Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
cb1e5ba91280d02583d0604166e71c1c
mooc-rr
Commits
dbe18c37
Commit
dbe18c37
authored
Apr 03, 2020
by
cb1e5ba91280d02583d0604166e71c1c
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
no commit message
parent
5ed6218e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
540 additions
and
15 deletions
+540
-15
exercice.ipynb
module3/exo3/exercice.ipynb
+540
-15
No files found.
module3/exo3/exercice.ipynb
View file @
dbe18c37
...
...
@@ -9,7 +9,7 @@
},
{
"cell_type": "code",
"execution_count":
34
,
"execution_count":
56
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -32,7 +32,7 @@
},
{
"cell_type": "code",
"execution_count":
39
,
"execution_count":
57
,
"metadata": {},
"outputs": [
{
...
...
@@ -168,7 +168,7 @@
"4 317.86 315.06 317.51 314.71 "
]
},
"execution_count":
39
,
"execution_count":
57
,
"metadata": {},
"output_type": "execute_result"
},
...
...
@@ -297,7 +297,7 @@
"755 -99.99 -99.99 -99.99 -99.99 "
]
},
"execution_count":
39
,
"execution_count":
57
,
"metadata": {},
"output_type": "execute_result"
}
...
...
@@ -320,9 +320,16 @@
"raw_data.tail(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous voyons que les noms des colonnes ne sont pas très représentatives, nous modifions les noms des colonnes"
]
},
{
"cell_type": "code",
"execution_count":
43
,
"execution_count":
58
,
"metadata": {},
"outputs": [
{
...
...
@@ -334,29 +341,547 @@
" dtype='object')"
]
},
"execution_count":
43
,
"execution_count":
58
,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Yr</th>\n",
" <th>Mn</th>\n",
" <th>Date 1</th>\n",
" <th>Date 2</th>\n",
" <th>s1</th>\n",
" <th>s2</th>\n",
" <th>s3</th>\n",
" <th>s4</th>\n",
" <th>s5</th>\n",
" <th>s6</th>\n",
" <th>s7</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1958</td>\n",
" <td>1</td>\n",
" <td>21200</td>\n",
" <td>1958.0411</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1958</td>\n",
" <td>2</td>\n",
" <td>21231</td>\n",
" <td>1958.1260</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" <td>-99.99</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>1958</td>\n",
" <td>3</td>\n",
" <td>21259</td>\n",
" <td>1958.2027</td>\n",
" <td>315.70</td>\n",
" <td>314.44</td>\n",
" <td>316.19</td>\n",
" <td>314.91</td>\n",
" <td>315.70</td>\n",
" <td>314.44</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>1958</td>\n",
" <td>4</td>\n",
" <td>21290</td>\n",
" <td>1958.2877</td>\n",
" <td>317.45</td>\n",
" <td>315.16</td>\n",
" <td>317.30</td>\n",
" <td>314.99</td>\n",
" <td>317.45</td>\n",
" <td>315.16</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>1958</td>\n",
" <td>5</td>\n",
" <td>21320</td>\n",
" <td>1958.3699</td>\n",
" <td>317.51</td>\n",
" <td>314.71</td>\n",
" <td>317.86</td>\n",
" <td>315.06</td>\n",
" <td>317.51</td>\n",
" <td>314.71</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Yr Mn Date 1 Date 2 s1 s2 s3 s4 s5 \\\n",
"0 0 1958 1 21200 1958.0411 -99.99 -99.99 -99.99 -99.99 \n",
"1 1 1958 2 21231 1958.1260 -99.99 -99.99 -99.99 -99.99 \n",
"2 2 1958 3 21259 1958.2027 315.70 314.44 316.19 314.91 \n",
"3 3 1958 4 21290 1958.2877 317.45 315.16 317.30 314.99 \n",
"4 4 1958 5 21320 1958.3699 317.51 314.71 317.86 315.06 \n",
"\n",
" s6 s7 \n",
"0 -99.99 -99.99 \n",
"1 -99.99 -99.99 \n",
"2 315.70 314.44 \n",
"3 317.45 315.16 \n",
"4 317.51 314.71 "
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data.columns \n",
"raw_data.columns = ['Yr','Mn','Date 1','Date 2','s1','s2','s3','s4','s5','s6','s7']\n",
"data = raw_data\n",
"data.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les données vide sont représentés par la valeur -99.99, nous remplaçons cette valeur par une valeur plus adéquate NaN dans une autre DataFrame"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"data = data.replace(-99.99,np.NaN);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On visualise les lignes dont une donnée colonne est manquante."
