From 60ef278a0f82a93f9b234d2a93ccc6837f7eb3da Mon Sep 17 00:00:00 2001 From: cae769d738bd873cde94f57404614902 Date: Tue, 4 Jan 2022 09:57:10 +0000 Subject: [PATCH] =?UTF-8?q?Chang=C3=A9=20avec=20fichier=20local?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module3/exo1/analyse-syndrome-grippal.ipynb | 1262 ++++++++++++++++++- 1 file changed, 1226 insertions(+), 36 deletions(-) diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5..2470cdf 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,13 +28,11 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 18, + "metadata": {}, "outputs": [], "source": [ - "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" + "data_url = r'C:\\Utilisateurs\\cl258818\\Téléchargements\\incidence-PAY-3.csv'" ] }, { @@ -61,9 +59,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "File b'C:\\\\Utilisateurs\\\\cl258818\\\\T\\xc3\\xa9l\\xc3\\xa9chargements\\\\incidence-PAY-3.csv' does not exist", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mraw_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_url\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskiprows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mraw_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 707\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 708\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 709\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 710\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 711\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 449\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 817\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 818\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 819\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 820\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1047\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1048\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1049\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1050\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1051\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'python'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 1693\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'allow_leading_cols'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex_col\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1694\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1695\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparsers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1696\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1697\u001b[0m \u001b[0;31m# XXX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._setup_parser_source\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: File b'C:\\\\Utilisateurs\\\\cl258818\\\\T\\xc3\\xa9l\\xc3\\xa9chargements\\\\incidence-PAY-3.csv' does not exist" + ] + } + ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" @@ -78,9 +95,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
170219891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1702 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1702 FR France " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +175,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020215134470137730.051672.06857.079.0FRFrance
120215033811732496.043738.05849.067.0FRFrance
220214934016834716.045620.06153.069.0FRFrance
320214834184236364.047320.06355.071.0FRFrance
420214733659831338.041858.05547.063.0FRFrance
520214633005925302.034816.04639.053.0FRFrance
620214532036416564.024164.03125.037.0FRFrance
720214431899915042.022956.02923.035.0FRFrance
820214332704021935.032145.04133.049.0FRFrance
920214232834323382.033304.04335.051.0FRFrance
1020214132504320586.029500.03831.045.0FRFrance
1120214032628621842.030730.04033.047.0FRFrance
1220213932215518014.026296.03428.040.0FRFrance
1320213831561412310.018918.02419.029.0FRFrance
1420213731367310404.016942.02116.026.0FRFrance
152021363102897505.013073.01612.020.0FRFrance
162021353126099282.015936.01914.024.0FRFrance
172021343130159485.016545.02015.025.0FRFrance
182021333103927042.013742.01611.021.0FRFrance
1920213231558611009.020163.02417.031.0FRFrance
2020213131885513664.024046.02921.037.0FRFrance
212021303139919695.018287.02114.028.0FRFrance
222021293136269618.017634.02115.027.0FRFrance
23202128386365430.011842.0138.018.0FRFrance
242021273106936838.014548.01610.022.0FRFrance
25202126370864109.010063.0116.016.0FRFrance
26202125379425540.010344.0128.016.0FRFrance
27202124348553011.06699.074.010.0FRFrance
28202123367104455.08965.0107.013.0FRFrance
29202122378795495.010263.0128.016.0FRFrance
.................................
190919852132609619621.032571.04735.059.0FRFrance
191019852032789620885.034907.05138.064.0FRFrance
191119851934315432821.053487.07859.097.0FRFrance
191219851834055529935.051175.07455.093.0FRFrance
191319851733405324366.043740.06244.080.0FRFrance
191419851635036236451.064273.09166.0116.0FRFrance
191519851536388145538.082224.011683.0149.0FRFrance
19161985143134545114400.0154690.0244207.0281.0FRFrance
19171985133197206176080.0218332.0357319.0395.0FRFrance
19181985123245240223304.0267176.0445405.0485.0FRFrance
19191985113276205252399.0300011.0501458.0544.0FRFrance
19201985103353231326279.0380183.0640591.0689.0FRFrance
19211985093369895341109.0398681.0670618.0722.0FRFrance
19221985083389886359529.0420243.0707652.0762.0FRFrance
19231985073471852432599.0511105.0855784.0926.0FRFrance
19241985063565825518011.0613639.01026939.01113.0FRFrance
19251985053637302592795.0681809.011551074.01236.0FRFrance
19261985043424937390794.0459080.0770708.0832.0FRFrance
19271985033213901174689.0253113.0388317.0459.0FRFrance
192819850239758680949.0114223.0177147.0207.0FRFrance
192919850138548965918.0105060.0155120.0190.0FRFrance
193019845238483060602.0109058.0154110.0198.0FRFrance
1931198451310172680242.0123210.0185146.0224.0FRFrance
19321984503123680101401.0145959.0225184.0266.0FRFrance
1933198449310107381684.0120462.0184149.0219.0FRFrance
193419844837862060634.096606.0143110.0176.0FRFrance
193519844737202954274.089784.013199.0163.0FRFrance
193619844638733067686.0106974.0159123.0195.0FRFrance
19371984453135223101414.0169032.0246184.0308.0FRFrance
193819844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1938 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202151 3 44701 37730.0 51672.0 68 57.0 \n", + "1 202150 3 38117 32496.0 43738.0 58 49.0 \n", + "2 202149 3 40168 34716.0 45620.0 61 53.0 \n", + "3 202148 3 41842 36364.0 47320.0 63 55.0 \n", + "4 202147 3 36598 31338.0 41858.0 55 47.0 \n", + "5 202146 3 30059 25302.0 34816.0 46 39.0 \n", + "6 202145 3 20364 16564.0 24164.0 31 25.0 \n", + "7 202144 3 18999 15042.0 22956.0 29 23.0 \n", + "8 202143 3 27040 21935.0 32145.0 41 33.0 \n", + "9 202142 3 28343 23382.0 33304.0 43 35.0 \n", + "10 202141 3 25043 20586.0 29500.0 38 31.0 \n", + "11 202140 3 26286 21842.0 30730.0 40 33.0 \n", + "12 202139 3 22155 18014.0 26296.0 34 28.0 \n", + "13 202138 3 15614 12310.0 18918.0 24 19.0 \n", + "14 202137 3 13673 10404.0 16942.0 21 16.0 \n", + "15 202136 3 10289 7505.0 13073.0 16 12.0 \n", + "16 202135 3 12609 9282.0 15936.0 19 14.0 \n", + "17 202134 3 13015 9485.0 16545.0 20 15.0 \n", + "18 202133 3 10392 7042.0 13742.0 16 11.0 \n", + "19 202132 3 15586 11009.0 20163.0 24 17.0 \n", + "20 202131 3 18855 13664.0 24046.0 29 21.0 \n", + "21 202130 3 13991 9695.0 18287.0 21 14.0 \n", + "22 202129 3 13626 9618.0 17634.0 21 15.0 \n", + "23 202128 3 8636 5430.0 11842.0 13 8.0 \n", + "24 202127 3 10693 6838.0 14548.0 16 10.0 \n", + "25 202126 3 7086 4109.0 10063.0 11 6.0 \n", + "26 202125 3 7942 5540.0 10344.0 12 8.0 \n", + "27 202124 3 4855 3011.0 6699.0 7 4.0 \n", + "28 202123 3 6710 4455.0 8965.0 10 7.0 \n", + "29 202122 3 7879 5495.0 10263.0 12 8.0 \n", + "... ... ... ... ... ... ... ... \n", + "1909 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1910 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1911 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1912 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1913 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1914 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1915 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1916 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1917 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1918 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1919 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1920 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1921 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1922 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1923 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1924 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1925 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1926 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1927 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1928 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1929 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1930 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1931 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1932 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1933 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1934 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1935 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1936 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1937 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1938 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 79.0 FR France \n", + "1 67.0 FR France \n", + "2 69.0 FR France \n", + "3 71.0 FR France \n", + "4 63.0 FR France \n", + "5 53.0 FR France \n", + "6 37.0 FR France \n", + "7 35.0 FR France \n", + "8 49.0 FR France \n", + "9 51.0 FR France \n", + "10 45.0 FR France \n", + "11 47.0 FR France \n", + "12 40.0 FR France \n", + "13 29.0 FR France \n", + "14 26.0 FR France \n", + "15 20.0 FR France \n", + "16 24.0 FR France \n", + "17 25.0 FR France \n", + "18 21.0 FR France \n", + "19 31.0 FR France \n", + "20 37.0 FR France \n", + "21 28.0 FR France \n", + "22 27.0 FR France \n", + "23 18.0 FR France \n", + "24 22.0 FR France \n", + "25 16.0 FR France \n", + "26 16.0 FR France \n", + "27 10.0 FR France \n", + "28 13.0 FR France \n", + "29 16.0 FR France \n", + "... ... ... ... \n", + "1909 59.0 FR France \n", + "1910 64.0 FR France \n", + "1911 97.0 FR France \n", + "1912 93.0 FR France \n", + "1913 80.0 FR France \n", + "1914 116.0 FR France \n", + "1915 149.0 FR France \n", + "1916 281.0 FR France \n", + "1917 395.0 FR France \n", + "1918 485.0 FR France \n", + "1919 544.0 FR France \n", + "1920 689.0 FR France \n", + "1921 722.0 FR France \n", + "1922 762.0 FR France \n", + "1923 926.0 FR France \n", + "1924 1113.0 FR France \n", + "1925 1236.0 FR France \n", + "1926 832.0 FR France \n", + "1927 459.0 FR France \n", + "1928 207.0 FR France \n", + "1929 190.0 FR France \n", + "1930 198.0 FR France \n", + "1931 224.0 FR France \n", + "1932 266.0 FR France \n", + "1933 219.0 FR France \n", + "1934 176.0 FR France \n", + "1935 163.0 FR France \n", + "1936 195.0 FR France \n", + "1937 308.0 FR France \n", + "1938 213.0 FR France \n", + "\n", + "[1938 rows x 10 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +1170,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +1200,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 23, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +1225,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +1253,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYHMV5/7/vHHtrdd8CCYHAgABjZBl8EgsQ2EnANiTCB8ImIXZITOz8nEAuHGxisBPbIbbBxIjLB8bYDmCMQQgD5pKQkARIQgc60IW00kqr1Z5z1O+Prurp7qnq7unp2ZnZfT/Ps8/MVncd3VNdb71HVZMQAgzDMAxTLolqN4BhGIYZHrBAYRiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEAgsUhmEYJhZYoDAMwzCxwAKFYRiGiQUWKAzDMEwspKrdgKFkwoQJYtasWdVuBsMwTF2xatWqA0KIiUHnjSiBMmvWLKxcubLazWAYhqkriGhHmPPY5MUwDMPEAgsUhmEYJhZYoDAMwzCxwAKFYRiGiQUWKAzDMEwsBAoUIlpCRPuJ6HVH2jgiWkpEm+XnWMex64loCxFtJKKFjvSziOg1eexWIiKZ3khEP5fpy4loliPPYlnHZiJa7Eg/Tp67WeZtKP9WMAzDMOUQRkO5G8CFnrTrACwTQswBsEz+DyI6BcAiAKfKPD8goqTMcxuAqwHMkX+qzKsAHBJCnADgOwBukWWNA3ADgPcAmA/gBofgugXAd2T9h2QZDMMwTBUJFChCiGcBdHqSLwZwj/x+D4BLHOn3CyEGhBDbAGwBMJ+IpgJoF0K8KKx3Dt/ryaPKehDAAqm9LASwVAjRKYQ4BGApgAvlsQ/Lc731D2ue3rgfOzt7q90MhmEYLVF9KJOFEHsBQH5OkunTAex0nLdLpk2X373prjxCiCyALgDjfcoaD+CwPNdb1rDmyrtexsLvPlvtZjAMw2iJ2ylPmjThkx4lj19ZxQ0iupqIVhLRyo6ODtNpdUPvYK7aTWAYhtESVaDsk2YsyM/9Mn0XgGMc580AsEemz9Cku/IQUQrAaFgmNlNZBwCMked6yypCCHGHEGKeEGLexImBW9HULJalkGEYpnaJKlAeBqCirhYDeMiRvkhGbh0Hy/m+QprFuonobOkDucKTR5V1KYCnpJ/lcQAXENFY6Yy/AMDj8tjv5bne+octuTwLFIZhapvAzSGJ6GcAzgUwgYh2wYq8uhnAA0R0FYC3AFwGAEKIdUT0AID1ALIArhFCKBvNF2BFjDUDeEz+AcCdAO4joi2wNJNFsqxOIvoagJfleTcKIVRwwD8CuJ+Ivg5gtSxjWJPJsUBhGKa2CRQoQojLDYcWGM6/CcBNmvSVAOZq0vshBZLm2BIASzTpW2GFEo8YBnP5ajeBYRjGF14pXydkWKAwDFPjsECpE9iHwjBMrcMCpU7gIC+GYWodFigMwzBMLLBAqROEee0mwzBMTcAChWEYhokFFih1AvtQGIapdVigMAzDMLHAAqVOYAWFYZhahwVKncCbQzIMU+uwQGEYhmFigQVKncAKCsMwtQ4LFIZhGCYWWKAwDMMwscAChYmNQz2DmHXdo3hoze5qN4VhmCrAAqVOqAcfytYDPQCAu57fXt2GMAxTFVig1An1sJcXUbVbwDBMNWGBwjAMw8QCC5Q6oR5MXgzDjGxYoDAMwzCxwAKlTqgnBaWe2sowTHywQGFig33yDDOyYYFSJ/DmkAzD1DosUJj4YeHHMCMSFih1Qj0M0cQLURhmRMMCpU6op0l/HTWVYZgYYYHCxAbrJwwzsmGBUjfwvJ9hmNqGBQoTO/VknmMYJj5YoNQJYQbpbz+xER/7wfOVb4wB9skzzMimLIFCRF8ionVE9DoR/YyImohoHBEtJaLN8nOs4/zriWgLEW0kooWO9LOI6DV57FaS4UJE1EhEP5fpy4loliPPYlnHZiJaXM51DBdufWoLVr91uNrNYBhmhBJZoBDRdABfBDBPCDEXQBLAIgDXAVgmhJgDYJn8H0R0ijx+KoALAfyAiJKyuNsAXA1gjvy7UKZfBeCQEOIEAN8BcIssaxyAGwC8B8B8ADc4BddwhK1IDMPUOuWavFIAmokoBaAFwB4AFwO4Rx6/B8Al8vvFAO4XQgwIIbYB2AJgPhFNBdAuhHhRWMvB7/XkUWU9CGCB1F4WAlgqhOgUQhwCsBQFITQsYb8EwzC1TmSBIoTYDeA/AbwFYC+ALiHEEwAmCyH2ynP2Apgks0wHsNNRxC6ZNl1+96a78gghsgC6AIz3KYupAerhZWAMw8RPOSavsbA0iOMATAPQSkSf9suiSRM+6VHzeNt5NRGtJKKVHR0dPs2rbephkCZeicIwI5pyTF7nAdgmhOgQQmQA/ArAewHsk2YsyM/98vxdAI5x5J8By0S2S373prvySLPaaACdPmUVIYS4QwgxTwgxb+LEiREvlWEYhgmiHIHyFoCziahF+jUWANgA4GEAKupqMYCH5PeHASySkVvHwXK+r5BmsW4iOluWc4UnjyrrUgBPST/L4wAuIKKxUlO6QKYNW+rJh1JPbWUYJj5SUTMKIZYT0YMAXgGQBbAawB0A2gA8QERXwRI6l8nz1xHRAwDWy/OvEULkZHFfAHA3gGYAj8k/ALgTwH1EtAWWZrJIltVJRF8D8LI870YhRGfUa2HigdehMMzIJrJAAQAhxA2wwnedDMDSVnTn3wTgJk36SgBzNen9kAJJc2wJgCUlNrluqadZfz21lWGY+OCV8nVCPTjlGYYZ2bBAYRiGYWKBBUqdUE9mpDpqKsMwMcIChYkNdsozzMiGBQpTU6zY1omr712JfJ71HIapN8qK8mKYuPnLe1eiqy+Drr4MxrY2VLs5DMOUAGsodUI9+VDigM1nDFN/sECpE+opbFiMNOnHMAwAFihMjLAcYZiRDQuUOmGkDNas3TBM/cIChalJeCt8hqk/WKDUCfUwb2flgmFGNixQmNiII3CAZRLD1C8sUOqEevIt1FFTGYaJERYodUI9jNGxCJJ6uFCGYbSwQGFiJx7TF0sWhqk3WKDUCaXM/qtlHouzVjabMUz9wQJlGFKtwThOQcbyhGHqDxYodUP4IbaeB+N6bjvDjHRYoAxD6tnkpdpeT1FtDMNYsECpE0oZX6v9KpE4ZAGLE4apP1ig1AmlDLDVipCKU6lgBYVh6g8WKMOQ6g3GcTrlWaIwTL3BAqVOqKcZezlNraPLZBjGAwuUYUj1wobjLCzGshiGGRJYoNQJpUQ95es4yitMWbsP98VYE8MwccECpQTW7DyMp97YV+1mBFLtyX0cIb+mIn71yi687+ansGJbZ9l1MAwTLyxQSuCS7z+Pz929sip1lxTlVS0NJY5w4YAyVu44BADYuK+7/MoYhokVFih1Qkl7eVWuGRWvX0V3maK81H3g9zkyTO3BAmUYMiz28jIWZR0gligMU3OwQKkTSlmXUc9br4Qti985zzC1R1kChYjGENGDRPQGEW0gonOIaBwRLSWizfJzrOP864loCxFtJKKFjvSziOg1eexWImv+SUSNRPRzmb6ciGY58iyWdWwmosXlXMdwo57WrJgwCcXhcG0MM1wpV0P5bwC/E0K8A8AZADYAuA7AMiHEHADL5P8golMALAJwKoALAfyAiJKynNsAXA1gjvy7UKZfBeCQEOIEAN8BcIssaxyAGwC8B8B8ADc4BdewpA58KEPhlLd9KKygMEzNEVmgEFE7gA8CuBMAhBCDQojDAC4GcI887R4Al8jvFwO4XwgxIITYBmALgPlENBVAuxDiRWFNS+/15FFlPQhggdReFgJYKoToFEIcArAUBSE04qn6Tr0VFCzK9MfyhGFqj3I0lNkAOgDcRUSriehHRNQKYLIQYi8AyM9J8vzpAHY68u+SadPld2+6K48QIgugC8B4n7KGLaVtDlkdhmL/LdZQGKZ2KUegpAC8C8BtQogzAfRAmrcM6IYA4ZMeNY+7UqKriWglEa3s6OjwaV5tU9r29dUK84qvCLOGYsFOeYapPcoRKLsA7BJCLJf/PwhLwOyTZizIz/2O849x5J8BYI9Mn6FJd+UhohSA0QA6fcoqQghxhxBinhBi3sSJEyNcZh1S/xavwHUoLE8YpvaILFCEEG8D2ElEJ8mkBQDWA3gYgIq6WgzgIfn9YQCLZOTWcbCc7yukWaybiM6W/pErPHlUWZcCeEr6WR4HcAERjZXO+Atk2rClpLDhCraj4vUGOeXZh8IwNUuqzPx/C+AnRNQAYCuAz8ISUg8Q0VUA3gJwGQAIIdYR0QOwhE4WwDVCiJws5wsA7gbQDOAx+QdYDv/7iGgLLM1kkSyrk4i+BuBled6NQgje3EkyHHYbDiqL2InCMDVHWQJFCLEGwDzNoQWG828CcJMmfSWAuZr0fkiBpDm2BMCSUtpbz5S29Up1bV6xbA4ZQzsYhhlaeKX8MKRa75SPU5AZhRJLGptv/HYDZl33aLWbwTA2LFAikK/CiF0Puw3b9ZeV1z83++QL/PDZrdVuAsO4YIESgVwVBuxShMSw8KEY6xj+m0Pm8gKPr3u76hMDhikVFigRyFXLplTjxBIuLNyfpjqGs0C587mt+Kv7VuHR1/ZWuykMUxIsUCJQjYWDpZm8KtaMISTofSjDV6LsOdwPANh/ZKDKLfFHCIEn1+9DNpevdlOYGoEFSgRqXUOp2jvlh+B9KEOhoew70o8v/XwN+jO54JMrSG33MmDp+n34i3tXsi+HsWGBEoF8NSZk9bDbcI2UUS43P/YGfr16Nx59tTomJyUsa92HsudwHwBLADMMwAIlEtVwypdCtQeiWLaxL7+IyDSmrMdiIFsdU06p5rxq/d6D0tTVkKzvYeTi7z+PD3zzqWo3Y1hQ7kr5EUk1TF71sPVKnBUbTV4xDZ79mRyO9GUwqb2p6FhTOmmfUw0KGkq484WoTpDCoBS4Dan6Fihrdx6udhOGDfXdE6pEVZzypZi8qr45ZBwr5f3LKHfrlSvuXIH5/7FMe6wxXW0NxSJsP6uWz2y4CBQmPrgnRKDWnfLVe6d8DIJkiNq+Yrt567dGacIZrJJAUSRCCs1qdUdl+k0O5xhupiRYoESgKiavenDKD8H7UIaCZMJ6LHJVib4oCIiw43TV3n/DMB5YoESg1h/gajdvKN4tX0lSSWskz5YxcejsGcSqHdE2wE5E8KFUg+G8FoiJBguUCFTHKV/KudVahxJjWaaFjfFVYSSZKF+g/PkPX8QnbnsxUt6ErL/SPpR8XuCXq3YhU+bCxNqeXjFDCQuUCLCGUvn6q6qhKIGSi96IzfuPAojmEyo45cOdH7U/PrR2N/7+F2txR8SFiew6YbywQImAaUKXyeVxy+/eQFdfJvY6SxmYqrZSPo4ygl6sFUMdQSiBEocPJZI2q0xeIe9oVEXqUI/VTzu6y9vipZrCf29XH0674XFs2tddvUYwNixQImAaJH772l7c9vSbuPmxDbHXWQ97eVV7QWVcJGWUVzkmL0WUMlR0V3gfSrR2Jspcka+EezVf6Pbk+n3oHsjinhe2V60NTAEWKBEwaQBK0PQNVncPqOFAvZu8FFE0lFIH+qhyT63liXyVJQq+StAoF6FWa80Q44YFSgRMg0Si3AfUh3pY2BhntUFO+VrXhpR/IYqGoqKnKu1DUUTNHmR+3Ph2d8V3Ilbb5FR7I0/GggVKBEx7ealBpNrrHqu323BVqi0LnWCy38lShohUi/3K01DCnR/1947Lqa6rfd2eLiz87rMV34lYbZNzpD9bdlm1PkmpB1igRMD0CmDbhFCRjlkHe3nFSNAtjOsW68qJwyeQsM1mpc/QVT8KKyjK1TCiXq+fQFq3+wgA4M2Oo5HKDsvo5jQA4K2DPWWXxfKkfFigRMA067Qf0BGqocQpyoJKissRrCsljtunNJRIJq8SfSiR20ulmdZKaYDaibgxlSyz8JKrjkytLweoB1igRMBk8ir4UOLvmPXgQynUX/k9veK6Rt0gououpw5ltori2Fc+lLA5I5u8IuVy5jeXUNBeKtsZ7d8qjrJiKGOkwwIlAqblCWoQqcQWUKWFDde/DyWoqLj8VHqTV7g2+FGq2cpdvygpb7Wc8nZ+TZotFCvcFeMsnjWU8mGBEoFgp3x1O2b9G7xC1BXTPdZpk7ZTPo4V/1HyyExhhWZkH0qZWoTfe1uGahV9PgZtUsHypHxYoETA5JRXHbISD1Mpnd3UvqEiFvNDkFM+hjpM9cSp4UXSUEocJKObvMrTIvyc+kPlT2QfSm3BAiUCJqe8Sg77HotKUTUNJdaKh0ai6NqsfsdyfGGFATWKyau0+qMvbJT1lK3h+JRd4d5oaygx1FPtcP/hAAuUCJhMXqpTV0RDKeGBqfZMq6LmhxgGe3dxGpNX0ZfoRBmkSr1/1XLKK/yqZx/KyIIFSgRMJiX7xUjVfk9ElZ6LodzTqaLrUOIovAx/mihIzXDnl7mwMfo6FJ8orxIj1aISR0SeXRbv3lI2LFBKQEVxmTSUfEGixE5JPpRqCZQhjPKKzYeiSyttPPctOErEX+kaSul1AKVv8WJCm71Mc1routmHUlOULVCIKElEq4noN/L/cUS0lIg2y8+xjnOvJ6ItRLSRiBY60s8iotfksVtJTn2IqJGIfi7TlxPRLEeexbKOzUS0uNzrCEMiYDsNlV7t10RUc/fXuBiqlfLadShQs97yK4nyW5QatlztgVAb5TVEddv+rljMk/X/3FSbODSUawE492u/DsAyIcQcAMvk/yCiUwAsAnAqgAsB/ICI1DLa2wBcDWCO/LtQpl8F4JAQ4gQA3wFwiyxrHIAbALwHwHwANzgFV6VIBKwtsAVKBZwopXT1qmkocZZlerhjDs3Wm7xiKLiMGXrJGkpUU01MTnltlFcFF/k6iVMIsFO+fMoSKEQ0A8BHAfzIkXwxgHvk93sAXOJIv18IMSCE2AZgC4D5RDQVQLsQ4kVhjSL3evKosh4EsEBqLwsBLBVCdAohDgFYioIQqhj2DrKG1c/KFFaJ2Vkps+XqLWyMr15jSXGYowIqysdYRzk+lPDb11fHKW/7Cv00lDoyefHmkOVTrobyXQD/AMA5R5oshNgLAPJzkkyfDmCn47xdMm26/O5Nd+URQmQBdAEY71NWRQmvoVS6Jf7c/NgbVa1/SExuMT38fiavcij1Nb6eBgwJ5WoRfv28VLNdVOJdMxRbUSOWyAKFiP4YwH4hxKqwWTRpwic9ah53pURXE9FKIlrZ0dERqqEmbKe8wcSgBqdqr0N54+36fx3qkC1sjFB3KUTTUEprR7kaSiW2XimsYK/sKD1cwoZ/9couvLrrcNXqj4tyNJT3AfhTItoO4H4AHyaiHwPYJ81YkJ/75fm7ABzjyD8DwB6ZPkOT7spDRCkAowF0+pRVhBDiDiHEPCHEvIkTJ0a7UontlDd0PGUKq7ZTvtrEs2WJfyHxhQ1rNJQqb+dR6k4H5S5sjIpv9rhNkwbiFFzVFChffmAt/vR7z1et/riILFCEENcLIWYIIWbBcrY/JYT4NICHAaioq8UAHpLfHwawSEZuHQfL+b5CmsW6iehs6R+5wpNHlXWprEMAeBzABUQ0VjrjL5BpFcXeq8u4DqU2woarRaxtDIzyiskpry07VBPClV/WSvlwlL85ZPz5h2pwjteHEl9ZI5VKrEO5GcD5RLQZwPnyfwgh1gF4AMB6AL8DcI0QQr238wuwHPtbALwJ4DGZfieA8US0BcCXISPGhBCdAL4G4GX5d6NMqyjqpUnBYcP1qaNkcnn8YuXOyHuBxek7MZVkO6zLKdsxcugGvjiWExV2Gy49b6mbU5a/sNHMviP9yBhsvH4aTpzhvH4Utl6JrywmOqk4ChFCPA3gafn9IIAFhvNuAnCTJn0lgLma9H4AlxnKWgJgSdQ2RyEZ5JRXUV5V3nolKnc8uxXfenwjEkT4xFkzgjMYGIrHspxn35VXG+VV3UGq1N+63IWNpiYeHcjiPf+xDJfPPxbf+PhpxnK0odcxCP6hhp3y5cMr5UuAghY2VtCHMhSTp66+DADgwNGBSPmHwvxQWN0dvTJnXr3Jq7p2+YLJLWTYcJkjoSl3z4D1nvZlG/aVnL+goVS248a5fT1rKOXDAqUEGpLWYDaQ1ZsAKqmhDAUpadIzmTiCiHfrlco93M7x18/kFcv1DMEYFVWeBN3joKhFP9NcnG9S9IPXodQWLFBKQGkoaubmpZLvIRmKvp5OWt0hE+G1tU6GIjqqnDpcGoqPuSaOGWs0H0pps+6oA6FaYW/Kb8eYGCZIfrXaRVbch6Kqqc5vxbhhgRKBnkG9QFEaSr12zIaUEigRNZQ4G2OsQ7g+I5XhyOpnrilHoJTz9s5Sc0TXUPzrU+kmhdvPNDd0UV4xBoLU6XNbS7BAKQHVefsGDSYvmVyJh6nUEqM8aA1SQxk0mPSGkqDWx6ehmAfDOCYG5fhQKlmHK58he97e+cFg8vL5leLUHPwoNSLOD/ahlA8LlBJQ3S1n2I1Ppddrv7TDoiNeQLyzRf+yyqkp0OQVo0M5ShGlR3mVp6KY6lPlGk1eYXwoFX4W4owmq5ZAGU6+GxYoJaB+d5OLoaIaSollRmmC2lqmzPEpFiqrofiXo2bmcWgoUWbopUZIRf+9/Af9bBl708WpOfgRZwBFtcb1ejWR62CBUgLqATRpKHGaSorrrjzlvAfdTSwjccDhcnwoDg1Fa/8vPi8qQ/GCraj3Imgwtk1eEQLh43zXux9xCoFqaSimZQj1CAuUCBi3r1cz2xroIFFaUNh9dggrjVpVTBqK7qeKY2JQ2G04SiGlmXGivg8lqGlKQ0kYTV7C9ek6FrKOcinc3xiEf9U0lOqPF3HBAqUEbJOXoedlbVNJ9VWUKLNrKtPkVai7vPxA8My2HO0hyCkvRHy/41BsvVKuU950r4NeGOfn0x+yKK8Yy6rWwM4CZYRiO+UNHSAfk0Dp6B6IpAarKK2olPt+jFj38goyeYWo6kd/2IqfLN9RlB60Uj5eu3zphZQe5VVyFVY9AfUFvdLar9qAALLYiHdnaDZ5lQsLlBII0lDiWIfS1ZvBu296Ejc9usGVHmawTjh+zUgmL/kZeYCK8bkIFCghyvj6oxvwz79+3bdsrVO+2hpKiWttIg+EAavZg5zyNRHlFasPJb6ySqq3+lH6scECpSSsHmfyoSgNpZyZzpF+az+tx9e9XXLeoIEyCLXFRtkmr/Ky+5cdg/YQvA6l+LxSKUfbGyoNJShfzvahRF+H4tcbDh4dwPybnsTvXt/r3xAfyt3I07XzdJUkCpu8RijhfSjR60jJ/cKynmlLmD5Xbrcs+FCimrziI6iscsxrrrBhXdmxLmwsPU+pDu2oA1LQ76z6YKCG4rNS3q+KvV392N89gFuXbQlurIE4/X1+v9X/LNuMP//hi+VVZiDquq9ahAVKCQT5UAomL3MHeWnrQV+badKwo3GoLucaKEvvpOW+EjZek5d/YeXU5Qob9jF5laNplhOCXbqGEq2dQcJOzWlMYcN+gq8UH0ocO0dH3s8sQFtV/NfSTVi+rfRXLgkh8KkfveS7YzNrKCMU1eGyhicxaEHcqh2dWHTHS/jvJzcZ61B5TXVUkkTA+17CEssKc2PZ/sdDlR0geAsmrzIqscuKIFBKDBuOvrDRnyANxa+cMJFyatJUjb6ucNZciWZk8wLPbzmIq+9bZTyHfSgjFFtDMW694j9b6h20XlC5cschYx3qASzSUEKZvPxn3oGEeIMfAKzdeRg7O3t96y8XU/sLq7vLn9UC+oc5Vqf8ECxsrJTJKyhsGD7ageq+ftq4fZ8DRvJnNnVg24Ee3zKi/lKuvlABTSFMXxpOJq9Y3tg4UlC/u9EpbxAGitZG63YrweJXhqmOMO2LSliT18Xffx4AsP3mj5ZXYQTicco7ytMMRarseLZeiZCnxAipSkXlBYUN+4VXB23r4syfCZC6i5esAKDvb/H6UCogUOxXBPidM3wECmsoJRCkxsexsLEwmHl9KMFlxtUtI69DifW5MAltdTTIxxI8M7bOMx/3K+OpN/bh2vtX+7bBW1dYSs0RWUMJqKmgoRiO+zwPpWgoOzv7gprqU4b1GYffL5QVoMSKwvw27EMZoaif3WTzzQX4UOywYp86ciHOMbYvYKAMzF9GXmf+ODC3QWmB/vl3HCw2yRXKDhIo6tN8RZ+7eyUeWrPHeLyciLlClpB5I974oME4aB2KX38PY+qJY2Zerpm1VJNXqS+fC2PO4oWNI5WAWVfQzDZMxzF16qEIG7a3My/XKV9uO3zKMGlwXs79z6eNx4JMXqW8pzzoXtV22LD/8aB1KAWfoa7w4LbF4TsQZfZZZ64wv5Xu5XMrt3fiD5s79OWH8KENI3nCPpRSsDWUoM0hDR0kV+j9xjrsvJ5TwvS5oOilwPzwb39JDagQQb9BGILfhxL+PuQFkPSJgor2gq1SzSolV2HVE9bkFXA86kvK4ugu5U5+StVQdOdceru1PkXn4wkjNNnkNUIJ8qEUBIpBgwkxW7Edsj4Pe5iHKJLJS8m70rOWXXfYMuLYuNH5O+hKCXrXupMgrXMoTI+me3F0IIuH15rNcqGd8kEairZN7nP88lttifZ75svss04NIkwbShXeYawSw8nkxRpKCdiz4yAfinElfbBEUTOaor49hLP/6E7e+DC/RdD6LOchDJqVlhI2HCxQypAoARBZ3cJUx1cfXocHV+3CzHEtOOOYMSW3LdCH4nOfwpgmncdyeWHvElEKZa+ZKjHU3nvPdCYwv/N1sIYyQhEBg5mywhh3Iw7TuUJpMbo0d2KULmoXEdWEUkK+rR1Hcca/P4Hdh/URPkYNRX6WsxguKLKnlIWN5kmCWiRaWtsAR8htwA+hhl/TvejsGQRg7V6tI3AvLxFg8soZJj8I6ZR3HAtaLGyi3D4b9G4cv/MBYDDr/8CGMnnxwsaRiXrAs4ZZier8pkmLSvfrYqaFWsLw3U4T3v9Lf8LCvGUvnLkt+Jz7X96Jrr4MfmMwyZhKsE1eMWkouppKMasFaSjRfCjhzkvJ1xWY/Elq3VPPYDagHsMESXaXk2gKAAAgAElEQVRYo1PeV0PxfxYA90AaFIpvQhiel7CU6kPx/t5BAiVMNx1OCxtZoJRAQY3XH88GmLzCmGlMUStBfS6OLmlP9nwK83eyhn+47UWUYRqmoZyH0D2ImI+HqSJowPM7/NCa3Vi783Dk+lPyVYqDhlE7LU1IpkEvSAMKGzasneCoz5BRXkYNJeAmiJDnGfO7NJTSJ0tOk5c2OKGMyM56hH0oJVAwtwRoKAEmL/8BO/jBsjqu+ymPw+SlGubXwf38QCpX6ZZwXVP0bQgyO4bBFTbsa/IqX0PxG1CvvX8NgOLooLDjS1IKFJMdPxnwOoJAk5cd5RUUNqwZSG0NJZy2mzNoWcECO7w2GdSGMEV4mzPgENa6iL9QSwWGkVOeNZRSCBjMcgEPUaiIj4CBNKBpZRFGQ/Ff+RxDIwIIM1AFIYqEs76OcgRKOa9TFp7PIIwCJRGw2ad9nfrDtg8lSEOJKJSdzTbu4B3ShxI9dLpAlLBhp3aoa2u4MgNPqRtYoJSAMhEYFzbm/Y+HM3npzQjC8L2Qz///MIR5OP1mjCXZswMG3KD08kxejvL8zgvhLA1aD1NJH4pqvGn1tgr3NWvMqj5Df82FEyj+UV76vN52BT1TJoKuIYgg86cXbzszsQiU4SNRWKCUgPMh0XX0ODQU03YYQap5kT3cp6pH1u7RRv4U6vCZVYZZUBjiFGVGMYcHGzQ1JdRjWtjoFzZcTshnea9TNs/8dXWbfCRSQTG2IWghq+1DMZi8sn4aSsCaLOc5zrJMdZhQATJRZ/nuKK8wEz5v/Q6hqO1LIdowjFSUyAKFiI4hot8T0QYiWkdE18r0cUS0lIg2y8+xjjzXE9EWItpIRAsd6WcR0Wvy2K0kp1ZE1EhEP5fpy4loliPPYlnHZiJaHPU6SsH5s+s6j+pcxoWPIaKoTJ0rrklMV28Gf/uz1fjc3S8X16Ha4FOX386wdkBBGe1TGAfBWDQUfxVFXWI5ETqFe1k5DUWdFmTyCvJHmaoLivrzWw0fNLkC3MLC1O+D7l+5G7IGmT+96d56nNegm+SUMokcDpSjoWQB/L0Q4mQAZwO4hohOAXAdgGVCiDkAlsn/IY8tAnAqgAsB/ICIkrKs2wBcDWCO/LtQpl8F4JAQ4gQA3wFwiyxrHIAbALwHwHwANzgFV6UQQtiRNX7qbVT1HfAboIT2e6Ft5vOdKJvvHs36D1OEmat9vj6U8DP7IB+DWUORx2Nah+Ib5RVCNAavk4ggUOxP/7yqnSaBkjC8/bOQ37+NhahFff2FwdRPy9PntcotX0NR1y6E+To+9aOXcIl85YKXoL4AFNbzWOe4T3K+G0kXsFKO39TJc5sP4OmN+wPPqzaRBYoQYq8Q4hX5vRvABgDTAVwM4B552j0ALpHfLwZwvxBiQAixDcAWAPOJaCqAdiHEi8LqEfd68qiyHgSwQGovCwEsFUJ0CiEOAViKghCqGHlReOe7rqMEbb1iXAXvIExETjnaihqkdHbxMC8r8vMZmIeX0jFralZ6OQsbg0xepTh6TeeU8zple2AMyKtOM/tQrE/ToBb03pXgrYTMGkqQPxHwzO4DIieNZTiu3XQdz285iDWa8GxvHtN13vncNuM5QSavcJFjwSd9+s7luPKuYqtCrRGLD0Waos4EsBzAZCHEXsASOgAmydOmA9jpyLZLpk2X373prjxCiCyALgDjfcrSte1qIlpJRCs7OvQ7goZBPXxptZisQhpK1N2GQzvl7XRzcK+vI9XHTFHQcMz5g2v3b0NhsPevRK3BGN2cNpYB+GuacezlZTrs1xfCyiB1nmkdStArnYMERpAJV83IdfcpF+J3cgoR82LgAA0l7wzbLV16h3HKD3pCg03t004yw/jhhpHNq2yBQkRtAH4J4O+EEEf8TtWkCZ/0qHnciULcIYSYJ4SYN3HiRJ/m+aP6hRIous6TDZiVlWNPdZo/dOV4zSOmmvwWq4V5Hp2C1OtPCbtlSBiCfBNB9/KYsS0A/DUxwH9iEE5DCRIopsHYR6CEU1DsgTxjcMoX1qkYJjgBEwB7gmQUiu5ydHn9BYrzd9BfQ7BTPlgg+FG8vquYsa0N2vO97fOzWvi3IfCUuqEsgUJEaVjC5CdCiF/J5H3SjAX5qQx/uwAc48g+A8AemT5Dk+7KQ0QpAKMBdPqUVTFUR0qHMnnpywhjpgnjlI+qWgP+W5KHmZk7r9s7UJUyQQx6AZUpXbUx9II3nfB1aSjFA5nKUk7Ip0o1+yfMwQ1hZ9oFk5e+LHWPg15ZHUUDcR3XlR3wLFj5ndqu/pxgp3x5Goozh+nZa0wlHOe4jwVpKHFoufVEOVFeBOBOABuEEN92HHoYwGL5fTGAhxzpi2Tk1nGwnO8rpFmsm4jOlmVe4cmjyroUwFPSz/I4gAuIaKx0xl8g0yqG+s1TCbOGEmQ3LmuAcqrmWg3FfL4TPw0laMZq5Xc4IT0DWSnvQrfDho2zX3/BGmQm8PNXBWkopewXZvZPqLr0+cJMLoJf3mUdN5m81D027uwQ4DML9gma25kLeBa85ZraGGjyCuFD8cMdwaU/p7s/6zjHfZJTmOt+01LWng0Hytl65X0APgPgNSJaI9P+CcDNAB4goqsAvAXgMgAQQqwjogcArIcVIXaNECIn830BwN0AmgE8Jv8AS2DdR0RbYGkmi2RZnUT0NQDKS3WjEKKzjGsJRJlxlIaijegI8KHYm0P69J8g34Gp/LBbryghoFtbECa6yTnb9Q5kpfhQgtppMrPYmw4GDba2OUYj+APuZZjgiUJZ/hMA0730DW4Ief/UaUETGLPJy18jLQgFff32K619hLb/Nj7+s3u/dEV/Jmd/j+ZDcX7X5z86YBYofj7FovLzAolE8XM3nDaHjCxQhBDPwexbXWDIcxOAmzTpKwHM1aT3QwokzbElAJaEbW+5hPGh2A9ggLnGD/NeXo56yuiA/j4UNTMPzg8UD4rC/ozWPucDaTZ5WZ9h99Dys+8D+oE95yOMTOea6jBrKH57ovlrDvZ5trZmapt1gml37KAJTmHhor+2q7tPKqrKT8vL14BAcWYx3oec06zmOebyA+kESiFt9+E+HDOuRXNOyMbWAbxSPiQFH0oIgRLwcPj1H6Opx5FLN4B4c5keDn8fivX54taDgbNWoNh2H8WH4irbZX7wvw9ho6v8tlY3laP8KuU45UXAcf9NE4PrdV1DRH9T2DeQBkUt6rIfODooy9ZmLWqXqY4g02CfS6D4nqrt02G2r3f5enw0lCCnfO9grui4t131HvHFAiUk6nc2OeWFEEXqrRe/3Vm99XiJyylf0FDMJi8AWLFNb0F0zqy9ppRStn3XrdPIuwZ6fT5Vfdj3kASZvHQr/4N8B+72lD7YAt71E96+5P7Ulu/sDwFtMDntgyY4QavQs7bgNTfUT5sOs7Ax6DfocwzSgX61gAANU3Y/s1aQUHS2v9fwXpqcj8AqKq/GBQ4LlJCohz5lWIei/m1QGoyPo9J/oPCf8QKGTiW8/xoGAeVD8XHKA0C/IRTVV0PRN8UXk+YVdB/CC5TiY8GDgKwrxIUEbr0SYubt7UthTIZ+24F422aO8nJ/Fh0P6K/2fQrZTi+u3yGCJgd4t4/3PzfIJBVOQ/Ecc24OGaAB9Rk0lFLM2X5bH9UCLFBCEqShqP99w4ptE0TpIaNBZho1CJ0wqU0laAnjQwEK12HKD2gGqoCgBHd7LUwPU9BK+UCnvD1YFp/nXKimG2zDzLwVQVFextl/ztyGoLxW25zfTYOx9WkahAor8v0HUtO9DgorttoQTnsxbfYZ1Jf8Fh160WlqoSYNPhpE4OTEUaXJ5OX2Hfq3JWh362rDAiUk3pXyJoHSIGPWtaYW24RgrifMSnk/k1fQCvSwtnulaXnxjfJyleXf8Qv2ef3238ZZsx04EE5DEaK4Lc5ByG8QiLL7bCFd/dbBs97iBaLuMnSEMQ/aCx9Ng3VA4EDw1iuqHn0+v7IBtxAxmbxyrsFWMznI5e3JT6CGogvACDGJCetDCSrf9CrmMFqSwmS+rBVYoISkoKHoTV65AIHjTPPVUEyDA/w7vkpR220YZ8a2U97fh2LKn/Ndh+Isy1CAKkfjMM77PLjeOgIXNvrM+gazhZmi39oBUw2PrN1TdG5R/f6Tf9+BqNT1L0GvnDZFeRVMVv75zZtDWge8ExzvoBdloPa2wftdMZjNoymV9C3DbpfmQvwiuAr1Os7xFBF0Dc5rf2aTfuunMO+FUZgmB7UCC5QQ7OzsxVNvWAv+U4a34BVMXlJD0TyE9ozQZ5IRNWxYzd5ML0NSqAdIEw7vdlYbBiE/238pMy17EWhOn8d8H8JpKCZnP+B9y55mkHH4DnSz4ifW7yvkN/pQ/Gf3rgVxnnudDRBo3nqN/ocADSUfIDACFzYaAiRO+6q1xri9KeWbP2iBqbds3TmD2TyaGpLadnjRmzeD+1zW0EetOv0XNjqTfvXKbm35bvOl9hSbWtdQ+J3yIbjwu8+iR9o/bQ3FMKtUJi+tgy6MhhLG5BXGR2E4xS/Kyzl4mmy1zrr9TF5hHaSmgTHoPgT5UNxluY+5fCgBjlohioW0U8Mxv8ejuCxX+1wmL/c5fv1DV2/QrgJRV8oH+ZLUYOp9wZcSYI3pJNCfRU4I7UATZrdhv9l7Pi+QzQs0pa1nTtfMoD4dZFID/Cc6TmHt99I9AHj/CRP05Qe0wZlW6wKFNZQQ9DicaSmDvVY9HA22ScxvJb25LuOagZDrUAomr+CBzEuYrTCcD6XJmWxqo6su24eivy6jX8A+HqAB+QwCagAkCl47EOTUNzUjaBsad3CDR0Ox9zTR5/XmD4qQCtrLyziQBrxoTJVv2vpF7YFlugfuhY3+dQDF16HqbU6bNRQ/X5X3uOk6Q/tQdKZoef600U2uNTNO8j5CE3ALLTZ5DTNMe3mpTmE75XUmL40j2ovp4Q/tlA8weakZjt/CRuu8EDPrIg0lWMOwy9H4UJzXFTRbDLOwUd0Lb1sGcnk0pBJIJxKB+y/pqgkzmKtk4yDlM0iUuomocSGtbMSeruKXqTnzBa4zCTBHmV5B3OQz0Fvlh9BQfASCChlW9eiuw/W+Eu1vHRx2nMuLguPf60MJeKe8SmttTIUKG9b3N+faL9ZQhhX2Gxs9ne9Qr7UyWM3KdD98mA3zglY1m/KrwdzWUAJmlUHbuocZBPxWyoeNuMkZTAZBdvcwW6+YAigGs3k0JBNIJkjrsA7SUMI4xIN8Pa5NNj2jVCEowHyNpYRY7z8yoD2uBFlQXzH6N4S/QGn0iXgErHarCViYhY3e/jYYQqBkAgbjMNvfZ3PCtjyUGjbsEigmDSWgvznrMN3rWoEFSonYJi9P5/n8fasAFDaS0wsU9ekzUBjXDBS+66NJrE/7PeKG8v19KIXvZqe8eaV8mJ1bvXlN5gRzKKw6HqAB5QUaVcSd11SStTSUVIKMGorfK4qDBI5z1wTjq219TIfq3m/t6NHmdbYhQcEmr6MDWa3QCfKRqLabBrGwJi+/Vwg32kEswfcpk/X8jjmvQCnOP5DxX3MUxoeSywukbeFYfA2F7+Z1Lm2+GkqAQHG0++9/sVZbRq3AAqVETGHB2w/2AoDvjMueXfvM3s0ztcJ3vy0ekrrwLQf+e3mZBzldul/YcNA6FDVomtehmGbd8tygKDIBexDwmkpsDSVJxgWo6YTPeqIATc6ZFObFUV7hrcp84+1ubV6gMEinkgkf/0Ph+1HNGghbQzHUESQwgkxeKcOs3s4vgjUU5+/sbYeqtzltDtV35tH9FqGivPL5QvRmkVPe32Sm2t/SkDRqKH4BJID7Oduy/6i2jFqBBUqJJA1hwwrlINQ9ZEFvdAR8fCgB61BUmUnb5GUSCOEizMK8n8K09YpVlrEaV17n5ZYSNuy/QNM61mAQ/pmc0lCKfShCCLfNXNOOrr6Mbzv97pHuHG8bwjhec45rDBOd5Jype9sQFDiQy4uie+jUwkwCRe0EbNSgcgWBYjSxOhfSZvUCxc/k5cyju69ugaBtAnJ5s8kraGGjOr/Nx+TlDmbRtDGET61WYIFSIoUoL/1xvxmXelVrWB+Kc6AI65RPBPyiqvyEdnNIR1tNGoprsPQOMo42BjwEKq/pveJBGkomJwKdnPZvoYkOUiYvrzlM5S3MrovLH9NceCWsTl7kfO6RwimwvdfhF7ThrSOdJOOA7RwsdVqGmlyYBJJza3jvYK7qV2ZD3UB45jFjAPhrKI1BAsXHB1LQUKRA0dy2AeciVs1v4Rzk/fyGDQaTlytsWGuKttJaG1MYzOYjRRWqPtrakMQ4x+uIaxEWKCUyujkNwNz57LBhzQOsHuq88LPX6mdMgVuue0xeUZzyQohC0IHJBOHzgLvXb4QzeZmicEzyKC+EPYBsO6D3Mah2FF6G5hEoTqe855h3TzbddUxqbzQucAXcAt/oi3Jctwro0B0zr3JX7UwYfyvnxokDmtmxGgxN99pXoMj6bY08554sXbtgDk6a0m6V7xMSHGTycofMegRKzmpfaA1F0xAlzJvSCdf1etuZNvhOs7m8/cz5RQy2NlorcXRailszL65ftbtFCqVahgVKiYxqLF79+4nbXigcl6uDdTPCoD2kAPcDZDKL+JlZkgEqil9IajYn7IfTNBAOBCwKLLTRtxn2zNN0Xeb3wlgDOgAc6c9ozynsq6bCVovDTRtSCaSSVHRMtSGVMGsoA9m8PVP0m1ECPr4oR72dPR6B4ozqCRBI6WTCeK8CNRT7nfD6/L2DOVtgDOS8WpSVR61SV/1CldmQSti7Mfg5/Qth9qVfgzdsWKepBW0EqgTK2JYGo0CxFk/qn4tsXqDJ5xpUUltj0lWf65y8/pn3tru1IckCZbhx+gxLjXf+8Kt2HLK/L5p/LAB953UJFMNDdsgxuJhCJnVjjJpJGzYJtsnaWpJeKKlVxyZh0TOQQ0uD3k8UZkt1hYrYMan7frsuj2mxBvMjfXqBotqursVrdnqrsxdCCK2Gov5P+Wgog9k8mn22+wiloTjyFQsUp2ahz6/KbUonQpm8dOUoB692oawQ6MvkbI3cZPLy+gydprBEgLabd/gmzNFwZh+IqlP1R90z55oAaX6LvkwOqQShrTHlOtfbzoJAKe4vjfKYXyBOS4M10dQJLZMlolCHus4UBnP5mn4nCguUErjkndPsmanuITlp8ij7AfMOJJ09g1ixvfDSKtND9uquLu05gQu0Qpq8/AIDMnmBxpR6OPUPV+9gFm2NKTkY+znlAwRK3j0AFX/X58uLgtnxSL/hhUXyXjWl9IP+joO9WLury/KhGE1efhpKLmB1tv/aB28+Pw3FNMgVBErSaFLKZAXaGvUa88a3u321yIFsHkIAY1rS2nao9qvBXLVHDbjJBDkCRPR1ZPN5pBKWJhNGY88YnPJqzzDdYO02eWk0lIz1Wzalk74aium5zubyvn4gp1Ne1eclKMpL3YPWRrd5sRZhgVICp0xrt2ddugFzT1efPbP1zmTufmG7639d59vZ2YuN+wqhoq6ZboDJSw0qOme7EyWY9PbevHFWr+gZzKG1MYV0knxXeAf5lW0fimGlsskHI4TAGClQugwaihJWhWsp1OEsN5lIFL91MoQPZTCbtwda3TsunNce5BuYNKoRe7v67fRcXrgGYKdT2dUGx7YjfhqKGsi8GsrBnsJiR11/UtcVpKE0GTSUdDJhB4gYX1GctwRPKmHWsnyd8vL/0fK30A3WgRrKYA7NDUnpQzELb6/gLBzzDyxQpysfiq6/BK22V4LO/i1YoNQ3HzpxIgDgqvfPtmddut+0uz9rq/DejqecuCdPbZf5izuON8bc65xVsiLMOhSTXVx1Tu9sT9WXTvrPGHsHsmhpSCKdSBRHJwVEvDjRmbzCRHllcwJj5QDSbfChqPumM0upAebTZx8rNZRimzhg9qEIIfDKW4fRM5BDYyqBnoFiLck5CJoXBVrpJ0xqw0bHehPbByH7kVlDKQzofk75wqzW/VslHRMP3a1Wr6tVgtMkUGzzpx1kYX0mE2RPbvwiuJIJQlKjKSqcAt+0DkUNtDoNI0yUlyVQkug3CO9MLm8LBG8bcvl8Qav3eS5bfXwoQW+dVIKyXV6nyQxaC7BACcF/fPw0PPOVc63ZlK2BFP+oC0+d7HhFsPt472AODckEFp46GQCw5PntRfmv/9VrAIAvnXciAPfDkMnl7QdHN4gVnPL+Zgb10OhmObm8QCpJSCUTxrf89Qxm0dqYQltTCtsPuqOsMgZtQ0dG45R3CRdD9kw+j8Z0EqMaU0YNRd37Js2Drgad2RPatD4Ub4SY9zqUBvna7i60NabsnRFcZYTQUFT6seNaXGWoQe+dMuTW6EOxHdJmh3Aml0dbk34QUoPUiZPbtL+Vuk8qRLrI5OWN8sq6f89Ugnw3SrXKgC1QTMELzvewe9vgFSjawdpx3bo+rQIPGlNJo4YykM2jVWkontX6zt2OtbsR5NwmL63Qy/g/N/1ebZE1lPpm+phmzBzfCqDQMXRvX/vHC99hD0ReU0rvYBYtjUl7Nvrr1btcxx9f9zbePmKZPmaMbQYAVwfP5AQmtlnRTYd6iwdS7+aUpoGsb9AqUzfzzeYFkokE0j4PuHLKz57YWjSYhtkXqXA9akbr0MJCCKRszgptbm9O40if3oeiyrSdpY461EDalE6iIZnQRu0AsGedfutpWg0CRT3wCQoOG25vTrsGQlV/S6OKnjLPml3t1NyvTC5vRyV6ByE1sLU0pLS6rDLNqIg6rzbo1QLtKC+Znkom0CgHWpNQzDk0FNPv3TuYs/t0kUBRJi8p9HQmr26NsHbSnymYvHSh1YB850o6iWSCNCYvfw1lMJdDMkFoazL7UJy/sa679XmEey1HerFAKZFGuSDuaL97z66509sxe2Kb7cz1drzDvRmMaU7jAqmhnCJNXwpnpFjhIS10tP5MDmNbGjClvQmv7+mCF/VAqs6tf3+2KJi8TBpKwtJQTE75A0cHMKGtES0NxXsThdkXSaHz5Tjb1D+Yw6zrHsXNj73hKjObF0glExjVlDKGDWc9PhSnoFJCurkhgeaGZJFNWw0qykRRbLosPDJvdfbioTV7iq5VCZlxrQ1GwbxX7gDc1mhF7qh6lPY5tkWvGShUu1U7tRsj5oTRh+LMr/utdh+y2jd1tDW58WqDhegl2VflfVP3OpUguy+arqE/Yzm008mE8Zy+wRzGy0CYfs9vVWzyKi7jqCNwQ9fnewetCZKfUz6Ts7ZesfyGXqe8pdWbhOKAvMaWtNmHEtbkNbpZ/paGSUYtwAKlRIiscMgV26yIreVbrc/Xdx8BUNBgvLPnzp5BjG1twMfOnIEZY5vthw0Antt8AHc8u9X+v8kzs/vFyp1Yvq0TB3sGcMq0dmzzbBoohMD/rbZeS9toWB0OAHc8uxWPvrYXgH6Wk5GLtFIJ0kbE5PIC+7sHMLm9Ec2aB9D5sAVtH6IGzpzG3zC2JY0DMvLp9mfetI8r4ZO2NRSDU97hXwDc90K1uSmVRFtTsYahHm5lKiq+juLrenzd267/X9/dJa+jQWue2H+kHz9bsRMAMGV0EwArIAMAOrotZ/kxUks1DR5qk0A1mOqsSoPZgu1/wNMONUiNakxrf6sv/OQVAMBU2b7v/X6L67gaGCe3W8dVxF3WYXpttDUL/TV092fQ3pRGc4NeOxBC4LHX37aDFryze/XbtTebZ/9HBwp9RKdBKJNXUzqBfq1fMY+8sDT/hmSi6Pe0tHorok2voVgCRQl+nbna2Qd12pyauLVrAiQeWbsHyzbsK8rj5JW3DuGan76CXYd6fc+LAxYoERjM5rFyxyF092dwzU+tB++WT5wGwDKDjG9twPq9R+zzc3mB57YcwCg5SE1oa3Stjv70nctd5Sthowa/rzz4KgDgzY4ejGlJF83Mn918APe9tMPKK4WRbiD7hmO2nxfFUS9qtpZKFm9JAgCb9nUjlxeY0t6k3ezOqaGYHOaA9VB5ByCrzSryqQk7DhavglcCK5VMoL0pbQwbVvdNCXedD6UpnURbQ6roAbcFiszrjRD7xG0vAgAmtzfi2gVzABQPZP/yf68DsITFkb5M0YC6xxHVpWbf3fJa9kuBMmuCZWI1mfUUak2O1z+wakcnBnN5e0Gdd8BWg9T4tgbjFjYAcOz4FgDFOx8r34YSiCr0WQmaloak3Y9N5R/py2JUUwrN6WJNEXAPtOkkFU1gdhzsxbTRTWhMJdHWmNJOMI4OZG2hW7yZqcD2Az2YPqYZTSm9hqI2fZ3S3oSGlM5EamkvpsCCgYy1iFaZvHQm0j9sPmB/1z03RVFeso8KIfC3P1uNq+5ZWZTHycd/8AIefXVvYARoHLBAKYOXtnbapoCzZo610888diw2vl0QKF9+YA0A4NlNHQAsU4h3uw0njQab8bUL5mBUY8oefBROtV7ZzHUmq3dMGeX63zszPdQ7iLEtDWhIJbSzyqfe2A8AWHDyZDSlk0UDRSZf2KLC5DAHgAv/+1kA1nU6y1CO5kntjTgs/UTOZ0C1N50ktDfrB5CegSy+eP9qAIUHUGfyakwn0NqYQs+A3uTVpjF5dfYM2tf19UtOw6fPngnAff+dvPf4CRjI5rH9gHtmeNjx23tNpEpDOWWaZRI9cLT4XSbO31ati/K2QQm+tCFazBYorZYWZTJxTh/TrE1X9+34iW1oaUjiDdnfVTtGNaVtX+BmzQ65mVwefZkc2pvTaE7rd+JV9+3jZ05HU6r4nH1H+m2BNm1Mk21GdHKkP2tHBRb39wz6MjnMHN9qm7y85j/1W00Z3YR0MlGk2SuznW5NE2AFwTSmLOHakEwUPbteIeY9DhSWHNjapmyDTjh5cV6P0iYrCQuUCKhIKmcHVzNFAJg5vsVejd03mMNDayxzlBrQx7Y04FCPNTDp7F9LSGcAABl7SURBVNfKVKM6zmnTR+P9J0zA3503B6Oa0jg6kHXlc64pUIOozozhnQX+fuN++/ujr+7FrkN9GNOSxrjWRhz0LLZbsa0T33p8I8a3NmDamGY0NxRHxWSyeYxvtZy4JoGyfOtB7Oy0Hvx3TG13CVY1qE4c1WinOcNb1fG0raEU1/H0xg67fOWHcAoFNbNuaUihrTHpelfI/iP9eFKaD9oai++jMxgilaCCGcMwAz9jxmgAxXuOOe+NGvCVRvkfv90AwIpCa0gl0KERKFs6CgP0KM3M1zlInT17vFW+V6DIFeLKjOK9hjNmjMYH5kxAUzqJi+ZOwYmT21zH1e82oa0Bk0YVJgBfedAyxbU1pjC2tQGjm9N47PW9RdfQbQuelDU50QiUP/nec9bnGdPQpOlvHd0DmDTKGiTHtDTYbXCyYc8RTB3djAQVR5vt77Y0xcntTWhKJ5AXxc/NC28eBGD5mtLJ4nVLah1LwiBQjvRlbJNca2OySCNWmt0Xpbbr1VD6MzkcOOp+eZ/6Lfc5Xpw2kM3huc0HcMWSFa7JwUrpm712wZzAV1vEAQuUCNx15bsBAOt2F5zjaiAHrFDQ/kweHUcHsNNht7z3qvkAgHGtaRzsGcBvX9urNWmojqMGhu7+DMa2NoDIihbJ5YXrAXzbYUIZLQfRTo8GlMsL+zzlSF2/54h9TJnu2pvSmNjWaM+UFX/2Q2vGqwTNkb4MBnN516DeO5jFtDHWA24SKH9+x0v29wtOmYz+TN6eLatrcs6kTphUGMhUmaOb02hvTmtfHOWMdjp+kmU2UgPNpn3d+L70BYxvbSgsNpP1XrFkBf73D9sAwDZROIVRV597WxwVMqsCB7r6Mjj3W78HYM3sT51uCRSv+U5dx62Xn4mGlNxYUA5USjA0pBKYOroJT6xz28d/vXoXLvzuHwBY66OUaU4NRBvf7sY7/vV39vnnnTJZu15GrRCfICMHvb/30YEs2qWJtqWhWJNTb4GcOKoJk9qbsGlfN4QQtr9DaQ5dfRm8vvtI0cRJtdfyoZgd4oClhek2b9zfPWBPPtqbijX3nZ292HqgB2ccM0YGmrgDQF7YYgmLSe2N9vN7uM/93Hx76Sb7HqSTVCSYewetdVkmrb6rL2OXrfPZKYGiBLb3Gpy/izfa7d8fWWcf+8KPX8Gn71yOZzd1YNM+a8LRM5DFZbdbz+1x0oRaaVigROCc461Z3w8djnQ10wQsgQJYHfotaYO9/dPvsmdTY1sb0J/J469/8gpuedwajOY5TGYtcpDYJ8OIjw5k7Zmo+nTOxtRMpaUhidPlIPbFn61Glzynqy+Dk//tdxjM5fHNT5yOVf9yPoBCNJlzVtSQSmDiqMYiU4sSQvOPGwfAWocBAC/JGVxXXwZrd3WhtTGFhlTCbrsT5wzuGx8/DRPaCsKvZyCLH0s/UEu6ELDgfKCU+WFMSxrtTSkIATvUWt2vL/5stf3/nEmjkEwQfr16N7p6M/jjW5/DK28dBmD5DpRAUYOt85qVmcQ5ACitEgD2HO5zvfVyZ2cv/vLelbbN/bPvm4XRzWlMbm+075W6B//2kDUQfGTulCKT14yxzfjYmdOt9nQPYNuBHvz2tcIM/0s/L7yx71uXnW775ZQ/6XevFwIErnr/cQCAWeNbXVrSzY+9gbue347mhiSmS7OU02H75Pp9eLOjxxZWrY3JojD5/d39aEon0N6Uwlkzx+LNjqOuSY66fwqnxpvLC3zqR5bfcFRTyvLHeTSkC77zjP39pCmjpJ8la+c/7YbH0dWXwVQ5gRnVlEb3gHsS84FvWsL9nceMwfjWBrzp8AP9ctUu3Pib9QCAyaOaME5q1s5tcB5YudP+Pr6tAe3NaddEaTCbl89mGq2aiEHALVDam9IucydQeI6mSC3psGcitk5O+n7x+XNsAa/KcPpelDkaANbsPIxdh3rxNXl9qv1DQV0LFCK6kIg2EtEWIrpuqOpNJxP4kzOm2f/f+7n5ruMzpSPz649usDWUebPG2cdnO2YLr8m9uz5zzkw7bdroJpw0eRQefW0vhBA40p+1fSPKifvem5/CC1sOyMirfpw2fTReuO7Ddt1AQaVf/dYhe2b13hPG24LkW49vBOB2/H7iXTMwsa0BB44OulTn1sYU3jFlFO7+rKWdXXfROwAUZk0f/8HzAKzV/qdOa8fTGztc9+RHf9iK4//ptwAs9f7y+cfa5rHfv7EfP35ph/3Af+79x6EhlcDsCa042DNoCzy1k8DYlgZbc/nQt35vz34X/FdhEFrzb+fbjtJXd3Xhkz96yRWo0NKQKjIXnXP8BPu4uo8PvLwTv5ADi9M892fvPgYA8L1PngnAGrxU5B9Q8IHMmzUOv3l1L668awUyubx9DwAruMApUHoHs9h1qA+T5KxbmaH+WkZceZnY1mjvY6Vmth1HCwL2z+ZZbTxhUptLoKjIucntTbafY/dhy0yYzeXxF/daTl7nxoa9Hg1lxfZDaGlIgYgwc1wLMjlhTwiuu+gdtrD91qWnA7BCrBUvvHkAu2RY8qimNJo8Tvk1Ow/bs+zpY5rRlLbeA3JQmn72HO6z15eQfPdoW2MKOzv7MOu6R3GoZ9DWvgHg1Gnt+NCJE7FqR+H3UaYswNJQ1ICr6tjacRT/IINh1L2e2OaeaF3z01eQyQmcMWOM9McVnqNcXuBLP1+DNzt67AWeU0c3Y89h90TrDRm8c+KUUTh2XAt2HHT729buOoxUgnD6jNGYOroJrQ1JrJaTIhPLNuzD5f/7Eu5/2eq300Y34Qy5ULbS1K1AIaIkgO8DuAjAKQAuJ6JThqr+/7n8TPu7V51U/69+6zD+/RFrljDe8WKcU6eNtr+rGcrsCdYAedr00SAizJs1FqvfOozjrv8tBrN5u8OfOLngWP/kj5bjxkfW4Q+bD2DamCaMabHMYn93nmWPfXpjB1Zu78R2x2AyY6w1UCpn630v7bBn+Xd/9t2YMroJU+Wxb0qBs+dwHzq6B3DpWTPsXVOVM/j2Z97Elv3dtqnjns/Nx3knT8bm/UexaV83+jM55PMC/7dmt92Gvz73eKsNcjD7t4dedz2MrY0pbPr6RfiHC0+y7tGuLuw42IN//KW1k8DYlgace9IkAJbNW80andqE0wQJFGZ6APD+EyzBoWbgh3oGsWbnYTyydo99jtIml72xH1958FWs2NZpa4V3XfluO4JpvmOi4GSaXL8xWZbz9MYOfPmBgnbxQbmdjzKb/fDZrfYsUw3yyq4OAJd8/3n8YXNBSJ938iQQkW1auu/F7da1yDZe8s5pOH5iYTHu1gM96OrLuO7RZfNmYNKoJqQShJe2dmLHwR6Xn+gL8ndqb7bWyuzv7kdH9wB+9courN152J7Nq4i0//itpW2nHLb698l7/fi6t/F2Vz9W7TiEDY4IyAltDZg9oRW7D/fZJtlXHGuyHv/SBwEA08e0YM/hPuTzAr95taCxqd9STQ4AYMPbR/CRW/9g/3/MuBbMHN+KQ70ZbJX+p4flb335/GPR5DD97ZGCVV0LALx0/QIQESaMKpiCd3b2Yul6yxypTI9Pbthva1Frdh7Gr1dbfV5FV01oa3CZoncd6sU9L+7AvJlj0d6Uxqzxra7dJ97sOIrbnraEf2MqiVQygfeeMAHPv3kAty7bDAD4jAwMOWVqO1b88wLMmzkWy97Yb/sRAeCF6xfY2k2lSQWfUrPMB7BFCLEVAIjofgAXA1jvmytGPnr6VDz66t6iH4uIcNlZM/CLVbtcaYpjxrXg+ove4QrjnTO5Dc985VyMlx378vnH4ifL37KPT5OD/OyJbfjmpafbs6d7XrRmhU0OM9G1C+bgu09uxk3SwXvO7PFoaUji9a8utM+5+ROn4TN3rsC/yhBXoGCqu+Sd03H7M2/ijme3utbHfGDORPu7Eigvbe3Eed+2oraufO8snDh5lL0o7oLvPFt0z/7vmvfZbT15ajtmT2zF1o4ePPLqXkwa1Yjl/7TAVR+RJTjV2hwi4Jhx1r04bfpovLa7C++8camrjo+ePtW+3xM8s8ovn38i/uaPTgBQEPyXSjuzoiGZcAUGAAUfEgCce1LhPnjPA4DbP32WPchOGV047hRYSxbPA2D1BcCafPzNTy1zndKUvnTeHHvgWLPzMD5z5woAwE0fm4tPvccaSJTJ6+XthzDruketOtub8N1FhQnPrsPWrPeMf3/C3tYHAC6cO8V21D6ydo+rff+96J2YPdGa5MybaQnN+Tctc12nCpU/fcZoV/oV58yyv08b04zZE1vxw2e24ofPbHWdN3/WOMwc34oL507Ffz6xCWd/w13+2bPH2UJ/cnsj9nT1Y7ZDw3vx+g/bCy9PckQwfvJ/C2H4j37x/QAKQvrDDi0WsEyvQEEj/cqDr6Ivk7ODM1796gX28z1plBWsou6zamNzQxILT52C5ds6celtL2L62GZb2ADANR+2+ltLQwod3QN4901P4vMfOt42SSkz8nETW/HE+n1Y8tw2HDuuxY4OPf+UyXZZ7zluHJau32f7dhaeOgX//NGT0ZhKgIhw7Xlz7H4CAF+7+FQMJXWroQCYDmCn4/9dMm3I+J9FZ2LNv51v73bq5FuXnWF//y/Hd8Vffeh4e5b646veg6Z0EjPHt9oP0Nzpo/GVhdYMffqYZnxk7lQ775/NOwYr/+U8uyMCwCfle1gAt/ACgBe3HsSZx46xd0oGrMHaqWWlEmRrDM0NSVwvTVpOnJE+k0Y14cxj3Wr0x99l3f6zZ4+3TXROrvmj4+09qhQ3/InV4bcd6MGFc6e42t7amMLCU6YAKIT7brnpI/Y5935uvm3yUfzyC+/F9xzXddPH5uKvPjjb1UZ1H9R2Ok7uuvLd2HTTRWhKJ/H6vy/UvnLV2UYicpkZT5s+GhfOnWL/v8jxuyg2ff0ie8+3ZIJsn4lCaY9EhJeuX2BrGoqPnjbV9b9314WTp7rDw6+RAhQAvvOkNRA9949/ZGthSttzojRmAEW/GWBpWH/+buvaWhpSePr/nYszjx2DZ75yrm0GVdx95fyi/F8+/0Q88Plz0JBK4IRJbUUmmU+951jc4zAle9swc3yLLUyAgibk5LZPvcu2BsybNbbo+BNS+wEsM7bqs8rH9ffnn+iaLP7JGdPsyQxgBc/89C/OBgA7hHz93iO2MBnf2oDnr/swjpeCWT0vHd0DtjD58vkn4m+kwLn4DKsf3Pib9fiLe1fiSH8WV39wNr73yXfZdS48tdC3Lp9/LN57/Hg0pZN2n/zAnIm4/dNn4U/OmIZt3/gIPuMQ7kMBBW2RUasQ0WUAFgoh/kL+/xkA84UQf+s572oAVwPAsccee9aOHTuGrI27D/fhqTf24/J3H2MPIE6yubx8r3ZSkzuYfF5g6YZ9+NCJE10aCmA5F3+6fAf6M3ks33YQ37r0DHvW7KSrN4OfrNiBPz5tmr2Izdm+lIy9TyepSFABViTa9oM9OHHSKJfAAqztZJY8tw1tjSl8+YITMWlUo7aMDXuP4PktB/CZc2YW3YtMLo9XdhzCr1fvxkdPn+rSkgDLEb/ncB+WbdiPC+dOwdzp7tmyYsW2ToxpSbtMhoDlWE0lCK/u7sKMsc226cNJLi/wsR88j5njW3Hjn56KsRoh82bHUXz9N+tx48Vzba3Dyc7OXjyxfh/mzRxbNHjm8gLbDhzF5n1HkReWhqVj35F+9Axkbc3Bmb8/k8Njr7+NBAF/esY0bX/79hMbcetTW/DNS0+3/SuKt7v6ccezW/Hw2t245o9OwJXvneX6rfoGc/jZirdw/KQ2pBKEdx4zxg5qCMPbXf040p/B8q0HkcsLXPm+41zHB7N5HO4dxAMrd2LByZPtXbkVQghs2ncUyYRl5vQeB4BnNnWgMZXAmx1HceLkUXi3xxyZywvsONiDye1NePtIvz3QO+nqzeD1PV14dlMH/vKDs7X9YfO+bqzacQgLT53i6gsPr92DV3YcwrQxTbho7lSMbkkXWS/ufn4bBrJ5nDh5FNqbUzhrpruNf9jcgZe3H0LPQBYnTRmFS981o+i5yucF8kJof+NKQUSrhBDzAs+rY4FyDoCvCiEWyv+vBwAhxDdMeebNmydWrvRfVcowDMO4CStQ6tnk9TKAOUR0HBE1AFgE4OEqt4lhGGbEUrdOeSFEloj+BsDjAJIAlggh1gVkYxiGYSpE3QoUABBC/BbAbwNPZBiGYSpOPZu8GIZhmBqCBQrDMAwTCyxQGIZhmFhggcIwDMPEAgsUhmEYJhbqdmFjFIioD4BfaPFoAF0+x48F8JbP8TBlVPo4tzGe48OhjUH542gDtzGeNtRyGycAaBVCTNQccyOEGDF/ADoCjt9RTv6QZVT6OLeR2xgqP7eR2xjmOICVQWWrv5Fm8vJ/kQDwSJn5w5RR6ePcxniOD4c2BuWPow3cxnjaUA9tDGSkmbxWihD70VQq/1DAbYwHbmM8cBvjoZptLKXukaah3FHl/EMBtzEeuI3xwG2Mh2q2MXTdI0pDYRiGYSrHSNNQGIZhmAox4gUKES0hov1E9Loj7QwiepGIXiOiR4ioXaaniegemb5BvYNFHnuaiDYS0Rr5V/wavKFpYwMR3SXT1xLRuY48Z8n0LUR0K+nedlX9NlbkPhLRMUT0e/m7rSOia2X6OCJaSkSb5edYR57r5b3aSEQLHekVuY8xt7Em7iMRjZfnHyWi73nKqon7GNDGWrmP5xPRKnm/VhHRhx1lVey5Lpmw4WDD9Q/ABwG8C8DrjrSXAXxIfv8cgK/J758EcL/83gJgO4BZ8v+nAcyrgTZeA+Au+X0SgFUAEvL/FQDOAUAAHgNwUQ22sSL3EcBUAO+S30cB2ATgFADfBHCdTL8OwC3y+ykA1gJoBHAcgDcBJCt5H2NuY63cx1YA7wfweQDf85RVK/fRr421ch/PBDBNfp8LYHel72OUvxGvoQghngXQ6Uk+CcCz8vtSAJ9QpwNoJaIUgGYAgwCO1FgbTwGwTObbDyvccB4RTQXQLoR4UVi98F4Al9RSG+Nqi6F9e4UQr8jv3QA2AJgO4GIA98jT7kHhnlwMa/IwIITYBmALgPmVvI9xtTGOtsTVRiFEjxDiOQD9znJq6T6a2lhJIrRxtRBij0xfB6CJiBor/VyXyogXKAZeB/Cn8vtlANQLuB8E0ANgL6xVq/8phHAOondJtfhfh0DtNLVxLYCLiShFRMcBOEsemw5glyP/LplWS21UVPQ+EtEsWDO+5QAmCyH2AtZDDktjAqx7s9ORTd2vIbmPZbZRUQv30UQt3ccgau0+fgLAaiHEAKrzXBthgaLncwCuIaJVsNTRQZk+H0AOwDRYJoa/J6LZ8tinhBCnAfiA/PtMldq4BFanWgnguwBeAJCFpQ57qXSIX6ltBCp8H4moDcAvAfydEMJPuzTdr4rfxxjaCNTOfTQWoUmr1n30o6buIxGdCuAWAH+lkjSnVS10lwWKBiHEG0KIC4QQZwH4GSzbNGD5UH4nhMhIU83zkKYaIcRu+dkN4KeovOlB20YhRFYI8SUhxDuFEBcDGANgM6wBfIajiBkA9njLrXIbK3ofiSgN6+H9iRDiVzJ5nzQbKDPMfpm+C26tSd2vit7HmNpYS/fRRC3dRyO1dB+JaAaAXwO4QgihxqQhf679YIGiQUVyEFECwL8AuF0eegvAh8miFcDZAN6QppsJMk8awB/DMvcMeRuJqEW2DUR0PoCsEGK9VJ+7iehsqbZfAeChWmpjJe+jvOY7AWwQQnzbcehhAIvl98Uo3JOHASySdurjAMwBsKKS9zGuNtbYfdRSY/fRVE7N3EciGgPgUQDXCyGeVydX47n2JW4vf739wZo57wWQgSXtrwJwLayoi00AbkZhAWgbgF/AcoqtB/AVmd4KK1LpVXnsvyGjbarQxlkANsJy8j0JYKajnHmwHog3AXxP5amVNlbyPsKK4hGy7DXy7yMAxsMKENgsP8c58vyzvFcb4YicqdR9jKuNNXgft8MK2Dgq+8YpNXgfi9pYS/cR1oSsx3HuGgCTKv1cl/rHK+UZhmGYWGCTF8MwDBMLLFAYhmGYWGCBwjAMw8QCCxSGYRgmFligMAzDMLHAAoVhagQi+jwRXVHC+bPIsbszw1SbVLUbwDCMtYhOCHF78JkMU7uwQGGYmJCb/P0O1iZ/Z8Ja0HkFgJMBfBvWwtgDAK4UQuwloqdh7WP2PgAPE9EoAEeFEP9JRO+EtbNAC6wFa58TQhwiorNg7YXWC+C5obs6hgmGTV4MEy8nAbhDCHE6rFcbXAPgfwBcKqw9zZYAuMlx/hghxIeEEP/lKedeAP8oy3kNwA0y/S4AXxRCnFPJi2CYKLCGwjDxslMU9lr6MYB/gvVCpKVy5/MkrC1qFD/3FkBEo2EJmmdk0j0AfqFJvw/ARfFfAsNEgwUKw8SLdy+jbgDrfDSKnhLKJk35DFMzsMmLYeLlWCJSwuNyAC8BmKjSiCgt32lhRAjRBeAQEX1AJn0GwDNCiMMAuojo/TL9U/E3n2GiwxoKw8TLBgCLieiHsHaM/R8AjwO4VZqsUrBeKrYuoJzFAG4nohYAWwF8VqZ/FsASIuqV5TJMzcC7DTNMTMgor98IIeZWuSkMUxXY5MUwDMPEAmsoDMMwTCywhsIwDMPEAgsUhmEYJhZYoDAMwzCxwAKFYRiGiQUWKAzDMEwssEBhGIZhYuH/A0MDL570O4aTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,11 +1292,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl8XNV5//9+ZtG+2/Ju45XNBgwYs4SsBJuskBRap21wElIaStrQ9vtNQ77pjywlKV1Cm42WFIclCWsWSAKhDksIm7EMBm+AZWxseZUtWbs02/P74947GskjabTO3NHzfr300ujMPXfO0czcz32W8xxRVQzDMAwjEwLZHoBhGIbhH0w0DMMwjIwx0TAMwzAyxkTDMAzDyBgTDcMwDCNjTDQMwzCMjDHRMAzDMDLGRMMwDMPIGBMNwzAMI2NC2R7AWDN16lSdP39+todhGIbhKzZt2nRUVWuHOi7vRGP+/PnU1dVlexiGYRi+QkTezuQ4c08ZhmEYGWOiYRiGYWRMxqIhIkEReUVEfu3+XSMi60Vkp/u7OuXYG0WkXkTeEJHVKe3nisgW97nviIi47YUicr/bvkFE5qf0Weu+xk4RWTsWkzYMwzBGxnAsjS8AO1L+/hLwhKouAZ5w/0ZETgfWAEuBy4AfiEjQ7XMbcC2wxP25zG2/BmhW1cXArcAt7rlqgJuA84GVwE2p4mQYhmFMLBmJhojMAT4E/E9K8+XAXe7ju4ArUtrvU9UeVd0N1AMrRWQmUKGqL6izicfd/fp453oIuMS1QlYD61W1SVWbgfX0Co1hGIYxwWRqafwH8EUgkdI2XVUPAri/p7nts4F9Kcc1uG2z3cf92/v0UdUY0AJMGeRcfRCRa0WkTkTqGhsbM5ySYRiGMVyGFA0R+TBwRFU3ZXhOSdOmg7SPtE9vg+rtqrpCVVfU1g6ZZmwYhmGMkEwsjXcAHxWRPcB9wPtE5MfAYdflhPv7iHt8AzA3pf8c4IDbPidNe58+IhICKoGmQc5lGL6ipSvKI6/aR9fwP0OKhqreqKpzVHU+ToD7SVX9c+ARwMtmWgs87D5+BFjjZkQtwAl4v+S6sNpE5AI3XnF1vz7eua50X0OBx4FVIlLtBsBXuW2G4StuuO8V/ubeV3j7WEe2h2IYo2I0K8L/GXhARK4B9gJXAajqNhF5ANgOxIDrVTXu9rkOuBMoBh5zfwDuAO4RkXocC2ONe64mEfkGsNE97uuq2jSKMRtGVnjrqCMWiROcq4bhL4YlGqr6NPC0+/gYcMkAx90M3JymvQ5Ylqa9G1d00jy3Dlg3nHEaRq7RE3VySNIF6QzDT9iKcMOYACJxRzSi8cQQRxpGbmOiYRgTQE/U8dBGTDQMn2OiYRgTQK+lYUENw9+YaBjGBOCJhbmnDL9jomEYE0g0ZqJh+BsTDcOYQCymYfgdEw3DmEAspmH4HRMNw5hALKZh+B0TDcMYZ+Ipy8BNNAy/Y6JhGONMRySWfByxQLjhc0w0DGOc6ejpFQ2LaRh+x0TDMMaZ9u5U0TBLw/A3JhqGMc6095hoGPmDiYZhjDOpomHrNAy/Y6JhGONMn5hGzGIahr8x0TCMcabNYhpGHjGkaIhIkYi8JCKvisg2Efma2/5VEdkvIpvdnw+m9LlRROpF5A0RWZ3Sfq6IbHGf+4677Svu1rD3u+0bRGR+Sp+1IrLT/VmLYfiMzkg8+dhEw/A7mezc1wO8T1XbRSQMPCsi3jatt6rqv6UeLCKn42zXuhSYBfxORE52t3y9DbgWeBF4FLgMZ8vXa4BmVV0sImuAW4A/EZEa4CZgBaDAJhF5RFWbRzdtw5g4UoXCYhqG3xnS0lCHdvfPsPszmGP2cuA+Ve1R1d1APbBSRGYCFar6gqoqcDdwRUqfu9zHDwGXuFbIamC9qja5QrEeR2gMwzd4azNKCoJmaRi+J6OYhogERWQzcATnIr7BferzIvKaiKwTkWq3bTawL6V7g9s2233cv71PH1WNAS3AlEHO1X9814pInYjUNTY2ZjIlw5gw4glHKIrDQQuEG74nI9FQ1biqLgfm4FgNy3BcTYuA5cBB4N/dwyXdKQZpH2mf1PHdrqorVHVFbW3toHMxjInGszSKwmZpGP5nWNlTqnoceBq4TFUPu2KSAH4IrHQPawDmpnSbAxxw2+ekae/TR0RCQCXQNMi5DMM3xBNKQKAwFLCYhuF7MsmeqhWRKvdxMfB+4HU3RuHxMWCr+/gRYI2bEbUAWAK8pKoHgTYRucCNV1wNPJzSx8uMuhJ40o17PA6sEpFq1/21ym0zDN8QTSQIBQOEgwGzNAzfk0n21EzgLhEJ4ojMA6r6axG5R0SW47iL9gB/CaCq20TkAWA7EAOudzOnAK4D7gSKcbKmvCysO4B7RKQex8JY456rSUS+AWx0j/u6qjaNYr6GMeHE40o4IIRDYgULDd8zpGio6mvA2WnaPzlIn5uBm9O01wHL0rR3A1cNcK51wLqhxmkYuUosoQQDYpaGkRfYinDDGGdiiQRh1z1l+2kYfsdEwzDGmVjcsTQKzNIw8gATDcMYZ2IJdS0Ni2kY/sdEwzDGmVg8YTENI28w0TCMcSaWUEJBIRwy0TD8j4mGYYwzsbgSSsY0zD1l+BsTDcMYZ2KJBKGAF9MwS8PwNyYahjHOJN1TFtMw8gATDcMYZzz3lK3TMPIBEw3DGGc891RByGIahv8x0TCMcSYW99xTFtMw/I+JhmGMM6m1p2IJJZEwa8PwLyYahjHOpNaeAqdUumH4FRMNwxhnUtdpABbXMHyNiYZhjDO9KbfO7sVRy6AyfIyJhmGMM/GEOov7Qs7XzbZ8NfxMJtu9FonISyLyqohsE5Gvue01IrJeRHa6v6tT+twoIvUi8oaIrE5pP1dEtrjPfcfd9hV3a9j73fYNIjI/pc9a9zV2ishaDMNnROMJZ51GwPm6xSwQbviYTCyNHuB9qnoWsBy4TEQuAL4EPKGqS4An3L8RkdNxtmtdClwG/MDdKhbgNuBanH3Dl7jPA1wDNKvqYuBW4Bb3XDXATcD5wErgplRxMgw/EHfdU8GA456KW0zD8DFDioY6tLt/ht0fBS4H7nLb7wKucB9fDtynqj2quhuoB1aKyEygQlVfUFUF7u7XxzvXQ8AlrhWyGlivqk2q2gysp1doDMMXRONKMBBIikbMsqcMH5NRTENEgiKyGTiCcxHfAExX1YMA7u9p7uGzgX0p3Rvcttnu4/7tffqoagxoAaYMci4jD3jzcBs3/2Y7zj1E/hJPJAinWhrmnjJ8TEaioapxVV0OzMGxGpYNcrikO8Ug7SPt0/uCIteKSJ2I1DU2Ng4yNCOX+N2Ow/zwD7tp7Ypleyjjirfda8gTjTwXSSO/GVb2lKoeB57GcREddl1OuL+PuIc1AHNTus0BDrjtc9K09+kjIiGgEmga5Fz9x3W7qq5Q1RW1tbXDmZKRRbzifT2xeJZHMr5E3cV9SfeUxTQMH5NJ9lStiFS5j4uB9wOvA48AXjbTWuBh9/EjwBo3I2oBTsD7JdeF1SYiF7jxiqv79fHOdSXwpBv3eBxYJSLVbgB8ldtm5AG9opHfPv64W0YkFDT3lOF/QhkcMxO4y82ACgAPqOqvReQF4AERuQbYC1wFoKrbROQBYDsQA65XVe9W8jrgTqAYeMz9AbgDuEdE6nEsjDXuuZpE5BvARve4r6tq02gmbOQOPZPA0lBVonElHBCClnJr5AFDioaqvgacnab9GHDJAH1uBm5O014HnBAPUdVuXNFJ89w6YN1Q4zT8h2dpdEfz19Lw9CEYCPTGNEw0DB9jK8KNrOFZGPnsnvJKoYeCQkAs5dbwPyYaRtZIxjSi+eue8qyKUEpMwzTD8DMmGkbW6JkEgXAvUyoUtMV9Rn5gomFkjcmQcusJRDgoFtMw8gITDSNrTApLwxWIYEBSLA0TDcO/mGgYWaM3ppH/ohEOBAi5KbdmaRh+xkTDyBq92VN57J5ys6fM0jDyBRMNI2tMJvdUamn0hImG4WNMNIys0bu4L58tDS/ltndxn1kahp8x0TCyxuSwNHoX9/WWRs/f+Rr5j4mGD9nX1Mnf3r+Zzoi/S4pPCtGIpyzuM0vDyANMNHzIfRv38otX9rNxT3O2hzIqIl4gPJ/dU0lLI2CbMBl5gYmGD3lih7N1yfYDrVkeyeiIxCebpRHo02YYfsREw2fsa+rk9UNtAGw/6F/RUNXJ4Z5KqT0VtP00jDzARMNn/Pq1gwCcOqOcHT4WjVhC8XY9zet1Gikpt7bdq5EPmGj4iERCufelvZy/oIbVS2fwVmM7XRF/XnBTrYt83k/DW9wXCgSSpdHN0jD8TCbbvc4VkadEZIeIbBORL7jtXxWR/SKy2f35YEqfG0WkXkTeEJHVKe3nisgW97nvuNu+4m4Ne7/bvkFE5qf0WSsiO92ftUxiXtx9jL1Nnfzp+fM4eXo5CYU9xzqyPawREUkRjclmaVhMw/AzmVgaMeDvVfU04ALgehE53X3uVlVd7v48CuA+twZYClwG/MDdKhbgNuBanH3Dl7jPA1wDNKvqYuBW4Bb3XDXATcD5wErgJnev8EnJrkZHIC5cOIXSQudf2ulbS6N33HldeyplcV8gIIjYOg3D3wwpGqp6UFVfdh+3ATuA2YN0uRy4T1V7VHU3UA+sFJGZQIWqvqCqCtwNXJHS5y738UPAJa4VshpYr6pNqtoMrKdXaCYdrV1RACqKwxSFHdHw6116X0sjfy+iqYv7wAmI2zoNw88MK6bhuo3OBja4TZ8XkddEZF2KBTAb2JfSrcFtm+0+7t/ep4+qxoAWYMog55qUtHZFKQwFKAoHKQw5b51fL7g9k8U9lZJyC07hQotpGH4mY9EQkTLgZ8ANqtqK42paBCwHDgL/7h2aprsO0j7SPqlju1ZE6kSkrrGxcdB5+JmWriiVxWEACkOupeFT145naZQVhnwrfJmQ3O416HzVQoGAiYbhazISDREJ4wjGT1T15wCqelhV46qaAH6IE3MAxxqYm9J9DnDAbZ+Tpr1PHxEJAZVA0yDn6oOq3q6qK1R1RW1tbSZT8iUtXVEqXNEoCnuWhj/v0r1xlxeFfCt8mRD13FMploa5pww/k0n2lAB3ADtU9dsp7TNTDvsYsNV9/Aiwxs2IWoAT8H5JVQ8CbSJygXvOq4GHU/p4mVFXAk+6cY/HgVUiUu26v1a5bZOSPpZG2N+WhmddVBSF6fap8GVCPGHuKSO/CGVwzDuATwJbRGSz2/Zl4BMishzHXbQH+EsAVd0mIg8A23Eyr65XVe+qcB1wJ1AMPOb+gCNK94hIPY6FscY9V5OIfAPY6B73dVVtGtlU/U9rd5Rp5UUAKTENf15wPdEoLwqxt8mfwpcJ0ZTsKTBLw/A/Q4qGqj5L+tjCo4P0uRm4OU17HbAsTXs3cNUA51oHrBtqnJOBlq4oi2vLgF7R8OvCOC+mUVEcpicWR1Vxl+3kFcnFfSnZU5Zya/gZWxHuI1o6e91T+ZJyW14UIqH5Wy48uUd40CwNIz8w0fAJiYTS1hNLikYoIATE/ym3FUXOfPJ19z5PHMN9LA0TDcO/mGj4hLaeGKoks6dEhMJQ0Lei4V1Mq0uc+fi1htZQxBIJQgFJut4sEG74HRMNn5C6GtyjMBzw7R2651arKS0AHFHMR6JxTcYzwNZpGP7HRMMntLiiUZkiGkWhoG9Tbj1Lo6asEICOvBWNRDKeARCwmIbhc0w0fIInGl4MABxLw++B8JoSx9Jo754comExDcPvmGj4hNY0lkZhKODblNuoe+GscmMa+eqeisU1GQQHy54y/I+Jhk9IWhrFvUtrnEC4Py2NWNwJEHuWU75aGpF4IrmwD2ydhuF/TDR8Qrt7J16e4p4qCgd8mz0VSzgB4rIiRwTb89jSKAj1fs0se8rwOyYaPqHNvRMvK+xvafhTNKLxBOFAILmZVL6KRtS1qDxCQRMNw9+YaPiE9p4YpQVBgikXICem4U/3VDSeIBwKUBgKUhAKJEUx34jGtU8gPBgIWEzD8DUmGj6hvTuWdOV4FIX9a2nE4pq8Ay8vDNHeE83yiMYHTxw9goJZGoavMdHwCe09sT6uKXAsDb8GwlPvwEsLQ3kbCI8lEoQDqdlTgeRufobhR0w0fEJbT4yylCA4eCvCfWppJBLJldJlhaH8jWnE1NZpGHmFiYZPaO+OUn6CpRGkx6cxjVT3VFlRKH9jGiniCBAMCjFLuTV8jImGT0jrnvJxym0kZaV0eT5bGvEEBf0sjXwxNDojMd441JbtYRgTTCbbvc4VkadEZIeIbBORL7jtNSKyXkR2ur+rU/rcKCL1IvKGiKxOaT9XRLa4z33H3fYVd2vY+932DSIyP6XPWvc1dorIWiYp6QLhXsqtszOuv4iliEZZUShva0/F+hUsdFaE+1Po+3P3C2/zke8969sMPmNkZGJpxIC/V9XTgAuA60XkdOBLwBOqugR4wv0b97k1wFLgMuAHIhJ0z3UbcC3OvuFL3OcBrgGaVXUxcCtwi3uuGuAm4HxgJXBTqjhNJtp6YpSfIBrelq/+uwh5i/sgv2MakXS1p/IkEP72sQ4isQRH23uyPRRjAhlSNFT1oKq+7D5uA3YAs4HLgbvcw+4CrnAfXw7cp6o9qrobqAdWishMoEJVX1Dn1vjufn28cz0EXOJaIauB9arapKrNwHp6hWbSoKq098TSxDT8Kxre4j7I75hG7IR1GvlTe+pgSzcAx9ojWR6JMZEMK6bhuo3OBjYA01X1IDjCAkxzD5sN7Evp1uC2zXYf92/v00dVY0ALMGWQc00qOiNxVEm7TgP8ueVrqtumvDBETyyRrHybTzhVbvu6p/Ile+qQKxpmaUwuMhYNESkDfgbcoKqtgx2apk0HaR9pn9SxXSsidSJS19jYOMjQ/Innuikr7Jdy61kaPky7jSaUkBfTKMzf+lPReCI5T3A2YcoXS+NQq1kak5GMRENEwjiC8RNV/bnbfNh1OeH+PuK2NwBzU7rPAQ647XPStPfpIyIhoBJoGuRcfVDV21V1haquqK2tzWRKvqKt21ktfUIg3MeWRjSWoMC9A5/ibsSUj3es0bj2yZ4KBoREHohGdzTO8U7nc9mYh++bMTCZZE8JcAewQ1W/nfLUI4CXzbQWeDilfY2bEbUAJ+D9kuvCahORC9xzXt2vj3euK4En3bjH48AqEal2A+Cr3LZJhefv7x/TKHItDT8u8HP2znbGP72iCOh1d+QTJxQszJOYRup7ZZbG5CI09CG8A/gksEVENrttXwb+GXhARK4B9gJXAajqNhF5ANiOk3l1vap6t8LXAXcCxcBj7g84onSPiNTjWBhr3HM1icg3gI3ucV9X1aYRztW3JN1T/SwNr6ZRJO5D0UiJacxwReNwa/6JRiyufWtP5UlM42CKaOSjhWgMzJCioarPkj62AHDJAH1uBm5O014HLEvT3o0rOmmeWwesG2qc+YxXl6l/yq2XfeTHWkbRRG8q6rQKxz11pC2/Lj6q6qTcnmBp+E/k+3OotQuA6pIwxzry630zBsdWhPsAbyvU0oK+ouHdqcf8amm4F9OicJDK4nDeuac8iyI15Tbgrgj3e1zjUIsjFMtmV3K0zdxTkwkTDR/QFXG8e6X9YhpeKqcf3VP9S4ZPryjMO/dU1LUAQ/0W9wHEfbiKP5WOnhjBgDCnusQsjUmGiYYP8LKjCkN93y7vDtaX7qm49nHbTK8o4nCeuaeirhuq7zoN5z3ze1yjJxanMBSgtqyApo6I7+djZI6Jhg/wsqP6i4aXfeRHH3ms3/qF6RVFHMk3S8NdrJi6R3jS0vD5RbYnlqAwFKCypICEkrf7oRgnYqLhA3picUIB6XORhd472KgfLY1E30J+0ysKOdLW4/uLaSpeaq0n7kByu16/p932RBMUhoKUeXu8R0w0JgsmGj6gO5pIlgxJxRMRv1oa4ZSL6czKYuIJ5bWG41kc1djilUVJdU95Qul3ceyJxSkMB5JxtnytUmyciImGD/D8x/3xXB1+szTiCSWh9LE0PnzmTGZUFPH3D7yaNzWoYmmyp3otDX/P0XNPleZxCRgjPSYaPmAgS8PzlUd9lj3ljTf1YlpVUsDfrzqZt452sPtoR7aGNqakm2dQ8sXS8NxTZmlMNkw0XHpicZ7fdZSDLV3ZHsoJeHd1/fEsDb9lT/XegfddM7qwthQgJ9+DkeCJRv9NmMB/71l/POvXWztkojF5MNFwaeuO8ac/3MD67YezPZQT6I7Gk8UJU/FiGn6zNLzFiKkBYoAZlcVA3xIVfsZzG6YWLPSrddifnmiCwnAgaWnk634oxomYaLh4X+Zc9KcPZGl4d+p+y8TxLqb9LY1p5YUEJH9EI5bG0ihICr2/3rP+eO6pUjd7yiyNyYOJhov3Zc7F1dXd0YEC4d7ivtwb82B4QeATU4gD1JYXcihP3FORNDGNsE+tw/70xOIUBFOypyL+K89vjAwTDZekaOSopZEuEN5bRsRfd63R2IlZRR4zKovzyNI40aLyc2XiVHpijnuqMBQgFBDLnppEmGi4BAJCKCC5KRoDWBoizpj9ZmmkK6/hMauyKG9EI132VHJBZg5+zoZDxHWZigilhSFzT00iTDRSCAcDOek2GMjSAMdf7reYhncH3j8QDjCjsihvqt1G08wzl92gw8GLaYCzXa9ZGpMHE40UCkKBnLQ0BoppgLOnRi4K3WCkS0X1mFlZRHtPjFZ3i1s/482zIJTinsqXmEbKZ7LMLI1JRSbbva4TkSMisjWl7asisl9ENrs/H0x57kYRqReRN0RkdUr7uSKyxX3uO+6Wr7jbwt7vtm8QkfkpfdaKyE73x9sOdtwoCAVy8g5wSEvDZzGNgdZpgFNOBPJj69dkwD9wYiA8EvPXe9YfL6YBUFoYpKPHAuGThUwsjTuBy9K036qqy92fRwFE5HScrVqXun1+ICLe1e424FqcPcOXpJzzGqBZVRcDtwK3uOeqAW4CzgdWAje5+4SPGwXBQE5+mQe1NHLUpTYYA63TAMfSgPxIu00G/FPeu3xYpxGLJ4glNOmeKjX31KRiSNFQ1Wdw9u3OhMuB+1S1R1V3A/XAShGZCVSo6guqqsDdwBUpfe5yHz8EXOJaIauB9arapKrNwHrSi9eY4UdLwxGN3BO6wUiXiuoxwxWNfEi7TQb8A+nWaeTe5yxTvPfP3FOTk9HEND4vIq+57ivPApgN7Es5psFtm+0+7t/ep4+qxoAWYMog5xo3HEsjt8zsaDxBPKEDWhpOINxfF6B0qage0yuKEIEDx/PB0kiTPRXyikz66z1Lpaff/i6WPTW5GKlo3AYsApYDB4F/d9tPvAqADtI+0j59EJFrRaROROoaGxsHG/eghEOSc3ftPe6FZ8CYRsCPMY30i/vAXeBXVpgnMY0T3VPhHF4PlCneZ9IrbWPZU5OLEYmGqh5W1biqJoAf4sQcwLEG5qYcOgc44LbPSdPep4+IhIBKHHfYQOdKN57bVXWFqq6ora0dyZQAz9LIrS9zd9Td6jWcPzGN3lTUdPcFTlzjYB7s4hdJxm5OzJ7y24LMVLzthz1XW2lhkI5IHPX5vudGZoxINNwYhcfHAC+z6hFgjZsRtQAn4P2Sqh4E2kTkAjdecTXwcEofLzPqSuBJN+7xOLBKRKpd99cqt23cyMWU26SlERosppFbYx6KXvdU+o/fzMpiDh73f0zD+yz1KViYBzGNXkuj1z0VT2iy3chvQkMdICL3Au8BpopIA05G03tEZDmOu2gP8JcAqrpNRB4AtgMx4HpV9YIE1+FkYhUDj7k/AHcA94hIPY6FscY9V5OIfAPY6B73dVXNNCA/IsLBAG3R3DKzh7I0/Li4r3eldHpLY0ZlEf+7/RC/fu0AHzpjJm52tu/oiSUoCAYI9LE0/L8ivDem4dzIlKdUuh3IjWrkD0OKhqp+Ik3zHYMcfzNwc5r2OmBZmvZu4KoBzrUOWDfUGMeKwlCAYzn2Ze7/Be2Pnxf3DWRp1JYXklD4/E9fYcbnilgxv2YihzdmRGKJZIqtRygYICB+tzTcGxl3bhXFYQBau6PUlhdmbVzGxGArwlPIxZTb7lgGlobP/OOeZZRuRTjAkmllyccv722ekDGNB+lEAxyx7Mmxz9lw8NxuSdEockWjy/+r+I2hMdFIIRfjA56lMVBMIxQMEPWZe2qwxX0A7z9tOn/44nuZV1PCK3uPT+TQxhSvfHh/CoKB5MI/P9I/e6qi2DZimkyYaKSQk9lTQ1gaBUHxnX98oE2YPAIBYW5NCcvnVvlaNCIppTZSCYdy7+ZkOPR3T5UX9bqnjPzHRCOFnMyeGsrSCAR8t7hvqJiGx9nzqjjU2u3bPcMj8URaSyMcFJ+LxkDuKbM0JgMmGimEg7kX0+iZhDENjyXTygHYe6xz3Mc0HgwW08i1z9lwSCZnnOCeMktjMmCikUJhDlsagxYs9Jml4f2PwwPENDymlBUAcKwjMu5jGg96BhCNAh/WC0ulv3uqOBwkGBBzT00STDRS8LKncmllqxfTyKcyIp7bJjDAinCPpGi090zEsMacHnd3u/44btDcqnE2HDz3lCeIIkJFUcjcU5MEE40UwsEAqhDPoWykrohzcSkeqMqtD4OqPdH0F9P+1JQUIAKN7f60NBz3VLq93f1uaZxo/VYUh83SmCSYaKTg3Tnlkr+5Kzq4pREO5F6RxaHoicUHjNGkEgoGqC4p8K2lEYnlaSA82rf2FEB5UchSbicJJhopFORgBdKuiLMBU3AAV04oGEiue/ALqftLD8WU0gKO+dTS6Iml3zwrnIOp3cOhMxKnpCDYp7xLRVHYFvdNEkw0UgjnqKVRXDDwBTYUFN8t7hvI15+OKWUFHOvwqaURHyAQ7kOXYiodkTglBX0rEFUUmXtqsmCikUJhjloaJYMUgQsHfGhpRONpL6bpmFpWyFGfWhqRAcTR7zGNrkiM0sK+n0lzT00eTDRSSMY0ckg0OqNxigaxNMLBAIkcC94PxXAsDUc0/GlpDJRyGw5KTn3GhktHJH5CYkZFseOeisUT7DzclqWRGROBiUYK4eReB7lzAe5O8wVNxVsg5yf77BvbAAAgAElEQVR3h+Przzym0dYdS64N8BMDBcILQkFfvV/96YzEKC080T3VEYnz05f2suo/nuGNQyYc+YqJRgq5aGl0RZ2g40B49Zv8tKdGzwA1mdIxpcwptd3kwwV+A68Il5yKmw2Xjp4TP5NVJU4pkQfrGlCFX7yyPxtDMyYAE40UelNuc+eutjMSH3RjG69SrJ/iGpmu0wCY6i7wa2zzl4sqnlBiCU1rURXkYDXl4dAZiVHaLxD+rpOdbZa37G8B4MG6fXz1kW2+nqeRniG/uSKyTkSOiMjWlLYaEVkvIjvd39Upz90oIvUi8oaIrE5pP1dEtrjPfcfd9hV3a9j73fYNIjI/pc9a9zV2ioi3Jey44d21R3KobHV3dHD3VHInuBxyqQ3FcNxTs6uLAWho9lfRwki/VdOp+D0Q3hmJU9IvEL5gailnz6sC4KNnzeJYR4Q7n9/Drsb2bAzRGEcyud27E7isX9uXgCdUdQnwhPs3InI6znatS90+PxAR79N1G3Atzr7hS1LOeQ3QrKqLgVuBW9xz1eBsLXs+sBK4KVWcxoPCHE25Hdw95b89p4cTCJ9XUwLA2z4rWjikaOSQC3S4dEbiJ1gaAH92/kmUFAT5/z5yOnd++jwA2i2jKu8Y8purqs/g7N2dyuXAXe7ju4ArUtrvU9UeVd0N1AMrRWQmUKGqL6hT2Onufn28cz0EXOJaIauB9arapKrNwHpOFK8xpSDoXJxzKabRGRlqnYbnnvLPnetA+0yko7woTE1pAXub/CUaPa6LM61ohMTXO/d19MTS3sj80TmzqfvK+5laVkiluwVsW4+JRr4x0pjGdFU9COD+nua2zwb2pRzX4LbNdh/3b+/TR1VjQAswZZBzjRvhUO5lInUPEdNIuqd8VOl2OCvCwbE29jZ1jOOIxp7BqhN7MY1cKoyZKbF4gp5Y4oTFfeAULvTay4uc32Zp5B9jHQhPV+tCB2kfaZ++LypyrYjUiUhdY2NjRgNNR06WERnCPdUbCPfPBWig8hoDMa+mxH/uqfjgopFrhTEzpdOtO9V/cV9/ygpdS8NEI+8YqWgcdl1OuL+PuO0NwNyU4+YAB9z2OWna+/QRkRBQieMOG+hcJ6Cqt6vqClVdUVtbO8Ip9cYHckU0IrEEsYTm1ToNVR1WTAPgpCklHDje5Zs5QkpMI13BwlDurQfKFK/qcjpLI5WkpdFjpUXyjZGKxiOAl820Fng4pX2NmxG1ACfg/ZLrwmoTkQvceMXV/fp457oSeNKNezwOrBKRajcAvsptGzdyLRA+VIVb6L0o+eWCGo0rqr27vmXCvJoSEgr7fZRBNVQgHHLnczYcOtwYxVCWhlPQ0CyNfGTw2wVARO4F3gNMFZEGnIymfwYeEJFrgL3AVQCquk1EHgC2AzHgelX1Fj1ch5OJVQw85v4A3AHcIyL1OBbGGvdcTSLyDWCje9zXVbV/QH5M8b7gPTliaXRHh76r84SuO5obYx4Kb2V3ujvwgZhd5aTdHmjpYv7U0nEZ11jTu+dEunUaXmq3P96zVDoztDREhLJCq0eVjwwpGqr6iQGeumSA428Gbk7TXgcsS9PejSs6aZ5bB6wbaoxjhZel5F2ss433BS0uGPgCW17k+Y794QZIXkwzzJ4CqCpxFvj5qfR2JpaGX6zDVDxLY7A4m0dFUZh2y57KO2xFeAoFwQChgNAZyY0Peu+ufQNru+c79ssdXbpd34aiutQRxuZOH4nGYCm3ORY7Gw69lsbQouFYGv55z4zMMNFIQUQoLgjS0ZMbloYX0xhsnUZFsc8sDXdOw0m5rSp2LI3jfhKNQQLh3gW3K0cs2uHgiUb/goXpKCsKmaWRh5ho9KO0IJQzlobnJhsse2oyWBpF4QAFoQDHu/xTtHAwN1xZMrPIH+9ZKh2RzN1T5UUhW6eRh5ho9KOkMEhHJDfuADNxBYSDAYrCAd/smjaSmIaIUF0S5niHP+YIvfNMZ2l4d+l+FI1OL3tqiEA4YIHwPMVEox+lBaFkLCHbZJJyC04w3C9fzpG4p8BxUfnJ0ogMYlGVFfp3tbR3Q9W/YGE6yotCVkYkDzHR6IcT08iND3p3ZOiYBkCFj7baHGyl9GBUloR9FdPoGSR7yhONXPmcDYfOSIxgQDJKmS4vCvtSGI3BMdHoR2lBMOkWyjZebGWwmAY4X07fuKeiA69fGIzqkjAteZJy62f3VHNnlKriMO7OBoNSVhiiKxr3ZWqxMTAmGv0oKQwlg33ZpiOSWZ2f8qIQrT65oxtJTAMc91Rzp3/cU12RGCLpxbHMx6LR1B6hprQgo2P9bFEZA2Oi0Y/SgmDOxDRau6MUhAJD3pVXFIX9k3I7ghXh4Gwn6if31LGOCFXFYYKBE+/IgwGhOBz0peumqSNz0fBbZp+RGSYa/SgpCOXMnVF7d4yKoqGzVCqK/RPTGLGlUVJATyyRM6v1h6K5c/CLa1lR7li0w6GpM8KUskxFw1lD5BfXqZEZJhr9KHFjGrmw10Fbdyxp4g9GuZ8sjZFmT5V4q8L94aI61h5hSmnhgM+XFYZoz5FFpMOhqSNCdUlmouFtxOSnWJQxNCYa/SgtDBFLaE5UIG3viSXv1gajvDBEdzThi7IUI1ncB1DlXoD84qJq7owky5+ko6wwRLtPhN4jnlCaOyNMydA95YmGn2qGGUNjotGPZImHHIhrtHVHM7I0/FRKZKSi4bl6jrb3jPmYxgPH9z+wpVFamDvlajLleGcEVTKOaVQUO59dszTyCxONfniikQurwtu6Y8mSE4Php4BjR0/MKQw5zEC4VxJ999Hc3/Y1kVCaO6PUDGFp+G3hW1OH4xqsKRtYDFMx91R+YqLRD2+fgM4c+EK3dceSgjAYveXRsz/moRgqQDwQ08oLKSsM8VZj7otGa3eUeEIHtTTKCnMn4SJTjrmikal7qqwwRDAgJhp5holGP7w1EbmwwK+9J0Z5Ju4pV1j8kKXS1BFNBrWHg4iwqLaUXY3t4zCqsaUpg4traaH/KsAmLY0MRUNEqCgKmWjkGaMSDRHZIyJbRGSziNS5bTUisl5Edrq/q1OOv1FE6kXkDRFZndJ+rnueehH5jrslLO62sfe77RtEZP5oxpsJnqWR7XRIVc04EF5Z4h83wEgtDYCFtWXsOuIf0ageIuXWb6IxXEsDHBdVS5e/5mkMzlhYGu9V1eWqusL9+0vAE6q6BHjC/RsROR1nK9elwGXAD0TEy7u8DbgWZ0/xJe7zANcAzaq6GLgVuGUMxjsoXkyjM8tByq5onHhCM4ppVPoos6i5IzLoxXQwFtWWcqClO2dK1w9EJpZGWUGISMwfGW8eTe1Di2F/HNHI/c+lkTnj4Z66HLjLfXwXcEVK+32q2qOqu4F6YKWIzAQqVPUFdRZH3N2vj3euh4BLJJOiN6MgVywNLz6RSUzD26TID1/O5s4INRnm+fdnYW0ZQM7HNTK1NMBfJTYa27upKgkndx7MhAoTjbxjtKKhwP+KyCYRudZtm66qBwHc39Pc9tnAvpS+DW7bbPdx//Y+fVQ1BrQAU0Y55kHxYhrZTrn1RCOTlNuicICCYCDnv5zxhHK8KzpiS2NeTQkADc2dYzmsMcdz4wwmjn4sWri/uYvZVcXD6lNZHLZ1GnnG0FekwXmHqh4QkWnAehF5fZBj01kIOkj7YH36ntgRrGsB5s2bN/iIh8CzNLL9ZfbWXFRkENMQEV/c0bV0RVF1KtaOhBmVRQAcaukey2GNOfuaOplSWjBoSXtvsWJzZ4S5rhjmOvuPdzF/Sumw+ph7Kv8YlaWhqgfc30eAXwArgcOuywn39xH38AZgbkr3OcABt31OmvY+fUQkBFQCTWnGcbuqrlDVFbW1taOZEuVummC24wOeaGUS0wCoLA7RkuObFA03+6Y/NSUFhIPCodbcXuC380g7i6eVDXrMzErnjv1gjgugh6qyv7mLWSOwNJybheyX5cl3mjoixBPj/38esWiISKmIlHuPgVXAVuARYK172FrgYffxI8AaNyNqAU7A+yXXhdUmIhe48Yqr+/XxznUl8KSO86cvEBBqSguyvvJ4ODENcAr65fod3XG3blSmtYv6EwgI08qLONKauxdaVWXn4TaWTB9cNPxiNXm0dEXpiMSZUz180YgndEIXy/5260Eu/fbvue7Hm5JVlScDX3zoNa74/nPj/jqjcU9NB37hxqVDwE9V9bcishF4QESuAfYCVwGo6jYReQDYDsSA61XVe0evA+4EioHH3B+AO4B7RKQex8JYM4rxZsyU0gKOtmf3rr19GDENcL6cR9py+wI0WksDYHpFIYdyWDQa23po7Y6xZFr5oMdNKS2gIBjgQEvXBI1sdDQ0O+McSUwDHNHJ9LM8GlSV//eLrRSGAjy29RDTfrODr12+bNxfN1s8seMwPbEE7z1lGs/WN/InK+YO3WmUjPhdVNW3gLPStB8DLhmgz83AzWna64AT3llV7cYVnYmktrww65aGt1CvvDAz/39lcZidR9rGc0ijxqtQO9JAODh36K8fys15dkZiPL7tEABLhnBPBQLC9MpCDh7PXQFMZf9xVzSGaWkkqxN3RIYtOCNh99EOjnVE+NbHz+CxrYeoe7t53F8zW3RH4/zt/Ztp7Y6xsLaU7miCS0+fMe6vayvC0zC1LPui0djWQ0EwkCz6NhSVxbm/SVFThzO+kQbCAaZXFHE4R106332ynn98eBsAi4dwT4ET1/CLe2r/CC2NGRMcu6nb44jEefOrmVNdzIHj/rDkRsLj2w7R2h3j4sVTk2noKxfUjPvrjr+96EOmljkxDVXNaC/k8eBgSzczKosyfv3K4jBt3THiCU27W1wucLi1m9KC4JB7ng/GjIoiOiJx2rqjGa2Wn0g2uResD50xk9oMivrNrCxik0/uhPc2dVIcDg7bteiJzP4JSpN+aU8T1SVhFtWWMbuqmObOKF2R+KCZbH7lwboG5tYUc/dnVnLb73dRXhRKuyf9WGOWRhqmlBXSHU1ktf7UoZZuZrrB0kyo9EF59DcPt7F4WtmohHh6hfM/OZyDGVRvHW3nj1fM4ft/dk5Gc5xZWczh1m4SE5DxMhIe3XKQW37rZNFv3necM2ZXDvu9m1pWQEEowIEJsjQ27D7Givk1iEjy+3PQJ3Gj4XC8M8ILbx3jI2fOIhAQrn/vYq6+cP6EvLaJRhqmuneJ2XRRHWjpGpFo5LKL6s3D7SyZPniAeCg80ci1C0FjWw9H2yOcMqMi4z6zqoqIxpWjHbkngADrnt3NbU/vom5PE1v3t7BifvXQnfohIsyuKk66t8aTt491sK+pi3cumQr0pjUf8EncaDg89cYR4gll1dLxj2H0x0QjDVPLsrvhTyKhHG7tTvqDM6Eqx4sWNndEONrew8kZ+PoHw0tlff1gbgXD33CD86fOyFwU51Y7i/p252BZlO5onNcaWgD4i7vriCV0RKIBjouqYQJiC8+82QjAO5fUJl8XGLMMtfXbD/Oef30qmQWYTdZvP8y08kLOnF054a9topEGz9JobMvOh+NoRw/RuDKrKnNLw8tIyoUPdDp2utVpR2tpTC0rZFZlEa/tbxmLYY0Zrx9qBYYnGmfMcb7wrzYcH5cxjYZX9x0nEk9wzrwqml3r9Zx5IxeNiQhIP7PzKHNripk/xRHj6ZXO93isMtTufH43e4518qPndo/J+TJFVfnyL7bwzUd30BmJoaq8+FYT7zq5lkAW4pcWCE9Dtt1TXkbNjIrMRcO7q5qIO7qR8OZh50785FGKBjgX2y05dqF9taGF6RWFTMlwVztwPmdza4rZvC+35gKwcY9TeOGOtefxy837OdLWQ9UIF2XOqiqmsa2H7micolEkQaRj09vNzKwsora8kBd2HeOjy2cl4y6FoSBTywozFqzdRzvYfqCVD50584TnDrZ08fyuYxSGAtz5/B4+9+5Fyfph44Wq8rVfbedwazePbXVSuVu7olz/3sU0dURYPrdqXF9/IEw00jClrIBgQLLmN/d8sMMp2VBbVkhBMJCzxfx2Hm6jrDDErGHEaQbizDlVPL7tMC1d0WQsJ5s4d37HuGjR8GtpLp9bTd2eEyrjZJWeWJwH6ho4Y3Yl1aUFfPodC0Z1Pm9tx4HjXclKxWNBdzTOJ+/YwAULp/C5dy+ivSfGu5b0LSM0u6qI3ceGdv+pKjfcv5lX9x2nKLyCJdPKmTeltybYL185gCp86+Nn8HcPvMpvthzkj8d5Id2z9Ue58/k9ACyfW8XsqmKefqORi92YzVlzsiMa5p5KQzgYYP6UEnYenvgNf1SVTW87F5EZw7jABgLCrKqiCQk4joQ3D7ePOnPK4wzXj/tajlgbuxo7aGzr4cKFwxeNs+dWcbClO6fWa9zx7G72NnXyxctOGZPzLZ3lJAe8+NbYiuNLu5vojMR55s1GHt68n2BAuLCfcF+8ZCp1e5r6lJ6pP9LOy3ub6eiJcf/GvTy25SDP1R/j1X3HCQeFa+6q413/+hRX/dfz7Dnagary85cbOPekaj529mwW1pbyYN2+/sMZc773ZD0zKor45fXvYN2nzuOixVM41NrNw5sPUBAMcMowXKFjiYnGAJw8vZz6LOwS96Pn9vDDP+zm/adNG9YOaQBzqkuS5R5yjZ1H2kYdBPc496RqCkMBnthxZOiDx5lj7T3c/swuAC4YgWhctNjps377oTEd10g53NrN956s5/2nTU8GlEfLqTPKWTC1lN9sOTD0wcPg6TcaCQjEEspPX9rL8rlVJ1ieHz9nDgmFhzc7r62qfP6nL/OpdS9x/U9f5h9+toW/vvcVvvXYDqZXFHLXZ1by2YsXcOMHTuXNw+1c8YPnePqNRnYeaefj58xGRPjjFXPZuKd51LGNwVKt9x/vYsPuJq6+6CSWz62iprQg+flav/0wp8+qmJA1Gekw0RiAJdPK2HOsg+7oxK3ViCeUO57dzcoFNdz+yRXDviufXVWcLPeQSzR1RDjaHhmTeAY4e1G86+RaHt92KKvVU1WVz95dxwN1DSydVcFJU4Zf4vzUGRWcOqOcX7yyfxxGODxUla//ajuxuPKVD502ZucVET50xkxe2HWMPUfHLlPs6TePcPGSWt5zSi1LZ1Xwf1efaBktqi1j+dwqfvZyA6rKht1NvH6ojdbuGE+/0cjHz55NQpVtB1r5i3cu5KJFU/nKh0/nL9+9iJ9ddyGdPXE+e3cdpQVBPnzGLAA+ddF8Vi+dztd+tZ1fvzYyIWxs6+Hsb6znxy++nfb59W45mstSUmoXTi2lwi1g+tl3js5lOBpMNAZg8fRyEuoExyaCaDzB7c+8xf7jXXz6ovkjyoqYU90bcJxo4gkdsCyzFwQfbeZUKquXzuBgS3cyLTQbPPLqAV7Ze5xvfuwMfv3XF4/Y9Xb58tm8vPc4uxqzu//5Tzbs5TdbDnLDpUuYP3V4+2YMxVUr5lBWGOLjtz0/JnG3Qy3dvNXYwTsXT+XOT6/k13/9zgEtvT86dw6vH2pj+8FW7nh2N5XFYeZUFxMMCF+87FQ+ctYsppYV8Kfn992LZ/G0cm64dAmlBUHWfeo8Kt209qJwkO/96TmcPa+KG3++hca24SfM3L9xLy1dUb716I60sdP/3X6YRbWlfWJAIsLP/+od/OGL7+XDZ84a9muOFSYaA+C5UnaOk4uquSPCj57bze3P7OJ4Z4Rvr3+TW377OsvnVnHp6dNHdE4v4DjR1oaqcv1PXmbVrb8/4Qu06e0mPv2jjQBj5p4Ckgu4XtmbnTIcqsr3n6rn1BnlrDlv7qhiNVeeO4ficJD//N3OMRzh8FBV/uv3u1g5v4bPvWvRmJ//pCml/PyvLqK1K8qdz+0Z9fk27D4GcEIMIx0fOXMm4aDwT7/ewfrth/nMOxbwjSuW8bWPLmVGZRG3/NGZPH7Du5IbsKXyV+9ZzMv/eCnn9xOkcDDAv111Fu09Me5+IfP5qCqPvHqAu194m9NnVhBxbxZbu6NE485+8d9/qp7ndx3jo2fNPqH/4mllWd+0y7KnBmDB1FIKQgHq9jTx0bPGVtV7YnE+uW4DW/c7uf13PreHaEJ536nTuGPt8N1SHt5dyc2/2cF/rlk+YbWZnnz9CL91zen3/tvTXLZsBrf80ZkEA8I3H32drmicGRVFw0ohHopp5YVUlYR54/DEL/KLJ5RfvXqANw+3869XnjnqXPna8kI+/Y75/ODpXfzNJYtZPERZ9fFg877jNDR3ccP7Tx633P/F08r5wBkzub9uHzdcevKoSqW/+NYxyotCnDZz6BX4VSUFXLViLj/dsJfqkjCfuXh+n+9GUTg4aCpwaIA90RfVlrHq9Onc+dwejrb38MXVpw5ZwfnFt5r4m3tfYWpZAV+7fCl3PreHhzY18MDGfcQSysfPmcO9L+3lo2fN4vr3jr14jwVmaQxAYSjI6qUzeHjzgTF393z/yXq27m/lB392Dj/97PkcaOmmsa0nGWgbKWfNqeQrHzqNp944wm1P7xrDEQ/MC7uO8YX7NrN4Whn3X3sB7z9tGg9tauDb699g99EONr3dzBcuWcLjN7xrTIs/iginTC/PSpn0//vgq9xw/2amVxTykTG6ofjURfMB+O3WiQ2Iv9XYzq7Gdn72cgMFwQCrlo7Mys2Uay5eQHtPjC8+9OqIa27d8+Lb/HbrIc5fUJNxcc6br1jGg5+7kB9/9vwxvZn6m0uWMKuqmIc2NbD2Ry/xuXs2sa/pRPfbvqZOVt36e/7fL7dQWRzm2X94H+fNr2HNyrm0dccoKQxx/sIp3PvSXmZWFvGtj58xoFhlG7M0BmHNeXP51asHeGzrQT529pyhO2RAR0+MO5/fwweWzeCDZziLiK48dw6/23GYS04d3RdWRPjsOxfyakMLdzy7mwc3NbB66XS+8qHTx3xRlcfXfrWNqWUF3HPNSmZWFnP+wikUhYN8/6ldPFd/jIDAJ1bOS/qDx5JTZ5Tz0KYGEgkd87vjY+091B9pJxpXNu5porkzwvkLprB0VgW/2LyfP14xh/+z+pQx+79OqyjirDmV/G7HET7/viVjcs50HGnt5qZHtlFaGOKsOZXc/OgOEgqRWIJPrJyb0Z70o2H53Cq+/IHTuPnRHdw1f0/aNSDePhEb9zQxr6aEb1yxjKWznDTruj1N/OMvt3LqjHI+M4z1IyLCefPHvmz40lmVPP637+L+jXv5h59tYfuBVuob2/nAshn88Yq5TC0r5Id/eIuXdjfxppvCf83FC5Kfm3csmsrfvG8xl54+gyXTy/jmozv4wLKZ475wcDTk7shSEJHLgP8EgsD/qOo/T8TrXrhwCidPL+Pb69/kA8tmUrenmfojbSydXcmi2jLKi0KEAsIjrx5gdlUxKzL4UN770l5au2N89p0Lk23f+vgZfKnr1DEr3/y371/Cpj1NLKwt48cv7mXh1DI+c/Hwsy0OtnTR1h1j4dTStHc9+4938fqhNr78wVOTxeEAvnb5UnYcamPr/hb+ftUpw1pvMhxOmVFBRyTO/uNdY+rn3X+8i8u/92xy98aAQGlBiLtfeJuSgiChgPB/Vp3CtPKxndclp03n1t+9ySG3LP5Ys/94F1fd9jzH3L2kH9rUwDnzqigrChMQ+OpHl475a6bjs+9cwB/qj/Jvj7/B+0+bfsJ79+CmBh7beoiPnjWL5+qP8uWfb+GDZ8xkz7FONrx1jNryQn7+VxeljUFkiz85bx4fPGMmm/cd54b7NvP9p+r572feYsVJ1Ty/y4m//OW7F1JbVsjHz+m9AQ0EhL9b1Zv19XUf7DIoub7hu4gEgTeBS4EGYCPwCVXdnu74FStWaF1d3Zi9/nP1R/mz/9nA4mllJ6zbKAgFmFtdzK7GDqpLwvzu796NiPCHnY3Mn1LKWe4y/0Mt3XRH4/xhZyM3PbKNixZN5Z5rVk7IXh2rb32G6tIw9117YbJNVdmyv4UZFUVMSxNnONjSxY9ffJvbn3mLaFxZVFvK5969iBXza5g/pSQ57h+/+DZf+eVWfvd37zrBD98ZiXG8MzqsVe3D5eW9zXz8B8/zpQ+cyinTy7lg4RSKC4KoKvuauphd7ZTouOW3rzOjoogPLJvBe06ZNqg47znawWfu2khjaw+3XHkmVSVhTpleTnVJAQ9tamDT282ct6CGK88dG8szlbca27nsP//AydPLuOkjS1lxUjUNzV2UFDj7WIzm81J/pJ3P3LmR5s4I9/7FBZQXhWjrjrF0VkVW9ozZ19TJB//zD8yuLuaM2ZVctmwGC6aWcs+Lb/Pr1w4yt7qYn113EQ9uauCLD70GOGVXygqD3PjB01idhequw+FgSxdfuG8zL+1u4k9WzOXDZ83kgoVTCOeoywlARDap6oohj/OBaFwIfFVVV7t/3wigqt9Kd/xYiwbA3S/s4UfP7eHdJ9fyV+9ZxAtvHaOpI8LBlm62H2hl8bQyfrLhbZbOqmRfUyfHOiIEBP78gpNIqPJAXQORmJMZ8f7TpvHdT5wzYZvC/Pv/vsH3n6qn7iuXsqux3Q3gtvHiW00EA8J1717Ee0+dRv2RNhLqfDH/7oHNtHXH+MhZs3jn4ql876l69rp+2prSAqpLwrR0RTneGWVmVRHP/N/3ZuXCE08on75zY7K66QULazjc2kNLV5SmjgjnzKvitYYWppYV0hmJ0dod4+TpZbzv1Ol0RmJ9zjV/SillRSG++egOAH549YpxcWcMxVOvH+H6n75MZyTOuSdVJzdpqigKsbC2jEW1ZXzs7Nm0dkd5/VAbG3c3cf7CGlq6nM2GDrV2s6i2jPlTS4nHE5w0tZRfv3qQhzfvp7I4zP+sXcHZIyw8ONY8seMw196ziYJggC43blgQCjC7qphvfuwMLlw0hVg8wT/9ZgcXLpqS80LRn+5onMe2HuSypTN9sQlUPonGlcBlqvpZ9+9PAuer6ufTHT8eopEJD2/ez6EyShYAAAkCSURBVD/+citVJQX8y5Vn8mBdA7969QCBAHz4zFnMqiomkVBueP+SCQ1wbd3fwoe/+yxF4QDd0QQlBUFmVBbxseWz2X2sg5+/fOKistryQu79iwtY7O5zHU8o9UfaeWVvMy/vbaa9J0ZlcQGVxWHee0rtCemIE0lHT4zvP1VPZyTOnc/vYcHUUlbOr6EoHOCuF97mnHlV3PmZlRSFgvz+zUa+9LPXaOuOUVrY+yVOaG9J+UW1paz71HmcNGVs1ykMh/aeGN99Yif//cxbfOzs2SybXcnuo+3JgnrNKXumLJhayu6jHRSEAlQUhagpLWD30Q6i8d7vdUEwwJ9fcBLXvmvhuLkKR0p7T4yCYID12w9zuLWb1ctmTMhe4saJ5JNoXAWs7icaK1X1r1OOuRa4FmDevHnnvv12+lWW401bd5RQIJC8q/CyrsYrCJ0pv9t+mCdeP8zZ86r50Bm9QTZV5ek3G4nHlSXTywiI8Fz9UVbMr0kKhl9QVf6w8yjL51Ulg7mvH2pl/pTSPv//WDyBiJyQdbOvqZO27hiLppVSGMqNu8L9x7uY1W/L365InN9sOchJU0pYNquS4oIgrx9qZVp5UXIr1vaeGJ2RGIKwZf9xFkwtY8EYL9Yz8o98Eo2su6cMwzDynUxFI3ejMr1sBJaIyAIRKQDWAI9keUyGYRiTktzJWRsAVY2JyOeBx3FSbtep6rYsD8swDGNSkvOiAaCqjwKPZnschmEYkx0/uKcMwzCMHMFEwzAMw8gYEw3DMAwjY0w0DMMwjIwx0TAMwzAyJucX9w0XEWkD3gCmAkdHcIpKYLh7iE5Un3ycE4xsXhM5vol6ryZyfDYnB5uTwzwcPagd8khVzasfoC719wj6357DffJuTiOd1wSPb0Leqwken83J5pTapzHTY809dSK/yuE+I8XmNPI+o+k3Ua+Ty++VzWl0/SZqTsczPTAf3VN1qrrC+53t8Ywl+TgnyM952Zz8gc1p+H3y0dK4vd/vfCIf5wT5OS+bkz+wOQ2zT95ZGoZhGMb4kY+WhmEYhjFO+EY0RGSuiDwlIjtEZJuIfMFtrxGR9SKy0/1d7bZPcY9vF5Hv9TtXgYjcLiJvisjrIvJHfp6TiJSLyOaUn6Mi8h/ZmNNYzst97hMiskVEXhOR34rI1DyY05+489kmIv+Sjfm44xjunC4VkU3u+7FJRN6Xcq5z3fZ6EfmOZGP/37Gf080isk9E2rMxl5RxjMmcRKRERH7jXvO2icg/j2hAI0kdy8YPMBM4x31cDrwJnA78C/Alt/1LwC3u41LgYuBzwPf6netrwD+5jwPAVL/Pqd95NwHv8vt7hVOF+Yj3/rj9v+rzOU0B9gK17t93AZf4ZE5nA7Pcx8uA/Snnegm4EBDgMeADeTCnC9zztWdjLmM9J6AEeK/7uAD4w0jep6z9I8bgH/kwcCnOQr6ZKf/cN/od9ylOFI19QGm25zCWc0p5bok7P8n2fEY7LyAMNAInuRej/wKuzfZ8Rjmn84Dfpfz9SeAH2Z7PcObktgtwDCh0j3k95blPAP+d7fmMZk792rMqGuMxJ/e5/wT+Yriv7xv3VCoiMh9HTTcA01X1IID7e9oQfavch98QkZdF5EERmT6Ow82I0cypH58A7lf3U5FtRjMvVY0C1wFbgAM4d1d3jONwM2KU71U9cKqIzBeREHAFMHf8RpsZI5jTHwGvqGoPMBtoSHmuwW3LKqOcU04yVnNyr4MfAZ4Y7hh8JxoiUgb8DLhBVVtHcIoQMAd4TlXPAV4A/m0MhzhsxmBOqawB7h39qEbPaOclImEc0TgbmAW8Btw4poMc/phGNSdVbcaZ0/047oE9QGwsxzhchjsnEVkK3AL8pdeU5rCs3rSMwZxyjrGak3uzci/wHVV9a7jj8JVouBeRnwE/UdWfu82HRWSm+/xMHB/4YBwDOoFfuH8/CJwzDsPNiDGak3eus4CQqm4al8EOgzGa13IAVd3lWk4PABeN05CHZKzeK1X9laqer6oX4rgYdo7XmIdiuHMSkTk4352rVXWX29yAcyPmMQfHMswKYzSnnGKM53Q7sFNVR5Qs4xvRcLMx7gB2qOq3U556BFjrPl6L4+8bEPfi8yvgPW7TJcD2MR1shozVnFL4BDlgZYzhvPYDp4uIV0TtUmDHWI41U8byvRKRae7vauCvgP8Z29FmxnDn5Lo0fgPcqKrPeQe7rpE2EbnAPefVZP6ZHVPGak65xFjOSUT+CacI4g0jHlC2gzrDCP5cjGPyvgZsdn8+iJON8gTO3doTQE1Knz1AE9COczd0utt+EvCMe64ngHl+n5P73FvAqXn2Xn0ORyhewxH7KXkwp3txblS2A2v88j4BXwE6Uo7dDExzn1sBbAV2Ad8jS4kYYzynf3Hft4T7+6t+nhOOBaju98lr/+xwx2Mrwg3DMIyM8Y17yjAMw8g+JhqGYRhGxphoGIZhGBljomEYhmFkjImGYRiGkTEmGoYxwYjI50Tk6mEcP19Eto7nmAwjU0LZHoBhTCZEJKSq/5XtcRjGSDHRMIxh4haN+y1O0bizcUpVXw2cBnwbKAOOAp9S1YMi8jTwPPAO4BERKcepnPpvIrIcp3pvCc7CuM+oarOInAuswyl58+zEzc4wBsfcU4YxMk4BblfVM4FW4Hrgu8CVqupd8G9OOb5KVd+tqv/e7zx3A//gnmcLcJPb/iPgb9SpT2UYOYNZGoYxMvZpb12fHwNfxtnwZr27aV0QOJhy/P39TyAilThi8nu36S7gwTTt9wAfGPspGMbwMdEwjJHRv/5OG7BtEMugYxjnljTnN4ycwNxThjEy5omIJxCfAF4Ear02EQm7+xkMiKq2AM0i8k636ZPA71X1ONAiIhe77X829sM3jJFhloZhjIwdwFoR+W+cKqPfBR4HvuO6l0LAfwDbhjjPWuC/RKQEp0rxp932TwPrRKTTPa9h5ARW5dYwhombPfVrVV2W5aEYxoRj7inDMAwjY8zSMAzDMDLGLA3DMAwjY0w0DMMwjIwx0TAMwzAyxkTDMAzDyBgTDcMwDCNjTDQM4//fKBgFo4BoAACLxt9K6AHXewAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "sorted_data['inc'][-200:].plot()" + "sorted_data['inc'][-300:].plot()" ] }, { @@ -252,10 +1352,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 27, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +1372,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +1396,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +1435,55 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2053781\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +1498,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGbhJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDkr7QAjIqDgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq27dvsXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvbqdwAzM6uXC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJeTnzVqlUxNDQ067AHH3yQFStW9HL2lTU5GzQ7n7NV1+R8zlZd2Xxbt269JyIO6mqmEdGzv7Vr18ZcrrrqqjmH9VuTs0U0O5+zVdfkfM5WXdl8wER0WXvdFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZpkpVdglvUfSzZJuknSRpH17FczMzKrpuLBLWg28G2hFxNHAEuB1vQpmZmbVlO2KWQosl7QU2A+4s/5IZmbWDUWJ3zyVdBZwDrAb+GpEnDrLOKPAKMDg4ODasbGxWac1NTXFwMBAlcw91+RsUH++yR27apvW4HLYubvz8desXlnbvBfyq/a61snZqiubb2RkZGtEtLqZZ8eFXdKTgEuAU4D7gX8ALo6Iz8/1nFarFRMTE7MOGx8fZ3h4uGzeRdHkbFB/vqENW2qb1vo1e9g02fk3VWzfuK62eS/kV+11rZOzVVc2n6SuC3uZrpiXA7dHxE8i4lHgUuDF3czczMzqV6aw/wj4D5L2kyTgZcC23sQyM7OqOi7sEXEdcDFwAzBZPHdzj3KZmVlFpb62NyI+CHywR1nMzKwGvvLUzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMdF3ZJR0j6TtvfzyT9US/DmZlZeR3/NF5E3AI8H0DSEmAHcFmPcpmZWUVVu2JeBvyfiPi/dYYxM7PuKSLKP0n6DHBDRPzFLMNGgVGAwcHBtWNjY7NOY2pqioGBgdLzXgxNzgb155vcsau2aQ0uh527Ox9/zeqVtc17Ie3tVucylzHf8jZ5vXO26srmGxkZ2RoRrW7mWbqwS9obuBN4TkTsnG/cVqsVExMTsw4bHx9neHi41LwXS5OzQf35hjZsqW1a69fsYdNkxz18bN+4rrZ5L6S93epc5jLmW94mr3fOVl3ZfJK6LuxVumJeSdpan7eom5lZf1Qp7K8HLqo7iJmZ1aNUYZe0H/BbwKW9iWNmZt3qvDMUiIiHgCf3KIuZmdXAV56amWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZabsT+MdKOliST+QtE3Scb0KZmZm1ZT6aTzgXOCKiDhZ0t7Afj3IZGZmXei4sEs6AHgpcDpARDwCPNKbWGZmVpUiorMRpecDm4HvA88DtgJnRcSDM8YbBUYBBgcH146Njc06vampKQYGBqon75HJHbsYXA47dy/+vNesXtnReHW33eSOXbVNq2zbdbrMdWhvtzqXuYz5lrep7wlwtm6UzTcyMrI1IlrdzLNMYW8B/wIcHxHXSToX+FlEvH+u57RarZiYmJh12Pj4OMPDw+UT99jQhi2sX7OHTZNle6m6t33juo7Gq7vthjZsqW1aZduu02WuQ3u71bnMZcy3vE19T4CzdaNsPkldF/YyB0/vAO6IiOuK+xcDL+hm5mZmVr+OC3tE3AX8WNIRxUMvI3XLmJlZg5Ttb3gX8IXijJjbgLfUH8nMzLpRqrBHxHeArvp+zMyst3zlqZlZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmSv2CkqTtwAPAz4E93f6StpmZ1a/sb54CjETEPbUnMTOzWrgrxswsM4qIzkeWbgd+CgTw1xGxeZZxRoFRgMHBwbVjY2OzTmtqaoqBgYEqmXtqcscuBpfDzt2LP+81q1d2NF7dbTe5Y1dt0yrbdp0ucx3a263OZS5jvuVt6nsCnK0bZfONjIxs7babu2xhf2pE3CnpYOBrwLsi4pq5xm+1WjExMTHrsPHxcYaHh0vG7b2hDVtYv2YPmyar9FJ1Z/vGdR2NV3fbDW3YUtu0yrZdp8tch/Z2q3OZy5hveZv6ngBn60bZfJK6LuylumIi4s7i/93AZcALu5m5mZnVr+PCLmmFpP2nbwOvAG7qVTAzM6umTH/DIHCZpOnnXRgRV/QklZmZVdZxYY+I24Dn9TCLmZnVwKc7mpllxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmdGGXtETSjZIu70UgMzPrTpUt9rOAbXUHMTOzepQq7JIOBdYBf9ubOGZm1i1FROcjSxcDHwH2B/44Ik6aZZxRYBRgcHBw7djY2KzTmpqaYmBgoErmnprcsYvB5bBzd7+TzK3J+cpmW7N6Ze/CzNC+zk3u2LVo82033/I29T0BztaNsvlGRka2RkSrm3ku7XRESScBd0fEVknDc40XEZuBzQCtViuGh2cfdXx8nLmG9dPpG7awfs0eNk123DSLrsn5ymbbfupw78LM0L7Onb5hy6LNt918y9vU9wQ4Wzf6ka9MV8zxwGskbQfGgBMkfb4nqczMrLKOC3tE/JeIODQihoDXAVdGxGk9S2ZmZpX4PHYzs8xU6qiNiHFgvNYkZmZWC2+xm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMdFzYJe0r6duSvivpZkkf6mUwMzOrpswvKD0MnBARU5KWAd+Q9E8R8S89ymZmZhV0XNgjIoCp4u6y4i96EcrMzKpTqtcdjiwtAbYCzwbOi4g/mWWcUWAUYHBwcO3Y2Nis05qammJgYGDOeU3u2NVxrroNLoedu/s2+wU1OV/ZbGtWr+xdmBna17l+rV/zLe9C74l+eqJma8LrXLbtRkZGtkZEq5v5lyrsv3iSdCBwGfCuiLhprvFarVZMTEzMOmx8fJzh4eE55zG0YUvpXHVZv2YPmyYr/c73omhyvrLZtm9c18M0/177Otev9Wu+5V3oPdFPT9RsTXidy7adpK4Le6WzYiLifmAcOLGbmZuZWf3KnBVzULGljqTlwMuBH/QqmJmZVVNmf/4pwAVFP/tewBcj4vLexDIzs6rKnBXzPeCYHmYxM7Ma+MpTM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8yU+c3Tp0m6StI2STdLOquXwczMrJoyv3m6B1gfETdI2h/YKulrEfH9HmUzM7MKOt5ij4h/i4gbitsPANuA1b0KZmZm1Sgiyj9JGgKuAY6OiJ/NGDYKjAIMDg6uHRsbm3UaU1NTDAwMzDmPyR27Sueqy+By2Lm7b7NfUJPzOVt1vc63ZvXKys9d6P3aT/Nl61cdaW/rsm03MjKyNSJa3cy/dGGXNABcDZwTEZfON26r1YqJiYlZh42PjzM8PDznc4c2bCmVq07r1+xh02SZXqrF1eR8zlZdr/Nt37iu8nMXer/203zZ+lVH2tu6bNtJ6rqwlzorRtIy4BLgCwsVdTMz648yZ8UI+DSwLSL+tHeRzMysG2W22I8H3gicIOk7xd+repTLzMwq6rhDLyK+AaiHWczMrAa+8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM2V+8/Qzku6WdFMvA5mZWXfKbLGfD5zYoxxmZlaTjgt7RFwD3NfDLGZmVgNFROcjS0PA5RFx9DzjjAKjAIODg2vHxsZmHW9qaoqBgYE55zW5Y1fHueo2uBx27u7b7BfU5HzOVl2v861ZvbLycxd6v/bTfNn6VUfa27ps242MjGyNiFY386+9sLdrtVoxMTEx67Dx8XGGh4fnfO7Qhi0d56rb+jV72DS5tG/zX0iT8zlbdb3Ot33jusrPXej92k/zZetXHWlv67JtJ6nrwu6zYszMMuPCbmaWmTKnO14EfAs4QtIdkt7au1hmZlZVxx16EfH6XgYxM7N6uCvGzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDOlCrukEyXdIumHkjb0KpSZmVVX5jdPlwDnAa8EjgJeL+moXgUzM7NqymyxvxD4YUTcFhGPAGPAb/cmlpmZVaWI6GxE6WTgxIg4o7j/RuBFEfHOGeONAqPF3SOAW+aY5CrgniqhF0GTs0Gz8zlbdU3O52zVlc13WEQc1M0Ml5YYV7M89kufChGxGdi84MSkiYholZj/omlyNmh2Pmerrsn5nK26fuQr0xVzB/C0tvuHAnfWG8fMzLpVprBfDxwu6RmS9gZeB/xjb2KZmVlVHXfFRMQeSe8EvgIsAT4TETd3Me8Fu2v6qMnZoNn5nK26JudztuoWPV/HB0/NzOyJwVeempllxoXdzCwzLuxmZpl5QhZ2Saslre53jtlIeqak90g6od9ZZmpyNmh2Pmerrsn5mpwNqud7QhV2SUOSrgauAD4u6SX9ztRO0n8Evkb6Lp23SXp7nyP9QpOzQbPzOVt1Tc7X5GzQZb6IaPQfsG/b7dcCnyhuvxn4B2BNcV99yHYC8Izp+QMfAE4r7r8I+BIw3I98Tc7W9HzOlme+JmerO18jt9glHSDpryTdCnxC0mHFoN8BflTcHgN+CJwx/bRFzHeUpO8B/w34rKQTIrX2UcAhABFxHfBN4C2Lma/J2Zqez9nyzNfkbL3K18jCDpwI7EtasEeAD0haTtoteTVARDwMXAy8pLj/WK/CSDpU0gFtD50CXBIRLyV9wLxB0uHAhdP5CpcBR0vap1f5mpyt6fmcLc98Tc62WPn6VtiVLJX0Vklfl3SWpGcVg58NPBIRe4A/A34KnAZ8FXiKpF8rxrsV+LGk43qU8UhJXwa+AXxY0vTXFP8/YL/i9heBu4B1pE/UJ7ftYdxH+nbL5/0qZWt6PmfLM1+Tsy12vr4V9mJX4zeBNwEfA/YB/qYYfBdwd/HJ9GPSwjyL1ADf5/GvBV4G3Fs8XgtJK9ruPh+4IyKGgCuBTxSP3wc8LGn/iLgP+FfgqUWObwLvLcbbG/g5sD33bE3P52x55mtytn7mW7TCLuk4SR+VdHpxX8CRwBUR8aWI+BhwmKQXAztIn2BHFk/fBgwUj/0F8CpJryZ9KAwC3+0y25MknS/pemCjpIOKfGuAayUpIv4RuF/SOtKewv7FcIr7BwOPkfYwDpb0N8BFwJ6IuDvHbE3P52zVNTlfk7M1Jd+iFHZJzwH+EngA+D1J7y3mvRp4oFhogPOBN5AK9R7gxcXjN5COGD8UEdcAG4DTgeOB/x4Rj7VNo4qXFvN7FemgxNnAAaQvOzuk2LsAuKDI9+1iWV4JEBHfKqaxNCK2AWcCNwP/MyLeQneanK3p+Zwtz3xNztaMfHOdLlP1j7RlfQZpt2Np8difAmcVt1vAJ4GTgZcDX2l77tNIuyqQCvmNpF9hOgb438BT2sYtfTpS0bBnAleTunNWFY9/EXh3cfsZwMZi+LGk/rAlbcv2k2I6q0l7Eu8EPgt8CljRRbs1NlvT8zmbX1e33b//q3WLXdLzSQc4fxv4IPC+YtAO0m+mQvrkuRb4XeCfgUMkPVfSskj96TskvSQiriR93eVHgUuBiyLi36bnFUXLlHQS8BrgQ8BxpL59SGfbTO8d/Bj4OvDKiLie9Ik7UsxzCrgOODYidgBvJHUF3QW8LyIeLBuobU/j1U3LNoPbrprGtRu47brJ9kRouzI/jfdLJL0QOBz4akT8hLQ1fmtEnC7pBcA5klrAOPCfJO0XEQ9J+i7we6RzNC8E/gD4pKTdwCRwezGLvwIujIhdJTIpIkLSsaTdnK8DWyKdHvnrwG0RcaWk20lXr74C2Ar8jqRVEXGPpH8FHpT0dODPgdMkHUz61ah7SbtORMQEMFGh3VqkvZoHgI8DdwPP7Hc2t121bE+EdnPb5dd28ym1xa5kmaQ3SbqR1LF/IDBdeH8ObC+2vm8g7VocBzzE46fwADxK2gU5hLRVfhOpf/1q4J6IuAPSVnnFov5S4DOko8ovBz5SjPIYcKuk5RFxe5HvuaQX607S+aTTy7GE1D6XFBlPBdYCm6PiOa6SVkr6bDHN24FzI+JuSXuRPsn7mW1J0Xa/SdoVbEzbFevdgKTzaVjbFfMMScM0c53bR9KKhrbdAQ1vuwFJ+0q6gIa13YI66a8BVgAvLm4fWAT75CzjnUW6DHZ1cf9kUn/6YaSvALi6eHxfUjfMqrbnHgPs3UmeGfPcD3gbj2/5LwP+CHhHMfxJwPeK6Z9C6u8aKoadVCzLquL2JLCS1L//5fY8wF5dZLuIdMXYAKlr6cy2caaPQ7wT+B+Lla3tdT2DtLKtJx3gaUrbTWe7tFivDmpY2+0PbCH9khjAe5rQbjPyfRn46+L+x4C39bvtSO+JN5Pe/5c0re3a8l0J/H3xWGPWu07/Ftxil3Q2cBuwRdJgRNxP6he6s+gbf40ev0DoW6QDoNMXGl1LOoj6UERcAPxU0udIB0VvAX7RhxQRN0bEIwvlmZHtEOByYBj4HOkAxWtJewl7iun+lHTg9d2kvq+Defw0ymtI59I/EhGXA58mXc16HumI9aNt+Up9qs7I9nfA24tstwJHSNpYbEX9vtIFV1eQ9mB6nq3It4L05jqBdP3AK0jHPY4lbSn1s+3as20mnS3wWtI1DL/R77YrLCdde/EsSatI6/ySYpp9abdZ8u1NWteeSuriOFrSR/rVdpKWkY6xnQx8PCJ+txh0TNs0+9Z2M/J9LCKmt7gngaP62XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI6t41OJtPK+qO3+6aQtkzcD3257/KnAncXtd5Au231S8fwvAU9vG3dVj7K9iXSk+9eBvy/+Xg/8L9K5/IuWrW16B7bd/s+kN9Op/W67WbL9MemUsWc2qO3eTOprfT/wVtKBtOv73W6z5HsfaY9nVRPajrQHduqMx04BrmtC282R7+lFhr6vdx0vRwcLOn1qzinAeHF7GWlramVx/zDS1vqxpF3Ai0lbWv9E+qTapyfhUx+X4Be/3foCHu/uuZd0zuj0uF+jKLSk3aevFuP8ySJlOwb4xvSK2zbeMtLB5ROK++f0OtuMnAeQjm/sBD5c3L8XGOxX282S7a5ivisouvn61XZtr+dbSN1srwW+UDx2T7/bbY58Y8Vj7acL92W9I3VR3ApsKub/gaJ+3Acc3IB1rj3fVaQv5jq03+td6eUoscBPJl0o9Jzi/tIZw88HTp5egUhdD2fSo6I+x8p8AY+fL/854KPF7V8j7XE8ve2FOZq2rwRepGzvaH+suH1I0XbPXexsbRn+kHS+7WZSv/Y3izec+tl2M7KdRzqt7NlNaDvSV0YvIfWhXk3aMr4JeH+/17lZ8v0z6QyzFzSk7b5C2gN7Gmkr+CzShmFT1rn2fF8gXfp/eBPartO/6aLTEUmfAn4WERuK+3uRzrt8B/Ac4JQo2U9eF0mHkvq03hURtyp9odhokWs18J2o56qybrK9PSJuKx47htQtta7I9of9yNZO6TqEM0lvsiNJK+uh9LHt2rIdTXqz/TnpLKuT6FPbSRogdXPsQ2qn3yBdeHI2aUv5cPrYbrPkO5x0fOK3SMe8XkZqv76sdypOey5uP4/0Pr2WdEl939e5GfmOJl3pfi7pm2b7tt6VUfY89s3AucVBhiNJK/HxpBfl7H4V9cIxFOfASzqD1P9/NqkL6QeRTr/sd7YfFdluJ60ce0hb8Tf2MVu7e0kHAd8XEX8n6TTg5obku5/UT3wT6XVdRv/abg/p7IlHSVvqPyet/5PAexvQbnPle1jSa0gFv2/r3XTRLNxPOu70/oi4sAFtNzPfA6SN123Af6W/613Hym6xv450oPRh0jeOXRkRt/QoWymSriUdXNtOOof0QxHxvb6GKszIdhewoUHttpK0BfcG0vffbwbOi4hH533iIpgl26cjYlN/U/2y4sKT6b7su/qdZ6Yi38nAZyOdddLvPPuQfnPhjaQ96r8EPhXpa7r7bpZ8myPiz/qbqpyOC7uk55LO57yYdLCotq/K7VaxB/FB0pbw5yNdtdYITc4GIGkpqfvlYVK+Jr2ujc0G6aIu4LEos3W0iJqcT9KZpNNqP9e01xWan28hpbbYzcys+Zr603hmZlaRC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDP/H+KofDj+oV4qAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -364,7 +1554,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4, -- 2.18.1