From cdcd31430b83943ffcefacfbaeb3e82a79b5246a Mon Sep 17 00:00:00 2001 From: c8245daf3a603bfeeb31fe89445b2933 Date: Fri, 26 Jun 2020 09:35:30 +0000 Subject: [PATCH] adding spaces --- module2/exo1/toy_notebook_fr.ipynb | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 0cc72b4..d4cccf7 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -12,7 +12,6 @@ "metadata": {}, "source": [ "## En demandant à la lib maths\n", - "\n", "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*" ] }, @@ -39,7 +38,7 @@ "metadata": {}, "source": [ "## En utilisant la méthode des aiguilles de Buffon\n", - "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :" + "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :\n" ] }, { @@ -72,12 +71,12 @@ "metadata": {}, "source": [ "## Avec un argument \"fréquentiel\" de surface\n", - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonctionsinus se base sur le fait que si $X \\sim U(0, 1)$ et $Y \\sim U(0, 1)$ alors $P[X^2 + Y^2 \\leq 1]=p/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0, 1)$ et $Y\\sim U(0, 1)$ alors $P[X^2 + Y^2\\leq 1]=p/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -94,19 +93,20 @@ } ], "source": [ - "\n", "%matplotlib inline\n", + "\n", "import matplotlib.pyplot as plt\n", "\n", "np.random.seed(seed=42)\n", "N=1000\n", "x=np.random.uniform(size=N, low=0, high=1)\n", "y=np.random.uniform(size=N, low=0, high=1)\n", - "accept=(x*x+y*y)<=1\n", - "reject=np.logical_not(accept)\n", "\n", "\n", "\n", + "accept=(x*x+y*y)<=1\n", + "reject=np.logical_not(accept)\n", + "\n", "fig, ax=plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", -- 2.18.1