcR01f7M2kzobd60uqcc3uWrpTQnXNuT9ZVF7hwzrk9TpcquTjn3B4rprMpZuIJ3TnnUvGE7pxzxS+Lb4rmlSd055xLQYniy+ie0J1zrjWvoTvnXNfhJRfnnOsqPKE751zX4D1055zrKoowoed0KjNJfSX9SdLrkl6T9GFJ/SXNlfRm+LVfLmNwzrl2s+DV/0xb3OR6bspbgUfN7BCCaSBfAyYDT5jZCOCJ8LNzzsVGyzj0LCxwkVc5S+iS9gI+CvwKwMwazGwLwYrX94Wn3Qd8MlcxOOdch5ll3mImlzX0g4D1wK8lHQXMB74KVJrZagAzWx0ufrqbcIXriQCVlZVUV1dHbri2trZd5xdC3GOMe3wQ/xjjHh94jOnEsQeeSS4TehlwNHClmT0n6VbaUV4xs6nAVIBRo0ZZVVVV5Iarq6tpz/mFEPcY4x4fxD/GuMcHHmObivTFolzW0GuAGjN7Lvz8J4IEv1bSIIDw67ocxuCccx2SrYeiksZKWixpiaTdOrWSqiRtlbQg3K6Nem1rOUvoZrYGWCnp4HDXycAighWvLwz3XUjSKtfOORcX2UjokkqBO4AzgMOACZIOS3Hq02Y2MtxuaOe1O+V6HPqVwO8klQPLgIsI/oj8QdIlwH+Ac3Mcg3POtY+RrYeeo4El4YLPSJpBMDBkUS6uzWlCN7MFwKgUh3wBaudcrEV8KDpA0rykz1PD538tBgMrkz7XAMeluM+HJb0ErAL+x8wWtuPanfxNUeecSyVaQt9gZqk6rS0U4c4vAgeaWa2kM4GHgBERr91Frl8scs65opPFF4tqgKFJn4cQ9MJ3MrN3zKw2/H420E3SgCjXtuYJ3TnnWjNDicxbBC8AIyQND58ljicYGLKTpP0kKfxCpWOpAAAHcUlEQVR+NEFe3hjl2ta85OKcc6lk4ZmomTVJmgTMAUqBaWa2UNKXw+NTgM8Al0tqArYD483MgJTXpmvPE7pzzqWQrTdFwzLK7Fb7piR9fztwe9Rr0/GE7pyLpfqmJtbU1pIoxJwpBviaos4513n/Xr2Ki2Y9SFNzgsv33Y9Ni17lM4cdkd8gii+f+0NR51y8NCUSXDzrQd6pr6euqREz49rqJ1i+ZXNe4/Dpc51zrpM21G2jvrl5l31lJSW8sXFDXuPI0iiXvPKSi3MuVvr3rNhtX1MiwdC9++YvCJ9t0TnnOq+8tJRbTjuTnmVl9CkvRxKXfOgYDh2wb95iCF4ssoxb3HgP3TkXO6e/fwSPV17Mkk0bqVuylNM/fFL+g4jhmqGZeA/dORdLlb17c9i+A+leWlqQ9r2H7pxzWfDa+nVc8NCfebehnisH7s+ON99g7IgP5C8Ar6E751znNScSXPDQn9i4vY6G5mbMjK/NfYSVW7fmMYqszeWSV57QnXOxsr5uG7UNjbvs61ZSwusb1uc3ELPMW8x4ycU5Fyv9evSkdb2jKZFgUJ8++QvCoq8ZGifeQ3fOxUr3sjJ++PFT6VFWRq9uwbDF8w77IEcMrMxvIN5Dd865zvvUoYczcr9BvL5hA1qxgiuqPp7/IOKXrzPyhO6ci6WD+vXnoH79qX477SI9OaNE8dVcPKE751xrRlG+WOQJ3TnnWhHxfHEoE0/ozjmXShEmdB/l4pxzqWRplIuksZIWS1oiaXKK45+X9HK4/UPSUUnHlkt6RdICSfMyteU9dOecay1LNXRJpcAdwKlADfCCpFlmtijptLeAj5nZZklnAFOB45KOjzGzSJPBe0J3zrkUsjTKZTSwxMyWAUiaAYwDdiZ0M/tH0vn/AoZ0tDEvuTjn3G4ilFuilVwGAyuTPteE+9pyCfDIroHwmKT5kiZmaiynPXRJy4F3gWagycxGSfo+cBnQMjHDNWY2O5dxOOdcuxhRE/aAVrXtqWY2Nemz2rj7biSNIUjoyZO/n2hmqyQNBOZKet3MnmormHyUXFLVf24xs5vz0LZzznVMtIrLBjMbleZ4DTA06fMQYLc3pSQdCfwSOMPMNrbsN7NV4dd1kmYSlHDaTOhecnHOuRSytMDFC8AIScMllQPjgVm7tCMdADwInG9mbyTt7yWpT8v3wGnAq+kay3UPvaX+Y8DdSf8VmSTpAmAe8HUz29z6wrBeNBGgsrKS6urqyI3W1ta26/xCiHuMcY8P4h9j3OMDjzGtLIxDN7MmSZOAOUApMM3MFkr6cnh8CnAtsA9wpyQIy9NAJTAz3FcGPGBmj6ZrT5bDwfOS9k+u/wBXAouBDQTJ/kZgkJldnO4+o0aNsnnzMg7B3Km6upqqqqoOx50PcY8x7vFB/GOMe3zQNWOUND9DGSSjvXvsZycccGHG8x5986edbiubclpySa7/ADOB0Wa21syazSwB3ENQE3LOuXgpwulzc5bQ26r/SBqUdNo5ZKgJOedcQRRhQs9lDT1l/UfSbySNJCi5LAe+lMMYnHOu/QyI4ZqhmeQsoYdvRh2VYv/5uWrTOeeyw8CKb/5cf/XfOedaM6DZE7pzznUNMayRZ+IJ3TnnUvGE7pxzXUE8R7Fk4gndOedaM6AIF4n2uVycc7FjiU0kNk0kse7D0LQUa3yzAEEU3zh0T+jOuVgxM2zTRdDwDCQ2AjuwTROwxG5TPuUyimCUS6YtZjyhO+fiJbERmpYCTeGOcD24hgX5i8HALJFxixuvoTvn4kU92H0y8gSoIr9xFOGbot5Dd87Fikp6Q8XngZ7hnhIo+wCUH5PfQIqwhu49dOdc7KjPNdDtKKxxAZRUov6/RcpjujIrylEuntCdc7EjCXqehXqeBSXVBIv95FkMe+CZeEJ3zrndGNbcXOgg2s0TunPOtebT5zrnXBcSw2GJmfgoF+eca8UAS1jGLQpJYyUtlrRE0uQUxyXptvD4y5KOjnpta57QnXOuNQsXuMi0ZSCpFLgDOAM4DJgg6bBWp50BjAi3icBd7bh2F15ycc65FLL0UHQ0sCRcwQ1JM4BxwKKkc8YB95uZAf+S1Ddce3lYhGt3URQJff78+RskrWjHJQcA/8lVPFkS9xjjHh/EP8a4xwddM8YDO9vgu2ye87j9aUCEU3tImpf0eaqZTU36PBhYmfS5Bjiu1T1SnTM44rW7KIqEbmb7tud8SevNbFSu4smGuMcY9/gg/jHGPT7wGNtiZmOzdCulun3Ec6Jcu4uiSOgdsKXQAUQQ9xjjHh/EP8a4xwceY67VAEOTPg8BVkU8pzzCtbvoqg9FtxY6gAjiHmPc44P4xxj3+MBjzLUXgBGShit43XU8MKvVObOAC8LRLscDW81sdcRrd9FVe+hTM59ScHGPMe7xQfxjjHt84DHmlJk1SZoEzAFKgWlmtlDSl8PjU4DZwJnAEqAOuCjdtenakxXhfAXOOed211VLLs45t8fxhO6cc12EJ3TnnOsiPKE751wX4QndOee6CE/ozjnXRXhCd865LuL/Axwiu7MmG3OGAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
......@@ -470,7 +397,13 @@
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\")\n",
"plt.grid(True)\n",
"\n",
"data.plot(x=\"Pressure\", y=\"Frequency\", kind=\"scatter\")\n",
"plt.grid(True)\n",
"\n",
"data.plot(x=\"Pressure\", y=\"Temperature\", kind=\"scatter\", color=data[\"Malfunction\"], colormap='viridis')\n",
"plt.grid(True)"
]
},
......@@ -509,10 +442,10 @@
"<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 7</td> \n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 23</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 5</td> \n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 21</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
......@@ -521,16 +454,16 @@
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -2.5250</td> \n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -3.9210</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Sat, 13 Apr 2019</td> <th> Deviance: </th> <td> 0.22231</td> \n",
" <th>Date:</th> <td>Fri, 26 Jun 2020</td> <th> Deviance: </th> <td> 3.0144</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>19:11:24</td> <th> Pearson chi2: </th> <td> 0.236</td> \n",
" <th>Time:</th> <td>12:44:47</td> <th> Pearson chi2: </th> <td> 5.00</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>4</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
" <th>No. Iterations:</th> <td>6</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