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Yr</th>\n",
" <th>Mn</th>\n",
" <th>Date 1</th>\n",
" <th>Date 2</th>\n",
" <th>s1</th>\n",
" <th>s2</th>\n",
" <th>s3</th>\n",
" <th>s4</th>\n",
" <th>s5</th>\n",
" <th>s6</th>\n",
" <th>s7</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1958</td>\n",
" <td>1</td>\n",
" <td>21200</td>\n",
" <td>1958.0411</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1958</td>\n",
" <td>2</td>\n",
" <td>21231</td>\n",
" <td>1958.1260</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>5</td>\n",
" <td>1958</td>\n",
" <td>6</td>\n",
" <td>21351</td>\n",
" <td>1958.4548</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>317.24</td>\n",
" <td>315.14</td>\n",
" <td>317.24</td>\n",
" <td>315.14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>9</td>\n",
" <td>1958</td>\n",
" <td>10</td>\n",
" <td>21473</td>\n",
" <td>1958.7890</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>312.44</td>\n",
" <td>315.40</td>\n",
" <td>312.44</td>\n",
" <td>315.40</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td>73</td>\n",
" <td>1964</td>\n",
" <td>2</td>\n",
" <td>23422</td>\n",
" <td>1964.1257</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>320.01</td>\n",
" <td>319.36</td>\n",
" <td>320.01</td>\n",
" <td>319.36</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>74</td>\n",
" <td>1964</td>\n",
" <td>3</td>\n",
" <td>23451</td>\n",
" <td>1964.2049</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>320.74</td>\n",
" <td>319.41</td>\n",
" <td>320.74</td>\n",
" <td>319.41</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td>75</td>\n",
" <td>1964</td>\n",
" <td>4</td>\n",
" <td>23482</td>\n",
" <td>1964.2896</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>321.83</td>\n",
" <td>319.45</td>\n",
" <td>321.83</td>\n",
" <td>319.45</td>\n",
" </tr>\n",
" <tr>\n",
" <th>745</th>\n",
" <td>745</td>\n",
" <td>2020</td>\n",
" <td>2</td>\n",
" <td>43876</td>\n",
" <td>2020.1257</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>746</th>\n",
" <td>746</td>\n",
" <td>2020</td>\n",
" <td>3</td>\n",
" <td>43905</td>\n",
" <td>2020.2049</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>747</th>\n",
" <td>747</td>\n",
" <td>2020</td>\n",
" <td>4</td>\n",
" <td>43936</td>\n",
" <td>2020.2896</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>748</th>\n",
" <td>748</td>\n",
" <td>2020</td>\n",
" <td>5</td>\n",
" <td>43966</td>\n",
" <td>2020.3716</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>749</th>\n",
" <td>749</td>\n",
" <td>2020</td>\n",
" <td>6</td>\n",
" <td>43997</td>\n",
" <td>2020.4563</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>750</th>\n",
" <td>750</td>\n",
" <td>2020</td>\n",
" <td>7</td>\n",
" <td>44027</td>\n",
" <td>2020.5383</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>751</th>\n",
" <td>751</td>\n",
" <td>2020</td>\n",
" <td>8</td>\n",
" <td>44058</td>\n",
" <td>2020.6230</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>752</th>\n",
" <td>752</td>\n",
" <td>2020</td>\n",
" <td>9</td>\n",
" <td>44089</td>\n",
" <td>2020.7077</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>753</th>\n",
" <td>753</td>\n",
" <td>2020</td>\n",
" <td>10</td>\n",
" <td>44119</td>\n",
" <td>2020.7896</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>754</th>\n",
" <td>754</td>\n",
" <td>2020</td>\n",
" <td>11</td>\n",
" <td>44150</td>\n",
" <td>2020.8743</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>755</th>\n",
" <td>755</td>\n",
" <td>2020</td>\n",
" <td>12</td>\n",
" <td>44180</td>\n",
" <td>2020.9563</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Yr Mn Date 1 Date 2 s1 s2 s3 s4 s5 s6 \\\n",
"0 0 1958 1 21200 1958.0411 NaN NaN NaN NaN NaN \n",
"1 1 1958 2 21231 1958.1260 NaN NaN NaN NaN NaN \n",
"5 5 1958 6 21351 1958.4548 NaN NaN 317.24 315.14 317.24 \n",
"9 9 1958 10 21473 1958.7890 NaN NaN 312.44 315.40 312.44 \n",
"73 73 1964 2 23422 1964.1257 NaN NaN 320.01 319.36 320.01 \n",
"74 74 1964 3 23451 1964.2049 NaN NaN 320.74 319.41 320.74 \n",
"75 75 1964 4 23482 1964.2896 NaN NaN 321.83 319.45 321.83 \n",
"745 745 2020 2 43876 2020.1257 NaN NaN NaN NaN NaN \n",
"746 746 2020 3 43905 2020.2049 NaN NaN NaN NaN NaN \n",
"747 747 2020 4 43936 2020.2896 NaN NaN NaN NaN NaN \n",
"748 748 2020 5 43966 2020.3716 NaN NaN NaN NaN NaN \n",
"749 749 2020 6 43997 2020.4563 NaN NaN NaN NaN NaN \n",
"750 750 2020 7 44027 2020.5383 NaN NaN NaN NaN NaN \n",
"751 751 2020 8 44058 2020.6230 NaN NaN NaN NaN NaN \n",
