From 2590d2eba195365c807777d83172010c40960882 Mon Sep 17 00:00:00 2001 From: cb7068ff783828641c551b8f395e2fc0 Date: Fri, 10 Apr 2020 16:52:54 +0000 Subject: [PATCH] Finding the strongest and weakest epidemic --- .../influenza-like-illness-analysis.ipynb | 2221 ++++++++++++++++- module3/exo2/exercice.ipynb | 1401 ++++++++++- 2 files changed, 3573 insertions(+), 49 deletions(-) diff --git a/module3/exo1/influenza-like-illness-analysis.ipynb b/module3/exo1/influenza-like-illness-analysis.ipynb index 87092fc..7ecd716 100644 --- a/module3/exo1/influenza-like-illness-analysis.ipynb +++ b/module3/exo1/influenza-like-illness-analysis.ipynb @@ -9,10 +9,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 1, + "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", @@ -30,10 +28,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" @@ -63,9 +59,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202014300.00.000.00.0FRFrance
1202013300.00.000.00.0FRFrance
2202012383215873.010769.0139.017.0FRFrance
3202011310170493652.0109756.0154142.0166.0FRFrance
4202010310497796650.0113304.0159146.0172.0FRFrance
52020093110696102066.0119326.0168155.0181.0FRFrance
62020083143753133984.0153522.0218203.0233.0FRFrance
72020073183610172812.0194408.0279263.0295.0FRFrance
82020063206669195481.0217857.0314297.0331.0FRFrance
92020053187957177445.0198469.0285269.0301.0FRFrance
102020043122331113492.0131170.0186173.0199.0FRFrance
1120200337841371330.085496.0119108.0130.0FRFrance
1220200235361447654.059574.08172.090.0FRFrance
1320200133685031608.042092.05648.064.0FRFrance
1420195232813523220.033050.04336.050.0FRFrance
1520195132978625042.034530.04538.052.0FRFrance
1620195033422329156.039290.05244.060.0FRFrance
1720194932566221414.029910.03933.045.0FRFrance
1820194832236718055.026679.03427.041.0FRFrance
1920194731866914759.022579.02822.034.0FRFrance
2020194631603012567.019493.02419.029.0FRFrance
212019453101387160.013116.01510.020.0FRFrance
22201944378225010.010634.0128.016.0FRFrance
23201943394876448.012526.0149.019.0FRFrance
24201942377475243.010251.0128.016.0FRFrance
25201941371224720.09524.0117.015.0FRFrance
26201940385055784.011226.0139.017.0FRFrance
27201939370914462.09720.0117.015.0FRFrance
28201938348972891.06903.074.010.0FRFrance
29201937331721367.04977.052.08.0FRFrance
.................................
181919852132609619621.032571.04735.059.0FRFrance
182019852032789620885.034907.05138.064.0FRFrance
182119851934315432821.053487.07859.097.0FRFrance
182219851834055529935.051175.07455.093.0FRFrance
182319851733405324366.043740.06244.080.0FRFrance
182419851635036236451.064273.09166.0116.0FRFrance
182519851536388145538.082224.011683.0149.0FRFrance
18261985143134545114400.0154690.0244207.0281.0FRFrance
18271985133197206176080.0218332.0357319.0395.0FRFrance
18281985123245240223304.0267176.0445405.0485.0FRFrance
18291985113276205252399.0300011.0501458.0544.0FRFrance
18301985103353231326279.0380183.0640591.0689.0FRFrance
18311985093369895341109.0398681.0670618.0722.0FRFrance
18321985083389886359529.0420243.0707652.0762.0FRFrance
18331985073471852432599.0511105.0855784.0926.0FRFrance
18341985063565825518011.0613639.01026939.01113.0FRFrance
18351985053637302592795.0681809.011551074.01236.0FRFrance
18361985043424937390794.0459080.0770708.0832.0FRFrance
18371985033213901174689.0253113.0388317.0459.0FRFrance
183819850239758680949.0114223.0177147.0207.0FRFrance
183919850138548965918.0105060.0155120.0190.0FRFrance
184019845238483060602.0109058.0154110.0198.0FRFrance
1841198451310172680242.0123210.0185146.0224.0FRFrance
18421984503123680101401.0145959.0225184.0266.0FRFrance
1843198449310107381684.0120462.0184149.0219.0FRFrance
184419844837862060634.096606.0143110.0176.0FRFrance
184519844737202954274.089784.013199.0163.0FRFrance
184619844638733067686.0106974.0159123.0195.0FRFrance
18471984453135223101414.0169032.0246184.0308.0FRFrance
184819844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1849 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202014 3 0 0.0 0.0 0 0.0 \n", + "1 202013 3 0 0.0 0.0 0 0.0 \n", + "2 202012 3 8321 5873.0 10769.0 13 9.0 \n", + "3 202011 3 101704 93652.0 109756.0 154 142.0 \n", + "4 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "5 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "6 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "7 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "8 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "9 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "10 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "11 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "12 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "13 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "14 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "15 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "16 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "17 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "18 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "19 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "20 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "21 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "22 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "23 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "24 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "25 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "26 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "27 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "28 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "29 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "... ... ... ... ... ... ... ... \n", + "1819 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1820 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1821 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1822 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1823 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1824 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1825 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1826 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1827 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1828 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1829 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1830 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1831 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1832 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1833 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1834 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1835 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1836 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1837 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1838 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1839 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1840 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1841 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1842 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1843 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1844 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1845 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1846 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1847 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1848 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 0.0 FR France \n", + "1 0.0 FR France \n", + "2 17.0 FR France \n", + "3 166.0 FR France \n", + "4 172.0 FR France \n", + "5 181.0 FR France \n", + "6 233.0 FR France \n", + "7 295.0 FR France \n", + "8 331.0 FR France \n", + "9 301.0 FR France \n", + "10 199.0 FR France \n", + "11 130.0 FR France \n", + "12 90.0 FR France \n", + "13 64.0 FR France \n", + "14 50.0 FR France \n", + "15 52.0 FR France \n", + "16 60.0 FR France \n", + "17 45.0 FR France \n", + "18 41.0 FR France \n", + "19 34.0 FR France \n", + "20 29.0 FR France \n", + "21 20.0 FR France \n", + "22 16.0 FR France \n", + "23 19.0 FR France \n", + "24 16.0 FR France \n", + "25 15.0 FR France \n", + "26 17.0 FR France \n", + "27 15.0 FR France \n", + "28 10.0 FR France \n", + "29 8.0 FR France \n", + "... ... ... ... \n", + "1819 59.0 FR France \n", + "1820 64.0 FR France \n", + "1821 97.0 FR France \n", + "1822 93.0 FR France \n", + "1823 80.0 FR France \n", + "1824 116.0 FR France \n", + "1825 149.0 FR France \n", + "1826 281.0 FR France \n", + "1827 395.0 FR France \n", + "1828 485.0 FR France \n", + "1829 544.0 FR France \n", + "1830 689.0 FR France \n", + "1831 722.0 FR France \n", + "1832 762.0 FR France \n", + "1833 926.0 FR France \n", + "1834 1113.0 FR France \n", + "1835 1236.0 FR France \n", + "1836 832.0 FR France \n", + "1837 459.0 FR France \n", + "1838 207.0 FR France \n", + "1839 190.0 FR France \n", + "1840 198.0 FR France \n", + "1841 224.0 FR France \n", + "1842 266.0 FR France \n", + "1843 219.0 FR France \n", + "1844 176.0 FR France \n", + "1845 163.0 FR France \n", + "1846 195.0 FR France \n", + "1847 308.0 FR France \n", + "1848 213.0 FR France \n", + "\n", + "[1849 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" @@ -80,9 +1043,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