......@@ -538,10 +471,10 @@
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>Intercept</th> <td> -1.3895</td> <td> 7.828</td> <td> -0.178</td> <td> 0.859</td> <td> -16.732</td> <td> 13.953</td>\n",
" <th>Intercept</th> <td> 5.0850</td> <td> 7.477</td> <td> 0.680</td> <td> 0.496</td> <td> -9.570</td> <td> 19.740</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Temperature</th> <td> 0.0014</td> <td> 0.122</td> <td> 0.012</td> <td> 0.991</td> <td> -0.238</td> <td> 0.240</td>\n",
" <th>Temperature</th> <td> -0.1156</td> <td> 0.115</td> <td> -1.004</td> <td> 0.316</td> <td> -0.341</td> <td> 0.110</td>\n",
"</tr>\n",
"</table>"
],
......@@ -550,19 +483,19 @@
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 7\n",
"Model: GLM Df Residuals: 5\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -2.5250\n",
"Date: Sat, 13 Apr 2019 Deviance: 0.22231\n",
"Time: 19:11:24 Pearson chi2: 0.236\n",
"No. Iterations: 4 Covariance Type: nonrobust\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Fri, 26 Jun 2020 Deviance: 3.0144\n",
"Time: 12:44:47 Pearson chi2: 5.00\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n",
"Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n",
"Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n",
"\"\"\""
]
......@@ -610,7 +543,7 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
......@@ -664,6 +597,24 @@
"print(np.sum(data.Malfunction)/np.sum(data.Count))"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.012621523543890678\n"
]
}
],
"source": [
"p = 1 - (1-0.065**2)**3\n",
"print(p)"
]
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -705,7 +656,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
"version": "3.6.4"
}
},
"nbformat": 4,
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import requests\n",
"from datetime import date"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'/home/jovyan/work/module3/exo3'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"os.getcwd()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"ename": "SSLError",
"evalue": "HTTPSConnectionPool(host='scrippsco2.ucsd.edu', port=443): Max retries exceeded with url: /data/atmospheric_co2/primary_mlo_co2_record.html (Caused by SSLError(SSLError(\"bad handshake: Error([('SSL routines', 'ssl3_get_server_certificate', 'certificate verify failed')],)\",),))",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/urllib3/contrib/pyopenssl.py\u001b[0m in \u001b[0;36mwrap_socket\u001b[0;34m(self, sock, server_side, do_handshake_on_connect, suppress_ragged_eofs, server_hostname)\u001b[0m\n\u001b[1;32m 484\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 485\u001b[0;31m \u001b[0mcnx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdo_handshake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 486\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mOpenSSL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSSL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mWantReadError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/OpenSSL/SSL.py\u001b[0m in \u001b[0;36mdo_handshake\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1914\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_lib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSSL_do_handshake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ssl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1915\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_raise_ssl_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ssl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1916\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/OpenSSL/SSL.py\u001b[0m in \u001b[0;36m_raise_ssl_error\u001b[0;34m(self, ssl, result)\u001b[0m\n\u001b[1;32m 1646\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1647\u001b[0;31m \u001b[0m_raise_current_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1648\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/OpenSSL/_util.py\u001b[0m in \u001b[0;36mexception_from_error_queue\u001b[0;34m(exception_type)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 54\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mexception_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 55\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mError\u001b[0m: [('SSL routines', 'ssl3_get_server_certificate', 'certificate verify failed')]",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mSSLError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/urllib3/connectionpool.py\u001b[0m in \u001b[0;36murlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, **response_kw)\u001b[0m\n\u001b[1;32m 671\u001b[0m \u001b[0mheaders\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mheaders\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 672\u001b[0;31m \u001b[0mchunked\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchunked\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 