"752 752 2020 9 44089 2020.7077 NaN NaN NaN NaN NaN \n",
"753 753 2020 10 44119 2020.7896 NaN NaN NaN NaN NaN \n",
"754 754 2020 11 44150 2020.8743 NaN NaN NaN NaN NaN \n",
"755 755 2020 12 44180 2020.9563 NaN NaN NaN NaN NaN \n",
"\n",
" s7 \n",
"0 NaN \n",
"1 NaN \n",
"5 315.14 \n",
"9 315.40 \n",
"73 319.36 \n",
"74 319.41 \n",
"75 319.45 \n",
"745 NaN \n",
"746 NaN \n",
"747 NaN \n",
"748 NaN \n",
"749 NaN \n",
"750 NaN \n",
"751 NaN \n",
"752 NaN \n",
"753 NaN \n",
"754 NaN \n",
"755 NaN "
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[data.isnull().any(axis=1)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On ajoute un index ' période' à la DataFrame, cet index représente la période de mesure. \n",
"Cette date est mise dans au format compréhensible par pandas. On visualise toutes les lignes qui seront supprimées."
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "
Length mismatch: Expected axis has 11 elements, new values have 10 elements
",
"evalue": "
year 0 is out of range
",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-43-13251efbef79>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mraw_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mraw_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'Yr'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'Mn'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'Date 1'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'Date 2'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m's1'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m's2'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m's3'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m's4'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m's5'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m's6'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__setattr__\u001b[0;34m(self, name, value)\u001b[0m\n\u001b[1;32m 3625\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3626\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3627\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3628\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3629\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32mpandas/_libs/properties.pyx\u001b[0m in \u001b[0;36mpandas._libs.properties.AxisProperty.__set__\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_set_axis\u001b[0;34m(self, axis, labels)\u001b[0m\n\u001b[1;32m 557\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 558\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_set_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 559\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 560\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_clear_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 561\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mset_axis\u001b[0;34m(self, axis, new_labels)\u001b[0m\n\u001b[1;32m 3072\u001b[0m raise ValueError('Length mismatch: Expected axis has %d elements, '\n\u001b[1;32m 3073\u001b[0m \u001b[0;34m'new values have %d elements'\u001b[0m \u001b[0;34m%\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3074\u001b[0;31m (old_len, new_len))\n\u001b[0m\u001b[1;32m 3075\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3076\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_labels\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: Length mismatch: Expected axis has 11 elements, new values have 10 elements"
"\u001b[0;32m<ipython-input-64-adf0f8c9cf82>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'period'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mm\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Yr'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Mn'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'period'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m<ipython-input-64-adf0f8c9cf82>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'period'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mm\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Yr'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Mn'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'period'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: year 0 is out of range"
]
}
],
"source": [
"raw_data.columns \n",
"raw_data.columns = ['Yr','Mn','Date 1','Date 2','s1','s2','s3','s4','s5','s6']"
"data['period'] = [datetime.date(y,m,1) for y,m in zip(data['Yr'],data['Mn'])]\n",
"data = data.set_index('period') \n",
"data = data.dropna().copy()\n"
]
},
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment