"- Nous affinons l'estimation de ces fréquences à l'aide d'une approximation sinusoïdale (fréquence, amplitude, moyenne et phase) par les moindres carrés ordinaires.\n",
"- Nous affinons l'estimation de ces fréquences à l'aide d'une approximation sinusoïdale (fréquence, amplitude, moyenne et phase) par les moindres carrés ordinaires.\n",
"\n",
"\n",
"Nous considérons pour l'échantillonnage des données un pas constant, correspond à un intervalle de 1 mois $Te = 1/12$. Cet échantillonnage avec le nombre de point de mesure nous donne un échantillonnage en fréquence, ce pas est $1/(N*Te) = 0.016 Hz$ \n"
"Nous considérons pour l'échantillonnage des données un pas constant, correspond à un intervalle de 1 mois $Te = \\frac {1}{12}$. Cet échantillonnage avec le nombre de point de mesure nous donne un échantillonnage en fréquence, ce pas est $\\frac {1} {(N*Te)} = 0.016 Hz$ \n"
]
},
{
"cell_type": "code",
"execution_count": 150,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>index</th>\n",
" <th>Yr</th>\n",
" <th>Mn</th>\n",
" <th>Date 1</th>\n",
" <th>Date 2</th>\n",
" <th>s1</th>\n",
" <th>s2</th>\n",
" <th>s3</th>\n",
" <th>s4</th>\n",
" <th>s5</th>\n",
" <th>s6</th>\n",
" </tr>\n",
" <tr>\n",
" <th>period</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1958-06-01</th>\n",
" <td>5</td>\n",
" <td>1958</td>\n",
" <td>6</td>\n",
" <td>21351</td>\n",
" <td>1958.4548</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>317.24</td>\n",
" <td>315.14</td>\n",
" <td>317.24</td>\n",
" <td>315.14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1958-10-01</th>\n",
" <td>9</td>\n",
" <td>1958</td>\n",
" <td>10</td>\n",
" <td>21473</td>\n",
" <td>1958.7890</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>312.44</td>\n",
" <td>315.40</td>\n",
" <td>312.44</td>\n",
" <td>315.40</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1964-02-01</th>\n",
" <td>73</td>\n",
" <td>1964</td>\n",
" <td>2</td>\n",
" <td>23422</td>\n",
" <td>1964.1257</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>320.01</td>\n",
" <td>319.36</td>\n",
" <td>320.01</td>\n",
" <td>319.36</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1964-03-01</th>\n",
" <td>74</td>\n",
" <td>1964</td>\n",
" <td>3</td>\n",
" <td>23451</td>\n",
" <td>1964.2049</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>320.74</td>\n",
" <td>319.41</td>\n",
" <td>320.74</td>\n",
" <td>319.41</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1964-04-01</th>\n",
" <td>75</td>\n",
" <td>1964</td>\n",
" <td>4</td>\n",
" <td>23482</td>\n",
" <td>1964.2896</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>321.83</td>\n",
" <td>319.45</td>\n",
" <td>321.83</td>\n",
" <td>319.45</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" index Yr Mn Date 1 Date 2 s1 s2 s3 s4 \\\n",
"period \n",
"1958-06-01 5 1958 6 21351 1958.4548 NaN NaN 317.24 315.14 \n",
"1958-10-01 9 1958 10 21473 1958.7890 NaN NaN 312.44 315.40 \n",
"1964-02-01 73 1964 2 23422 1964.1257 NaN NaN 320.01 319.36 \n",
"1964-03-01 74 1964 3 23451 1964.2049 NaN NaN 320.74 319.41 \n",
"1964-04-01 75 1964 4 23482 1964.2896 NaN NaN 321.83 319.45 \n",
"\n",
" s5 s6 \n",
"period \n",
"1958-06-01 317.24 315.14 \n",
"1958-10-01 312.44 315.40 \n",
"1964-02-01 320.01 319.36 \n",
"1964-03-01 320.74 319.41 \n",
"1964-04-01 321.83 319.45 "
]
},
"execution_count": 150,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = data.reset_index().copy()\n",
"df['period'] = pd.Series([datetime.date(y,m,1) for y,m in zip(df['Yr'],df['Mn'])])\n",