161219891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1612 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1612 FR France " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -96,9 +1123,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202014300.00.000.00.0FRFrance
1202013300.00.000.00.0FRFrance
2202012383215873.010769.0139.017.0FRFrance
3202011310170493652.0109756.0154142.0166.0FRFrance
4202010310497796650.0113304.0159146.0172.0FRFrance
52020093110696102066.0119326.0168155.0181.0FRFrance
62020083143753133984.0153522.0218203.0233.0FRFrance
72020073183610172812.0194408.0279263.0295.0FRFrance
82020063206669195481.0217857.0314297.0331.0FRFrance
92020053187957177445.0198469.0285269.0301.0FRFrance
102020043122331113492.0131170.0186173.0199.0FRFrance
1120200337841371330.085496.0119108.0130.0FRFrance
1220200235361447654.059574.08172.090.0FRFrance
1320200133685031608.042092.05648.064.0FRFrance
1420195232813523220.033050.04336.050.0FRFrance
1520195132978625042.034530.04538.052.0FRFrance
1620195033422329156.039290.05244.060.0FRFrance
1720194932566221414.029910.03933.045.0FRFrance
1820194832236718055.026679.03427.041.0FRFrance
1920194731866914759.022579.02822.034.0FRFrance
2020194631603012567.019493.02419.029.0FRFrance
212019453101387160.013116.01510.020.0FRFrance
22201944378225010.010634.0128.016.0FRFrance
23201943394876448.012526.0149.019.0FRFrance
24201942377475243.010251.0128.016.0FRFrance
25201941371224720.09524.0117.015.0FRFrance
26201940385055784.011226.0139.017.0FRFrance
27201939370914462.09720.0117.015.0FRFrance
28201938348972891.06903.074.010.0FRFrance
29201937331721367.04977.052.08.0FRFrance
.................................
181919852132609619621.032571.04735.059.0FRFrance
182019852032789620885.034907.05138.064.0FRFrance
182119851934315432821.053487.07859.097.0FRFrance
182219851834055529935.051175.07455.093.0FRFrance
182319851733405324366.043740.06244.080.0FRFrance
182419851635036236451.064273.09166.0116.0FRFrance
182519851536388145538.082224.011683.0149.0FRFrance
18261985143134545114400.0154690.0244207.0281.0FRFrance
18271985133197206176080.0218332.0357319.0395.0FRFrance
18281985123245240223304.0267176.0445405.0485.0FRFrance
18291985113276205252399.0300011.0501458.0544.0FRFrance
18301985103353231326279.0380183.0640591.0689.0FRFrance
18311985093369895341109.0398681.0670618.0722.0FRFrance
18321985083389886359529.0420243.0707652.0762.0FRFrance
18331985073471852432599.0511105.0855784.0926.0FRFrance
18341985063565825518011.0613639.01026939.01113.0FRFrance
18351985053637302592795.0681809.011551074.01236.0FRFrance
18361985043424937390794.0459080.0770708.0832.0FRFrance
18371985033213901174689.0253113.0388317.0459.0FRFrance
183819850239758680949.0114223.0177147.0207.0FRFrance
183919850138548965918.0105060.0155120.0190.0FRFrance
184019845238483060602.0109058.0154110.0198.0FRFrance
1841198451310172680242.0123210.0185146.0224.0FRFrance
18421984503123680101401.0145959.0225184.0266.0FRFrance
1843198449310107381684.0120462.0184149.0219.0FRFrance
184419844837862060634.096606.0143110.0176.0FRFrance
184519844737202954274.089784.013199.0163.0FRFrance
184619844638733067686.0106974.0159123.0195.0FRFrance
18471984453135223101414.0169032.0246184.0308.0FRFrance
184819844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1848 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202014 3 0 0.0 0.0 0 0.0 \n", + "1 202013 3 0 0.0 0.0 0 0.0 \n", + "2 202012 3 8321 5873.0 10769.0 13 9.0 \n", + "3 202011 3 101704 93652.0 109756.0 154 142.0 \n", + "4 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "5 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "6 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "7 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "8 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "9 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "10 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "11 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "12 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "13 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "14 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "15 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "16 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "17 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "18 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "19 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "20 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "21 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "22 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "23 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "24 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "25 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "26 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "27 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "28 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "29 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "... ... ... ... ... ... ... ... \n", + "1819 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1820 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1821 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1822 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1823 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1824 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1825 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1826 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1827 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1828 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1829 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1830 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1831 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1832 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1833 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1834 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1835 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1836 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1837 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1838 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1839 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1840 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1841 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1842 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1843 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1844 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1845 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1846 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1847 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1848 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 0.0 FR France \n", + "1 0.0 FR France \n", + "2 17.0 FR France \n", + "3 166.0 FR France \n", + "4 172.0 FR France \n", + "5 181.0 FR