673\u001b[0m )\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/urllib3/connectionpool.py\u001b[0m in \u001b[0;36m_make_request\u001b[0;34m(self, conn, method, url, timeout, chunked, **httplib_request_kw)\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 376\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_conn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mconn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 377\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mSocketTimeout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mBaseSSLError\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/urllib3/connectionpool.py\u001b[0m in \u001b[0;36m_validate_conn\u001b[0;34m(self, conn)\u001b[0m\n\u001b[1;32m 993\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mconn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"sock\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# AppEngine might not have `.sock`\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 994\u001b[0;31m \u001b[0mconn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 995\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/urllib3/connection.py\u001b[0m in \u001b[0;36mconnect\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 393\u001b[0m \u001b[0mserver_hostname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mserver_hostname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 394\u001b[0;31m \u001b[0mssl_context\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcontext\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 395\u001b[0m )\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/urllib3/util/ssl_.py\u001b[0m in \u001b[0;36mssl_wrap_socket\u001b[0;34m(sock, keyfile, certfile, cert_reqs, ca_certs, server_hostname, ssl_version, ciphers, ssl_context, ca_cert_dir, key_password)\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mHAS_SNI\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mserver_hostname\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 370\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrap_socket\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msock\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mserver_hostname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mserver_hostname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 371\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/urllib3/contrib/pyopenssl.py\u001b[0m in \u001b[0;36mwrap_socket\u001b[0;34m(self, sock, server_side, do_handshake_on_connect, suppress_ragged_eofs, server_hostname)\u001b[0m\n\u001b[1;32m 490\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mOpenSSL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSSL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 491\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mssl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSSLError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"bad handshake: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 492\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mSSLError\u001b[0m: (\"bad handshake: Error([('SSL routines', 'ssl3_get_server_certificate', 'certificate verify failed')],)\",)",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mMaxRetryError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/requests/adapters.py\u001b[0m in \u001b[0;36msend\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0mretries\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax_retries\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 449\u001b[0;31m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 450\u001b[0m )\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/urllib3/connectionpool.py\u001b[0m in \u001b[0;36murlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, **response_kw)\u001b[0m\n\u001b[1;32m 719\u001b[0m retries = retries.increment(\n\u001b[0;32m--> 720\u001b[0;31m \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merror\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_pool\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_stacktrace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexc_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 721\u001b[0m )\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/urllib3/util/retry.py\u001b[0m in \u001b[0;36mincrement\u001b[0;34m(self, method, url, response, error, _pool, _stacktrace)\u001b[0m\n\u001b[1;32m 435\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnew_retry\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_exhausted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 436\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mMaxRetryError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_pool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merror\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mResponseError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcause\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 437\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mMaxRetryError\u001b[0m: HTTPSConnectionPool(host='scrippsco2.ucsd.edu', port=443): Max retries exceeded with url: /data/atmospheric_co2/primary_mlo_co2_record.html (Caused by SSLError(SSLError(\"bad handshake: Error([('SSL routines', 'ssl3_get_server_certificate', 'certificate verify failed')],)\",),))",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mSSLError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-10-7debf36d4284>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrequests\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record.html'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'data.csv'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrequests\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/monthly_in_situ_co2_mlo.csv'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'data.csv'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rw'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontent\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/requests/api.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(url, params, **kwargs)\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 75\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'allow_redirects'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 76\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mrequest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'get'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 77\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 78\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/requests/api.py\u001b[0m in \u001b[0;36mrequest\u001b[0;34m(method, url, **kwargs)\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0;31m# cases, and look like a memory leak in others.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0msessions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSession\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 61\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0msession\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0murl\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 62\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/requests/sessions.py\u001b[0m in \u001b[0;36mrequest\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m 528\u001b[0m }\n\u001b[1;32m 529\u001b[0m \u001b[0msend_kwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msettings\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 530\u001b[0;31m \u001b[0mresp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0msend_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 531\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 532\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/requests/sessions.py\u001b[0m in \u001b[0;36msend\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m 641\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 642\u001b[0m \u001b[0;31m# Send the request\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 643\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0madapter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 644\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 645\u001b[0m \u001b[0;31m# Total elapsed time of the request (approximately)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/requests/adapters.py\u001b[0m in \u001b[0;36msend\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreason\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_SSLError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 513\u001b[0m \u001b[0;31m# This branch is for urllib3 v1.22 and later.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 514\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mSSLError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrequest\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 515\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 516\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mConnectionError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrequest\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mSSLError\u001b[0m: HTTPSConnectionPool(host='scrippsco2.ucsd.edu', port=443): Max retries exceeded with url: /data/atmospheric_co2/primary_mlo_co2_record.html (Caused by SSLError(SSLError(\"bad handshake: Error([('SSL routines', 'ssl3_get_server_certificate', 'certificate verify failed')],)\",),))"
]
}
],
"source": [
"if not os.path.exists('data.csv'):\n",
" r = requests.get('https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/monthly_in_situ_co2_mlo.csv')\n",
" open('data.csv', 'rw').write(r.content)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
......@@ -16,10 +102,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment