{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Exercise 02" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "data = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0\n", " ])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calculate Statistics" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "mean = np.mean(data)\n", "std_dev = np.std(data, ddof=1)\n", "minimum = np.min(data)\n", "median = np.median(data)\n", "maximum = np.max(data)" ] }, { "cell_type": "markdown", "metadata": { "hideOutput": true }, "source": [ "## Print Results" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean: 14.113000000000001\n", "Standard Deviation: 4.334094455301447\n", "Minimum: 2.8\n", "Median: 14.5\n", "Maximum: 23.4\n" ] } ], "source": [ "print(\"Mean:\", mean)\n", "print(\"Standard Deviation:\", std_dev)\n", "print(\"Minimum:\", minimum)\n", "print(\"Median:\", median)\n", "print(\"Maximum:\", maximum)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(8, 10))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAACgCAYAAAAB6WsAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl4HNWV9/85khchy7Isy5bkRQtgjIEEjAmYsAfMlhAYkrwTkknIQkgGZsjCO3lDlgnZBpIfEyaZBBISAsywJDAkQMIYQsBgDAYMxAFjycbYli3LlpGFLMuybMu6vz9OX1d1d1WrW1J1y1X1fZ5+qmvt++2qut97zj33XDHGECNGjBgxoouiQhcgRowYMWIUFrEQxIgRI0bEEQtBjBgxYkQcsRDEiBEjRsQRC0GMGDFiRByxEMSIESNGxBELQYwYBxlEZIOInFPocsQID2IhiDFqISKnisjzIrJDRDpF5DkReU+hy5UPiIgRkV0i0iMim0XkxyJSnOM1zhSR1qDKGCM8GFPoAsSI4QURKQf+BPwjcD8wDjgN2FPIcuUZxxpj1orIkcDTwBrgF4UtUowwIrYIYoxWHAFgjLnPGLPfGLPbGPNnY8xr9gAR+YyINInIOyLyuIjUu/YtFJHmhDXxMxF5RkSuSOy7XkTudh3bkGiBj0msTxKR20VkS6I1/n3bGheRT4nIUhG5KfG760XkAte1KkXkDhFpS+x/yLXvAyKyQkS6EpbOu7P5I4wxzcCzwDGp+0RkvIj8R+L32hLfx4vIBGARMD1hVfSIyPRs//wY0UIsBDFGK9YA+0XkLhG5QEQmu3eKyCXA14FLgaloRXlfYl8V8CDwTaAKeAs4JYffvgvoBw4H5gHnAle49p8ErE5c+0fA7SIiiX3/DZQCRwPTgJsTZToe+A3weWAK8EvgEREZP1hhROQo1Br6q8fubwALgOOAY4ETgW8aY3YBFwBtxpiyxKct2z8gRsRgjIk/8WdUfoC5wJ1AK1oxPwJUJ/YtAj7rOrYI6AXqgU8CL7j2SeIaVyTWrwfudu1vAAzqKq1G3U+HuPZfBixOfP8UsNa1rzRxbg1QCwwAkz243Ap8L2XbauAMH+4G6AbeQYXs+0BRYt8G4JzE97eAC13nnQdsSHw/E2gt9H2MP6P/E/cRxBi1MMY0oRUvCT/53cB/oBVzPfATEfl31ykCzACmA5tc1zEisonsUA+MBbY4jXyK3NcDtrqu3Zs4rgyoBDqNMe/4XPdyEfln17ZxibL64XhjzNpByjsdaHGttwxyzRgx0hALQYyDAsaYZhG5E3WtgFbMPzDG3JN6rIjMBma51sW9DuxCW/IWNa7vm1CLoMoY059jMTcBlSJSYYzp8tj3A2PMD3K85mBoQ0XmjcR6XWIbqFURI8agiPsIYoxKiMiRInKtiMxMrM9CLYEXEof8ArhORI5O7J8kIh9J7HsUOFpELk10AF9DcmW/AjhdROpEZBJwnd1hjNkC/Bn4dxEpF5EiETlMRM4YrMyJcxcBt4jIZBEZKyKnJ3b/CviCiJwkigki8n4RmTikP8jBfcA3RWRqom/kX1HLCaAdmJLgGCOGL2IhiDFasRPtlH1RRHahArASuBbAGPMH4IfAb0WkO7HvgsS+DuAjwI3AdmA28Jy9sDHmCeB3wGvAK2iYqhufRN02q1Af/f+g/v9s8AlgH9AMbAO+lPjNl4HPAT9LXHMtCbfXMPF94GWUy+vAq4ltGI02ug9Yl4hUil1GMTwhxsTWY4zwQ0SeRjuIf13ossSIMdoQWwQxYsSIEXHEQhAjRowYEUfsGooRI0aMiCO2CGLEiBEj4oiFIEaMGDEijoNiQFlVVZVpaGgY0rn9/f2MGXNQ0BxRRJF3FDlDNHlHkTPkzvuVV17pMMZMHey4g+KfbGho4OWXXx7SuZ2dnVRWVo5wiUY/osg7ipwhmryjyBly5y0iLYMfFQHXUE9PT6GLUBBEkXcUOUM0eUeRMwTHO/RC0NvbW+giFARR5B1FzhBN3qOBc1sbbN+e398MinfohaC+vn7wg0KIKPKOImeIJu/RwPmCC+Caa/L7m0HxDr0QtLRk5SILHaLIO4qcIZq8C825owNeew02b87v7wbFO/RCUFpaOvhBIUQUeUeRM0STd6E5v5DIgduVmmw8YATFO/RCUFZWVugiFARR5B1FzhBN3oXm/Fwil22+hSAo3qEXgm3bthW6CAVBFHlHkTNEk3eQnPv74cwz4fHH/Y95/nld5lsIguIdeiGoqakZ/KAQIoq8o8gZosk7SM5tbfDMM/CXv3jv37cPXnoJioqguxsGBgIrShqC4h16IejKt2SPEkSRdxQ5QzR5B8nZdgBv8pnlesUK6OuDBQvAGBWDfCEo3qEXgr6+vkIXoSCIIu8ocobC825uhlNPzW9MfZCcrRBs3Oi93/YPXHihLvOpw0HxDr0QjIZ440IgiryjyBmC5b12Ldx9d+ZjbrtNK8eVKwMrRhqC5Nzaqks/i+D556G+Ho46StfzKQTxOIIhotDxxoVCFHlHkTMEy/vnP4dPfhL27vXePzAADzyg3995J7BipCFIztYiaGvTjmM3jFHRe+97oaJCt+VTCOJxBENEocPMCoUo8o4iZwiW9+bNWvn5DZx64QWnBZ1PIQiaM6jIbdmSvG/jRhWIfAjBypVw9NHw7LPOtjh8dIgoKSkpdBEKgijyjiJnCJa3rQj93CT33w/Fxfq9szOwYqQhSM6trRoRBOm8bdjoKacELwRvvw2rVsH+/c62oHgHJgQiMktEFotIk4i8ISJfTGyvFJEnROTNxHJyUGUA6OjoCPLyoxZR5D0aOD/wADz2WH5/M0jebW26tK1+N6xb6P3v14ozXxbB7t2wbt3IqE5qix/UIjjmGP3uJQQTJsC73hW8EOzYoctJk5xtQd3rIC2CfuBaY8xcYAFwtYgcBXwNeNIYMxt4MrEeGKZPnx7k5Uctosh7NHD+ylfgRz/K728GxdsYRwi8LILnn9f9H/2oVor5EIJnnoE5c+CKKw4b9rXWrIEZM5LHC1g32IIFuu4lBCedBGPGQHm5bsunEAR1rwMTAmPMFmPMq4nvO4EmYAZwMXBX4rC7gEuCKgOMjlZiIRBF3oXm3N6uLed8+sohON5dXRovD95CcP/9MH48fOADUFkZrGto71647jo46yz9j5uaipJcJkPBq69qxe+e82r7dtizRyOCysuTQ0j37YPXX4cTTtD14mI9JgwWQV5mKBORBmAe8CJQbYzZAioWIjLN55wrgSsBZs6cSXNzM9OnT6ejo4O9e/dSX19PS0sL5eXljBkzhs7OTmbMmEF7ezsDAwPMnDmTjRs30tPTQ2lpKV1dXdTV1dHa2kpRURHV1dVs3ryZyspK+vv76e7uPnDNcePGUVVVRVtbG1VVVfT19dHT03Ngf0lJCRUVFWzdupVp06bR09NDb2/vgf2lpaWUlZWxbds2ampq6Orqoq+v78D+srIySkpK6OjoGBKnioRNmonT9u3bk64ZBk6D3afU3xxJTtXV0znppBKuvLKDq6+e7Mnpj3/cCUyns3OA5uY1I8Ipm/vU1tZGbW3tiN+n7u5ZwAQAWlr6aW5ee4BTZ2cXDzxwBKefvov29nbKyxtpbd3Ntm29gbxP3/3uNG6/vYRPfGIPs2bt4t/+rZJ16/rYv3/DkJ+9lSsbgHGsWNHL1q3ddHV10dVVDxxCUdEWZsyYxqpVvWzbtpv+/n5efbWPffsOZcqUNtat66OqqooJEw6hvX0/ra0dI/4+bdkyOfH/d7NunXLq7++nubk56/cpaxhjAv0AZcArwKWJ9a6U/e8Mdo358+eboaK3t3fI5x7MiCLvIDm3thoDxlx1lf8x3/2uHlNeHlgxPBEU7yeeUD4TJxpz/PHJ+5Ys0X333afr555rzIknBlIMY4wxp52mH2OMWbRIf/vZZ4d3zcsu0+ssWOBse/RR3fb888acf74x7qrnd7/TfX/9q7Pt3e825pJLhlcOP1x7rTGlpcnbcr3XwMsmi3o60KghERkLPAjcY4z5fWJzu4jUJvbXAoFmzIpjy6ODIDlb14hf9Aw4LobubobttsgFQfG2/QMnnJDOe9kyXZ53ni6Ddg3t2KG/ATqYC2C4tJubdbl6tbqIwOkUnzkTZs1K5r1ypXaKH3mks62iIljXkNstBAfhOAIREeB2oMkY82PXrkeAyxPfLwceDqoMAOW2RydiiCLvIDnnIgSQn0FG+/fDrbdCf/+kwQ8eBK+8kp5kzQrBiSdqKKM7u0FzM9TUwOREzN/kycH2jezY4UTpjIQQGKOdxSUlWm7ret+8GUSU26xZsG2b9hmACsHs2XqORb6FIKhnPEiL4BTgE8D7RGRF4nMhcCOwUETeBBYm1gPDmDF56QYZdYgi7yA5D5Z2YMsWrTjnzdP1fHQYP/ggXHUVPPro8AcZXXcdfPazydva2rQzdM4cXXcPKmtuTm4ZWyEIKhNnV5dTKZaWwpQpA8MSgs2bYdcuOPdcXV+92tleXQ1jx6oQgHPvV650wkotghaC1Ho/qGc8yKihpcYYMca82xhzXOLzv8aY7caYs40xsxPLQIehdOZzlMsoQqF5b94Ml16a3wiaIDlbAdi+HbzmD3/lFV0uXKjLoHkbAzcmmlBvveWT/yEHNDVphMzu3c62tjaYPj29QjQmXQgqK1UEdu4cdlHSMDCg7jZ3/2dt7Z6MQvDqq/B//k+yFeOGrfgvvliX1k3U2qpuIXB4b9qk/8vatfkXglSLIKhnPPQji2fMmFHoIhQEheZ9zz3whz84FWQ+ECRntyXgZRW88oq6FN73Pl0PWgieeAL++lf9vmPH8NwFO3c6lfybbzrbt2xJFgLL++23lV+qRQDB8N65U8XHXSkedtiYjELw85/rYLeHfRzPtuJfuFBDYN0WgX2MLO+NG/V4Y7yFYMeO7Cyh1lZ45JHBj7Po7k4XgqCe8dALQXt7e6GLQG9vcksrHyg0bzu6Np+GSZCcW1sd37CXELz8Msyd67QmgxaCG27QCuvEE2HDhv7BT8iANWu8v1uLwHKyvG0lmi8h8IqnnzKlh5YWp5PXjf374Y9/1O933ul9zdWroaxMuc2e7S0Ebt42s6qXEBiTnSX0/e/DJZc4/RGDwcsiCOoZD70QDORz+iAfXHopfOpT+f3NIHn39iZXGKnYuROWLtXv+cxRPxKcd++Gz3wmvbLftEkrXfs9Fa+8AvPnB1shWrzwAjz9NFx7LRx2GGzZUjys69mKHZz7akcVT5+uKRUmT3asBnv83LnOeTaiJwjht66XZNfQPnbvVuskFS+9pNvnzoU//9np9HZj9Wrt+xDRZXOzPtfvvOMIgPZFOEIwbhwcfnjydXJJM7F0qf6vixcPfix4C0FQ73XohWCmvasFwt69+tK+9VZ+fzdI3jffrJ2ifqmJFy/WUZiQX4tgJDi/8ALccYe6tSz6+9VN4pd2oK1N959wQn6E4Ic/1N/53OfUfdHePnZYnbTNzTpKdto0p2Xc2an3t7ZW192hlM3NWkm6/+58WwTvfreueLmHHn5YU0Dceae6bO65J/0YKwSgls26dbBhg667vS+W98qVKiypfbXZCkFnJ7zxhn5/8snMx4I+c7t2pQtBUO916IVgo980Q3nC3/6m4Wf5TjsQJO9Vq7T15BdBs2iRtiIPOSS/QjASnJuakpeglfzAgLa+q6vTeduw0fnzlfP48cHd75YWeOgh+Kd/clwbe/dK1u4GLzQ3w6GHqtvDWgS2FW1T28ycmSwEc+Y4GTrBEYIg7rcVArdFMHasFtBLCB55BM44Qy24BQvgrruSXUi9vXqeFYI5c9SdtGSJrruFoK7OEYJUt5C7TIMJgc1aWl2dnRDY6S9ThSCo9zr0QpDzUOsRhh14k28hCJK3bTnZpRvGaP/A2WfD1Kn5dQ2NBGcvIbAVoNcgI1C3UFERHHecrgcZU28rvjPO0GVqR+5Q0NSkreIjjnCEwGbltEIwa1aya8jdPwCOaygI3raSdVeKc+eWAulC8OabysdGA11+ubbEX301+RhwOFhBsBW0u9E9a5ZGC23cODwhePZZDUn90pec62WClxWkvxfMex16ISg0XnhBl9lGFhwMWL9el16tsTVrVCDOPz/40aZBwEsIbAU4a5a3ELz8siYpm6BpeQIVglR/+XCFoL9fK8a5c1UIOju1MzPVIpg1S7d3dur9TRWC0lKt6IJ0DbnrwEmTDOXl6c+gjcr54Ad1+fd/rxbaXXc5x1j3l9siAMd3n+oasoEewxGCpUvVdfj+9+v6U09lPt5PCIJC6IWgK8AhnsZo+NmDD/ofY4UgqBhrPwTFe/dup7XoZREsWqRLKwRBWgQ/+IGa7meeCVdcAfffP7zoGVABENERpVbEbCXrJQQ2e+X8+c62IIXAXte6Ymzr1Wu+gGywYYP2BRx5pFMhrlnjCIHtI7C/89RTyjlVCES0TNkK/wMPZF9mL4tgx44u6uvTheDhh+HYY53Rx5Mnq3Vw773OCGErBLNnO9etrtZntbxcXW4WVmhh6EKwezcsXw6nnqrXmDp1cPeQnxAE9V6HXgjq6uoCu3Z3tw7LTx2ab9Herq3no4/W9Xy6h4Li7X7xvITgsce0Qmls1IiLIC2CJUu0Q62/XyuW668fXoz1jh1aAZ56qq5bq2DTJm3tT5qkFcPOnc6L2tKionHSSc518mkRTJ0K48aZIVsE7lDQI47Q71YIKiq0zwOcCtE+66lCACr82fDetEkHe91wQ3Zl3LFDQ3fHjXO21dXVpQlBR4fOJ2ytAYsrr9RK/nvf0/XVq7UBUVrqHGP5pPbFWt5lZXpOKrKZk+DllzV44tRTnbEmTz7pHfrq5uy+vkVQ73XohaB1qE2lLLB1qy4zzecKcMEFusznJNdB8bZuoZKS9NbY7t06ccj55+t60BZBd7e2xJcuhW99C955Rw68QEOBrRQvvVSXVghaW7VCEEl3xbz4oi5taCnkRwhsBVFUBNXV+zIKwerV/s+e5TxnDjQ0qHtn9WondNTCVpBPPKH/g21Nu5Et78cf12W2YZRdXcluIdDnO1UIHn1ULW/bP2Bx9tnw6U+r8Cxd6t3HYa2h1PFa9n4ffXRy57hFcTFMnJj53bah1Kec4pRny5bksN1U+FkEQb3XoReCIq+7N0IYTAiWLdMX6+yzdT2fFkFQvK0VcMop6RbBkiU6pN8KgbUIMrV8hoPubqdCbGjQpRWqocBW/Oefr0LntghsheAebQoas15SAu9+t3OdXIRg2zbHnZYNurq04nGHMdbU7Pd1syxZomU7/3zvjKjNzRo2Wlmp1zzsMLUI7KhiCysE69bpf20tBTey7ROygw2bmtRqHgxe8fRFRUXU1+v/YSNs7rpLLdHjj0+/xk9+ouX+xCeSQ0ct/IRgxgwVPmvVe2GwNBNLl2of0pQpum7rg0zuIT8hCOq9Dr0QVFdXB3btbCyCefM0kyHkVwhGgvf118NFFyVvW79eO99OOklbyna8ADhhlO99ry4rK7XyCapvZOdORwgaG53yDRVNTc6goTlzkoXAK/8MqEVw/PEq+BaTJ+uLnE0q6htugAsv9J471wterePGxjGeFsGqVdo6Li/Xcv7sZ+nHpLaObeRQqkVgB1eBt1sIshPAffvUqrARVs88k/l4SM48alFdXZ2UhXTtWrUwPvtZrbhTMXEi3H23CnhPj78QpLqGxo6F226DL3/Zv3yZhGD/fnVXWXcjaKhuQ8PQhCCo+iz0QrDZr5YeAVgh2LYtuUIE9VsvX65xzLZjL2jX0MCAti6vuAKef3740zwsWqQfd3qM9eu1I+7QQ/X33H/v66/rA24rZxtSGJR7yG0RZCMEzc3whS/4JyJralKXx5gxGkXT1KT3detWRwBqa9VFsGmT7nvllWS3EDj3Oxs3la0I/fqZUuElBJMmdbN5c3JUWlubuiRLSvQ5vOAC+MY30q24VCGYM0ejiLZscTqKLWwlORwhePFFvW9f+5pWztm4h9yZRy02b958QAg2bIDf/Ebvy6c/7X+dk0+Gb35Tv6d2/Nr1Qw9NP++KK7w7ii0yCcEbb+hz4BYC0H6Cp5/2byx0d2uDa/z45O1B1WeDCoGIVIvI7SKyKLF+lIh8drDzRgsqbW0UAKwQGJPeonv9dR24cvLJwY82HRjQJFtHHqmty9tvh6VLh9dyMEZblPv3KxeL9eu10rWuGHfF8vrr8K53Oeu2BRlEh7ExyUIweTJMnDjgKwTGwNVXwy9/qXPteqGpyUmbMHeu09I0xqkEx4zRlrIdZNTXl9xRbMsCg9/vri5YsUK/P/FE5mPd56QKwaGHjmPfPm2QWK5/93cqwI8+qvfq1lt13xe+4LjqOjr0GHeqiCOO0OiaffuSLQJwxNBPCCorB7eEHntM/ernnQenn66V4WDwcg1VVlYeEIK33tLR4O9/f3qZU/Gv/6qRT6efnry9vl5duR//+ODlSUWqEPziF9oA/PjHVXwhXQgWLNBz/Fx6XpwhuPosG4vgTuBxwP7Fa4AvBVKaANDfP/yQQj9YIYD0fCa2o3jBAm35FBUFJwRNTTrStLxcw+QqKmDTJg/7OAe0tqoJDcmDcawQuFtjoJXH6tXJQhCkRbBrl1ZoEyfqunbk7vcVgscf1wpgzBi45Zb0/X196v92C4ExjvnuDiO0IaS2o3ioQvDcc/obdXUqBNn0pXgJQU2N5vqw7qE1a7Tv4oYbHH95fb2uP/64k4jNK3mcjRyC3IUgG8v3sce0cVRRoWG/zc2Du8W8OPf39zNtmraYf/lLfRevuCLzdUBF6KyzvN1HCxYkRyZli1QhuO02bUA8/7wKse2Id2MwC9ZPCIKqz7IRgipjzP3AAIAxph/I40R8w0O37UkaJjZvTn9Rt251Os1SLbYXXtDY5Pp6fegqKoITAtvivvFGuOwyEtEUw+uhXbXK+W5TSXd36281NjpRNDZqo7lZW4L5sgjsbXWH19XW9nmGtO7fD//v/6nZf+ONWoGnpsd+8021rNxCAE5L3S0ENu3Aiy9CVVX6S56tECxZohXPV7+qz5LNcJkJXV3O9S3Ky/XPsK1LK142Ws3iqqu0JXzFFfCf/+n0gaS6hixShaCxUe+524JwI5X33r2aGM8KTnu7/u82mODMM3U5WD+BV6XY3d1NUZHei+ZmdWNdeGHm6wQFtxD09all/PnPayW/eze89lq68AxVCEaqPktFNkKwS0SmAAZARBYAwwjSyy/qbdN1GNi0SV/2hx5K3r51qw5egXQhWL5cW4r2AZg8Obg+gtRKsa4Otm8v9T8hC1ghOO44xyKwlWxDg7bEpk93tln3kZdFkC8hmDv3ENavTxfse+/Vl/EHP9BKsLTUcZVY2ErRVnKzZ6sVZ33YqWkHWltVCNz32CIXITjxRCfuPRv3kFfr+IQTNBrBWgRPPqnPwGGHJR9XXAz/+7/wgQ/ANdfAt7+tfQju0PRp05z/NLWP4POf1/9j6lTvsqXe72XL4Mc/1gp/1SrNBAqOQM2bp7+VqZ9g716tTFM52/faivCnP52eEC5fcM9JsGKF9g++5z26b/x4byujrk6fr1yFYCTqMy9kIwRfQecZPkxEngP+C/jnQEoTAEZisuc33tCb+9prydu3btVOpHHjkoXADtt3h5wFGVvuJQQjYRFMnapT+b3+ur6Q9qG1rZn6+mQhGDs22bWQi2toYEBbir/7XXbl8xKC8vLt9PYmpybu69MOwvnzdRDTpEnwD/+g4uC+H3ZEsW0Rjx+vFenOnep+cr+Us2bpdZua0juKITsh2LVLo6xOP12vd+SRTkXph4EB7wiaXbtaKClRIRgY0Ir17LO93R8TJsDvf68t9S1b0pPHuf+DVCEoL3dyHHkhlbedOGf/fnXH3HabCo2NGCouHryfwC96xr7Xtl78zGf8rxE03HMSvPSSbrNC4IexY7Vx4WXBgr8QFGzyemPMq8AZwHuBzwNHG2Ney3zW6MG4oTj9UrB2rS7d6r1/v3bO1dZqy9gtBOvXqxi4zewgXUOpL0tdHXR3FzMcK3LVKo19Pv547Th84410IWhocFxDr7+urWl3GOXYsVqJZmMRrFih/utf/Sq78nkJQUODip/7Pv3Xf2nI4I9+5FR4//iP2sp0T1rS1JQeH29dJm63UOp6av8AZCcEy5bpM2I7LRcudMZh+KG7WyucVCEYP34cM2eqlbJihf6unSnNC8XFcNNNmhrlxz9O33/kkdoIcE/Sng28hKCmRuPoi4t1ed55ycJz1lnJKS1S4ScE9r2+5hoNjki1fvIJd5qJ5cu1TshmIrHGxtwtgpGoz7yQTdTQJ4GPAfOB44HLEttGPZqaYMWK4cfdWiFwq3dHh7a+amr0pruFwGZwdLeO8+0agqEnIrMRQ1YIQN1D69frUHvr+29o0N/o71chcA+qssh2dLEdZPTss04ndSZ4CcExx2iSGPfL9dRT+n+4K8bjjtOxDrfc4kS4uCOGLOy6X9oB8G75HXKIWomZhGDJEq0Q7ZiLc89VcXruOf9zvCZoAaiqqjqQJtr2D2QSAotLL/U+7rvfzZw/yw+prqG//lXdP3PmaKv/tNM03YMbtp/AzyrIxBnUFVlIawDShWAwa8CioSGzEKSmlwCH90gjG9fQe1yf04DrgQ9mOmG04D//Ez7zmRybNR7wsghsxFAuQhCka6i42MmdYoVgqKnL29v1oT7qKG1plZerEGzY4HQYgprl/f0qGq2tyf0DFtnmG3rsMS2/nchnMNhBau6XZdw4vQnu+/T8805l68YXv6j39cQT9fdWr/YXAj+LYPZsp/JzwyZgG0wIjj/eiXo64wz1cWfqJ/CrFNva2g5EMj35pJZ7sDDKTGho0Eo7V7gtAus6s26gI45QzqlhlMceq/+BjbJLhZ9F0OZnQhQA9n60tOhzlK0QNDaqJWST4VnYQZheFkFQvLNxDf2z6/M5YB4QjH0ywpg1C3bsKKa3d3jXsfnL3SNpvYTAdlKuXq0VoG05g+MaCiLdgm092Ap6uEJgO4rnztVW67x5jkXgjpCx3//0J116CUE2FsGOHVphX3WV+rCtdZBXRjfYAAAdDklEQVQJXhZBff0Uqqocy23TJv14CcFHPqIzV739tron9uzJXgis28TLLWSRSQj27NGKzx3LPnGilnMoQlBVVcWsWVqpPPusk8Ig3xg/Xq2hd95x+tXmzct8TnGx/r9+46QGswhGA2zZrDWWixAYk56zyzZyvISgkBZBKnoBj5RTow/WpB/OYLz+fq0Aq6vVFWQrVxv7bIWgt9dpvaxZk2wNgFYMNgJipOEeWAXqoywuNsMWgqOO0uXxx+tMa3YMgYUVAjtR+FAtgr/8RVtBF1+sropFiwYXTCsEtkUN0NfXl+R3tbNCeQmBCHzsYxp6+N3vqvvirLOSj3nXu7ST2bovLIqKdFDa9df7ly+TELz0kopBasfrOeeo4PqNSParFPv6+pg5U5/V3t7CCQE4+YZsR/FgQgD6vPqNJfCzCPoydabkGfZ+WBE/4YTszvMLIc00F0FQvLPpI/ijiDyS+PwJWA08HEhpRhhWCIYze5NNJXDOObpub5q1CKqrnY4hKzheSa2CTDORKgTFxVBd3Z8mBM89B//2b+pTPess+PWvva+3apU+3DZH0vHHq4D19CQLgbU8XnxRj/fqIMsmEdljj+lDv2CBRg6tW+e44zJxTg3N6+npSROC0lInxNcLpaWaudRO15i67+WXvSNlLroocwdlJiGw8yGnukls48FvtKmfEPT09BywWoqK0oUrn7C8V6xQkfZK2ZCKTEKQifNogS1bU5PydXsCMsG+S6mRQ37TVEJwvLOJvL3J9b0faDHGBJfbeQSR7aQdxniH2oFTIS1cqK4Ee9O2btUHfcKEZCGor1cT3csiAH1JhuO/9YJXhEFjY1GSEOzbpxx279YXr7RUO+5mzdJIDjdsR7H9T9zZHN1CUFKiYrF1q7aevf5DKwQDA95pfO3Uluecoz5yO9josce8Ux1bpIofaIx1Q4NWtPv3qxCcdFJh4ssnT06e5czi5pv18/GPp/cv2HDNtjbvbJe2UkwdUFZfX3/Azzx/fnqlmU9YIdi2TQU4m2SZVgi83sMdO3Sb2/KD4OLphwL3c5itWwi0Hhg7NjeLoGDjCIwxz7g+zx0sIgBOBZ1JCB56SFuWH/2oM+TfDSsEZ56pLW23RWBbzG4h8OooBuflDKLD2KtSrKzsSRKC119XEbjnHq1o/vY3HQPxsY+lt0isEFjMmeOEVaaOorXrXm4h0NbRwAC+oay2o9kKwKGH6n83WD+BF+eWlhYaG1X01q5V94SXWygf8LIIbroJvvIV+PCHNTdOKqwQZGodi3jzrqvTfdZyLRQqKzWi7m9/y84tBMp7zx5va3nHDidFixtBxdMPBWPGOEKVixAUFWnDMRchyPs4AhHZKSLdHp+dIhLMOOcRRmkpVFT452o3RkebVlRoxXPqqZoHxf0Cr12rleCsWeoK8RIC+wK7haCQriGAWbMMra1OeKQd6LJggS7twKL9++FDH3L6Lt5+Wz9uISgudqI/3BYBOAN6vEJHYfBBZbbCt0Jgvy9ePHhMfSrnkpKSA+W7/37lVkghcCdg+/Wv4V/+RQe13Xtv8ngLi8GE4J13lHNqpVhSUsLkyTpq+KtfHTkOQ8Hkyepm27UrNyEAb95eI6lBOY8m2DLmIgTgPZYgkxAExdtXCIwxE40x5R6ficYYjwjX0Qk70MYLzz+vPuDvfEeP+fd/V3+3O5XE2rXqCy4qSr5pbiE45BCt8KwQiKT7j3PJQNrR4UTiZIPu7vSH5vDDx9Hf7/RlLF+urXN3RX744Zqj/dVXdcIOG/IHyUIAahE1NqZXvtlYBODfT7BokVom7lj9889XYVqyxPsc8BaCioqKA/zuuUeXVvjyjcpKbWjYl/qWW7QT8Z57vEUAdIxGWVlmi8CrUqxIbDz//MK6hUCfcyt+IyEEfgOrKgpNNAUVFVpHeE2Kkwm5CkFQvLOOGhKRaSJSZz+BlCYATJmy27ez+Oab9cH95Cf1Bfzyl7Xz1z3Uf+1arTAheQCIWwjACSFdvVpbyakzOOXiGvr857UzMttJVrwGn0yYoE1w6x5avlwrolQf7Ac+oKNLH3xQo01sArBUIbj+eicSxI2TT9YXOReLYONGrRgvukhj+N3WAGjn7PjxmUMp3ZPSWGzduvWAhbJ6tXIIMAt5RriFf9s2/e8uuWTw/orBOk696oGt7jS4BYb9v8eOTX+G/ODuG0nFwcAZtMFz1FHJE99ng8ZGbfi5+4AzCUFQvLOJGvqgiLwJrAeeATYAOUyuV1g0No7xtAjWr9dOxSuvVDcJaCW5cKGGMw4M6Oett5xOy8ZGHWzV2ak3y0sIvEJHIXn0YSYsW6YuG4BHHhmc39692pJPrRSPOUY3tLSomf7GG/5m65e/rJO/v/qq5msvK0sfTTtunPeDefHF+gL7vQCpo01tR+jVV2v/wBe+AF//evI5paWZh9+Dt0Uwbdq0A8nwoHBuIUgWAhtfvnDh4OdNn567EEybNm1ohQwAlvfRR2ef0nkoFsFo4gza//Ob3+R+nlfk0I4dKqReXqCgeGdjEXwPWACsMcY0AmcDGQbCjy5MmdJHR0e6v/lnP1NT7p/+KXn7woVOZ9fmzdqJZS0Ce9NsHno/i8BLCGyHUiaLwBj18VZXq/hkIwR+g08mTdJunI0btTU6MJDZf/nhD6s1UF2to239oqhyRapraPFibf088YRaWz/7WXoUDGjlkKnx4yUENrTO3qfRIgRPPKHr8+cPft5QLILRFEppeWfrFgIn+s6vjyCfYZRDxfz5ufcPgPdYgtQBom4ExTsbIdhnjNkOFIlIkTFmMXBcIKUJAFOmaC+oe1DZzp3aefeRj6S3fG2r7c9/diKGUoVg2TJdpgpBe7teO7Wj2GKwtAN//KMm5rr+eu3AfeaZwV1J1oxMrRSLi3dRUaFCsHy5bhvsQT3xROU8lDwzfrAVg3UNLV2qZfWbHMSipibzhCVeQtCbGEI+2oTgz39Wt1tx8eDnDUUIeoc7dH4EYS3A43KsIfx4e2VbhdHFeTiwfWypQuAlfhAc72yEoEtEyoBngXtE5CfoeIKDAsceq0+m2z30u99pRfIlj3nWamu189K2WCF7IbDwsgggcwbS/n6dx/WII3QC7osv1k63RYM44bxSLYDGG9fVOUIwc2Z6WmEvlJWNbIfjmDH6UFuLYOlSOOWUwStFOz7Ba4Txnj368YstP+ccFQG/+5APWCFYtkwbIeeem915tbXqyrOWnhtek9LA6IqpP+YYDQHOlq+FlxDYzvZ8xtPnG1Onqis0WyHI+zgCEfmZiJwCXIymlfgS8BjwFnBRIKUJACJqCriFYNkyvQF+LeRzz9UK67XXtNPSWg3V1bru5xqyyGQR+PUR3HGHRuzccIP6B088UX9vMPeQ3yhEG1tuhWAoZutIweYb6uzUWbhSR9R6obZW0yV4WcJeCefAibG+/HIdEzJS7q2hwFbYDzygy2z6B8DfX75/v95rL5EeTTH1M2dqv5rfdJZ+8BKCXbuU92jnPByIpPeHZRKCQsxH8CY6qvgN4AbgGGPMXcaYnyZcRRkhIr8RkW0istK1rVJEnhCRNxNLj/bNyKKhQWP13JFDr76qYV5+FcXChdrivO8+bd3YuO2iIjXldu7Uc90zNVkhGD8+PUmZhZ9rqL1dp1I87TSddNz+1kUXqUWwd68/Pz/XUGlpKXV12nm9dm3hhaCz08n9k40QWJH1chf4WUGlNv3qKIBNRb15s1qUqQPx/OAnBJazV6U4mngPFV5CkCl6JgycLXIRgqB4ZxpH8BNjzMnopDSdwB0i0iQi3xKRbIzuO4GUwEC+BjxpjJkNPJlYDxTV1ROoqHAsgj17tFWaKd739NP1Jd6+3XELWVj3UFVVcjy4FQI7xaEX/FxD11yjrZ9f/SpZnC6+WCuATHO6+lWKZWVl1NU5A8UKKQQ28dzSpfqfZVMWWyF6dRhn4jxaYFNRQ25uEj8hsM+NlxCMJt5DRW2tWn9uC9Baz16VYhg4WzQ2atSQdYN6jQuyCIp3NikmWowxPzTGzEMnqLkU8MiiknbeElRA3LgYuCvx/S7gktyKmzu2bduWNKhs5Ur1x2cSgtJSp9XqJwRutxCoMIwb5+8WAm/X0COP6CjYb30r/dyzz9ayPJwhxZ+fa2jbtm1Jc9FmmxExCFjX0NKlWo7UMRZeGIpFsG3btuEVdIRhhSBbtxD4C4Ff8jUYfbyHAhvy6+ZtLYKwcrZobNRnuqND1zNZBEHxzmYcwVgRuUhE7kHHD6wBPjTE36s2xmwBSCwDDwauqak5MNk4OBOxDzYC0L682QqBCPzf/wuf+pT/NSdP1haPndOgu1tz8B9zjHdqgEMO0dbkI4/4p2X2cw3V1NQcEILZsws74nTKFG3ZL1+enVsInP/XyyLw6yOoSb0pBcbkydopnpreOhMqKtS9mDq4KpMQjDbeQ4GXAGayCMLA2cJOAnTrrfqeZ7IIguLtO85RRBYClwHvB14CfgtcaYzZFUhJ0n//SuBKgJkzZ9Lc3Mz06dPp6Ohg79691NfX09LSQnl5OWPGjKGzs5MZM2bQ3t7OwMAAM2fOZOPGjezZs4fKynEsXz6O3t69PPXUXiZOnEhVVS/NzZuprKykv7+f7u7uA9ccN24cZ589jfHjS5kzZwetrbvo6emhvr6eceM6gRlUVu6luXkd06ZNo6enh97eXr75TT1/48ZSysrK2LZtGzU1NXR1ddHX18eECYcC41i1qo0ZM8bx9a8LbW2V/PSnbaxbt9OT0xlnNPDQQyUsXryOBQtq2Lhx44Fh5l1dXWzffhhjxoyhtfUtamqq2bxZObW1tbF3bxlwOHPm7GDduu1UVVXR1tZGVVUVfX19Bzi1tLRQUlJCRUUFW7duTeJk95eWenOy+8vKyigpKaGjoyPtPg0M7KKnRyfUaGxsZefOSWn3yc2prq6Ojo5Wxo6dzcaNe2luXp90nzo69H/csWMT3d2TDnDatGkThxxySF44ZfPsNTbWMWFCEVu2bGDs2DpaW1spKiqiutq5T17PXnV1A6tX76SjY9+B+9Te3giMZ9euzXR1TUji1NbWxrHHHpsXTqn3KVtOgz17EyZUAuW8+WYPDQ2d9Pb28vbbep97e9vo7CxJ4rR169YDnEcrp2yfvcMPr+H888fywx+W8KEP7WNgoARjuujo6E/jVFxczNatW7PmlDWMMZ4fYDHwOaDS75jBPkADsNK1vhqoTXyvBVZnc5358+eboaKpqcl85zvGgDF9fca85z3GnHVWduf296dvW75cr/Uv/5J7Wf77v/XcNWt0ffZsYy64IPM5ixbpOc89573/6quNmTIlfXtTU5Pp7zfm5JON+f3vcy/rSOLmm5UDGNPRkf15M2cac/nl6dt/8Qu9Vltb8vampqZhlXOkMTDg/QwNhpNPNuZ970vedvvtynnDhvTjRxvvoWD7duV3883Otltv9b7PxoSDsxvNzcYUFxtzySXK+bbbvI/LlTfwssmijs3UWXyWMeZXxpgsZpzNGo8Alye+X04eJripr68/EP7Z0qIhodkmhvKKdT/8cDXdU11G2cA9yOitt3QKzAsuyHyO9Z36TVXqN8l1fX09xcUaqWMjkQoFO7r4qKOyn7QDnLEEqfCanQxGX2y5SHaDyFLhFUGTyTU02ngPBZMn63vl5RoKK2c35syBK65wEl6OmnEEw4WI3AcsA+aISKuIfBa4EViYyF20MLEeKFpaWg4IwRNPaNRQrhkC3aio0Bw5n/507ue6heDxx/V7asK1VAwmBF4jbGF0xVnb0abZ9g9Y+KWZ6O7WStbmiLIYTZyHAz8hKCpKFz8IB28RFX73c54p504YOKfi29/W4BDwfqchON6Bzd1kjLnMZ1deZ1QtKys7ENdvB2cNRwggu+n3vODOQLpokV5nMMtiyhR9GTIJwWgPr6uu1qXtFMsWNTXO4D03rPiljgMZTZyHg9parfh373YirGzOHa/Q5DDxTrUIJk3yHu8TFs5u1NbCtdfC977nbzkXLHz0YEdJSckBi2DxYm1FZpoCMUhYi6C9HZ56Sq2BwUa/iqhVkKtraDRN3DF/vobI/v3f53Zeba1OktOfktDEzwoaTZyHA68xFH55hiBcvFPDR8POORVf/zr89rf+CQrzPjFNWNDR0cHEiVpx7NunybCG4rcdCVgh+OMfNX3CYP0DFpkSkflVih02KHkUQEQT/PlNyOKHmhrtYk4NnT4YOA8HfqGUfpVimHh7WQReCAvnVJSUaIPJb1BqULxDLwTTE052axVkkwo4KJSUaIfY4sU6+OzMM7M7L5NF4OcasrwPZviNJfATgjBwBm8heOcdfyEIE+933nFSxre1hZ9zrgiKd+iFwCqoFYLh9g8MF5Mn69wAp52W/WxGgwlBWFvHfmkmvGYng3BwhmhbBKD3++mndU6Qi3zSW4aFc66ILYIhYm8iY5vtMB4NQgCDRwu5MX2603nohk3H7FUp7s2Uqe4ggV+aCT/xCwNn0GSGxcXZC0FYeLsF8Nvf1vUrr/Q+Niycc0VQvEMvBDbudt48fbByTY870hiKEAyWkTKs+dpzdQ2FgTOof7i6OnshCAtv+5zfey8sWQLXXeeflyosnHPFQTeOYLTAxt1edZVm+Mu1w3KkMXWqWidHH539OX5jCfySr0E44qxLSrTy8xKCsMbTW7g7Tvv7NUeV16Q0EB7eVghuuUWf+c99zv/YsHDOFQfdOILRgvJELSmS/WTaQeKmm/SlzmXSFD8h8Es4p9t8RqQcZEidsnJgwL+PICycQe+5feczZeGE8PCeOlWtoYEBtQYyRUqGhXOuCIp36IVgzJjRRXEoqSkGswi8XEOjjfdQkTq62Oar93ofwsIZlPcLL+j3TKkWIDy8i4tV+EU03UImhIVzrgiKd+hdQ52dI5kqqTCweVhycQ2FgTekWwRR4AzOYLp9+3QuB/AXgjDxvukmuPvuzNYAhItzLgiKd+hldYZ7MuGDFCKZp/LzqhTDwBuSJ7EXySwEYeEMjr/80EN1uktInhrVjTDxvswvMU0KwsQ5FwTFO/RC0N7ezkSvnsWDDF5jCTK5hsLC2z2J/cSJmYUgLJwB3vc+naGuulpTohxzDJx4ovexYeKdLaLIGYLjHXohGBgYKHQRRgTTp+s0m25kqhTDwts9lmDiRP/ZySA8nEEr/7/8Jbtjw8Q7W0SRMwTHO/R9BDPtkOKDHF4WwY4dGgk1fnz68WHhnTqWIJP4hYVzrogi7yhyhuB4h14INm7cWOgijAhqa7US3OWaKDTT3KZh4g1O/0gmIQgL51wRRd5R5AzB8Q69EOQ8d+cohQ0hTY2g8QsrDgtvP4vAy00aFs65Ioq8o8gZguMdeiEIC7zGEvjNRRAmVFbqaPBshCBGjBhDQ+iFoMuOxjnI4SUEmVxDYeFt8+6sW6fr3d2af8YrVUhYOOeKKPKOImcIjnfohaCurq7QRRgRWF95qhD4WQRh4Q1w4YU6w9m990aHcy6IIu8ocobgeIdeCFpbWwtdhBFBRYWOtsy2jyAsvAF++lM44wz41Kc0K2UUOOeCKPKOImcIjnfohaDIb863gwxecxfv2OHvGgoLb9Dw2D/8QWPrm5v9hSBMnHNBFHlHkTMExzv0/2Z1dXWhizBicAuBMZktgjDxBs23tGiRushsJFEqwsY5W0SRdxQ5Q3C8Qy8Em22ilhDALQR79mhCMj8hCBNvi7o6nb7wzju994eRczaIIu8ocobgeIdeCCorKwtdhBFDba0jBDbhnJ9rKEy83Zg6FaqqvPeFlfNgiCLvKHKG4HiHXgj6+/sLXYQRw/Tpmnxt587MI2whXLyzRRQ5QzR5R5EzBMc79ELQbWvMEMCOJbjwQvjqV/W7nxCEiXe2iCJniCbvKHKG4HiHXgjCNMn1eedpCGV/Pzz7rA6qmj3b+9gw8c4WUeQM0eQdRc4QT14/ZIRpkuupU+GOO2DZMujo0Dz9Rx7pfWyYeGeLKHKGaPKOImcIjnfohWDcaJixPiBkmr40zLz9EEXOEE3eUeQMwfEOvRBU+YWYhBxR5B1FzhBN3lHkDMHxDr0QtKXO5hIRRJF3FDlDNHlHkTMEx1uMMYFceCQhIm8DQ3WOVQEdI1icgwVR5B1FzhBN3lHkDLnzrjfGTB3soINCCIYDEXnZGHNCocuRb0SRdxQ5QzR5R5EzBMc79K6hGDFixIiRGbEQxIgRI0bEEQUhuK3QBSgQosg7ipwhmryjyBkC4h36PoIYMWLEiJEZUbAIYsSIESNGBoRaCETkfBFZLSJrReRrhS5PEBCRWSKyWESaROQNEfliYnuliDwhIm8mlpMLXdaRhogUi8hfReRPifUocK4Qkf8RkebEPT857LxF5MuJZ3uliNwnIiVh5CwivxGRbSKy0rXNl6eIXJeo21aLyHnD+e3QCoGIFAM/By4AjgIuE5GjCluqQNAPXGuMmQssAK5O8Pwa8KQxZjbwZGI9bPgi0ORajwLnnwCPGWOOBI5F+YeWt4jMAK4BTjDGHAMUAx8lnJzvBM5P2ebJM/GOfxQ4OnHOLYk6b0gIrRAAJwJrjTHrjDF7gd8CFxe4TCMOY8wWY8yrie870YphBsr1rsRhdwGXFKaEwUBEZgLvB37t2hx2zuXA6cDtAMaYvcaYLkLOGxgDHCIiY4BSoI0QcjbGLAE6Uzb78bwY+K0xZo8xZj2wFq3zhoQwC8EMYJNrvTWxLbQQkQZgHvAiUG2M2QIqFsC0wpUsEPwH8FVgwLUt7JwPBd4G7ki4xH4tIhMIMW9jzGbgJmAjsAXYYYz5MyHmnAI/niNav4VZCMRjW2hDpESkDHgQ+JIxJtSzdojIB4BtxphXCl2WPGMMcDxwqzFmHrCLcLhEfJHwiV8MNALTgQki8g+FLdWowIjWb2EWglZglmt9JmpShg4iMhYVgXuMMb9PbG4XkdrE/lpgW6HKFwBOAT4oIhtQl9/7RORuws0Z9JluNca8mFj/H1QYwsz7HGC9MeZtY8w+4PfAewk3Zzf8eI5o/RZmIVgOzBaRRhEZh3asPFLgMo04RERQn3GTMebHrl2PAJcnvl8OPJzvsgUFY8x1xpiZxpgG9L4+ZYz5B0LMGcAYsxXYJCJzEpvOBlYRbt4bgQUiUpp41s9G+8HCzNkNP56PAB8VkfEi0gjMBl4a8q8YY0L7AS4E1gBvAd8odHkC4ngqahK+BqxIfC4EpqBRBm8mlpWFLmtA/M8E/pT4HnrOwHHAy4n7/RAwOey8ge8AzcBK4L+B8WHkDNyH9oPsQ1v8n83EE/hGom5bDVwwnN+ORxbHiBEjRsQRZtdQjBgxYsTIArEQxIgRI0bEEQtBjBgxYkQcsRDEiBEjRsQRC0GMGDFiRByxEMSI4YKI9OR4/Jk2+2mMGAcrYiGIESNGjIgjFoIYMTyQaOk/7cr9f09iZKud56JZRJYCl7rOmZDIKb88kRTu4sT2r4jIbxLf35XIq19aEGIxYnggFoIYMfwxD/gSOp/FocApIlIC/Aq4CDgNqHEd/w003cV7gLOA/y+RHfQ/gMNF5O+AO4DPG2N680cjRozMiIUgRgx/vGSMaTXGDKCpOxqAI9EkaG8aHZZ/t+v4c4GvicgK4GmgBKhLnP8pND3CM8aY5/JHIUaMwTGm0AWIEWMUY4/r+36c98UvL4sAHzLGrPbYNxvoQVMpx4gxqhBbBDFi5IZmoFFEDkusX+ba9zjwz66+hHmJ5SR0isnTgSki8uE8ljdGjEERC0GMGDnAGNMHXAk8mugsbnHt/h4wFngtMQH59xLbbwZuMcasQTNK3igiYZ1RK8ZBiDj7aIwYMWJEHLFFECNGjBgRRywEMWLEiBFxxEIQI0aMGBFHLAQxYsSIEXHEQhAjRowYEUcsBDFixIgRccRCECNGjBgRRywEMWLEiBFx/P85wy4AjsRM7wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.subplot(2, 1, 1)\n", "plt.plot(data, color='blue')\n", "plt.title(\"Sequence Plot\")\n", "plt.xlabel(\"Index\")\n", "plt.ylabel(\"Value\")\n", "plt.grid(True, which='both', linestyle='--', linewidth=0.5)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAACgCAYAAAAB6WsAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF/tJREFUeJzt3XtwXHd5xvHv68hGErIiq4qkSIolUIPdoGlxbDG4dERiSJ0yhUAH2qRAQ29py6XQ0mlThrYwHRiYgXApvQDTDOGWEAKEQOm4ISYIWgNySKZRGnmMIVIk2VqEosqqJGRFb//YI0VRYp3fsbV79uw+n5kd7Tl7e/fRb/XqXPYcc3dERKRybUm7ABERSZcagYhIhVMjEBGpcGoEIiIVTo1ARKTCqRGIiFQ4NQKpCGb2kJldkXYdIqVIjUDKgpk9YmYvWTfv9Wb2HQB3f6673xvzHF1m5mZWVcBSRUqOGoFIkajBSKlSI5CKsHaJwcyeb2ZHzWzGzCbM7Kbobv3Rz2kzmzWz/Wa2xczeYWbDZpYzs0+Z2YVrnvd3ott+amZ/s+513mlmd5jZZ8xsBnh99NpHzGzazE6a2UfNbNua53Mze4OZHTez02b292bWHT1mxsxuX3t/kc2gRiCV6MPAh929HugGbo/m90U/G9y9zt2PAK+PLlcCzwbqgI8CmNllwD8BrwEuBi4E2te91jXAHUAD8FngceDPgCZgP/Bi4A3rHnM1sBd4AfCXwMej17gE6AGuO4/3LvIUagRSTu6M/tOeNrNp8n+kn84Z4OfNrMndZ939uxs852uAm9z9R+4+C/w1cG20mudVwFfd/Tvuvgj8LbD+4F1H3P1Od19293l3v8/dv+vuS+7+CPAx4EXrHvM+d59x94eAQeA/otf/X+DfgT3hkYjEUyOQcvIKd29YufDU/7RX/D7wHGDIzAbM7Nc3eM42YHjN9DBQBbREtz26coO7zwE/Xff4R9dOmNlzzOxrZnYqWl30HvJLB2tNrLk+/zTTdRvUK5KYGoFUHHc/7u7XAc3A+4A7zOyZPPW/eYBxoHPN9E5gifwf55NAx8oNZlYD/Nz6l1s3/c/AEHBptGrq7YCd+7sROX9qBFJxzOy1ZnaRuy8D09Hsx4GfAMvktwWsuBX4MzN7lpnVkf8P/vPuvkR+3f/LzOyXow247yL+j/p2YAaYNbPdwJ9s2hsTOUdqBFKJrgYeMrNZ8huOr3X3hWjVzruB/4y2M7wAuBn4NPk9in4MLABvBojW4b8ZuI380sFpIAf8bIPX/gvgt6P7fgL4/Oa/PZFkTCemEdkc0RLDNPnVPj9Oux6RUFoiEDkPZvYyM6uNtjG8H3gQeCTdqkSSUSMQOT/XkN+gPA5cSn41kxazJVO0akhEpMJpiUBEpMKpEYiIVLhMHA2xqanJu7q60i7jnC0tLVFVlYmoU6Wc4imjMMop77777pt094vi7peJpLq6ujh69GjaZZyzqakpGhsb0y6j5CmneMoojHLKM7Ph+Htp1VBRzM7Opl1CJiineMoojHJKRo2gCObm5tIuIROUUzxlFEY5JaNGUASdnZ3xdxLlFEAZhVFOyagRFMHwcNBquoqnnOKtzai1tQszK/qltbUrvQACaSwlk4mNxVlXW1ubdgmZoJzirc1oYmKYpz9ydmFNTJT+UbM1lpLREkER1NXpPCIhlFM8ZRRGOSWjRlAEuVwu7RIyQTnFU0ZhlFMyBWsEZnaJmX3TzB42s4fM7C3R/EYzu9vMjkc/dxSqhlLR2tqadgmZoJziKaMwyimZQi4RLAFvc/dfAF4AvNHMLgNuBO5x90uBe6LpsjY9PR1/J1FOAZRRGOWUTMEagbufdPcfRNdPAw8D7eQP23tLdLdbgFcUqoZSsbCwkHYJmaCc4imjMMopmaJsIzCzLmAP8D2gxd1PQr5ZkD+BeFnTPs1hlFM8ZRRGOSVT8N1Ho9P3fRF4q7vPmIXtemZmNwA3AHR0dDA0NERbWxuTk5MsLi7S2dnJ8PAw9fX1VFVVMTU1RXt7OxMTEywvL9PR0cHIyAgNDQ1AflFx586djI6OsmXLFlpaWhgbG6OxsZGlpSVmZmZWn3Pbtm00NTUxPj5OU1MTCwsLzM7Ort5eXV1NQ0MDp06dorm5mdnZWebm5lZvr62tpa6ujlwuR2trK0NDQzQ0NKzeXldXR3V1NZOTk5l9T9PT0ywsLGzqexodHaWuri5T7+m1r/09Wlp20N/fT29vL1u3bqW/v58DBw5w4sQJALq7uzl8+DB9fX2cOXOGgYEB+vr6GBoaoqamhs7OTg4dOsTBgwc5ffo0g4OD7N+/n8HBQRobG2lra1u9vbu7m9tuu43e3l527dpFe/sIzc1zHDrUycGDw+RytYyN1bFnT46BgVa6u6dpbFxYvX18vI6pqWp6eiY5cqSNnp5Jtm9fXL19eLie+fkqdu+eor+/nd7eCbZuXaa/v4MDB0Y4caIB6GVoaKikf0/j4+Ps3bu3oj9Pif5OF/LENGa2FfgacMjdb4rmHQOucPeTZnYxcK+779roefbt2+dZPujc6OgoHR0daZdR8rKYU/4fm+Lty9/XN0p//0pGxX3tJxilfkKrLI6lQjCz+9x9X9z9CrnXkAH/Cjy80gQidwHXR9evB75SqBpKRXV1ddolZIJyijc1pYxCaCwlU8htBC8EXgccMLMHostLgfcCV5nZceCqaLqsTU5Opl1CJiineD09yiiExlIyBdtG4O7fIb/s+nReXKjXLUVtbW1pl5AJyinekSPKKITGUjL6ZnER6L+TMMopnpYIwmgsJaNGUASLi4tpl5AJyine9u3KKITGUjJqBEWgfZrDKKd4hw4poxAaS8moERSBjo0eRjnFO3hQGYXQWEpGjaAI6uvr0y4hE5RTvOFhZRRCYykZNYIiqKrS+X9CKKd48/PKKITGUjJqBEUwNTWVdgmZoJzi7d6tjEJoLCUT1AjMrKfQhZSz9vb2tEvIBOUUr79fGYXQWEomdIngX8zs+2b2BjNLdjQjYWJiIu0SMkE5xevtVUYhNJaSCWoE7v4rwGuAS4CjZvY5M7uqoJWVkeXl5bRLyATlFG/rVmUUQmMpmeBtBO5+HHgH8FfAi4CPmNmQmf1GoYorFzoKYhjlFO+JI4/KRjSWkgndRvCLZvZB8mcZOwC8LDoF5QHggwWsryyMjIykXUImKKd4Bw4ooxAaS8mE7mP1UeATwNvdfX5lpruPm9k7ClJZGUl6kohKdT45tbZ2MTFR/l8iyp8YRuLoM5dMaCN4KTDv7o8DmNkWoNrd59z90wWrTiRQvgmkc5IWkawL3UbwDaBmzXRtNE8CTE9Pp11CJiineN3dyiiExlIyoY2g2t1nVyai67WFKan87Ny5M+0SMkE5xTt8WBmF0FhKJrQR/J+ZXb4yYWZ7gfkN7i9rjI6Opl1CJiineH19yiiExlIyodsI3gp8wczGo+mLgd8qTEnlZ8sWHckjhHKKd+aMMgqhsZRMUCNw9wEz2w3sIr91bMjdzxS0sjLS0tKSdgmZoJziDQwooxAaS8kkaZu9wC8Ce4DrzOx3ClNS+RkbG0u7hExQTvH6+pRRCI2lZIKWCMzs00A38ADweDTbgU8VqK6y0tjYmHYJmaCc4g0NKaMQGkvJhG4j2Adc5u5p7KideUtLS2mXkAnKKV5NjTIKobGUTOiqoUGgtZCFlLOZmZm0S8gE5RSvs1MZhdBYSiZ0iaAJ+B8z+z7ws5WZ7v7yglRVZnQi7TDKKZ5OXh9GYymZ0CWCdwKvAN4DfGDNRQLoRNphlFM8nbw+jMZSMqG7j37LzDqBS939G2ZWC1xQ2NLKx7Zt29IuIROUU7zTp5VRCI2lZEIPQ/2HwB3Ax6JZ7cCdhSqq3DQ1NaVdQiYop3iDg8oohMZSMqGrht4IvBCYgdWT1DQXqqhyMz4+Hn8nUU4B9u9XRiE0lpIJbQQ/c/fFlQkzqyKdY/5mkv47CaOc4mmJIIzGUjKhjeBbZvZ2oCY6V/EXgK8WrqzysrCwkHYJmaCc4jU2KqMQGkvJhDaCG4GfAA8CfwR8nfz5iyXA7Oxs/J1EOQVoa1NGITSWkgnda2iZ/KkqP1HYcsqT9mkOo5zi6XsEYTSWkgnda+jHZvaj9ZdCF1cutE9zGOUUT98jCKOxlEySYw2tqAZeDeioToGqq6vTLiETlFO8qSllFEJjKZmgJQJ3/+may5i7fwg4sNFjzOxmM8uZ2eCaeY1mdreZHY9+7jjP+jOhoaEh7RIyQTnFO3FCGYXQWEomdNXQ5Wsu+8zsj4HtMQ/7JHD1unk3Ave4+6XAPdF02Tt16lTaJWSCcorX26uMQmgsJRO6amjtcYWWgEeA39zoAe7eb2Zd62ZfA1wRXb8FuBf4q8AaMqu5Wd+9C6Gc4t1/vzIKobGUTOheQ1du0uu1uPvJ6DlPmllF/LZmZ2d1oowAyilee/ssx44pozgaS8mEnqHszze63d1v2pxynvSaNwA3AHR0dDA0NERbWxuTk5MsLi7S2dnJ8PAw9fX1VFVVMTU1RXt7OxMTEywvL9PR0cHIyMjqusLp6Wl27tzJ6OgoW7ZsoaWlhbGxMRobG1laWmJmZmb1Obdt20ZTUxPj4+M0NTWxsLDA7Ozs6u3V1dU0NDRw6tQpmpubmZ2dZW5ubvX22tpa6urqyOVytLa2Mj4+/qTb6+rqqK6uZnJyMrPvaXp6moWFhU19T7lcjrm5uXN6Tz09PTQ2jtLWNsuhQ50cPDjM1FQ1J0400Nt7ivvvb6a9fZbm5rnV23O5WsbG6tizJ8fAQCvd3dM0Ni6s3j4+XsfUVDU9PZMcOdJGT88k27cvrt4+PFzP/Pzz2L17iP7+dnp7J9i6dZn+/g4OHBhZXZ/f3T3N4cM76esb5cyZLQwMtNDXN8bQUCM1NUt0ds6sPufp09sYHGxi//5xBgebaGxceNJ76u6eZni4PnpPu2hvHynAe6pi9+6pDd5TL0NDQyU99sbHx7nooosq+vOU6O9tyEnHzOxz5M9ZfFc062VAP/AogLu/6yyP6wK+5u490fQx4IpoaeBi4F533xX3+vv27fOjR4/G1lmq5ufnqampSbuMknc+OZkZ6Rz1pLivu2PHPI89tpJReu+51E9WqM9cnpnd5+774u4X+s3iJuByd3+bu78N2At0uPu7ztYEzuIu4Pro+vXAVxI8NrO0T3MY5RRP3yMIo7GUTGgj2AksrpleBLo2eoCZ3QocAXaZ2aiZ/T7wXuAqMzsOXBVNl73a2tq0S8gE5RQvl1NGITSWkgnda+jTwPfN7Mvkl0VfCXxqowe4+3VnuenF4eWVh7q6urRLKIrW1i4mJs79P7Fdu3Zx7NixTayo/IyNlcJYeka0Kq74Wlo6OXXqkdj7VcpnbrOEfqHs3cDvAo8B08Dvuvt7CllYOcnlcmmXUBT5JuDnfNmz587zeHxl2LOnFMbSzzif3/P5XEL/0aiUz9xmCV01BFALzLj7h4FRM3tWgWoqO62trWmXkAkDA8opjjIKo89cMqHfLP478l/8+uto1lbgM4UqqtxMT0+nXUImdHcrpzjKKIw+c8mELhG8Eng58H8A7j5O/CEmJKKTZITRSVfiKaMw+swlE7qxeNHd3cwcwMyeWcCayo6OjR5Gx9qPp4zCNlTv2LGDxx57bNNeNXQjdVaFLhHcbmYfAxrM7A+Bb6CT1ATTPs1htI98PGUUtqH64MH/CrrfZm+kzqrQYw29PzpX8QywC/hbd7+7oJWVEe3KFmZ8XDnFUUZhlFMysY3AzC4ADrn7SwD98T8HOklGGJ10JZ4yCqOckoldNeTujwNzZnZhEeopS5OTk2mXkAk9PcopjjIKo5ySCd1YvAA8aGZ3E+05BODuf1qQqspMW1tb2iVkwpEjyimOMgqjnJIJ3Vj8b8DfkD/i6H1rLhJASwRh9F9cPGUURjkls+ESgZntdPcRd7+lWAWVo8XFxfg7Cdu3K6c4yiiMckombongzpUrZvbFAtdStvQ9gjDaRz6eMgqjnJKJawRrv7nx7EIWUs70PYIw2kc+njIKo5ySiWsEfpbrkkB9fX3aJWTC8LByiqOMwiinZOL2GvolM5shv2RQE10nmnZ3V9oBqqpCd86qbPPzyimOMgqjnJLZcInA3S9w93p33+7uVdH1lWk1gUBTU1NFfb3W1i7MrOiX87V7d3FzyiJlFEY5JaO2WQTt7e1Ffb0nThBTbOfXDPr7i5tTFimjMMopmSQnppFzNDExkXYJmdDbq5ziKKMwyikZNYIiWF5eTruETNi6VTnFUUZhlFMyagRF0NHRkXYJmdDfr5ziKKMwyimZsm8EaW04NTNaW7sAGBkZSTeEjDhwQDnFUUZhNj+nZ6T+d6SQyn5jcXobTmFiIr/xtKGhIZXXz5oTJ5RTHGUUZvNzWjkhTvGt/B0ppLJfIhARkY2pERTB9PR02iVkQne3coqjjMIop2TKftVQuvLrFZubm8nlcmkXU/IOH96ZdgklTxmFUU7JaImgoPLrFfv6vs1mnkg7/pJNfX2jaZdQ8pRRGOWUjBpBEZw5o5hDKKd4yiiMckpGaRXBwEBL2iVkgnKKp4zCKKdk1AiKoK9vLO0SMkE5xVNGYZRTMmoERTA01Jh2CZmgnOIpozDKKRk1giKoqVlKu4RMUE7xlFEY5ZSMGkERdHbOxN9JlFMAZRRGOSWjRlAEOpF2GOUUTxmFUU7JpNIIzOxqMztmZj80sxvTqKGYdCLtMMopnjIKo5ySKXojMLMLgH8Efg24DLjOzC4rdh3FdPr0trRLyATlFE8ZhVFOyaSxRPB84Ifu/iN3XwRuA65JoY6iGRxsSruETFBO8ZRRGOWUTBqNoB14dM30aDSvbO3fP552CZmgnOIpozDKKRlzL+6xaczs1cBBd/+DaPp1wPPd/c3r7ncDcEM0uQs4VtRCN1cTMJl2ERmgnOIpozDKKa/T3S+Ku1MaRx8dBS5ZM90BPKV9u/vHgY8Xq6hCMrOj7r4v7TpKnXKKp4zCKKdk0lg1NABcambPMrNtwLXAXSnUISIipLBE4O5LZvYm4BBwAXCzuz9U7DpERCQvlRPTuPvXga+n8dopKYtVXEWgnOIpozDKKYGibywWEZHSokNMiIhUODWCAjKzR8zsQTN7wMyOpl1PqTCzm80sZ2aDa+Y1mtndZnY8+rkjzRpLwVlyeqeZjUVj6gEze2maNZYCM7vEzL5pZg+b2UNm9pZovsZUIDWCwrvS3Z+nXdme5JPA1evm3Qjc4+6XAvdE05Xukzw1J4APRmPqedH2tkq3BLzN3X8BeAHwxuiwNRpTgdQIpOjcvR+YWjf7GuCW6PotwCuKWlQJOktOso67n3T3H0TXTwMPkz9agcZUIDWCwnLgP8zsvuib0nJ2Le5+EvIfbKA55XpK2ZvM7L+jVUda3bGGmXUBe4DvoTEVTI2gsF7o7peTP9LqG82sL+2CJPP+GegGngecBD6Qbjmlw8zqgC8Cb3V3nZkmATWCAnL38ehnDvgy+SOvytObMLOLAaKfuZTrKUnuPuHuj7v7MvAJNKYAMLOt5JvAZ939S9FsjalAagQFYmbPNLPtK9eBXwUGN35URbsLuD66fj3wlRRrKVkrf9gir0RjCjMz4F+Bh939pjU3aUwF0hfKCsTMnk1+KQDy3+D+nLu/O8WSSoaZ3QpcQf4IkRPA3wF3ArcDO4ER4NXuXtEbSs+S0xXkVws58AjwRyvrwSuVmf0K8G3gQWA5mv128tsJNKYCqBGIiFQ4rRoSEalwagQiIhVOjUBEpMKpEYiIVDg1AhGRCqdGIAKY2b1mdnDdvLea2T9t8JjZwlcmUnhqBCJ5t5I/f/Za10bzRcqaGoFI3h3Ar5vZM2D14GVtwANmdo+Z/SA6t8Q16x9oZleY2dfWTH/UzF4fXd9rZt+KDjx4aN03g0VKghqBCODuPwW+zxPH/78W+DwwD7wyOnjglcAHokMaxIqOf/MPwKvcfS9wM6Bvl0vJSeXk9SIlamX10Fein78HGPCe6Mixy+SPc98CnAp4vl1AD3B31DsuIH/EUJGSokYg8oQ7gZvM7HKgxt1/EK3iuQjY6+5nzOwRoHrd45Z48tL1yu0GPOTu+wtbtsj50aohkYi7zwL3kl+Fs7KR+EIgFzWBK4HOp3noMHCZmT3DzC4EXhzNPwZcZGb7Ib+qyMyeW8j3IHIutEQg8mS3Al/iiT2IPgt81cyOAg8AQ+sf4O6PmtntwH8Dx4H7o/mLZvYq4CNRg6gCPgQ8VPB3IZKAjj4qIlLhtGpIRKTCqRGIiFQ4NQIRkQqnRiAiUuHUCEREKpwagYhIhVMjEBGpcGoEIiIV7v8BrYETsatXlakAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.subplot(2, 1, 2)\n", "plt.hist(data, bins=10, color='blue', edgecolor='black')\n", "plt.title(\"Histogram\")\n", "plt.xlabel(\"Value\")\n", "plt.ylabel(\"Frequency\")\n", "plt.grid(True, which='both', linestyle='--', linewidth=0.5)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }