
Notebook for the MOOC Reproducible Research, Module 3,
Peer-reviewed Execirce, Subject 4

Latency and capacity estimation for a network connection from asymmetric measurements

Killian Martin

5 mai 2020

Preamble
Following Subject 4 in the MOOC page, I attempt to estimate the performance of a network connection
based on data regarding the time T (in seconds) required to send a message as a function of its size S (in
bytes). More specifically, I will fit a simple linear model for the relation between T and S is

T (S) = L + S

C

where:

• L is the connection’s latency, in seconds
• C is the connection’s capacity, in bytes/seconds

The task given is to estimate L and C based on data acquired on T as a function of S, using the command
ping. Each data point is originally a single row of the dataset (see below in the Data Input section for
examples). The data for this exercise comes from A. Legrand website. The exact download links are in the
Data Input section below, within the first code block of the Data sources sub-section.

Setting up the environment
Packages
I first load all the packages I will use throughout the document:
library(tidyverse)
library(magrittr)
library(broom)

The tidyverse is used for data manipulation with dplyr and purrr and plotting with ggplot2. broom,
ggridges and magrittr are mostly for single-use conveninence, introducing, respectively, concise model
overview, ridge plots in ggplot2, and the $%$ operator (which lets me use column names directly in functions,
instead of using the $ notation).

Working directory
No code necessary as the document by default looks into its own directory for files (this is also something I
had not realised before, so I’m writing it down).

1

https://www.fun-mooc.fr/courses/course-v1:inria+41016+self-paced/courseware/5b932aa591d245d48d8943385cb3120a/57c96f2c7f7b42018eaac3e6b34546f4/
http://polaris.imag.fr/arnaud.legrand/teaching/2014/RICM4_EP.php

Details of the compiling environment
This notebook was computed in the following environment:
sessionInfo()

R version 4.0.0 (2020-04-24)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Mojave 10.14.6
##
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
other attached packages:
[1] broom_0.5.6 magrittr_1.5 forcats_0.5.0 stringr_1.4.0
[5] dplyr_0.8.5 purrr_0.3.4 readr_1.3.1 tidyr_1.0.2
[9] tibble_3.0.1 ggplot2_3.3.0 tidyverse_1.3.0
##
loaded via a namespace (and not attached):
[1] tidyselect_1.0.0 xfun_0.13 haven_2.2.0 lattice_0.20-41
[5] colorspace_1.4-1 vctrs_0.2.4 generics_0.0.2 htmltools_0.4.0
[9] yaml_2.2.1 rlang_0.4.6 pillar_1.4.4 glue_1.4.0
[13] withr_2.2.0 DBI_1.1.0 dbplyr_1.4.3 modelr_0.1.7
[17] readxl_1.3.1 lifecycle_0.2.0 munsell_0.5.0 gtable_0.3.0
[21] cellranger_1.1.0 rvest_0.3.5 evaluate_0.14 knitr_1.28
[25] fansi_0.4.1 Rcpp_1.0.4.6 scales_1.1.0 backports_1.1.6
[29] jsonlite_1.6.1 fs_1.4.1 hms_0.5.3 digest_0.6.25
[33] stringi_1.4.6 grid_4.0.0 cli_2.0.2 tools_4.0.0
[37] crayon_1.3.4 pkgconfig_2.0.3 ellipsis_0.3.0 xml2_1.3.2
[41] reprex_0.3.0 lubridate_1.7.8 assertthat_0.2.1 rmarkdown_2.1
[45] httr_1.4.1 rstudioapi_0.11 R6_2.4.1 nlme_3.1-147
[49] compiler_4.0.0

Data input
Datasets used in the task
Two different datasets are provided for the task, liglab2 and stackoverflow. Each dataset contains
the data outlined in the preamble. liglab2 contains data for a short-range on-campus connection, while
stackoverflow contains data for a long-range Web-based connection. Both datasets are hosted online at the
URL stored below.

NOTE: to get the script to work, I removed the .gz extensions that are present in the main MOOC page.
Otherwise I get an error message when trying to read the URL. This does not matter if files are already
present locally though.

2

Loading the data
Import function

For ease of use, the function download below handles everything. The user merely needs to provide the URL
and the file name to use to save the data to a file using the url and filename arguments. The remaining
arguments are optional and are for convenience: path lets the user specify a directory path to use instead of
the default path, overwrite allows overwriting the data even if a file already exists at the saving location
(set to TRUE to overwrite, keep FALSE to avoid overwriting), and encoding is used to specify the encoding
(given as a character string, e.g. “UTF-8” for UTF-8 encoding). The function reads the data at the provided
URL using the base R read.delim function, then writes it to the desired location with write.table.
download <- function(url, filename, path = NULL, overwrite = F, ...){

if (!is.null(path)){
full_name = file.path(path, filename)

} else {
full_name = filename

}

if (!file.exists(full_name) || overwrite){
tab <- read.delim(file = url, header = FALSE, ...)
write.table(x = tab, file = full_name)

} else {
print(sprintf("File %s already found at provided location and overwrite = FALSE.", full_name))
print("If you wish to overwrite the data anyway, set overwrite to TRUE")

}
}

Downloading the data from the hosting webpages

I can then apply download to both of the URLs:
set overwrite to T if updating the logs is desired
download(url = liglab2_url, filename = "liglab2.log", overwrite = F)

[1] "File liglab2.log already found at provided location and overwrite = FALSE."
[1] "If you wish to overwrite the data anyway, set overwrite to TRUE"
download(url = stackoverflow_url, filename = "stackoverflow.log", overwrite = F)

[1] "File stackoverflow.log already found at provided location and overwrite = FALSE."
[1] "If you wish to overwrite the data anyway, set overwrite to TRUE"

Importing the data

I finally import the datasets from the local files (whether or not I re-downloaded above), using the read.table
function. To keep character strings as character strings, I specify the stringsAsFactors argument to FALSE.
liglab2_original <- read.table(file = "liglab2.log", stringsAsFactors = FALSE)
stackoverflow_original <- read.table(file = "stackoverflow.log", stringsAsFactors = FALSE)

head(liglab2_original)

V1
1 [1421761682.052172] 665 bytes from lig-publig.imag.fr (129.88.11.7): icmp_seq=1 ttl=60 time=22.5 ms
2 [1421761682.277315] 1373 bytes from lig-publig.imag.fr (129.88.11.7): icmp_seq=1 ttl=60 time=21.2 ms
3 [1421761682.502054] 262 bytes from lig-publig.imag.fr (129.88.11.7): icmp_seq=1 ttl=60 time=21.2 ms
4 [1421761682.729257] 1107 bytes from lig-publig.imag.fr (129.88.11.7): icmp_seq=1 ttl=60 time=23.3 ms

3

5 [1421761682.934648] 1128 bytes from lig-publig.imag.fr (129.88.11.7): icmp_seq=1 ttl=60 time=1.41 ms
6 [1421761683.160397] 489 bytes from lig-publig.imag.fr (129.88.11.7): icmp_seq=1 ttl=60 time=21.9 ms
head(stackoverflow_original)

V1
1 [1421771203.082701] 1257 bytes from stackoverflow.com (198.252.206.140): icmp_seq=1 ttl=50 time=120 ms
2 [1421771203.408254] 454 bytes from stackoverflow.com (198.252.206.140): icmp_seq=1 ttl=50 time=120 ms
3 [1421771203.739730] 775 bytes from stackoverflow.com (198.252.206.140): icmp_seq=1 ttl=50 time=126 ms
4 [1421771204.056630] 1334 bytes from stackoverflow.com (198.252.206.140): icmp_seq=1 ttl=50 time=112 ms
5 [1421771204.372224] 83 bytes from stackoverflow.com (198.252.206.140): icmp_seq=1 ttl=50 time=111 ms
6 [1421771204.688367] 694 bytes from stackoverflow.com (198.252.206.140): icmp_seq=1 ttl=50 time=111 ms

Formatting the datasets

We can then parse the data to extract the information of interest, that is - the moment of measurement M,
between brackets at the beginning of each row, in seconds since January 1st, 1970; - the size in bytes S of the
message sent (“XXX bytes”); - the time to send the message T (time=XXX ms") at the end.
reformat <- function(tab){

transmute(tab,
M = str_extract(string = V1, pattern = "(?<=\\[).+(?=\\])"),
here the pattern is the middle part not between of interest, while the other parts frame it between brackets, but do not include the brackes in the result
S = ifelse(str_detect(string = V1, pattern = "bytes"),

str_extract(string = V1, pattern = "[0-9]+ bytes"),
NA) %>%

str_remove(pattern = " bytes"), # keep only the number
T = ifelse(str_detect(string = V1, pattern = "time="),

str_extract(string = V1, pattern = "time=[:alnum:]+"),
NA) %>%

str_remove(pattern = "time=")) %>% # keep only the time
type.convert() # convert from character strings to numeric doubles
coulv have used type_convert for more general purposes but in this case it removes numbers after the decimal mark

}

liglab2_original <- reformat(liglab2_original)
stackoverflow_original <- reformat(stackoverflow_original)

head(liglab2_original)

M S T
1 1421761682 665 22
2 1421761682 1373 21
3 1421761683 262 21
4 1421761683 1107 23
5 1421761683 1128 1
6 1421761683 489 21
head(stackoverflow_original)

M S T
1 1421771203 1257 120
2 1421771203 454 120
3 1421771204 775 126
4 1421771204 1334 112
5 1421771204 83 111
6 1421771205 694 111

4

print(length(unique(liglab2_original$M)) == nrow(liglab2_original)) # make sure no unique value is lost

[1] TRUE

Do note that the display used rounds the number to their closest integer value, but the true values are
maintained:
liglab2_original$M[1] - round(liglab2_original$M[1])

[1] 0.05217195

Now that we have the data we are interested in (and in the correct formats, thanks to our function), we
are ready to proceed. From now on,I separate the analysis into first the liglab2 dataset, and then the
stackoverflow dataset.

Analysis on the liglab2 dataset
Missing data

First I check the proportion of NAs in the liglab2_formatted dataset:
NAs_liglab2 <- liglab2_original %>%

filter(is.na(S) | is.na(T))

print(sprintf("Total number of rows with NA: %i", nrow(NAs_liglab2)))

[1] "Total number of rows with NA: 377"
print(sprintf("Proportion of rows with NA: %f", nrow(NAs_liglab2)/nrow(liglab2_original) * 100))

[1] "Proportion of rows with NA: 0.848851"

Given the proportion of less than 0.1% of rows containing NAs, I would feel quite comfortable simply removing
the rows with NAs, however it could introduce bias if the missing values are not Missing At Random, which I
can check graphically:
liglab2_original %>%

ggplot(aes(x = S)) +
geom_histogram() +
facet_wrap(~is.na(T), scales = "free_x")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

5

FALSE TRUE

0 500 1000 1500 2000 10 15 20

0

500

1000

1500

S

co
un

t

We can see that indeed, T seems to be missing only for very low values of S. We will therefore have to be a
bit careful interpreting our results, but there is not much else we can actually do. However, given we can
probably expect messages sent in a real use case to exceed 30 bytes most of the time, it should not be too
much of a problem.
liglab2 <- liglab2_original %>%

filter(!is.na(T)) # remove all missing values

Graphical exploration

To get a better idea of our data, let’s draw a scatterplot of the relation T = f(S), using ggplot2. To get an
idea of possible effects of time, I add M as the colour parameter for the points.
ggplot(liglab2, aes(x = S, y = T, colour = M)) +

geom_point()

6

0

100

200

0 500 1000 1500 2000
S

T

1421762000

1421764000

1421766000

1421768000

1421770000

M

The relation looks highly non-linear, with a threshold of S (hereafter Sthreshold) a bit under 1500 bytes.
This threshold separates two regimes of T : one with low variance, where S < Sthreshold, and one with high
variance, where S > Sthreshold. Moreover, adding the time of measurement M seems to have no effect on T .
For a more direct visualisation of this, let’s plot T directly as a function of M :
ggplot(liglab2, aes(x = M, y = T)) +

geom_point()

7

0

100

200

1421762000 1421764000 1421766000 1421768000 1421770000
M

T

Indeed, there is no evident relation between T and M Therefore, we can focus on estimating the value of
Sthreshold

Graphical estimation of Sthreshold

First I take a zoomed-in version of the graph above, to see if we can separate the two regimes by eye only:
liglab2 %>%

filter(between(S, 1450, 1500)) %>% # take only values of S between 1450 and 1500
ggplot(aes(x = S, y = T)) +

geom_point()

8

0

20

40

60

80

1450 1460 1470 1480 1490 1500
S

T

We can see here that the separation between regimes of S is between values of 1480 and 1481 bytes. We
then set Sthreshold = 1480.5 for simplicity (given only integers are possible values of S, as a half-byte object
sounds difficult to encode, by definition), and store it in a variable for later:
S_threshold <- 1480.5

Estimation of L and C by regime of S via linear regression (lm)

As a reminder, we have the following linear relationship between T and S:

T (S) = L + S

C

We can separate the dataset by separating the values of S below and above 1480.5, which can do with dplyr:
liglab2 <- liglab2 %>%

mutate(`S>S_threshold` = S > 1480.5) %>% # check if a given row has S above or below S_threshold
group_by(`S>S_threshold`) %>% # make two groups, corresponding to S being below or above S_threshold
nest()

head(liglab2)

A tibble: 2 x 2
Groups: S>S_threshold [2]
`S>S_threshold` data
<lgl> <list>
1 FALSE <tibble [32,667 x 3]>
2 TRUE <tibble [11,369 x 3]>

Here the FALSE row corresponds to the sub-dataset including values of S below Sthreshold, and the TRUE
row to the one with values of S above Sthreshold. Then we can fit two linear models (however, defined by the
same equation) on those sub-datasets, again using dplyr:

9

liglab2 <- liglab2 %>%
mutate(models = map(.x = data, .f = ~ lm(data = .x, T~S)))

liglab2

A tibble: 2 x 3
Groups: S>S_threshold [2]
`S>S_threshold` data models
<lgl> <list> <list>
1 FALSE <tibble [32,667 x 3]> <lm>
2 TRUE <tibble [11,369 x 3]> <lm>

Finally, we can extract the model coefficients as well as some statistics on them using the broom package:
liglab2 %<>%

mutate(model_stats = map(.x = models, .f = glance), # glance: gives a few model-wide statistics like R-squared, AIC, BIC...
model_coefs = map(.x = models, .f = tidy)) # tidy: gives the model coefficients, their standard error and the results of a t-test of their significance

We can check these statistics:
liglab2 %>%

select(c("S>S_threshold", "model_stats")) %>%
unnest(c(model_stats)) # extract the model_stats column for inspection

A tibble: 2 x 12
Groups: S>S_threshold [2]
`S>S_threshold` r.squared adj.r.squared sigma statistic p.value df logLik
<lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 FALSE 0.0000631 0.0000325 6.40 2.06 0.151 2 -1.07e5
2 TRUE 0.000303 0.000215 20.7 3.45 0.0634 2 -5.06e4
... with 4 more variables: AIC <dbl>, BIC <dbl>, deviance <dbl>,
df.residual <int>

We can see that the R2 values of the two models are extremely low in both cases, which suggests that our
linear model is a poor fit to the data, and in fact linear modelling at all is probably not the best method to
apply to our question.

Indeed, as we saw on the graph above, the variability of T is quite high for a given S, which is supported by
the coefficients of our models:
liglab2_coefs <- liglab2 %>%

select(c(1, 5)) %>%
unnest(c(model_coefs))

liglab2_coefs

A tibble: 4 x 6
Groups: S>S_threshold [2]
`S>S_threshold` term estimate std.error statistic p.value
<lgl> <chr> <dbl> <dbl> <dbl> <dbl>
1 FALSE (Intercept) 3.08 0.0719 42.8 0
2 FALSE S 0.000121 0.0000845 1.44 0.151
3 TRUE (Intercept) 5.31 2.24 2.37 0.0178
4 TRUE S 0.00238 0.00128 1.86 0.0634

Here, we don’t quite have our coefficients here, as while the (Intercept) term is exactly L, the S term is
actually 1

C . However, we can already see that while L is significantly different from 0 in both regimes of S, C
is not, especially in the regime below Sthreshold, whereas in the regime above Sthreshold it comes closer to a
trend.

10

We could interpret this as the fact that there is always a flat duration necessary for sending a message at all,
but on average, this duration hardly increases as the message becomes larger. However, given the R2, this
interpretation should obviously be taken with a pinch of salt.

Nevertheless, in both cases the value of 1
C is extremely low, which makes an estimation C difficult at best (as

small variations of the latter lead to high variations of the latter by taking the inverse). However, we can
simply apply a transformation on these rows (and also relabel the terms so we have the correct notation):
liglab2_coefs %>%

mutate(estimate = ifelse(term == "S", 1/estimate, estimate),
term = ifelse(term == "S", "C", "L"))

A tibble: 4 x 6
Groups: S>S_threshold [2]
`S>S_threshold` term estimate std.error statistic p.value
<lgl> <chr> <dbl> <dbl> <dbl> <dbl>
1 FALSE L 3.08 0.0719 42.8 0
2 FALSE C 8244. 0.0000845 1.44 0.151
3 TRUE L 5.31 2.24 2.37 0.0178
4 TRUE C 421. 0.00128 1.86 0.0634

Indeed, the values of C are extremely high, but they are also probably unreliable for the reasons cited above.
However, this illustrate the fact that the relation between T and S is not as simple as we assumed above,
and in particular that both L and C are dependent on S, such that a better relation would be:

T = L(S) + S

C(S)

Where the estimation of L and C would be more complex than what we have done. Finally, note that the
std.error column is still on the model scale, largely because given how poor a fit the model is, I would not
pursue this analysis further in a real case. One could however try to use to obtain confidence intervals.

Plotting the relationships

Despite our models not being very interesting to explain the relation between T and S, we can still try to plot
the relationships between the two, separated by regime of S by taking the original plot above, and adding two
geom_smooth commands, with the two datasets defined above and below Sthreshold, using method = "lm" to
specify the plotting method and get the 95% confidence intervals:
unnest to be able to access the values of S and T, as otherwise they are stored in a list and not in a data frame

unnest(liglab2, cols = c(data)) %>%
ggplot(aes(x = S, y = T)) +
geom_point() +
geom_smooth(data = liglab2$data[[1]], method = "lm", size = .1) +
geom_smooth(data = liglab2$data[[2]], method = "lm", size = .1)

`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'

11

0

100

200

0 500 1000 1500 2000
S

T

The confidence intervals are there (which can be seen by playing with the size argument in the geom_smooth
calls), but they are tiny. This could be because we have many points in our data.

Same analysis with the stackoverflow dataset
Since I will follow largly the same beginning workflow as above, I will merely repeat the titles and code
blocks, and not the reasoning for them. ### Missing data
NAs_so <- stackoverflow_original %>%

filter(is.na(T))

print(sprintf("Total number of rows with NA: %i", nrow(NAs_so)))

[1] "Total number of rows with NA: 63"
print(sprintf("Proportion of rows with NA: %f", nrow(NAs_so)/nrow(stackoverflow_original) * 100))

[1] "Proportion of rows with NA: 0.914767"
stackoverflow_original %>%

ggplot(aes(x = S)) +
geom_histogram() +
facet_wrap(~is.na(T), scales = "free_x")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

12

FALSE TRUE

0 500 1000 1500 2000 10 15 20

0

100

200

S

co
un

t

Like with the liglab2 dataset, the NAs are not Missing at Random, but given with have roughly 1% of
them in all the data, I drop them for the analysis, for the same reasons as above (namely, that messages are
more likely to be larger than the sizes for who T is missing in the dataset).
stackoverflow <- stackoverflow_original %>%

filter(!(is.na(S) | is.na(T)))

Graphical exploration

Exploration of the data via plotting

ggplot(stackoverflow, aes(x = S, y = T, colour = M)) +
geom_point()

13

110

120

130

140

150

160

0 500 1000 1500 2000
S

T

1421771500

1421772000

1421772500

1421773000

M

Again, M seems to have little effect on T (i.e. we have temporal stability of T):
ggplot(stackoverflow, aes(x = M, y = T)) +

geom_point()

14

110

120

130

140

150

160

1421771500 1421772000 1421772500 1421773000 1421773500
M

T

Moreove, it looks like we have the same threshold of S as for the liglab2 dataset. Let’s check it directly
with the same plot as above, around S = 1480:
stackoverflow %>%

filter(between(S, 1475, 1485)) %>%
ggplot(aes(x = S, y = log(T))) +

geom_point()

15

4.7

4.8

4.9

5.0

1475.0 1477.5 1480.0 1482.5 1485.0
S

lo
g(

T
)

Here the separation is a little less clear than for the previous dataset, but still appears likely to have the same
threshold value. Therefore, we’ll keep the same value of Sthreshold. For comparison, we can try repeating the
analysis with Sthreshold = 1481.5, but it’s unlikely to change much.

Estimating L and C

The pipeline is a bit more involved here, but only because I’m condensing all the steps I did for liglab2 in
one code block.
stackoverflow <- stackoverflow %>%

mutate(`S > S_threshold` = S > S_threshold) %>%
group_by(`S > S_threshold`) %>%
nest() %>%
mutate(models = map(.x = data, .f = ~ lm(data = .x, T~S)),

coefs = map(.x = models, .f = broom::tidy),
stats = map(.x = models, .f = broom::glance))

Let’s check the model statistics:
stackoverflow %>%

select(c("S > S_threshold", "stats")) %>%
unnest(c(stats))

A tibble: 2 x 12
Groups: S > S_threshold [2]
`S > S_threshol~ r.squared adj.r.squared sigma statistic p.value df logLik
<lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 FALSE 0.0000109 -0.000189 5.82 0.0544 0.816 2 -15946.
2 TRUE 0.000539 -0.0000144 11.9 0.974 0.324 2 -7043.
... with 4 more variables: AIC <dbl>, BIC <dbl>, deviance <dbl>,

16

df.residual <int>

Largely the same observation here, that the R2 values are extremely low, so the models are poor fits to the
data. Then for the coefficients:
stackoverflow %>%

select(c("S > S_threshold", "coefs")) %>%
unnest(c(coefs)) %>%
mutate(estimate = ifelse(term == "S", 1/estimate, estimate),

term = ifelse(term == "S", "C", "L"))

A tibble: 4 x 6
Groups: S > S_threshold [2]
`S > S_threshold` term estimate std.error statistic p.value
<lgl> <chr> <dbl> <dbl> <dbl> <dbl>
1 FALSE L 113. 0.165 684. 0.
2 FALSE C 22119. 0.000194 0.233 8.16e- 1
3 TRUE L 120. 3.19 37.6 1.72e-229
4 TRUE C -555. 0.00183 -0.987 3.24e- 1

The situation is the same, but even stronger than for liglab2: there is no effect whatsoever of C on the
value of T , as only L differs significantly from the default.

Interestingly, we find a negative value of C for large messages, implying (statistical interpretation notwith-
standing) that large messages are sent faster the larger they are, which would be quite a good thing if it was
real. . . Unfortunately it is most probably simply an artefact due to the instability of the estimatation of C.

Plotting the relationships

ggplot(unnest(stackoverflow, cols = data), aes(x = S, y = T)) +
geom_point() +
geom_smooth(data = stackoverflow$data[[1]], method = "lm", size = .1) +
geom_smooth(data = stackoverflow$data[[2]], method = "lm", size = .1)

`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'

17

110

120

130

140

150

160

0 500 1000 1500 2000
S

T

Once again, the confidence intervals are shown here but are very narrow. Although they also are likely to
make little sense, given the previous observations on the models. . .

Going further: Quantile regression
Estimating the minimal values of T as a function of S

As we saw, estimating the average of T as a function of L made little statistical sense, in large part due to
the variability of T . However, the lower quantiles of T are a little less variable (such as can be seen in the
graph just above). We might then wonder if, instead of the average value of T like in lm we might not have
better luck trying to predict the minimum value of T . Moreover, the lower value of T does not seem to follow
different regimes of S.

One way to accomplish this, suggested on the MOOC page, is to filter the smallest values of T for each
message size S.

First, I want to get access to the original data. We can go back to the original formatted data and remove
the missing values:
liglab2 <- liglab2_original %>%

filter(!is.na(T))
stackoverflow <- stackoverflow_original %>%

filter(!is.na(T))

Given that we’re going to do the exact same things on both datasets, I then combine them into a single data
frame, adding a column to record the origin of each data point:
dataset_full <- bind_rows(liglab2 = liglab2, # passing a named list to bind_rows allows using the names of the list in the .id column

stackoverflow = stackoverflow,
.id = "dataset") # this only gives a name to the .id column

head(dataset_full)

18

dataset M S T
1 liglab2 1421761682 665 22
2 liglab2 1421761682 1373 21
3 liglab2 1421761683 262 21
4 liglab2 1421761683 1107 23
5 liglab2 1421761683 1128 1
6 liglab2 1421761683 489 21

We can go ahead and add the S > S_threshold column as well, so we can separate the two regimes of S
later:
dataset_full <- dataset_full %>%

mutate(`S > S_threshold` = S > S_threshold)

Next, we’ll use group_by and summarise to take the minimum values of T for each value of S:
min_T_per_S <- function(df){

df %>%
group_by(dataset, S) %>%
filter(T == min(T))

}
dataset_min <- min_T_per_S(dataset_full)

Interestingly, we can see that this actually keeps a large part of the original data anyway:
nrow(dataset_min[dataset_min$dataset == "liglab2",])/nrow(dataset_full[dataset_full$dataset == "liglab2",])

[1] 0.8448996
nrow(dataset_min[dataset_min$dataset == "stackoverflow",])/nrow(dataset_full[dataset_full$dataset == "stackoverflow",])

[1] 0.6976846

Working only with the minima of T over S

We can plot again the data here to get an idea of what we have to work with:
ggplot(dataset_min, aes(x = S, y = T)) +

geom_point() +
facet_wrap(~dataset, scales = "free_y")

19

liglab2 stackoverflow

0 500 1000 1500 2000 0 500 1000 1500 2000

110

120

130

140

150

1.00

1.25

1.50

1.75

2.00

S

T

Interestingly, while this suppressed the variability of T completely for liglab2 (aside from the regimes of S,
which are even more blatant here), some variability remains for the stackoverflow dataset.

However, in this case, the liglab2 dataset, the model could be summed up as a simple enough equation:

T =

1 if S < Sthreshold

2 if S > Sthreshold

Which makes it of little interest to actually make a model of the relation, meaning we lost quite a bit of
information by restricting the data to the minimum values of T for each value of S. We could of course do it,
but it would make little theoretical sense. Therefore, let’s move on.

However, for stackoverflow, there is still some variability left, some we could try making a model to estimate
L and C like we did before:
so_min <- dataset_min %>%

filter(dataset == "stackoverflow") %>% # remove the liglab2 data
group_by(`S > S_threshold`) %>%
nest() %>%
mutate(models = map(.x = data, .f = ~ lm(T ~ S, data = .x)),

coefs = map(.x = models, .f = tidy),
stats = map(.x = models, .f = glance))

Let’s inspect the stats:
so_min %>%

select(c("S > S_threshold", "stats")) %>%
unnest(c(stats))

A tibble: 2 x 12

20

Groups: S > S_threshold [2]
`S > S_threshol~ r.squared adj.r.squared sigma statistic p.value df logLik
<lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 FALSE 0.00310 0.00282 1.36 10.9 9.78e-4 2 -6039.
2 TRUE 0.000128 -0.000668 2.75 0.160 6.89e-1 2 -3057.
... with 4 more variables: AIC <dbl>, BIC <dbl>, deviance <dbl>,
df.residual <int>

Looks like we’re having the same issue as before with the R2, so taking the minimal values of T probably
didn’t help too much to get a good model. Let’s see the coefficients of the models:
so_min %>%

select(c("S > S_threshold", "coefs")) %>%
unnest(c(coefs)) %>%
mutate(estimate = ifelse(term == "S", 1/estimate, estimate),

term = ifelse(term == "S", "C", "L"))

A tibble: 4 x 6
Groups: S > S_threshold [2]
`S > S_threshold` term estimate std.error statistic p.value
<lgl> <chr> <dbl> <dbl> <dbl> <dbl>
1 FALSE L 111. 0.0491 2257. 0
2 FALSE C 5457. 0.0000555 3.30 0.000978
3 TRUE L 112. 0.903 124. 0
4 TRUE C 4878. 0.000512 0.400 0.689

Ah, unlike earlier, we do have a significant effect of C for S under Sthreshold, but not over it. Let’s see what
this looks like in a plot:
ggplot(unnest(so_min, cols = data), aes(x = S, y = T)) +

geom_point() +
geom_smooth(data = so_min$data[[1]], method = "lm", size = 1) +
geom_smooth(data = so_min$data[[2]], method = "lm", size = 1)

`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'

21

110

120

130

140

150

0 500 1000 1500 2000
S

T

Not really the most explicit of graphs either. . . The regressions are barely more than lines, like above. Looks
like just taking the minimal values of T doesn’t solve our problem, so let’s try something else, a little more
general: quantile regression.

Quantile regression with quantreg

Instead of estimating the average of T as a function of S, or artificially filtering the values of T over S like
we have done above, we can try to estimate quantiles of T as a function of S, using quantile regression. In R,
this is handled by the quantereg package:
library(quantreg)

Loading required package: SparseM

##
Attaching package: 'SparseM'

The following object is masked from 'package:base':
##
backsolve

We then apply the rq function to do quantile regression on both datasets. To spice things up, instead of a single
model, let’s treat tau, the parameter of rq the determines the quantile of T to predict, as a hyperparameter,
and try to see how it changes the resulting models. The models are extremely unlikely to change under
around tau = 0.65 (given that 84 and 65 percents of the data in the liglab2 and stackoverflow datasets,
respectively, are equal to the minimum value of T), but we’ll check it anyway, because it will change the
distribution of S ever so slightly. We can do the estimation by taking values of tau every .05 from 0.05 to
0.95 (so from the bottom 5% of T to the bottom 95%): NB: this will take some time (around 30 s on
my MacBook 2015)

22

models <- dataset_full %>%
group_by(dataset, `S > S_threshold`) %>%
nest() %>%
mutate(model = map(.x = data,

.f = ~ rq(T~S, tau = seq(0.05, .95, by = .05), data=.x)),
coefs = map(.x = model, .f = tidy, conf.level = 0.95)) # computes the 95% confidence interval of the coefficients

note: .95 is the default value anyway, but it is not specified in the outputs, so I put it here to remember

Then we can unpack the resulting coefficients:
coefs <- models %>%

select(c("dataset", "S > S_threshold", "coefs")) %>%
unnest(c(coefs)) %>%
mutate(term = ifelse(term == "S", "1/C", "L"))

coefs

A tibble: 152 x 7
Groups: dataset, S > S_threshold [4]
dataset `S > S_threshold` term estimate conf.low conf.high tau
<chr> <lgl> <chr> <dbl> <dbl> <dbl> <dbl>
1 liglab2 FALSE L 1 1 1 0.05
2 liglab2 FALSE 1/C 0 0 0 0.05
3 liglab2 FALSE L 1 1 1 0.1
4 liglab2 FALSE 1/C 0 0 0 0.1
5 liglab2 FALSE L 1 1 1 0.15
6 liglab2 FALSE 1/C 0 0 0 0.15
7 liglab2 FALSE L 1 1 1 0.2
8 liglab2 FALSE 1/C 0 0 0 0.2
9 liglab2 FALSE L 1 1 1 0.25
10 liglab2 FALSE 1/C 0 0 0 0.25
... with 142 more rows

Immediately (and somewhat coincidentally), we can tell that we’ll have a bit of a problem with the lower
quantiles for liglab2, which makes sense as seen above for the lower quantiles of T , there’s no variation in
S whatsoever, so of course the value of 1

C will be 0. To get a better idea of the coefficients, let’s plot their
value as a function of tau. For clarity, we’ll separate the terms of the models, as well as the datasets, and use
different colours of the two different regimes of S.
ggplot(coefs, aes(x = tau, y = estimate, colour = `S > S_threshold`)) +

geom_point() +
geom_errorbar(aes(ymin = conf.low, ymax = conf.high)) +
facet_grid(term~dataset, scales = "free_y")

23

liglab2 stackoverflow

1/C
L

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

−0.025

0.000

0.025

0.050

0

100

200

tau

es
tim

at
e S > S_threshold

FALSE

TRUE

Predictably, only the higher quartiles start to differ, so let’s just zoom in for a better look, say above .75:
ggplot(coefs %>% filter(tau >= 0.75), # take the higher quartile models only

aes(x = tau, y = estimate, colour = `S > S_threshold`)) +
geom_point() +
geom_errorbar(aes(ymin = conf.low, ymax = conf.high)) +
facet_grid(term~dataset, scales = "free_y")

24

liglab2 stackoverflow

1/C
L

0.8 0.9 0.8 0.9

−0.025

0.000

0.025

0.050

0

100

200

tau

es
tim

at
e S > S_threshold

FALSE

TRUE

Conclusions We can see here than, much like we found precedently, C has relatively little influence on
T , although this increases at the higher quantiles of T .

Interestingly, what little trends are there are contrary between the two datasets, with 1/C increasing at higher
values of tau (and so C would decrease) for the liglab2 dataset, and vice-versa for the stackoverflow
dataset. However, this trend only exists for values of S above Sthreshold and not under. However, the capacity
of the connection appears to vary little when any other parameter varies, which makes sense.

Moreover, L has a much higher value for the stackoverflow dataset than for the liglab2 dataset, regardless
of the value of tau. This can likely be explained by the distance of the two connections: liglab2 comes
from a local, on-campus connection, while stackoverflow comes from a long-distance connection, which
automatically means a higher latence to transfer information.

We have compared the parameters of two different connections using linear and quantile regression. We have
seen that linear regression was a poor choice of method for the data, as was a simple restriction of the values,
thus orienting our choice to a different technique, that bypasses the problems of linear regression (namely,
that it estimates the average value of the response variable), by estimating quantiles of the response variable
T .

25

	Preamble
	Setting up the environment
	Packages
	Working directory
	Details of the compiling environment

	Data input
	Datasets used in the task
	Loading the data
	Import function
	Downloading the data from the hosting webpages
	Importing the data
	Formatting the datasets

	Analysis on the liglab2 dataset
	Missing data
	Graphical exploration
	Graphical estimation of S_{threshold}
	Estimation of L and C by regime of S via linear regression (lm)
	Plotting the relationships

	Same analysis with the stackoverflow dataset
	Graphical exploration
	Exploration of the data via plotting
	Estimating L and C
	Plotting the relationships

	Going further: Quantile regression
	Estimating the minimal values of T as a function of S
	Working only with the minima of T over S
	Quantile regression with quantreg