France \n", + "6 233.0 FR France \n", + "7 295.0 FR France \n", + "8 331.0 FR France \n", + "9 301.0 FR France \n", + "10 199.0 FR France \n", + "11 130.0 FR France \n", + "12 90.0 FR France \n", + "13 64.0 FR France \n", + "14 50.0 FR France \n", + "15 52.0 FR France \n", + "16 60.0 FR France \n", + "17 45.0 FR France \n", + "18 41.0 FR France \n", + "19 34.0 FR France \n", + "20 29.0 FR France \n", + "21 20.0 FR France \n", + "22 16.0 FR France \n", + "23 19.0 FR France \n", + "24 16.0 FR France \n", + "25 15.0 FR France \n", + "26 17.0 FR France \n", + "27 15.0 FR France \n", + "28 10.0 FR France \n", + "29 8.0 FR France \n", + "... ... ... ... \n", + "1819 59.0 FR France \n", + "1820 64.0 FR France \n", + "1821 97.0 FR France \n", + "1822 93.0 FR France \n", + "1823 80.0 FR France \n", + "1824 116.0 FR France \n", + "1825 149.0 FR France \n", + "1826 281.0 FR France \n", + "1827 395.0 FR France \n", + "1828 485.0 FR France \n", + "1829 544.0 FR France \n", + "1830 689.0 FR France \n", + "1831 722.0 FR France \n", + "1832 762.0 FR France \n", + "1833 926.0 FR France \n", + "1834 1113.0 FR France \n", + "1835 1236.0 FR France \n", + "1836 832.0 FR France \n", + "1837 459.0 FR France \n", + "1838 207.0 FR France \n", + "1839 190.0 FR France \n", + "1840 198.0 FR France \n", + "1841 224.0 FR France \n", + "1842 266.0 FR France \n", + "1843 219.0 FR France \n", + "1844 176.0 FR France \n", + "1845 163.0 FR France \n", + "1846 195.0 FR France \n", + "1847 308.0 FR France \n", + "1848 213.0 FR France \n", + "\n", + "[1848 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -123,10 +2117,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 6, + "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", @@ -154,10 +2146,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -180,9 +2170,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -200,9 +2198,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm4HUWZ/vud9e43udlJAkkk7KBAZBEEBCHgMjCiM7iBiqIOo+OsP3AZHJEZGWdkRAcclLAqiLiAshk2IxACCWFJCElu9o3cm+3m7vcs9fujq3o5p7q7+nSfc/ok9T7PfW6f6lq+rq6ur76lviLGGDQ0NDQ0NMIiUW8CNDQ0NDQODGiGoqGhoaERCTRD0dDQ0NCIBJqhaGhoaGhEAs1QNDQ0NDQigWYoGhoaGhqRQDMUDQ0NDY1IoBmKhoaGhkYk0AxFQ0NDQyMSpOpNQC0xceJENmvWrHqToaGhodFQWLZs2S7G2CS/fAcVQ5k1axaWLl1abzI0NDQ0GgpEtEkln1Z5aWhoaGhEAs1QNDQ0NDQigWYoGhoaGhqRQDMUDQ0NDY1IoBmKhoaGhkYk8GUoRLSAiHqIaIUtrYuIFhLRWv5/vO3etUTUTUSriWi+Lf1kInqD37uZiIinZ4nolzx9CRHNspW5grexloiusKXP5nnX8rKZ8F2hoaGhoREGKhLKnQAuLEm7BsBTjLG5AJ7iv0FExwC4DMCxvMwtRJTkZW4FcBWAufxP1HklgL2MscMB3ATgRl5XF4DrAJwK4BQA19kY140AbuLt7+V1aGhoaGjUEb4MhTG2CMCekuSLAdzFr+8CcIkt/X7G2ChjbAOAbgCnENE0AB2MscXMOHP47pIyoq4HAZzHpZf5ABYyxvYwxvYCWAjgQn7vXJ63tP0DHmP5Ih5YugX66GYNDY24odKNjVMYYzsAgDG2g4gm8/TpAF605dvK03L8ujRdlNnC68oTUR+ACfb0kjITAOxjjOUldR3w+NHTa/Gjp7vRmknhgydMqzc5GhoaGiaiNsqTJI15pFdSxquucoKIriKipUS0tLe31y1bw2BH3wgAYHA075NTQ0NDo7aolKHs5Gos8P89PH0rgJm2fDMAbOfpMyTpjjJElALQCUPF5lbXLgDjeN7SusrAGLuNMTaPMTZv0iTfUDSxR6Fo8M5UUsZXNTQ0NOqHShnKwwCE19UVAB6ypV/GPbdmwzC+v8TVY/1EdBq3gVxeUkbU9VEAT3M7yxMALiCi8dwYfwGAJ/i9Z3je0vYPeOQ5Q0kmNEPR0NCIF3xtKER0H4BzAEwkoq0wPK++B+ABIroSwGYAHwMAxthKInoAwJsA8gCuZowVeFVfhuEx1gzgMf4HALcDuIeIumFIJpfxuvYQ0fUAXub5vsMYE84B/w/A/UT0XQDLeR0HBfKFIgAgldBbiDQ0NOIFX4bCGPu4y63zXPLfAOAGSfpSAMdJ0kfAGZLk3gIACyTp62G4Eh90yGuVl4aGRkyhl7kNBtOGolVeGhoaMYNmKA0GwVASpBmKhoZGvKAZioaGhoZGJNAMpcEgNF3MfeuNhoaGRl2gGUqDgcfUhI68oqGhETdohtJgEJYTzVA0NDTiBs1QGgzCFl/UHEVDQyNm0Ayl4aC9uzQ0NOIJzVAaDGQa5TU0NDTiBc1QGgzahqKhoRFXaIbSYLD2M2qOoqGhES9ohtJgIC6jFDU/0dDQiBk0Q2kwmDYUzVA0NDRiBs1QGgykd8praGjEFJqhNBiEyqsRJJTbFq3DrGseMc9w0dDQOLChGUqjoYHchm9auBYAMJrXDEVD42CAZigNBsttOP4sRUfY19A4uKAZSoNBn4OioaERV2iG0mBoxFhejUOphoZGGGiG0qAoNoBZQstSGhoHFzRDaTDoSVpDQyOu0AylQdFIaqRGcCDQ0NAID81QGhSNMEmTdiDQ0DiooBmKRtXQCExPQ0MjOmiG0qBopKm6kWjV0NCoHJqhNCoaYJYWKi8tqGhoHBzQDEWj+tAMRUPjoIBmKA2KRog2bIaJaQBaNTQ0wkMzFI2qQ6u8NDQODmiG0qDwmqRvW7QOF9z0p9oR4wPNTzQ0Dg6EYihE9PdEtJKIVhDRfUTURERdRLSQiNby/+Nt+a8lom4iWk1E823pJxPRG/zezcStuUSUJaJf8vQlRDTLVuYK3sZaIroizHM0Irwm6X9/9C2s2TlQM1pcYZ4uqVmKhsbBgIoZChFNB/BVAPMYY8cBSAK4DMA1AJ5ijM0F8BT/DSI6ht8/FsCFAG4hoiSv7lYAVwGYy/8u5OlXAtjLGDscwE0AbuR1dQG4DsCpAE4BcJ2dcWnEC5qdaGgcHAir8koBaCaiFIAWANsBXAzgLn7/LgCX8OuLAdzPGBtljG0A0A3gFCKaBqCDMbaYGUvZu0vKiLoeBHAel17mA1jIGNvDGNsLYCEsJnRQoJEW/Y1Eq4aGRuWomKEwxrYB+C8AmwHsANDHGPsjgCmMsR08zw4Ak3mR6QC22KrYytOm8+vSdEcZxlgeQB+ACR51HfAw93Y0wLpfe3lpaBxcCKPyGg9DgpgN4BAArUT0Ka8ikjTmkV5pmVI6ryKipUS0tLe314M8japB8xMNjYMCYVRe7wewgTHWyxjLAfgNgPcA2MnVWOD/e3j+rQBm2srPgKEi28qvS9MdZbharRPAHo+6ysAYu40xNo8xNm/SpEkVPmr80EhqpAYiVUNDIwTCMJTNAE4johZu1zgPwCoADwMQXldXAHiIXz8M4DLuuTUbhvH9Ja4W6yei03g9l5eUEXV9FMDT3M7yBIALiGg8l5Qu4GkHDRphktahVzQ0Di6kKi3IGFtCRA8CeAVAHsByALcBaAPwABFdCYPpfIznX0lEDwB4k+e/mjFW4NV9GcCdAJoBPMb/AOB2APcQUTcMyeQyXtceIroewMs833cYY3sqfRaN6kLbUDQ0Dg5UzFAAgDF2HQz3XTtGYUgrsvw3ALhBkr4UwHGS9BFwhiS5twDAgoAkHzhooGV/A5GqoaERAnqnfIOiEeZocb5WI9CqoaERHpqhaFQdeqe8hsbBAc1QGhSNNEc3Eq0aGhqVQzMUjapBnyivoXFwQTOUBkUjqZHCkMoYw9/8fBle6N4VHUEaGhpVgWYoDQqVObreTCeKMDEjuSIefeNtfPbOl/0za2ho1BWaoRzAKMZEiImCr5HWn2loxB6aoTQoVCbpeksoAvGgQkNDo9rQDKVBoaTyqjoV3jCjDceEsWloaFQXmqEcwIjLPB6GDB22RUOjcaAZSoNCZdVfjAlHCeflZfwn7YSsoRF7aIbSYGikadUypFfOUcyDcRrpwTU0DlJohtJgCDI1x0RACb0PRUNDozGgGUqDQsnLKyb2h3A2FA0NjUaBZigNhiDntNd/H0r4A7a0gKKh0TjQDOUARv3VRRG0bxrlNTQ04g7NUBoUaiqveCCM6k14qpG2ymtoxB6aoRzAqLuAEoXKKyJKNDQ0qg/NUBoUjRAcUkB7eWloHBzQDKVBoRbLq/p0qCCMyismj6ChoaEAzVAOYNR7MjbPlNdeXhoaBwU0Q2lQqLkNN/5sLFRe2iSvoRF/aIbSoGgolVcURnnNUTQ0Yg/NUA5g1HunfJBNmG6IC1PU0NDwh2YoBzJiMhmHk1Bi8hAaGhq+0AylQaEWvr4GhHjANMqHqEOFGeUKRfTsHwnRioaGRhTQDCUAunv68fvXttebDGXEZXUfZi+JGb7eI8+/PrQCp/z7UxgczVfcjoaGRnik6k1AI+H9P1gEAPjwOw+pMyUNZpQPUbZY9A+98seVOwEAQ2MFtGb1kNbQqBe0hNJoCKBGqjc/oQhCr6hAuEcntCeYhkZdoRlKoyHA5FystxHFRG28vHQASQ2N+kIzlAZFXNRZKqi2l1cDdYWGxgGNUAyFiMYR0YNE9BYRrSKi04moi4gWEtFa/n+8Lf+1RNRNRKuJaL4t/WQieoPfu5n4UpOIskT0S56+hIhm2cpcwdtYS0RXhHmOAxX1ZjpRenl5CR9mnhDtaGhohEdYCeWHAB5njB0F4J0AVgG4BsBTjLG5AJ7iv0FExwC4DMCxAC4EcAsRJXk9twK4CsBc/nchT78SwF7G2OEAbgJwI6+rC8B1AE4FcAqA6+yMq9qIQwRctZV7/ekEwjG2okLolTi8Dw0NjRAMhYg6AJwF4HYAYIyNMcb2AbgYwF08210ALuHXFwO4nzE2yhjbAKAbwClENA1AB2NsMTNmhrtLyoi6HgRwHpde5gNYyBjbwxjbC2AhLCZUddTVNBEg4GJcTChRuA2r5InJ42poHLQII6HMAdAL4A4iWk5EPyOiVgBTGGM7AID/n8zzTwewxVZ+K0+bzq9L0x1lGGN5AH0AJnjUVRMU6jlTB2i63it3K/RK5QjyCPV+Xg2Ngx1hGEoKwEkAbmWMnQhgEFy95QKZ1oJ5pFdaxtko0VVEtJSIlvb29nqQp466MhSORnAbFgg3z6ufdRyD16KhcVAjDEPZCmArY2wJ//0gDAazk6uxwP/32PLPtJWfAWA7T58hSXeUIaIUgE4AezzqKgNj7DbG2DzG2LxJkyZV8JjlKNRxJWy2rEBDXBbs1Q4Oaam8YvLAGhoHKSpmKIyxtwFsIaIjedJ5AN4E8DAA4XV1BYCH+PXDAC7jnluzYRjfX+JqsX4iOo3bRy4vKSPq+iiAp7md5QkAFxDReG6Mv4Cn1QRxkFBUUG8VEEXg5mWKqh5uXuZzNsZr0dA4YBE2TsVXAPyciDIA1gP4LAwm9QARXQlgM4CPAQBjbCURPQCD6eQBXM0YK/B6vgzgTgDNAB7jf4Bh8L+HiLphSCaX8br2ENH1AF7m+b7DGNsT8lmUUc8Ng2LybCiVV4iySl5eEbSjoaERHqEYCmPsVQDzJLfOc8l/A4AbJOlLARwnSR8BZ0iSewsALAhCb1Sop8pLoKFiedXoCOC4PK+GxsEKvVO+AtRT5RWk5bjYFKpuQzGN8vF43rjgjuc3YNY1j2A0X/DPrKERATRDqQB1ZSimuUDhPJRilYlRRPVDr6irAQ8m/OjpbgBA/4gO669RG2iGUgHiYJRX836qt1Fe0FE5goReqbcTQq2wafcgVmzr882nQ9Fo1Br68IgKUE/VSiCVV0zm11A75c2iHl5eZXkPbJz9/WcBABu/98H6EqKhUQItoQSAOG8jFhKKSp76kwkgpISiFVmhUe9xsGtgFC9vrJkTpkYdoRlKACQ5R6mvDUW97XpPxhRB7BWlx62RUX7f0Bi+et9y7B/JVbWdqBCX42H+8pbn8bGfLK43GRo1gGYoASA218Vhp3wjuA0HcSBwrUMpD3O0Vy389M/r8fBr23HX8xur21DEqPfCYsue4bq2r1E7aIYSAPFSeR0cB08Fk8iqi6aUcdrCSMO44UbgFaFRhi/cvRRHfvMx/4wHITRDCYAEl1Dq6o4bYHKo974MChBq3w2Cd9fKy2v3wCgGRuVutk1pzlByMfHHVoTmJ9Fi4Zs7MZpvrDFQK2iGEgCJGKi8TDSAyksgimjDKuaAKB735O8+iXO+/4z0XjZtfC4jucaQUAQTrvfCQuPggWYoAWCpvOq3Ogm2iS8eE0m1z0OxJKFonnfXwJg0PZsyPpexmKxOVZ83BhpaAAfePqF6xvSLKzRDCYCE6eVVPxoaKbYVcbmi2ic2mnmr/LzJhPG5xMGGBvjTIaS6uEx89R6PUSMWmoqYQTOUADBVXjH4QFUm6RiQCaD6Ekqtoten+IIiH7Jjt+0bxsrt/jvd/aBKRlzmvQNN9XagPU8U0AwlABIx0ElbBmiVvPEY8OGiDXMbioIRpdqPm0pGs6A443tP44M3PxeaHr9xGIUNZSRXwG+Xb41kLMVlgRMVYvJ5xQo69EoAUIwkFBXUm0qLCVROienlpWCWr/Z+CyGh5Oqp87RBdRyGUc18/4nVuP25DRjfksE5R06uuB6g/vthooaWUMqhJZQASCowlOe7d+GhV7dVjYYgRvm4jPdqRxs2V+Ih53nVCTqsyisq+DGKKGxYO/ePAAD2RxCxOA7j8eIfP4c7nt8QSV0xGQaxgpZQAkBlY+Mnf7YEAHDxu6ZXhYaGVHlVuXAUO/IBuO4/KW0nLgzFz9huqbwqb0NI5VGMpTgMx9e29uG1rX347BmzQ9elJZRyaAklAOIQeiUI6k2lGcorlIQSIG/IBx4a82YoYmKup9u4HaoSVVwmvrjQERVYPIZBrKAZSgBYqpUYxPJSCb0Sk+83ihMbaxHocNBPQqlRzDBV+A1Dy2248jYSEUQ7EHBjKGt29sfGLhUEBxqDjAKaoQSAcBuOi8rDD/Ue8Ja6pPI6xDMo7ZQP+bi5gncFcZs/VN9vmHFgBYyOQOUlSXvr7f244KZF+N9nukPXX2vU+/uKIzRDCQARvr5h3IarS4oyQu1DCZA37HvxKy/ux2Ue8d3YGAFDF4ikDokQsnLbfgDAhl2D4RuoMRpF9V1LaIYSAKRglI8T4rKCCndio3rZsE9b6+4Ka+iuhQ0lUqYkeUNC1SUiOTcSYvJ5xQqaoQRAPHbKB2i7zgM+CrNHMKN8jSSUiDo27DiqrcorPLwetxH3qMRlwRYnaIYSAPHaKe9PQ1wGfCgyTKO8ysbGcPCb34OoG1UQVmWiLqGEaCRCZwjZmI3iiIN6oUEUFTWFZigBECejvAoFMSATQNgTGwOovEI+rx8DjnrSC0+v9/0oojBHsTlSQEavSgSEuCIuQTfjBM1QAsA6YEvFZbc6g62WKqDQiOKArQDepGGf16+8pfKKBmFfTy3C15tMqfIqTNR7PEbdfr0/rzhCM5QA4NHLlVQN1R5sKvXHZQFVs42NlTcDQEHlFVVDZnshGaDP/UgP2KpyFbUYqlF/D3FRKccJmqEEgHVio3/earkUMnOVrFJ/PAZ8KBNKEC+vsCoknxkn6hVurSakuOxDkdJRQxtKo76/RoJmKAFAAVRe1RpswfZlVIUEZVihV8LYUNTzhPfy8mlHGOUjYtRh34/q44bpliiN5h78pCaIXkKJtr4DAZqhBIDw8lIxysdB5RWXBVQ4CcX4r3QeSoh2jLZ8JJSQ9QdtLyyEwTuchMKN8hHQU+8VfdSuyfW2CcURoRkKESWJaDkR/YH/7iKihUS0lv8fb8t7LRF1E9FqIppvSz+ZiN7g924mLgoQUZaIfsnTlxDRLFuZK3gba4noirDPoQIRvl7lw6iahGKukv1R7w/YRBgbigi94sFQzJhVVbZJRL1TPrSEotixkRjlqyShmPdqoJ6N+nPQEko5opBQ/g7AKtvvawA8xRibC+Ap/htEdAyAywAcC+BCALcQkdgeeyuAqwDM5X8X8vQrAexljB0O4CYAN/K6ugBcB+BUAKcAuM7OuKqFIBsb4zDY6k2Cucs6lNtwtTKXQ9VtOKp+rTbDj8IoH2VQTqnKK0o3Mh9E3d+xWbDFCKEYChHNAPBBAD+zJV8M4C5+fReAS2zp9zPGRhljGwB0AziFiKYB6GCMLWbGcvTukjKirgcBnMell/kAFjLG9jDG9gJYCIsJVQ8BQq9Uaze9ZS9QyBuTAR/Ky0vlOUv+VwplL6+IEFqiUrahhGkn/KJAQPa8tbShRC+hxOP7ihPCSij/A+BfANh3C0xhjO0AAP5fnBs6HcAWW76tPG06vy5Nd5RhjOUB9AGY4FFXTaAykKq2DyVAvd/47YpYbL4KZUOJ1cZG5vgfFuH3oXjfjyJ8fRSHdAnIqohqMaAC+/s9UA4MixsqZihE9CEAPYyxZapFJGnMI73SMs5Gia4ioqVEtLS3t1eJUFfwFlSM8tWfx/0bGBjNo7t3oNqEuCKSA7aEUb4GZ8r7GuUjfqe1mpCicBuuFh3FiJm0F+wtRNFcvSWUsXwRP1i4BsNjhbrSYUcYCeUMAH9BRBsB3A/gXCK6F8BOrsYC/9/D828FMNNWfgaA7Tx9hiTdUYaIUgA6AezxqKsMjLHbGGPzGGPzJk2aVNmTirr4kKyn27BJSwOtjmplQwm/D8XnfsQ75cM7EXiXN93cIzDKRzHgZFXUUi1rD58fxfdZb+H/F0s24ean1uLWZ+NzlkzFDIUxdi1jbAZjbBYMY/vTjLFPAXgYgPC6ugLAQ/z6YQCXcc+t2TCM7y9xtVg/EZ3G7SOXl5QRdX2Ut8EAPAHgAiIaz43xF/C0qkKMQSWjfL1HW4wQTkLx9/ISiOo8FLe2og4OWasVbiSxvKpERy0XRvb+juLzrLeEMpIvOv7HAakq1Pk9AA8Q0ZUANgP4GAAwxlYS0QMA3gSQB3A1Y0zIal8GcCeAZgCP8T8AuB3APUTUDUMyuYzXtYeIrgfwMs/3HcbYnio8iwNi+Kjsgq8WPwk6qVWqstg7OIYX1+/GRcdPq7CGaOJABflmozLKu/WZH8MJiprZUKKwf3jU0TecAxHQ0ZT2rENGh0irxdRsbyMKZhAXp5c4IRKGwhh7FsCz/Ho3gPNc8t0A4AZJ+lIAx0nSR8AZkuTeAgALKqW5EogBVN+d8szxv1r42/tewfPdu/HitedhamdTVdvyQqDnDD1B19aG0hChVxQiFr/z3/4IANj4vQ961iV7l7U8BdNplI+ivvB1HGjQO+UDQIwfNaN8/UZbFCvo7ftGAACDY/nwlYUJveIjNTjyhuQopoTi0oHR72OItLpyRLEPhf+PglSZjaqmNhRbU5HYUGLCUeJ0AIBmKAEgxuCoi87S/nGEcdVUoUFZ5VXhaEsnjYLiiNYwqJnKK6xR3qeCuEWrrU0sr+imKxnDr+WU7Pg+DwCjfBw1bpqhBIB4f4Oj8lV7MeIVkAotMkQxBWRSxtAYi8DgF6YrLLuF/1OF/cDNtnzuR4Varc6jsReEp0NWh1jl16InnN9n+PpiY0OJkYiiGUoQ8AE04MJQ7N5f1Y7lVW2kk8bQCCOhRHHaXzC34WhW/O5eXlEzlJDl/dyG+f+4HLAl34fC66/JPhS7DSV8e9U6oqKRoRlKAIjhM5KTbyRyMpQq0+JRfxRqigxnKG7qvSAI1RU19fKqtcor2vrc24mHR5NUQqnhpGzv7yhCI9Vb5RVHaIYSAGLsuxnl7SuW6h0BXBsvr2RCSBfh6wq1DwXeaiij/mg8hSy34VoZ5atrQzGDc0axDyUSr6j6zsBOG0r4+ur+PHUP/1oOzVACQLxAt9VNwXaUY/VObPTPk0rYJ8TKpJUowpbXeh9KWBnFnCBcusxSz4Rqpry9KiOMX0WUxwjLaog6+oBn+8x+HQ+pLQqohCWqFTRDCQBTQnE5A9jORKrl5WUR435LqKvCIBHg7Bc/hPnwVFaSUYQYAVT2oTClfOrthSzvcz+Kc2Ki3RzpbkOpdfj6SCSUOm9Qjwk/c0AzlAAQL9DtA62JUV4hTyoZ3YolNmK9xyNFr/Jyu88c+cIivMrLxyivsCnRD5FKKHW2oUS+DyWOM3qdoRlKAIjh42pDsaVXe6x5VW83yldqnxcSShSPEcqGEsgoH45a8f7c+qzos6AIikoYUxDmYB0BHLwdsw4h/VXJiG3uq6qBiOKUULRRvhrQDCUAxMfsakOxDdKwNpTB0Tz6R3ISIpy0yBCFSsaKMhu6qlhFG165vQ9fuW+59B2agSh9jPL1lFAcdoAqtiMgeiIKm6CMjprulHe0G0F9MZFQojxVMyw0Q6kAeRflqd0oH3YFdOL1C3H8t/9Ylq4yOUcxzC1+Uh1VR9DCaqFX/HH1z1/B71/bjs17hsruWaFX5GXNTXiR2VAqYCgB8kZ5OJZbHUGeQa7ycr8XNQ60nfJxhGYoASDGYEHBKB920vHboe5Vu73pShcvQuUVzkMovNosmITin3skZzxQNlU+9P13yjvzhUUl1TDHGAteJnB7Po0F2c8hN8qrlf/uH97EZbctVm5Lhqh3ysfFhhIjAUUzlCAQq3UVG0o9w9dHqfKqd9iOomnXUDixUaGd0byxKTWZKK/P751Fr/IKXqaSpsO8Q9H/brSqBEoVkOVUGc8A8LPnNuDF9eFOqKilUX5oLI+Trl+IZ1f3uOY5EKEZSgCYEooKQ3HJwxjDC+t2VVX/GonKK0JjbM1sKAq5xc5/L32+G/Py8/ILikrqcZZRKx/mFYqibrQGYShefV6L1X4tz5Rf3zuIPYNjuPHx1RXV/R+PrsIPn1zr0348JCQ7NEMJAPH6VCQUNyPmr5ZtxSd+ugQPvyY9sViZBs+hFME4iyQOFP9fMy8vhbwiNpn8sCc/lZewoajT5IXQRnnF4qEkFJ+Nh/kAOlGvA7ZUx1ko9Z2taARBtD37NazL9v8tWo+bnlyjlFcb5RsUfl5eKgf47B0cAwCs2NYXigZPL6+KanZCDFI/756d+0fw8sbqHZYpWlcyyis8uHh3MslLXeVVPxtKEFihVyqvw08qy7nYE+V1SSQU+I9nO8Z8OMHjK3Zg5/4R6b1aug3XYvd6DAUUzVCCwJJQ5IM6X/QfsK1Z45DMwTF5gMkoYP84Kw0UmVBUed3+3AZ84e6l0ntRbKwLUlZlkvAyrKuGXqmnyqsit+EQYqbZ/y5V+E3wzrrK0wRpqm7JXgwsVyjiS/e+go/f9qJvPdW2ocQxzlYtoBlKEASxofiMp0rHs4rKK0oJxe/DGx4rYMiHOUaxQlbhi0Ga8dpk59aUdQS0R71Fhi/cvRQvbfCX2iozyqsXikJt6WdDCXJejtcRwKo0ekn24vvbsrfcJdzeFlD9fSiCljhKEdWEZigBEMSGUvXjQT2qj2IQk+k27F1Zvsh89ehhyFGZQFWlKfuxA1IJxae8YCReE8nuwTEsfHMnvnzvMs+63GjwQ71sKG5dI7zmlOqSHgEs/qvR+OzqXtd7fpN41AfgeQ2XKE469YOlDo6PEUUzlACwx4ySTT4qsbzCGtBUvoMoDhJSNajnC0UUmZzxRBGxWKWsuWfGJ/O3frfCVq+7DcXvTHlP3XmACMuVvJsgE6EpzUZgyHarIpiEIqvfSPVbuMwY3wwAmNCacc3j9/5rGb5+LO/dwJNv7sTrW/dVrf16IVVvAhoJ9teXLzJkSvYyqEQzJdse9DA0VFtHqzpJi4kgVygimUhK80ThNuy1CjMdCHxmiVVv7zevZQtI1QMt9pK7AAAgAElEQVS2PL17+H+VSbyS+cBeRDU6cpjJ0++ZgzAUrxMb/fpeHMng5aYsNhy75aiHhCLb7wQAn+d2x43f+2Do9uNkr9ESSgA43Q7LX6KKUT54myHVIhW2qzpJi2f2Ms7WTELxoTWZsIa7154Itz5XmaCtj9wflQWHtF0r5vUaiy+s24WNuwa9avFsI5CE4uEI4dcXlgrWvT1/w354yd0ZqcC9Di+GMuhyhHhQ+G06rQe0hBIA9pWA4enlXJHb1WBR2VCKDHBEo1fYC+FcxVbWrupKW3i8uZ0RU0pPUKisvsRH68dQ7AePeZ5v7lK+6MNwnHk8SXGlwRcBiqhM1p/46RIA7itlMX+7HtkQRAUnyapqQxFvzlNC8Ym1FkXoFUcdHpUIhpKQMJRt+4Yra7wEou+rbq8NAC2hBEAQCcVfn6vWptsk6Vk+gvGluuoXjERmhDRpVHjYwdE8Tv33J/HCul3SOrxsT6rSlH21KHdh9eYoKuoZv0nNjsqCQ9pXyH55BU2VG4hFe27PHGQuk3vWGYl+7856Fv++d20/ggWfvR+8tuAI9+aUhKEMR7RlwJJQNENpSNjfm2yl5Ngpr7D5UQWl+VVKO1f14UQUv+9OPKeX6kOFgrfe7sfO/aP4z5JQFSqTrmB+fmFAVCUU98nTf8VvMhRPSpztBUGQ4SPoDbL50K09d8+pABKK1G3Y+d8Nol9VGIpbDnt6peH4nV52lam8guzd8YLVJ5FUFwk0Q6kQ8p3W/gwlSHRWWX5rEe2hYmLy6yBQPQI4ZzPKu9GhQoObBKJmQzH++606kw6GImvLZ0ISk59HO35SjjSvBCu29eE3r2wtp8FxrSYFh5nA/CZ8VZuCWx0qakR7vlASioNWz6xKdXi9P5OhSAZ2ELuTNy3+dNQa2oYSAPZBL1sN5xUklKAbnkpXUio6+iiGl3mwks9HKtQpsv4wNV4BKCrNqVKyEglF9lx+fWuGbVFReXlSItpzv/ehHz0HAPjISTOkNKpAjNdciAmM2d6iDHZtGmPlCwM78/Vy1fZbZ4l6vN5x3u/bsqVXOgkzRx3u+caEyktyHHd0DEWrvBoaDNZqWDohKXh5BVZ5uUgoXnCsGgO1ZkH1cCZhQ5F9JEHOenffne5fVsCvb502lOqovFRX3Kp5PN+/3yTM74fZZGdJZW5t2BZRkudxnhEkbcHI57dwiURCkV8HgX1x5Cmh5N1VXqOaoWgAxgeRShpd5iehuK2kgoT7Bso/Er/or6X3qq3yEs/jpfIK9MguEpkXRB6/vvVTeflJF2pGeXjWEfSArMExp4upwyjvU1bkDWdD8Z60/PZ2+G329fMis+ox/rvF0SttS4YogkPam/CqwlPlpW0oGoDxgaZNF9Xyt6jiRWJNWmoD2s146KnyUvxWtu0bxhMr35beI0W7hJjE5Sov9RWU2+mOKo8i8vjRmlLch+LWqIrEJd6visSl0i/DuRKPoCASGx+iUdhQ3JmsfcyX37dP8rLHLSj0qVFPsaw+r7ZksDOjSvehOJ/XQ0LxcBsOEvLfmxbjf5zORamYoRDRTCJ6hohWEdFKIvo7nt5FRAuJaC3/P95W5loi6iai1UQ035Z+MhG9we/dTHx2IaIsEf2Spy8holm2MlfwNtYS0RWVPkcQ+Eko9snf1csroIRS+pEGXVl5Ma6Lf/wcvniPPOYUKe+UNwiU6enNFX0YP3kFsV7cCiahhFF5VT6p2e+qdEvp/p5KpM8wOnuTWSuocGV5/Db7qrq+Knl5+TmQ2PqyUk/qoDYUmYQS6JRLj2cqKvRJrRFGQskD+EfG2NEATgNwNREdA+AaAE8xxuYCeIr/Br93GYBjAVwI4BYiEjsDbwVwFYC5/O9Cnn4lgL2MscMB3ATgRl5XF4DrAJwK4BQA19kZV7XAAKQFQ5GoEZz7UOR1BFZ5lQwo66eb5KJe/66BMd88vhKKsKFIVV5isvCnxW31L356fTSqexns37asm/wYhpLKi9/ziwfmV49AGUMJIqEIo3woCcVbRLF3uWxCdxjlJeVN24giQ/He2Oj9nPa+dOv70XwBs655BPcs3ii9zxTf3/0vbXbNE4QBeLqoK3xfyzbtweMrdii3FxYVMxTG2A7G2Cv8uh/AKgDTAVwM4C6e7S4Al/DriwHczxgbZYxtANAN4BQimgaggzG2mBlv6+6SMqKuBwGcx6WX+QAWMsb2MMb2AlgIiwlVDYwxpJPuG/7sH4/b4LbcH9XaLDPKmrSolVfJJ2MaqvYPy4YiqUPUH8AO4pauouLz+1DtE6vcy8v6X2mYkGCuq/79kisZR47yim7DbgxFRXL0s6E4bEKSZuwMwMsRwq8r8gqrcb9vyt4PbtX0jxg2qx8slJ+W6LShuNPS0z/q2k4QlZeXzUhFYr701sX40r2vKLcXFpHYULgq6kQASwBMYYztAAymA2AyzzYdwBZbsa08bTq/Lk13lGGM5QH0AZjgUZeMtquIaCkRLe3tdQ99rYIis0kovm7D8jpUXE9l+S0a/D5w798ySO0fQVeOsgdWWNGbNJiB/Zx5RbVedJhSjE87M8a3mNeeNhTIJwKmMJn4PauqykSglBkEkW8FLWMu4rLKe/F3VLCNeQ8mbFxLyit+DyqOF16TL+DsS7f3R2Zefwaq8v781IB+8AppdEDulCeiNgC/BvA1xth+r6ySNOaRXmkZZyJjtzHG5jHG5k2aNMmDPH8UGTP9yv3O03CNfaQgujvyu+iA3MZZJUNLPrm637NDfKQylVcQt0Y3ZqBSh8n8fLyZ/Dys7G3IJieVaNK+NhQHQ1FntFZ572dw5OX/3fahqOwW99snYu8mv8lTapRXtAOYEornBOtZhVJoJL9gp35ebeX5y/P4jxHrvpeLsajmQLGhgIjSMJjJzxljv+HJO7kaC/x/D0/fCmCmrfgMANt5+gxJuqMMEaUAdALY41FXVcEYkPGwoagY5a0PSE3sLVVLmBOsS/2lKy8VbzKvTX5+ahErfL2EKZl1+ZLguuHTOgPevaz5Yfmucu3Xsme2rmXvV8X+4ddfzn0MnlkBSCQUu5TkU1aMBdfJsVietzyPN0P383oq+NgtVLy8ikWm5HjhJ6HkFVReor/d1FKqEopwAJHlcToHeI/DoTH3yMSqHnK1RBgvLwJwO4BVjLEf2G49DOAKfn0FgIds6Zdxz63ZMIzvL3G1WD8RncbrvLykjKjrowCe5naWJwBcQETjuTH+Ap5WVRQZM1VesknYnuZ6qqOiAbk0v4D45Ro0svS3QjMyWosKH7D9vuc+FIVn9WUoniovtT71Vb8w7/ensjoNwtRUbChBnThkbbl5eRV8nteog6e7SSg+ferY2Cgp72ejKa3DK5+fxGBX/bn1fd7nTBV7ulsdY/mibSEkmyes9+EXE9ArkKSqM4oXrVEjTOiVMwB8GsAbRPQqT/s6gO8BeICIrgSwGcDHAIAxtpKIHgDwJgwPsasZY6K3vgzgTgDNAB7jf4DBsO4hom4YksllvK49RHQ9gJd5vu8wxvwP8Q4JxmAa5WWrIZUjgIO6+rnF8qpkf4ob5EZ5NQkl77GiC6Ly8lsBe/WXqujvp5K0J/k5Xbg9UtTxpDwlFF97jXff2dNzhaK5WHLkEYsC1/djv/aePGX0BglnA/hIKD4qT78joI36vaUcFSl1wHbeiZ8a0Es7AAD7R3KutASxx+aLlkNRNVExQ2GMPQf3/VvnuZS5AcANkvSlAI6TpI+AMyTJvQUAFqjSGwVUJZR0knx1tKorT7d9KK4qrwqsKF4hM3J+DMXUObtP0CqP6rYytD4a97KqKzXH5OfzIcsYpMpKOZhR3r9jSlWJQd6vZf9wW3zYGYr3AsiNVIdR3sdRRVbHsk17eVl5/aV1eKmK/frTvtp3q0b0g/vzyq/tcKrWJH1i62vpuUq2Mt09Azj5sC5pO6IZtXEkXzBEDb1TPgDsDMVNVE2QEbbEVUIJq/KqgoTi5UL7+Ar5TvrSsl57HVRUXmE2EypLKL4qL+vaTxXhbpQ3/rvvlPevw45SxuZQmfmUDSKhuNkMVPfmGO15tyGrYz930/WStpx0ekgoPh06rCChhJVyS+mQMS4/CcWeNjjqr/JSssX5nHEfFTRDCYAig+c+lAJjSCUSSCXI3YaioPJiHqs+VVWUld8/j5fYvWdwDH1D7mK3ecCWR3BIVZHcXqaUNhUvL78JxU9d4bfa9psc3co527CulfaheHh5+cGSEF1oVZBQ/CREx1j1UGl51eFFY2kdYUKvqDCUIJtA3Uj220Bpl7LkqlXrWsUor7I4jSp+mB80QwkC5hN6pciQSBjxe9xesorKy0svLX65lS8dv5V6eanuCBY6Z5lqzFK5+JLgsYr2vu9sx291aS8jeX8OVYT35CjbxKdCg2q/WnR47EPxKS5uu4cBsq7dJlKLRH8G6u827M4cvcZI3seILaNFhtFc0TzCwFVdFXJRYtRhYxiSPHbm7WdDGfQwyquOe6NNzVBihyJjptuwTJdbKDIkiZBMkK9bqdIhTXDf2Oju5WWknzJLrneVwW+VVLpb28rDzEEt9fIKEBzST8/vVoWXNOfVhqw++ypOakOJWEIJYlsScBjlfTiK32ZAp4Ti7QnmruKz9Yl0HLn3uYoTS1k+RUlGhtF8Ac3ppGdev4nXa7Eno0PWjJ+Tgf29eHl5BdnYqBlKDGHYUITKq/x+ociQTBCS5C6hiPnBW0Jx/9D81BgiWYSSUlJ5+ah/3PTW9meQq7y8aXXU5WIM9RPr7flVz9Rwyzuatz5efxuKvC2/88KDSijlE4HCC+Xwcl0tTfdzG3ZTtflNng4JpYT2nI9qSNaGlw3F7/2P5YtoyhgMxc9t2L0N/70sfuFmfL28HDYUD5WX+X7d6RXQDCWGMGwoPhJKwpBQ3FU4/mG47VUH3YciYDIUz1yiPRlDsa7dPrJSt1O3OlQGvN9qT8WrSmWXunVwWHle+34NP48lt6b+5deve9NQQo8fSm0b9m72K29Kswp95xfvS2Xy9I9v57w3VvCfnEvr9bSh+HTIWKHoK6Go7tgH1JisdBz5xJSzP8evlpUfAy3g937tCHMmThDoI4AVsHXvEN7a0Q/AP3x9MpHwYSjeK27Ae5L08+wQyeTqZ1QOr1hegLvKy64rlrsXq4vkplG+hAUG8TJSUXmlEwmMFYpylVfeW1dfUJhM/OBUu6n0S9Hzt3dZ7xWsc0Hg3b9q6h2/1biTkHf+2x8BAK2ZpKd7uvPgusoP2BrN2RiKS1a/lXzex/5h0Gikp5NUkcpLRRVq5POWHu2olYSiGYoCLvrhn80opJ5eXgWGZMJwG3ZbNagYmb32O4if7iogI12cJaUy2PwMg64qL1t6WJWX234HPy8jB/P1aUdIkCjIaRrNGxPOcK6gYEPxbApJl01kQW0opRO9vc+9HpcxK1yJioTi5jbsq0b0YSj2+2479pvSSYx5bOATY8NroaZC61hBQeUVQEJxtysZz5lOJkKpvJrSCYzkisgXiuZC1pHPZy6wQ6u8YgTBTADr1D83UdU0yvuovLxWWs5VkPOev1HeQBAJxWsfCuA+GB02FKlRvrwuN7i7WbvTqFqHSQ+DLbhn+f2xfBGt2aRrXYYEqhYcVHawkkGD9wRcitKJXlVCEf1F5O9BB3gFQ/SWEIMYoEdd2mhKJ328vIyb2VQinJdXvoDmtPv3C/hPvE4bivdCK5NKuKhOi9Jrqw2jzNzJ7QDc96KobPoVGNP7UOIJv/NQkklCKkGuIrwVysK9jbyHn7o1SbtJKMb/IDYUX6O8gr5ZpjIJEnpF1FWa0y/4oN/90rzCbVT2zKP5Ipoz7jr2QpHZ3E7L74/YjPpJydGvQOlOeU9yAZT3vUNC8Sgnnk/Y/Pz6bvu+EXk9LpJjaTv2vA567QwlJ5+ss6mEklE+k0p4vmO/lf9Y3lJ5udqEfGwNKhKiSW9S/lx+bsOiT8XiZignN8wH2eelJZSYwit8/aK1vdg3mEM6mXDfecwHkKqE4qbycl2p8eSEOKNdYdLyOmDLoEfBhuIVHDLAxFk6D/upVOx1+0kohSJDJsVXqBJ6xwpFtKQNLbDseQpFy21c1q/2CdONoagwQHt6qZpIxSgsaAWArHAi8VFH7dwvZyimHaZCA7RD5eVyHkkmlQBj/kbuIBKK7P2N2RYMlcbyUvH0s2woCbnnm49RXvRDW9YYi26egwUfhuIMraMZSixhqbyc6Ywx7BoYQ/9oHukUebjaGgW9xq3XR+oXy0sMMrcJTU6T9+rVzWDrsKF4HQGsouPlE2epqs7PRhJMQoHJUGTPPJoroCXrI6F4LCjsZ1ckXI8Atq7dJkcvI7S9nwe9dlGLSS3lruJRCUIo2lNZ0ctsJPZ35uZF1+QnNZgMJalsQ5Gp8EbzRbMtt3q8zh8BnM4n7vQadWRcJC//0CvGf8FQhtwYiojl5ROXDHC3X0UNzVACIu0yodgHYop7EskgXr7XSsh5VGnJgOM/3Y3+pQzFfzKXh9i27AVutDptKO5SThiR3OlZVX7fIUn5rC4ZsyQMGb1jhSJaMylel7xPTBWSTEKxqbzcV9vemyeNtu15nPXY++Pvf/matDxgjTO38Vpal91O6KBFtO/yCu31jhXKJz7xvETOb8Tev9mU6FPvMZ0JIKHIJlCnyktejyjnsh4IZkNxVXmpeRO2CgklJ2cofiov+zhyk0CjhmYoAZFMyA/YsofGziQTHoZs/30oKhKKn5dXMoDKS8acGPM+TKyUBm+jvAJD4XWV0uKnUgkSbLHAGDIpsUItCWnCmEMl4iahWAxFwpDsK3AfLz9A1dnBWY/qfoK8zdPIaNdbQnGzb5gStcvz2J9BVocYO83pJMZsDNdxHK+EHjvsNgmv78ZPBTuaLyLL37+bNCuYnptThd247aeiS6dIHhyyYC3WvN6Lr8rLRx1pHytvvd0vzRM1NEMJCNMoX/ISR2wfk5fKS0guXh+Gl9HO/PhqoPIS6iG3ic+e7q3y8qdBqLzcGGjptZVmXe8ZHPO0K9hVXmXuuEUjjEwrZyhSGwqzIiXI2hl1qHTkNNgnPbez3u1jZ7jEIKvs5cWsVT0gfwd2eu3SlR1mOHeXduzj3usY6JZMylXldfjkNlca7Xmz6YSy7dFNQsmk+D4xl3EyyheGbhKKeB/ZVMI3goSrhFJkaFJQRfqpvPwWl3YJ2OtclSihGUpApJMJEJVP6PYPMpVwl1DEQFcV3UsHpN/u2FKVl8p61s0DyMveUEqn9xHA6iqv0gnD0ReSLhUT+5SOLPqGc+j3CFXBGEOSjL4pbUe8lxb+Ecs2lBo2FH+V17TOJiUjtp8UCwC7B8Zcy3tBVJHxMMrb35mb7SBv2lDk7Q6N5U01kqwOMXZaMkkHwxFtf+fiYzFnYquR5rOBNpNMeC5OxjwWOIwxjBWKyKYSSJC7NCtcm3MFJl00DI8Z97taMxhxOwnTpqKTS7retpxylZd8TIuibp+XXxj9akAzlIDIpBJGrC7bW/zTml6c/f1nzd/pZMJ19TnmshJ35HF4gTjvmWKuywARZJkMRWH+kTGMfJGhKe0toYgJpC2bcgm94i2S2yH6q8xmYPvpJaF0tWYBeMfSKhQZEnyfUOkzmwwlLd+HIn56qbyEyqezOe27ixrwsKHYHnrPoJOhVKrykq3sxTMnE+TKUIQq0m24Do0VML4lDUDOUEQ/NKeTDpWYnT5hQ3FTu1kSSlJZQimlRfzOpBKe5xXZaZC9QxFOfnxLxqHmdtBhe2bpt1VgJkPxcohpa1KUUBTUkSrhWaKAZigBcfYRk5Ao2bj42Bs7zOsvn/MOZFLkOlmMKjAU+yTiOJObMXNC8ZNQ3LyMZJCpB/IFZq483UR7Ebiusznt6TasMgfmXFSBjlhQUluPkdbOV3NewfTyBcNLK50oV0mK99KSkT+zNQFyI7eHCqk5k1RyCVbxnttdwlDcxlUpcjbbhRu9os/bm1IO+4aAsCvxH9J2hscKGNeSAeDi5SUm1xIJRTxjKkGmXcPNkcXuNlxk7urenEQCEhB1Z1MJpJMJ176XSVF2iAVLV6s7QxH2ueZMUtonuUIRWXODpWwhZvwPa0Nx7pnRDCV2+NAJ03DIuOayaMJ2e8WZh0/kA7Z8oKzY1ocdfYa3hRdDWdtjGdBkEWETfPez9IxuZn2ogPtAsqe7TQTWKkr+oYuzs8e1pD1VXkFiDZWu2FT3oYhNYF4n3OWKxjGoKck+oXte3AgAWMWNl6UfuuU15SGh8Em5NZNScgl2m0BFf49vSWPXwKhreS+I/jSdDDycCNqbUlLpYsHzG81rVwkll8f4ViGhyLy8bCoviZdXKkmmanXUdYK2VEhuzwJ4u8kKySObSqCJh9eRwS6hyFRwQ7kC0klCWzalIKGkpO84X2QmE1Xy8nKTUHy0FU5vUXmeqKEZSgAcNdUIhVBq1EvZGEo2leA2lPI3+JX7lpvXXhPDfz6+2ryW6dy9/PbFIEv4GOUdH59k0Odsel631Zxd/HfbCGjQGYChlB15660HFsEkp3Y2AwC29w27tpEvGDvd08nySAaC0YtuK9uhzhtPeagSxaQ8riWN4VzB1R1bwM/La0pHE/pH8o5T+1QlFDGhCrWljJYxU2WZlqqblm3aY167nb0yNFZAZ3PaUZ8ddobicBsuiP60qbzc7DhCQvHwWAO8nUTEGM+kEmjOJFyZgeMIAxcJpTmdRHMm6XBIcNBhk3ZzhWLZgspQeXkY5W0SWTpJGHKhNefzfdmZpqrtLSw0Q1HA2UdMAgB86ex3ADAmHUfcpoTVjUSETIqkk/SsCS0AgDMOnwBA/pJLPwTHBMRdFr0MeiJJxJJzG0b2MCG+EorLJDbApYFxLekyVZMwYgOKXl5ClRdQQhEf/SGdTQDKbQ7ONowge8kEOU5nBICTDxsPAPiH84+U0mEauT32TPxpTS8AYGKbYc+RbTy0x9jyC7opvJ9WbNtv3bPRJYzZMojx5xWuXeRpz6ak0sWps41xOq2zyfUdDo0W0JpJIZ0kuerUVHk5vbzE+04nyVT/uDEU0dfZAHG4Sr8/If1kUgm0pFOuq/4xCdOzY2gsj5ZMCk3phKuUI9pua0qBsfLFSa5QRFPKwyhv89RsSiddaRXP5NYf9nIqi7oooBmKAv79I8fjT/98junhk0k5je4pW2TZE2Z0uoZeSSYIx0zrwKFdxkTw4LItZXl++bKR9s0PHg3AKXaL63F8RSizF4jBJXb0u42jkTFvhpIvWK6NbtKUaH9qRxP2j+QdZ8+rHp5k5efeNaUMxb5T3oMBj2vNOGiSIV803H5TiUSZOkN8fOO4gbncrdgpocie6TevbANg6NcBSyXoeB7+DE2ppK/KazZnGPZnEu/iouOmunpFAXYJxV/l1eai8hJ9e9iEFk8vr9ZsCtmUfMVuSijpZIlbtZg0E5YNxdXTjKu8PI6OMGgpmDauUonLsqEk0ZRJuq767UxCFo9vaKyAlkySP683UxI2kNJFot3hxc0hBjDsoC0Zd4YivMzchI9hmwt0jfiJZigqmD6uGYdNsFaDbdmU4yMXIu2ps7sMHb2LymtgNI/WbBLLN+8FADz6xtuO+yO5Ar75uxUAgKOndQCwpBLAGpiT2o0VcKnBFrAmuoyHnzvg/HDkel5rk5+bymtwNI9MKoEjuSpw37DNmcBHsiiFm1HesQFOUo2gTTBZ2SQukC8UkUoYagQ3o3x7k3wSsAzD3qE7AIuhyJib6GuhDpFBPFNHE184SFRerdmUq1eUnX5TPerBjN1sKMK7SEyMMgznCmjOJNHRlJLudbAb5e1SkGCGDhuKy14Yu5eX/Xc5vXlM4N5+pXWJST6TTKAlnXQsqOywRwyQHckwPGY8r6HycmcoRJZ0mMuXj2mvcWRXV7ZkUlLmZ3eY8Ds9tC2T0hJKnNHWlHJMXL/mK9MFn3k3AGNjo2yS3jeUw7iWDP5q3kwAwPTxzY77PfstA+zR0zqQTJBj0hErwGMP6QQAvLFtX1kb1grY2+XX7oro5u4pxHI3lVdv/ygmtWUtb5Rc+YQBqBkExUdX6myQyzOz/l8t24JZ1zziUGvlzJVnAs3ppKeEkuM2FNm5GsNjBST4JJBJJcrUVaLv20yG489QfrW0/LS9AT5hdbXK7U6A0a8A0NHM3UZtjgb9o3lkkgm0ZeVMQKCUGXhKKNmU1CA+NFZAhi+QZBPS0FgeuQJDSzqJzpYM9g2VM5R8sYgEGYzN4TYsVF4Jf7dhoZ4Vz+ImyQyOFsy+L13V292GmzNJ1wi+/TamKHNGERJKUyqJXIFJGcJovohMMmExypKQNH42FEFrNpXkKq9yWu3v3s+G0pL1joEWJTRDqQBt2RSeXd1jTnxighNeGR1NaYzli2WDetfAGCa2ZfC5M2djcnvWsQJ6u28EZ33/GfN3U9pYSdsnnff917MAgNPmdCGZIKzrGXTUXywy/Ha5wdzEak4qfRSKuOiHfzZ/y10bmamzdgvFv6NvBFM7m8xDi+xMyi4BqBiSHavwEk+oyR3GqvNHT3cDME7QtOg06k4nE2jNpky7jgz5YtFwG5Z44Y3kDGMrEaE9mzInfoHRkknNK3qrmCD/b9H6snuL1+8GAExoy7jaUL507zIAwMyuFqQShM17rOft3T+KSe1ZZNPuhmUA+OI9Rh3CYO6mLiTi0o5kDIzkCmhKJ5CSSHQAcO1v3gBgSMrdPf14ctVOCaMuoiWTMlyTC0WTZjEmkja3YTcGuX/YmOSndhh2MpntYiRXwJs79puTa2ke8T5buHThpkbqH8m7qj0Bw8urOZNCcyZhtluKUb4j3y1uXN5nY6OoM5tKoD2bksZZEwvabMp9HIg+aM2mtMorznhx/R4UGfD0Wz342Z+NSUOItwBwaJdhfF+5vc9M2zM4hl0Do6ZIPrEt61hp/9X/LXa0kXGXa7AAABx2SURBVE0l+QZJ4yPbYptUJrRl0d6UQt+wc0X4xzffxp0vbOTl3SWU0rMvShkKY8w0PqYS8j01I7kC1uzsx9TOJnMz4IiDoVhl3AIPChSKDGt29jt+C+TyRUxpb3Lkt7tp20OFt2WTniqvkZzxIaeS5Rsbh3MF8yMvlUBFWQDocFGJ3b14o3n9viMnu9LwID8jfFpnM3r7R8s8gOy/O5vTaC9RJe3sH8GUjiw3pBc9mQpg2YRkQSZvfrobjBnS7Gi+3BtJjIHWTEq6ue6pVT0AjBWymDR3l7g5D3I1r2Bswg1a1NeaTZorebdn6RvOoSmdQAevY0iyYl+ywfBIEzGrShnKmzsMx4a5k9vRlklhv8uY7B/Jo4vvqyntM8YY1vUMYOb4ZnOsyJjbhl2DmNrRhHTKGKf270vsJfPa2GhKKOkE2iVjEQDW9QwAMBwmRnJF6XcumGarVnk1BgZG8/juI6sAAJ87c5aZ/u5ZXQCsQZwvFHHS9QsBAHuHDCbS1Zpx2EDsq1DAmDQzSStekH1SnjulDR1NaYd4DsDxkQj9u2ygbdztlGzstg/xXLkCw4TWDDJ8sinFK5v3YvfgGC44Zoppa7FPOkKqmdiWxb7hnOdelGt+/bohEfGJxaGOKxQxhUsoAnbjr3i+VJLQWmLbsuOmhWvQN5xDe1MKyUR51FrBbABDCnGVUFwYyr8+tBKA4ZmVSBC+ePYcc6IsrQMATjx0HHYPjmHn/pIJ2PbsLZmUsaiw9X/P/lFMbm8y7WhCPWaHva+FWrV0Utq213KvdpNmhXqnOZOUeqwdP91QvX74nYeYq/FSw/wAN9ofMcWws7253fgm+keNsdvelMa0ziZkkgms3ikPYLh/OI/O5rS56VQmXezkbt83Xno8iFBmI9m0exCT27PobEnjkHEGMy+1s+QKRQznChjP1WalTg/7h/MYGM1j9sRWUx0sY4L7hsZwyLhmZJLlceFKN9DKNjaOmhJKUrq4AYCn3jKY+Uy+eJUt2sTisiWT1Dvl44xPnXZoWdp4vqoBjLhSTekENu02mMSL6y1//nmzDPfUrtaMp4srYEgZYgUkmMcdn303OprEytU5iOz1dQqxXXL0ZylDEd5JAmJyHN+awYS2TNnmui17hvCJny4BAJw4c7z5cdiNh0KdN7Etg0KRucbYWrZpD37FV+1HcUeEPYNGe8ZqrojJHU4Jxa7vF5OtpfIqb2f/SA4/fGotrxPIJKlsZ7hYSQMGQ7HTu23fMJ5dbbgEt3NG7RZax24IHcsXHczAvulyzkTDJXj9rgFH+b22d9iWTXGPwqL5HGt7BjCSL2Ayl9p6JAxl/S7r/Y5rNsblfps0my8U0d1rTd5u+0CEAbo1m8TQWKFsUXD45DaMa0nj3bO6cPPH3wWgnHHtHRzDuOY0Dhln0Lt3aAz5QtEMvd/elEJTOolDJ7Tgd8ud41Bg/0gOHU1pc+FSKhUwxvAvv34dAHDG4RPRLNm42DecM6W1rraMmWbHai7dzORMuFRCeZuHgJ/SYal5SxnKaL6A17b2IZ0k0+PMPgbE+OgwVZHlz9s3nAOR4c7d3iRXeYlv7sMnHALA+X5Fm1v5oiHrc8RylNAMpQL88wVHgcgagIC1gxow9qIc1tWKTXzi3mCbNC5513QAFkN5fMXbrqJ+Z0vGHPRiUE3gqydjoDkH0dt9lipLMDiZJ9jGXQajO21Ol5kmJosV2/pMO0xXaxqT25sczgIA8PXfvmFeTxvXZK7sn1hpea2JiUWsoPokBlsAuPRWS9X3lfcdbtDMAyIaahjLDiDQa2Nwon/GtaTLvO9MWmwf5L5hwzHCbkD+xZLNeHHDblMd2d7krOfiHz+HHz9j2G9MG4qLvn/bPvERG+NB9MmyTXtMKfWv583E7EmG1+D63hJpkdN14bFTMak9y49CMN7NWr6Cnz2xFYeMMya9P63ucZS/98VNOO+//wQAOH3OBNNrTYwfxhj+4sfP43N3LgUA/OErZ5rvr7TvhvgmvoltWRSKxgFydvTziR4wpCmgfO/N2/sNO9vEtixSCcJbb/ebfQTAVC919wygp3/UdUHQ0Zw21cql6jf77wmtWSlD2TeUM8eRUFvuH3a29YuXNgMA3jvX2HfmlCwKWLxuFwBgameT6VW4t2Rc3/7cBgDAk6t6TAnVLvmJ/hHl5RKOQWsiQWjLpsukZcD4Rsa1pE1pqpTp9PRbc0GSdOiVWKOzJY2TDx2PW55dZ6bNndLmyHPYhBZTQhH/l3/rfBCPsTWxLYOB0Ty+dO8y/Mejq6TtdLWmsXHXIBhjpopAfMDtTemyD1wwlOZ0EkdNM1QMNz7+FpZt2mvmufHxt7Dg+Q04fnon7r/qdHz1vLkALFWF/WOf3N6Eye1ZxwQOAJPaLBVUOmnpth953Ypp9tgK41psvtvRV37Aj92V9er3vcOcJIWkJVaspW6r9klY5O1qyaC9KYWV2/c77Ddj+SKuvGup+fuz75mFSe1ZvPV2P5Zt2oO+oRy+/ts3sG8ohwl85Voq6dj7ucv8gL3DgZ90qCGJPrhsK17o3uVgnH950nRM62hCV2sGSzfucZS74dE3AQB/e67BXA2VlzHpCPXYX82biSP4eLv56W5HPwq3cwD44WXvMseLsMOs6x00VbEAcNz0TnO/S3ePbeHzv89j8frdaM4kMXO8sSjYYnOGWLVjP3736nZzD5ZwSCllSjv7RowVfTqJ46Z3YvXb/Y4Ve2lEhy0lqt/7XtqM57t3o6MpJVV5FYoMx173hPm7OWN4RtmZzOfvehlLNuzBFC7plvYJYEzsv1hiMJR3zhxX1h/3LN6Eb//eeDdTO5rMsWK3GS3fvBcLntsIwFiUCAa2b8im2uZzwfjWjKtXYt9wzmQ4nc1pjBWKZfle3rgHE9uyptS1d8g5F6zYZthvH/ji6UYwTM1Q/EFEFxLRaiLqJqJratn2p08/zLyeNaEF73nHRMf92RNbsbZnAK9v3YdNe4Ywd3KbuZoAgDmTLAa0kuuVv/b+uY465h87FWt7BrC2Z8BcTYkV5/BYARt2DWLWNY+gm8f+env/CE6b04UXrjnX/GgA4E3uHMAYw62cCR7NGY6wTzzCA1yKFf87Z47DkVPbMbk9azI1gR19hmF4+bfOB2B9oPOPnQLA+Dj/9xmjnffOnYRkgvDUqp2OZ/vhk2sx5+uPAgC+eNYc/PP8o0y7wF2LN2IkV8A13IuofySHr543F7MntqK9KeVQ2S3h6sSO5jROn2Ps7LZHfv76b9/AKj6BLvjMPMyd0m4yxEtvXYznuneZecUO91Ibylk8UgIAk+ktXLUTtzzbjUKROVaZIgrCvFldOH3OBOzcP4JP/GyJ49nfPasLiQRh3mHj8btXt+PTty8BYwyzrnnEVI+KvT3pFJkSyp+42m1KR5O5MAFg2vFKMak9a9p8hHrUvnIVEIshwahHcgW8usVwSZ/W2WRKmVttdhfhJSjKtJkMxeqL/SM5DI4VzIl89sRWbNw1iLsWbwQA3MHd7AHg558/FQBMqR4wxqvwJNu2b9hUedmloO8/YYUp+o+PHA/AWKwJ21K+UMST3HlALKyEO/ZHbnkBtzxrSJ5/d78VFunwyW04tKsFL22wmP2TtvE7uSNrjqFe22LjL295wVQP//zzp5qqWiHhj+QK5lg4dXaXYfMrkehueORNPPzadvOdCxuYfaGXLxSNb39Cq+kAVKrGfmXzPmSSCbxr5jgQkev5PFGjYRkKESUB/C+AiwAcA+DjRHRMrdq/mKuuAGt1Zof4CP/ix89j4Zs7y1YYwqAJAEv5QH/HJKeUc+bhBpO64KZFuO5hw64hIrueOttSV73/B4vwiyWb8eqWfZgxvsVkXOIjXdc7iD+t6XXo27/+AWMn/jncI+mffvUa3tjahx6uJ77/C6chnUxg2rhm5IvMlMbG8kW8snkvzjt6ioNBnjCjEyu27cddL2zE61st77b3vGMCTjp0HF5cvxu9/aPm6vLBV6woAV97/xEALHXei+v3OCavkw4bj384/wg880/n4F0zx+HVLfvAGMPdizfica5SSibI3N+zbd+wKWHYJYBZfHOqYFwAcPUvXjGvzz3K6Iv2pjT2DeeQKxSxaE0vFvGQKoC1U/757t34z8dX46v3LzfVVGcdMQl3fvYUM+9pcyZIT8oTXmrCHfrPa3fhnhc3OfIIFWpzOomn3+rBC+t2Ydu+YSQIZrh4gQXPb8BHb33BoYKdf+wUEA/VP6k9i9v/vB6j+QL2Dhq0Hj+9E7+7+gwAlnr07sUbUSwy07UZAK48cw5mdhmT2uJ1u7Bhl3PiuuOzBlMQq/H1vQOGN1TvAObftAiAZaOZM7EV2/tGcO+LhiTQZRs/Jx82HplkAn94fQdGcgU8tWqnYxLt7R/FxLYsOpvTWLrRkrj/b5GlJbjs3cb7nzG+Bdv2DoMxZtq+AODy02cBsOxggBE3b8n63XhipcEwbr9iHgCxIOzHXn5om2D0V5x+GLKpJLpaM0gmyHRueGGdtTD5xgeOxgkzxmEil2IEc3voVctGNK4lg6Z0Ave9tMWU2N7uG8FP/2yozMQemImmJGQwLsYYrnt4JUbzRXzohGmY3G7sA1tnk6ZWbOvDbYvWI5tO8APFaqfyct8CG3+cAqCbMbYeAIjofgAXA3izVgQ88bWzMP9/FuEjJ80ou3fJidMd6odjDulw3J/Z1YJvfvBox+rynTPGYdk332+uTuZMaivbhCcmo6vfdzjW9Azg969tB2DZNcbZ7A1nHD4Rk9qzuPOFjbjzhY14/9GGBPGzy+eZjGn6uGYcM60Db+7Yjw//+DkAhtQiVoOfPPVQ3PXCRnz/idWO1eA5tlU7YEwOr2/tMxkfYKj4EgnC0dM6cPfiTXj3DU+W9dNDV59htpVIED53xmwseH4D/ulXhtH2gS+ejlNszPP8Y6bgXx9aiTNvfMaccP6W214SCcI7JrViXe8gjrvuCUxsy5jqqsntWVMqnGCbyARe+vp55oryHZNaUSgyzP3GY448mVTClGIEHnl9h6nq+8QpMx22tNKNqzPGN+MnnzrZ/D2t07ovHCEA4K3rLzSvTz6sCy9v3Gs6Qbz/6CmmdPL6ty/ACd/+IwBjUTL/f4wJ/NZPnoSLjp9m1iEmtCO/+biZdv9Vp5kLIUHzut5BzP+fRY6xKiQlALjvpS2476UteBdXCf3D+UeYLtJTO5uQIOC/F67Bfy9c43huwejPPnKSea+9KYUTZliLqqZ0EqfO6cIfXt+BP9hUp4DBkG7++IlIJxO46LipuP/lLaadT+D6S44z+2VKRxMeeWMHZl/7qHn/118+HScfZowjocIT+OvbXgRgBH8Vcfvasims2TmAE7ndCzDG0L9dfBwAIMWPI/7Jn9ahOZ3Eb5YbjiUPful0My6c2F9T2ic3XmpIUhcdNxU//fMGfOaOlzCxLYuH+bcMAN/6kLE2Fk4VH//pi/jUaYdiaKxgOtGce/RkEBlj/q7FmzBvVhfam1L4zB0vAzCiowNAJuUeXTlqNKyEAmA6AHswrK08rWY4cmo7ln/rfHzujFll99qyKTz61feav2+89ISyPJ9/7xx85CSD5B9e9i4cOqEFE9qymNppeTW99PXzzOufXT7PvE4kCD/6+Il48h/OwgzbxGWXnACnJCPEdqEjFvjlF0/DeUdZeyeOnGpNKO1NaXyDxxWz4+wjnQzlqrPmOH5nkglTgvnkqYdBhu9cfGwZLV84azaa0gm8umUfpnRkcdx0JyMWTFEwk7OPmIR/mn+kef9XX3qPbc+DwUy+/9ETsMTWj+95x0RcetIMc+U8/9gpDk8yOwMTeOjqM7DmuxehOZPE6u9eiI+cWD7URLgcgXOPcu5H+ccLjsBxNsn0U5J+WfTP7zON5ADw8VNmOu7PnmhNhh1NafziC6eaQSQF3lfSrmC4dpRK1ecfY/Tr2p4BPPTqdkxsy2D9v3/AvC/UiQBMdVipRP2F9zrHAAD88e/PMts6YcY43PnZd+O0OV14+Rvvd6jtAOBWG7MVyKQSWPlv801D+dWSZ7npr9+JT51qeV6edNi4sjzCpgUYdhahOrbj918504zXJyZjgXSS8IevnulIu5QvJG96cg027R7CnImtmDery/Fc11x0lKPMZ94zC3/9boPWvznHeJYX1u02mUlzOolHvnomPsS9t2bbAoDe++Jm/OaVbThqajse/NLppqr5A3zx8JX7lpvM5NqLjsINlxiMa3J7Fpt2D5n2m2qCaiUKRQ0i+hiA+Yyxz/PfnwZwCmPsKyX5rgJwFQAceuihJ2/atKmsrmrihe5dGC0UXTe7FYqGa6x9EgmKkVwBi9b04tyjJpsfhMBovoA7n9+IiW1Z/N+idfiH84/EhcdNldazbNMerH57AB9+5zSHWgDgcbD4DnNx6qEMa3f2Y0pnE9qzqbIJ49E3duC57l1oz6bwN+ccjo7m8jyAYTO5e/EmfPiEQ3DohJay+7sHRvHM6l68vnUfrjprDmaUrDh37h9Bb/8onl3dgxMPHY8zDp9YVgdg2Iue796F84+Z4pAsALFLPIkX1+/GcdM7XeNZ/dcTq/Hkqp346eXzTDWnHaP5Ah55fQde3rgX373kOGm/GW7JPZg1oVVK6+6BUWzbN4ylG/fi0pNnlHm9CWzePYREAmX9IY6/Xb55H17ZvBefPOUw063cjv6RHP7ylhewYdcgnvjaWQ5GxRjDzv2juPfFTfjNK1tx6ckz8NXz5pb123Nrd2HNzn6cOqcLBCqTzP0wmi/grR39yBWK+MPrO/CPFxxRNhb7R3LYtHsIz67uwadPm1X2LMUiw9qeASP0+1jBwcTtfdXTP4JNu4dQZAwXHDO1rJ5CkWF97wCmdjZh72BOOhZHcgWs7x3EYyt24MzDJ+JUG+Mt7ZehsTzef/QUhyPCr5ZuwZqd/ZjYlsUHjp+GtmzKoUoGgDe29uHXr2zF+cdMwe7BMZx71GTHeCwUGX63fBvW9Q4gk0pg9sRWx8JyxbY+/ORP6/DNDx7jWKwGAREtY4zN883XwAzldADfZozN57+vBQDG2H+4lZk3bx5bunSp220NDQ0NDQlUGUojq7xeBjCXiGYTUQbAZQAerjNNGhoaGgctGtYozxjLE9HfAngCQBLAAsbYSp9iGhoaGhpVQsMyFABgjD0K4FHfjBoaGhoaVUcjq7w0NDQ0NGIEzVA0NDQ0NCKBZigaGhoaGpFAMxQNDQ0NjUigGYqGhoaGRiRo2I2NlYCI+gGs9sjSCaDP4z4AHApgc8g6/PJEUQfQOLT60RlVO5rW6rQTF1qj+m40reX3pzLG2j3yGGCMHTR/AJb63L9NoY7eCOrwzBNFHY1Eqx+dmlZNa63o0LTK7/vNneJPq7yc+L1Cnn0R1OGXJ4o6gMah1Y/OqNrRtFannbjQGtV3o2kNTgeAg0/ltZQpxKOpdh21QqPQ2ih0AprWakHTWh1ERatqPQebhHJbTOqoFRqF1kahE9C0Vgua1uogKlqV6jmoJBQNDQ0NjerhYJNQNDQ0NDSqhIOeoRDRAiLqIaIVtrR3EtFiInqDiH5PRB08PU1Ed/H0VeIMFn7vWSJaTUSv8j/5iVq1ozVDRHfw9NeI6BxbmZN5ejcR3UyyU67iQ2tV+5WIZhLRM/x9riSiv+PpXUS0kIjW8v/jbWWu5X23mojm29Kr2q8R0xqrfiWiCTz/ABH9uKSuWPWrD61x69fziWgZ779lRHSura7o+1XFFexA/gNwFoCTAKywpb0M4Gx+/TkA1/PrTwC4n1+3ANgIYBb//SyAeTGi9WoAd/DryQCWAUjw3y8BOB0AAXgMwEUxprWq/QpgGoCT+HU7gDUAjgHwnwCu4enXALiRXx8D4DUAWQCzAawDkKxFv0ZMa9z6tRXAmQC+BODHJXXFrV+9aI1bv54I4BB+fRyAbdXs14NeQmGMLQKwpyT5SACL+PVCAJeK7ABaiSgFoBnAGID9taATCEzrMQCe4uV6YLgPziOiaQA6GGOLmTGq7gZwSRxpjZomGRhjOxhjr/DrfgCrAEwHcDGAu3i2u2D10cUwFhWjjLENALoBnFKLfo2K1ihpiopWxtggY+w5ACP2euLYr2601gIV0LqcMbadp68E0ERE2Wr160HPUFywAsBf8OuPAZjJrx8EMAhgB4zdp//FGLNPmndwMfdb1VAjBaT1NQAXE1GKiGYDOJnfmw5gq638Vp4WR1oFatKvRDQLxopuCYApjLEdgPERw5CcAKOvttiKif6rab+GpFUgTv3qhjj2qx/i2q+XAljOGBtFlfpVMxQ5PgfgaiJaBkOsHOPppwAoADgEhgrhH4loDr/3ScbY8QDey/8+XWdaF8AYJEsB/A+AFwDkYYi3paiVq19QWoEa9SsRtQH4NYCvMca8pE63/qtZv0ZAKxC/fnWtQpJW7371Qiz7lYiOBXAjgC+KJEm20P2qGYoEjLG3GGMXMMZOBnAfDN0zYNhQHmeM5bhq5nlw1QxjbBv/3w/gF6idakFKK2Mszxj7e8bYuxhjFwMYB2AtjIl7hq2KGQC2l9YbE1pr0q9ElIbxcf6cMfYbnryTqwWE2qWHp2+FU3oS/VeTfo2I1jj2qxvi2K+uiGO/EtEMAL8FcDljTMxlVelXzVAkEJ4ZRJQA8E0AP+G3NgM4lwy0AjgNwFtcVTORl0kD+BAM9U7daCWiFk4jiOh8AHnG2JtcHO4notO4OH45gIfiSGst+pX3we0AVjHGfmC79TCAK/j1FbD66GEAl3E99GwAcwG8VIt+jYrWmParFDHtV7d6YtevRDQOwCMArmWMPS8yV61fw1r1G/0Pxkp5B4AcDK59JYC/g+E9sQbA92BtAG0D8CsYxq03Afwzs7w+lgF4nd/7Ibg3TR1pnQUjsvIqAE8COMxWzzwYA30dgB+LMnGjtRb9CsNbh/E2XuV/HwAwAYajwFr+v8tW5hu871bD5hlT7X6NitYY9+tGGI4cA3zMHBPjfi2jNY79CmPhNmjL+yqAydXqV71TXkNDQ0MjEmiVl4aGhoZGJNAMRUNDQ0MjEmiGoqGhoaERCTRD0dDQ0NCIBJqhaGhoaGhEAs1QNDRiAiL6EhFdHiD/LLJFc9bQqDdS9SZAQ0PD2BTHGPuJf04NjfhCMxQNjYjAg/U9DiNY34kwNnBeDuBoAD+AsTF2F4DPMMZ2ENGzMOKWnQHgYSJqBzDAGPsvInoXjEgCLTA2nn2OMbaXiE6GEftsCMBztXs6DQ1/aJWXhka0OBLAbYyxE2AcbXA1gB8B+CgzYpgtAHCDLf84xtjZjLH/LqnnbgD/j9fzBoDrePodAL7KGDu9mg+hoVEJtISioREttjArZtK9AL4O42CjhTySeRJGSBqBX5ZWQESd/7+9O0ZpKAqiMPwf0MY+rStwCboAlxCChGxJG20EsbS1SZnODQQ7t6BBtL0W76aRqBgGkuL/yimG+6rDDI97GYJm0Ut3wMOG+j1wXv8J0nYMFKnW97uM3oHlLxPFxz96Z0N/aW+48pJqHSdZh8cYeAJG61qSw/42xY9aayvgNclZL10Ai9baG7BKctrrk/rjS9tzQpFqPQPTJDcMN79eAXPgsq+sDhgeEVv+0WcKXCc5Al6AWa/PgNskn72vtDe8bVgq0v/yemytnez4KNJOuPKSJJVwQpEklXBCkSSVMFAkSSUMFElSCQNFklTCQJEklTBQJEklvgARK6a+0MI1nwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -216,9 +2237,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXucnGV5//++ZmZn9pzsJpvjJiSQIISoHEJAUatGAbUtWKHGtpB+xdIqttqf31qxX4tfLf1KD9qilRYl5eABkKqgghjBEwiEBAJJCCEJIcnmtJvdTfY8szNz/f547md2djM7O7M7m52Zvd6v17xmcs9z33vPk5nn81yH+7pFVTEMwzCMXAhM9QQMwzCM0sFEwzAMw8gZEw3DMAwjZ0w0DMMwjJwx0TAMwzByxkTDMAzDyBkTDcMwDCNnTDQMwzCMnDHRMAzDMHImNNUTKDSzZ8/WJUuWTPU0DMMwSorNmzcfU9WmsY4rO9FYsmQJmzZtmuppGIZhlBQisi+X48w9ZRiGYeSMiYZhGIaRMzmLhogEReR5Efmx+3ejiGwQkV3uuSHt2BtFZLeI7BSRy9LaLxCRre69W0VEXHtERO5z7c+IyJK0Puvc39glIusK8aENwzCM8ZGPpfEJYEfavz8DPKaqy4HH3L8RkRXAWuAc4HLg6yISdH1uA64HlrvH5a79OqBTVZcBXwFucWM1AjcBFwGrgZvSxckwDMM4teQkGiLSDLwP+GZa8xXAXe71XcCVae33qmpUVfcCu4HVIjIfqFfVp9TbxOPuEX38sR4A1jgr5DJgg6p2qGonsIEhoTEMwzBOMblaGv8GfBpIprXNVdXDAO55jmtfCBxIO67FtS10r0e2D+ujqnHgBDAry1jDEJHrRWSTiGxqa2vL8SMZhmEY+TKmaIjI7wKtqro5xzElQ5tmaR9vn6EG1dtVdZWqrmpqGjPN2DAMwxgnuVgalwC/LyKvAfcC7xSRbwFHncsJ99zqjm8BFqX1bwYOufbmDO3D+ohICJgBdGQZyzCMIqe1a4Cfbjsy1dMwCsyYoqGqN6pqs6ouwQtwP66qfwI8BPjZTOuAB93rh4C1LiNqKV7Ae6NzYXWLyMUuXnHtiD7+WFe5v6HAo8ClItLgAuCXujbDMIqcbz2zn499ezOxeHLsg42SYSIrwr8E3C8i1wH7gasBVHW7iNwPvATEgRtUNeH6fBS4E6gCHnEPgDuAe0RkN56FsdaN1SEiXwSedcd9QVU7JjBnwzBOEe09UZIKA/EE4ZAtCSsX8hINVf0l8Ev3uh1YM8pxNwM3Z2jfBKzM0D6AE50M760H1uczT8Mwpp6O3hgAA4MJ6isrpng2RqEw+TcMY1LwRSM6aO6pcsJEwzCMSaGzz4lGPDHGkUYpYaJhGMak0NE7CMCAWRplhYmGYRgFJ5nUlKUxMGiWRjlhomEYRsHpHoiTSHrrcM3SKC9MNAzDKDgdzsoAszTKDRMNwzAKTkdvNPV6wALhZYWJhmEYBccPgoO5p8oNEw3DMApOZ6+5p8oVEw3DMAqOxTTKFxMNwzAKTkdvjFDA29kgagULywoTDcMwCk5Hb4zZtRECYpZGuWGiYRhGwensjdFYE6ayImiiUWaYaBiGUXDae2PMqvVFw9xT5YSJhmEYBaezL0ZDdZjKUMAsjTLDRMMwjILTke6eskB4WTGmaIhIpYhsFJEXRGS7iPxf1/55ETkoIlvc471pfW4Ukd0islNELktrv0BEtrr3bnXbvuK2hr3PtT8jIkvS+qwTkV3usQ7DMIqaeCJJ90CcmdUVRCymUXbksnNfFHinqvaISAXwhIj427R+RVX/Jf1gEVmBt13rOcAC4Ocicqbb8vU24HrgaeBh4HK8LV+vAzpVdZmIrAVuAT4oIo3ATcAqQIHNIvKQqnZO7GMbhjFZ+Cm2lRVBKivMPVVujGlpqEeP+2eFe2iWLlcA96pqVFX3AruB1SIyH6hX1adUVYG7gSvT+tzlXj8ArHFWyGXABlXtcEKxAU9oDMMoUgYTnmiEgwEqQ0Hbua/MyCmmISJBEdkCtOJdxJ9xb31cRF4UkfUi0uDaFgIH0rq3uLaF7vXI9mF9VDUOnABmZRlr5PyuF5FNIrKpra0tl49kGMYkEXOWRjgU8CwNK1hYVuQkGqqaUNVzgWY8q2ElnqvpDOBc4DDwr+5wyTRElvbx9kmf3+2qukpVVzU1NWX9LIZhTC7RYaJhMY1yI6/sKVU9DvwSuFxVjzoxSQLfAFa7w1qARWndmoFDrr05Q/uwPiISAmYAHVnGMgyjSIk591QkJRrmnioncsmeahKRme51FfAu4GUXo/B5P7DNvX4IWOsyopYCy4GNqnoY6BaRi1284lrgwbQ+fmbUVcDjLu7xKHCpiDQ499elrs0wjCLFd09VBAMWCC9Dcsmemg/cJSJBPJG5X1V/LCL3iMi5eO6i14A/B1DV7SJyP/ASEAducJlTAB8F7gSq8LKm/CysO4B7RGQ3noWx1o3VISJfBJ51x31BVTsm8HkNw5hk0gPhkZC5p8qNMUVDVV8EzsvQfk2WPjcDN2do3wSszNA+AFw9yljrgfVjzdMwjOIgPRAeqQjY4r4yw1aEG4ZRUIZlT4WCxOJJkslsWfpGKWGiYRhGQYkmhmdPge2pUU6YaBiGUVBSloYLhIPtqVFOmGgYhlFQBjNYGrbAr3ww0TAMo6BktjTMPVUumGgYhlFQRgbCwdxT5YSJhmEYBSWWyT1lolE2mGgYhlFQRq7TAHNPlRMmGoZhFJRYeml0C4SXHSYahmEUlGGBcBfTiJp7qmww0TAMo6DE4klCASEQEMueKkNMNAzDKCixeJJwyLu0WCC8/DDRMAyjoMQSJhrljImGYRgFZTCRJBz0RcO5p6z2VNlgomEYRkGJxpNU+KJhi/vKDhMNwzAKSiyeJOLcU4GAEA4GLBBeRuSy3WuliGwUkRdEZLuI/F/X3igiG0Rkl3tuSOtzo4jsFpGdInJZWvsFIrLVvXer2/YVtzXsfa79GRFZktZnnfsbu0RkHYZhFDXpgXDwFvnFzD1VNuRiaUSBd6rqG4FzgctF5GLgM8BjqroceMz9GxFZgbdd6znA5cDX3VaxALcB1+PtG77cvQ9wHdCpqsuArwC3uLEagZuAi4DVwE3p4mQYRvGRHggHqAgK8aSJRrkwpmioR4/7Z4V7KHAFcJdrvwu40r2+ArhXVaOquhfYDawWkflAvao+paoK3D2ijz/WA8AaZ4VcBmxQ1Q5V7QQ2MCQ0hmEUIemBcICKYCBVLt0ofXKKaYhIUES2AK14F/FngLmqehjAPc9xhy8EDqR1b3FtC93rke3D+qhqHDgBzMoylmFMiN5onBu+/RxHuwameiplRywtEA6eaMTitt1ruZCTaKhqQlXPBZrxrIaVWQ6XTENkaR9vn6E/KHK9iGwSkU1tbW1ZpmYYHi8f6eYnWw+z6bXOqZ5K2TEyplERFLM0yoi8sqdU9TjwSzwX0VHncsI9t7rDWoBFad2agUOuvTlD+7A+IhICZgAdWcYaOa/bVXWVqq5qamrK5yMZ05S+WByAXvdsFI7oSaJh7qlyIpfsqSYRmeleVwHvAl4GHgL8bKZ1wIPu9UPAWpcRtRQv4L3RubC6ReRiF6+4dkQff6yrgMdd3ONR4FIRaXAB8Etdm2FMiL6Yt26gL2qiUWhODoQHGEyYe6pcCOVwzHzgLpcBFQDuV9Ufi8hTwP0ich2wH7gaQFW3i8j9wEtAHLhBVf2VPR8F7gSqgEfcA+AO4B4R2Y1nYax1Y3WIyBeBZ91xX1DVjol8YMMA6Hei0RuzRWeFZjCRJJIe0wiZpVFOjCkaqvoicF6G9nZgzSh9bgZuztC+CTgpHqKqAzjRyfDeemD9WPM0jHzwLY1eszQKzknrNCymUVbYinBjWuLHNPrM0ig4I7OnQgGzNMoJEw1jWtJvlsakcVL2VChAzGIaZYOJhjEt6U3FNEw0Cs3IQHg4KMTN0igbTDSMaUm/n3IbNfdUIVFVBhNqK8LLGBMNY1qSSrk1S6OgxJw4WMpt+WKiYUxL+gb9mIZZGoXEr2abbmmEgmJVbssIEw1jWtJvMY1JISUaw2Ia5p4qJ0w0jGmJnzVllkZhGc09FU+ae6pcMNEwpiX9gxbTmAwGXTXbkwLh5p4qG0w0jGnJUCA8QdLuggtGLOGd1+HrNCRlgRilj4lGGXGib5B16zfy8pGuqZ5K0dOfthLcD4obEyeaIaZRYSvCywoTjTLinqdf41evtPHAppaxD57m9MXihALedi1W6bZwZMqeqggGSCokzKIrC0w0yoSBwQR3/nYfAL96xTaiGoveWIJZteHUa6MwZMqeqgh54mzWRnlgolEm/OD5gxzribLmrDnsau3h4PH+qZ5S0ZJIKrF4kqa6CGD1pwqJv4hvZMqt956JRjlgolEG9Ebj/PvPd/GG5hl85j1nAfBrszZGxc+Yaqo10Sg0qUD4CPcUYKvCywQTjTLg1sd2caRrgJt+7xyWzallwYxKfrXTRGM0/CD4bCcaVh69cGRyT4WC5p4qJ3LZ7nWRiPxCRHaIyHYR+YRr/7yIHBSRLe7x3rQ+N4rIbhHZKSKXpbVfICJb3Xu3um1fcVvD3ufanxGRJWl91onILvdYhzGMwyf6ueOJvXxw1SIuOK0BEeHi02fx/IHOqZ5a0eKLxGzfPWVrNQqGnz1VkcHSsFIi5UEu273GgU+p6nMiUgdsFpEN7r2vqOq/pB8sIivwtms9B1gA/FxEznRbvt4GXA88DTwMXI635et1QKeqLhORtcAtwAdFpBG4CVgFqPvbD6mqXREdu472EE8qH7igOdU2szpsK52z0GvuqUnDF4ZIhpiGrQovD8a0NFT1sKo+5153AzuAhVm6XAHcq6pRVd0L7AZWi8h8oF5Vn1JVBe4Grkzrc5d7/QCwxlkhlwEbVLXDCcUGPKExHK3dUQDm1kdSbTWRIL2xON5pNkbiu6eGAuEmsIUiUyC8wgLhZUVeMQ3nNjoPeMY1fVxEXhSR9SLS4NoWAgfSurW4toXu9cj2YX1UNQ6cAGZlGctwtHYPADCnrjLVVhMJoTpUKsMYTt9JMQ2zNApFLJ4pEC7uPRONciBn0RCRWuB/gE+qaheeq+kM4FzgMPCv/qEZumuW9vH2SZ/b9SKySUQ2tbVNrwBwa1eUukiIqnAw1VbjXveY2yUjvmjUV4UIBwO2TqOAjFawEMzSKBdyEg0RqcATjG+r6vcBVPWoqiZUNQl8A1jtDm8BFqV1bwYOufbmDO3D+ohICJgBdGQZaxiqeruqrlLVVU1NTbl8pLKhtXuApjTXFHiWBkCfuV0y0j/oiWlNOER1JGgxjQKScXGfpdyWFblkTwlwB7BDVb+c1j4/7bD3A9vc64eAtS4jaimwHNioqoeBbhG52I15LfBgWh8/M+oq4HEX93gUuFREGpz761LXZjhau6LMqRsuGtVhTzQsKygzfgyjOhykJhyymEYB8UXDL9ECQ+4p2ye8PMgle+oS4Bpgq4hscW2fBT4kIufiuYteA/4cQFW3i8j9wEt4mVc3uMwpgI8CdwJVeFlTj7j2O4B7RGQ3noWx1o3VISJfBJ51x31BVTvG91HLk9buKOcumjmsrdZZGnYxzIwfCK8KB6mJBC2mUUBiCSUcCuCy6QGocFaHVbotD8YUDVV9gsyxhYez9LkZuDlD+yZgZYb2AeDqUcZaD6wfa57TEVWltXvgZEsj4sU0zNLIjB/TqA6HqA6HLKZRQKLxBJHgcAdG2NxTZYWtCC9huqNxBgaTzK2vHNY+ZGmYaGSibzBOJBQgGBAvPdnOU8GIxpNEKoLD2mxFeHlholHCtHZ5azTm1I+MaXg/WguEZ6Y/lkido+pwyESjgEQHk1RWDL+sWPZUeWGiUcL4azSaRrinfEvDUm4z0xtNpJIFZlZVcKJ/cIpnVD4MxBPDVoPDkHvK1mmUByYaJUybWw2evrAPhrKnLMCbmf7BeGpdS2NNmPbemK2eLxDRwSSR0HD3VIWVESkrTDRKmKNdbjX4CPdUOBSwRWtZ6EtzTzXWhInFk3auCkQ0niByknvKYhrlhIlGCdPaFaWyIkBd5OQkOFu0NjoDgwkqK4ZEA6CjJzaVUyobooNJKkMjA+HmnionTDRKmNbuKHPqKoflxPvYorXRicWTKb+7v+Vre290KqdUNmSyNCzltrww0Shh2rqjJwXBfSyVdHSi8SG/e2ONd/46es3SKATRNEH2MfdUeWGiUcJ09MaY7e6UR+ItWjPRyET6hW1WjW9pmGgUgmg8mXL9+QQDgoiVESkXTDRKmPbeaOpOeSS1EVt/MBrRtLTQVEzDRKMgDAyenHIrIlQEA8TMPVUWmGiUKMmk0tk3mLpTHkl1OGh7X49CdDCZ8rtXh4OEQwETjQKR7vpLpyIg5p4qE0w0SpQT/YMkkpq6Ux5JbcTcU6ORfmETEWbVhE00CkQ0g6UBXtFCE43ywESjRPF98LNGi2lEgpY9NQqxEcHaRhONgjGQIaYB3gI/E43ywESjRGnv8VJEZ40S06ixmEZGVJVoPDFskyB/VbgxMeKJJImkZrQ0wsGApdyWCSYaJYp/Zzyae6omHCIaT1rGygjiSSWpDLuwee4pW6cxUaJu8d7IdRrgpd2apVEemGiUKGO5p/wtX608xnBSF7a0YG1jTcRWhBeAgUHvu5bJPRUy91TePP1qe6pUUDGRy3avi0TkFyKyQ0S2i8gnXHujiGwQkV3uuSGtz40isltEdorIZWntF4jIVvferW7bV9zWsPe59mdEZElan3Xub+wSkXUYwJCl0VA9mqXhNmIyF9Uwou7Cln43PKs2TG8skbroGeNjSJAzWRoBYnFzT+VKLJ7k2vUbue2Xe6Z6KieRi6URBz6lqmcDFwM3iMgK4DPAY6q6HHjM/Rv33lrgHOBy4Osi4t963AZcj7dv+HL3PsB1QKeqLgO+AtzixmoEbgIuAlYDN6WL03SmozdGfWVomG8+Hd/SsEq3w8l0YfOF14LhEyOTFecTNvdUXuxr7yUWT7KvvXeqp3ISY4qGqh5W1efc625gB7AQuAK4yx12F3Cle30FcK+qRlV1L7AbWC0i84F6VX1KvTrUd4/o44/1ALDGWSGXARtUtUNVO4ENDAnNtOZYT5RZtZmD4OCVEQHbJ3wkftG8kYFwMNGYKL6lNpqlEU+aaOTK7tYeAPZ39E3xTE4mr5iGcxudBzwDzFXVw+AJCzDHHbYQOJDWrcW1LXSvR7YP66OqceAEMCvLWNOejt7YqEFw8ALhYO6pkWS6Gx4qWmiiMRH8cztqyq25p3JmlxONA539JItsH5KcRUNEaoH/AT6pql3ZDs3Qplnax9snfW7Xi8gmEdnU1taWZWrlw5iiYYHwjETjJ98N+6vqj3VbBtVEiGazNEIBYuaeyhlfNGLxJK1F9r3MSTREpAJPML6tqt93zUedywn33OraW4BFad2bgUOuvTlD+7A+IhICZgAdWcYahqrerqqrVHVVU1NTLh+p5GnPUqwQhvYJN0tjOJksjYUNVQSEovQflxID2VJurYxIXuxu7Un9hovNRZVL9pQAdwA7VPXLaW89BPjZTOuAB9Pa17qMqKV4Ae+NzoXVLSIXuzGvHdHHH+sq4HEX93gUuFREGlwA/FLXNq1JJnVMS8P2Cc9MdPDkC1skFGRxYzV72kw0JsKQpWErwidCIqnsaevhkmWzgeITjZO3fDuZS4BrgK0issW1fRb4EnC/iFwH7AeuBlDV7SJyP/ASXubVDarq+0g+CtwJVAGPuAd4onSPiOzGszDWurE6ROSLwLPuuC+oasc4P2vZ0DXg150aPRAecX7lqO2WNoxYIrML5fSmWva09UzFlMqGoZhGZvdU3FaE58SBjj5i8SS/c2YTP99xlAOlJhqq+gSZYwsAa0bpczNwc4b2TcDKDO0DONHJ8N56YP1Y85xOpBb2ZbE0/Iui78M3PHxLY2Sq8hlNNTy5+xjJpBIIjPZ1N7IxkNXSEItp5IifObViQT0LZlQVnWjYivASZKwSIpAmGoP2Q01ntLUEpzfVEo0nOXi8fyqmVRZkKyMSNvdUzvgW7xlNtSxqrCo695SJRgnSPTAIQH1VxajHiAjhUMDcUyPIlD0F3g8UMBfVBMi2uC8UFCtYmCPH+wcJBYT6yhCLG6tNNIyJ0+MW7NVGTv5xphMJBVKL2QyP0UpdnNFUA8CrFgwfN6MJMvjrNOy7mAt90TjV4SAiwqKGalq7o/QXUeq8iUYJ4qfR+msxRiMSClhMYwRD2VPDBbexJsyMqgqzNCbAwODotafCwQCDtiI8J/piidRve259JeBVgCgWTDRKkNxFI2juqRH4wdhw8OR9rM9oqjFLYwL4e6+7OqTDqLD9NHKmL5ZIrdFocHHL432DUzmlYZholCB+PanqDOUa0olYTOMkooMJRLxsnpGcNb+ezfs7+fUr06OqQKGJDiYzWhngiUYiqSSKrCRGMdIbi6duCBtrvLhlR1/xlLgx0ShBemNxKisChILZ//vCoUBqwZXhEXVbvWa6G/7rd53JGU21XHfXs2ze1zkFsyttovHESW4/n5ATacugGpu+6JClMdNVYO4sorpoJholSE80nlrxnY1IhbmnRuKJRuYLW1NdhHv/7GIAfr7j6KmcVlkQHUxmXNgHQ+5AE42x6Y3FUwVHG33RMEvDmAi90fiY8QyASNCyp0bi+91HY0Z1BWc01fLKke5TOKvyIJsg++5A+z6OTV8sQbX7fddXVSBiloYxQXqjQ3ci2YhUWPbUSKKDyVE3rvI5c24dL5to5M3A4OiCXGllbXLG+3175ysYEGZWVdBpgXBjIvRGE6lNlrJhgfCTiSZGD9b6vG5eHQeP96cWURq54ceLMuGLRr/F2MbEy54auilsqAlbINyYGOnZFdmwlNuT8TJ8sgvumXPrgKE9DYzciMYTGTdggiHRsH3Ys6Oq7vc9dB4bqsPmnjImRk+uMQ1b3HcSXoZP9q/9WfM80dhpLqq8GMiScusHyAesFlpWovEkqlAVHiEa5p4yJkJvNE5tDjGNsJUROYlsLhSfhTOrqA4HTTTyxEsyyG5pWAp4dlILd9N+3401FWZpGBPDi2nkammYaKQTjScJj+GeCgSE5XPreOWoiUY+ROOjp9xWWUwjJ/pcjanqkyyNGN6+dFOPiUaJkcnnORqRiqCVRh9BNEuGTzqvm1trlkaeeNlTY8U07PuYjd7YySWCGmrCROPJohHcXLZ7XS8irSKyLa3t8yJyUES2uMd70967UUR2i8hOEbksrf0CEdnq3rvVbfmK2xb2Ptf+jIgsSeuzTkR2uYe/Hey0pn8wgerYdadgKKZRLHcoxUAsh+wpgOVz6mjvjRWVW6DYicaTo8aLhmIaxXHhK1ZSJYKGWRqulEiRfBdzsTTuBC7P0P4VVT3XPR4GEJEVeFu1nuP6fF1E/E9/G3A93p7hy9PGvA7oVNVlwFeAW9xYjcBNwEXAauAmt0/4tKYnx2KF4IlGUiFu9X5S5JI9BbBsrre/xm6repsz3orw7JZGsdwtFyt9mSyN6uIqWjimaKjqr/H27c6FK4B7VTWqqnuB3cBqEZkP1KvqU+rd9t4NXJnW5y73+gFgjbNCLgM2qGqHqnYCG8gsXtOK3hz30oChLU0trjFEtrvhdJa5TZl2HTXRyAVVZSDLantLuc2NTJaGv0NnKVkao/FxEXnRua98C2AhcCDtmBbXttC9Htk+rI+qxoETwKwsY01rMmVXjIZ/R20ZVENE44mTyqJnYuHMKqoqgqn9mo3sDCYU1cx7acCQe8puYLKTsjTSft8zi6z+1HhF4zbgDOBc4DDwr6795NKhoFnax9tnGCJyvYhsEpFNbW3lXdY61700IG2fcFurkSJXSyMQEE5vqjH3VI4M7dqX2QIOBwOImKUxFr1+9lTkZEujWOJr4xINVT2qqglVTQLfwIs5gGcNLEo7tBk45NqbM7QP6yMiIWAGnjtstLEyzed2VV2lqquamprG85FKhkzZFaPhXxwtg8pDVYllKao3kmVzatljlkZO+LGK0VJuRYTKULCoti0tRvozWBozXNHCjlKJaWTCxSh83g/4mVUPAWtdRtRSvID3RlU9DHSLyMUuXnEt8GBaHz8z6irgcRf3eBS4VEQanPvrUtc2rcl1f3AYuuszl4CHv2tfLtlT4MU1Dh7vT1l3xuj4YlCVxW1aFQ4yYFZvVvyYRlVaQkEwIMyoKp4FfmPerorId4G3A7NFpAUvo+ntInIunrvoNeDPAVR1u4jcD7wExIEbVNX/lnwULxOrCnjEPQDuAO4Rkd14FsZaN1aHiHwReNYd9wVVzTUgX7bk457yfffmnvLwxTNn0ZjjBcO//1wLIsKfXHzapM2t1PEtjfQA7kgqQwFbpzEGfbE41eEggcBw7/ysmjDtvcWxT/iYVx5V/VCG5juyHH8zcHOG9k3AygztA8DVo4y1Hlg/1hynE75oVOdYGh0sEO7ju+nyFY3PPbgdgIuWNrLcFTM0htOXsjSyiEZF0GIaY9A7osKtT1NdhGPdxWFp2IrwEsM3X2uy/Dh9zD01nLGCtSM5bVYNzQ1VvPOsOYjAw1uPTOb0ShrfPZVt3/qIicaY9EUzV3uYXRuhrac4LA0TjRIj1/3BwbKnRpJyT+WQPQXeOpfffPodrP/TC1l1WgOPbDs8mdMraYZqJmWJaVSYe2osemOJYfEMH8/SMNEwxkGu+4ND2uI++6ECQ266XN1T4GX9ALz39fN5+Ug3eywFNyP++gJzT02MvlH2ymmqi9AdjRdF9pmJRomR6/7gkG5pmGhAeiA8N/dUOpevnAfAo9vNRZWJ/gzVWUdSWWHZU2PRG01kPIezayMAHCsCF5WJRonhfalyFI3Uvsz2Q4WhvRzG2iM8E/NnVLFwZpWVFRmFTCW9R1JZESiKO+Vipj+WyFjtoanOE41iiGuYaJQYvdF4Tms0YMjSsOwpj7EWoI1Fc0MV+zv6CjmlsmHo3I7lnrLvYjZ6Y/Fhq8F9mpyl0VYEcQ0TjRIj1/3BwdxTI/HvhnM9fyNZ3FjNARONjPSq8RBlAAAgAElEQVTF4gQke7yosiJoVu8Y9I1laZhoGPnS1T9IfWVFTsdaldvh5FPsMROLGqtp7Y5aMDcDfW59gZ84kInKkFkaY9EbzWxp+PWnLKZh5E33QJy6yhyzp/wV4XaRA3Lzu2djcWM1AC2dZm2MpD+WyJo5BS6mYd/FUYknkkTjyYw3NRXBAI01YbM0jPxQVboGBqmvys3SEBHbJzyNfIo9ZmJRYxUABzr6CzancsGzNLKLRlVFkERSGUzY9zETJ/q9goQzRvl9N9VGTDSM/IjGkwwmNGdLAzDRSKMvmhjT756NRc7SsGD4yfQPZl6Ulo5txJQdXzRmVmcWjdl1YXNPGfnR5b5UucY0wEu7NdHw8IOM2fzu2WiqjVBZEbBgeAb6c7A0hvYJt+9jJo77v+9sloaJhpEPXQOeeyUfSyMcDFjGiqNvlHTGXBERFjVUm6WRAa86a/bvZcQsjayccPtlzBxFNGY795S3c8TUYaJRQnQNZL8TyUSkwtxTPqNVEM2HRY3VHOi0mMZI+nIIhFeZaGTleL9Xxdbf3nUkTXURBgaTqd39pgoTjRKi21ka9XnFNIJWe8rRF42PO3PKx1+rMdV3e8VG/2Au7ilfNOz7mInjY1gazQ1eTO3ZvVO7rZCJRgkxrphGyNxTPr2x+LjXaPgsbqymJxrnWE9x7G1QLOSSPeXHNCztNjMnxohpvGvFHJobqvjnR3eSTE7dTcuYoiEi60WkVUS2pbU1isgGEdnlnhvS3rtRRHaLyE4RuSyt/QIR2ereu9Vt+4rbGvY+1/6MiCxJ67PO/Y1dIuJvCTttGZd7KhSwMiKOvlhiQjENgBUL6gHYduhEIaZUNvTHElRVZBdky57KzvG+QeoqQwQDmRM1IqEgn7r0TF463MWPXjx0imc3RC6Wxp3A5SPaPgM8pqrLgcfcvxGRFXjbtZ7j+nxdRPxf6W3A9Xj7hi9PG/M6oFNVlwFfAW5xYzXibS17EbAauCldnKYj3eMJhFvKbYre6MQtjXMW1CMCW1tMNHxUNbVNaTYsppGdE/2Do6bb+lzxxoWsXFjP3/1gG9sOTs13cEzRUNVf4+3dnc4VwF3u9V3AlWnt96pqVFX3AruB1SIyH6hX1afUcwbfPaKPP9YDwBpnhVwGbFDVDlXtBDZwsnhNK7r6BwkFZMx8+HQiIUu59cnFhTIWdZUVnD67hhdNNFJE40mSmn0vDUhLubXvY0aO98WYWZU5CO4TCAjfuHYVM6oquHb9xlTG1alkvDGNuap6GMA9z3HtC4EDace1uLaF7vXI9mF9VDUOnABmZRlr2uKXEMlnnYGXPWV3duDWaYxzNXg6b2ieydaDxwswo/LAL3c+1s2Mv4/JgJVHz0gulgZ4Zfo/97sr6OiNsbe99xTMbDiFDoRnuppplvbx9hn+R0WuF5FNIrKpra0tp4mWIvmUEPGJhAKWPeXIxYWSC29onsHRrihHuwYKMKvSp28wt5peqZiG3cRk5Hh/7r9vP4NyKurKjVc0jjqXE+651bW3AIvSjmsGDrn25gztw/qISAiYgecOG22sk1DV21V1laquampqGudHKn7yKVboEwkFiVmtH2KuBEuhRAMsruHTn8NWr+nvW0wjMyf6BkdNtx2Jv8/9VLiexysaDwF+NtM64MG09rUuI2opXsB7o3NhdYvIxS5ece2IPv5YVwGPu7jHo8ClItLgAuCXurZpSz5l0X0ioYD9SBnaw3qii/sAVsyfQUDgxRZzUQH0x7wL11jntjJkZURGQ1U5nqN7CtJcfVPw2x7zFyQi3wXeDswWkRa8jKYvAfeLyHXAfuBqAFXdLiL3Ay8BceAGVfU/1UfxMrGqgEfcA+AO4B4R2Y1nYax1Y3WIyBeBZ91xX1DVqV3VMsV0D8RZMrs6rz51lSF6o3ESSR01lW860JvagGnilkZVOMjixmr2tls5EUgX5OznNhQMEAqIrdPIQI/7jY4VCPepnEJLY0zRUNUPjfLWmlGOvxm4OUP7JmBlhvYBnOhkeG89sH6sOU4XugbytzRm10ZIKnT0xlK7f01H+qKFszQA5tZXcvSExTRgKKYxlnsK/C1fTTRGkiqLXgKWhq0ILyG8mEb+ogHFsePXVFJISwNg/oxKDndZDSoYyp7KJV5kopEZv4TIaHtpjKQUYxrGKSaeSNITjVNfld+d8uza4tkmciopZEwDYO6MSo6emPqKo8VAakfEMVaEg7dXxPEpWFtQ7KT20shVNJylYaJhjEpP1F8NnqelUWeWBngbMMH49wcfyfz6SmKJJB29VoMq1+wp8Pa6tnN2MqlihaNUuB1JJJVUYO4pYxTGU+EW0txT3dP7h+pv9TrR2lM+82ZUAnDY4hp57b3eWG2ikYmxdu0biS8aZmkYozJWBczRqK8MEQ4GzNLI48KWC/NmePuF2wK/oXObS3mbhpownX0mGiPx99LINaYhIlNWwdpEo0QYT7FC8L5cs2vDRbFN5FTSW+DsqXn1Zmn49A8mqKwIEMghpbuxpoLOvsEpLe1djHT2xoiEAqlV87kwVdUeTDRKhFRZ9DxjGgCzaiPTfv+HQlsaTXURggHhiIkGfbF4zkU0G2siJJKaugkyPA6dGGDBzKq8+lRWBM3SMEbH9wM31uQWKEtndm2YY93T3NKIxQmHAlQEC/OVDwaEptoIR8w9RUdvjIYcA7iNNd5NT4e5qIbR0tlPc0N+ohGpCEzJ6noTjRKh3bmXxicaEYtpRBPUFMjK8Jk3o9IsDeBgZz8Lc7zg+eLS0Tu9v48jOdjZz8J8LY2QWRpGFo71xKiLhPLyefrMrovQ0Rub1n5kby+NwsQzfObVV5qlARw8nvsFz7/p6ei1tRo+A4MJjvVE8xaNSIXFNIwsdPTGmFWbv5UBnqURT2oqA2s60heLF2w1uI9ZGv4FL5a3aHRa2m2Kg8e9ygLNjXmKRig4JWXmTTRKhPbeKLNqx1c7ylaFe2VECm5pzKikJxqne2D6irF/wcvVPZWyNCymkaKl053DmfkVI600S8PIRntPbFzxDIAmJzbTOe22L1qYDZjSWdzo/cj3tJ363dOKhYOpC15uolFVESQSCpilkYZ/DvMOhE/RVs4mGiXCsZ5YymLIl6FSItP3h3qsJzpu0R2N8xc3ALDptelbsf9QnpaGiNBYE6bdRCNFS2cfoYAw1639yZWp2ivHRKMESCaVzr4Ys2rG657yS4lMT0sjmVQOnRjIO9A4FvNmVNLcUMXmfZ0FHbeUOHi8n2BAUosdc6GxJmyWRhoHj/czf2Zl3vvdeOs0zNIwMnCif5BEUscdCJ9ZVUFFUKate6q9N0Ysnsx78VQuXLikkU37OqdttduDnf3Mq68klMf6l8aasMU00hhPui2UqKUhIq+JyFYR2SIim1xbo4hsEJFd7rkh7fgbRWS3iOwUkcvS2i9w4+wWkVvdlrC4bWPvc+3PiMiSicy3VGl3Oe3jDYQHAsKcusppWyfp8AnPhTIZonHBaQ20dUfZ3zE9d/FrySPd1qeh2iyNdFo6+/MOgoMrI1KilsY7VPVcVV3l/v0Z4DFVXQ485v6NiKzA28r1HOBy4Osi4kcmbwOux9tTfLl7H+A6oFNVlwFfAW4pwHxLDj8WMWsCPvk59RFau6anpeH73efPyM9nnAsXLmkEYNNr09NFlc/CPh8rjz5ELJ7kaPdA3kFwKK8yIlcAd7nXdwFXprXfq6pRVd0L7AZWi8h8oF5Vn1LPxr97RB9/rAeANb4VMp1o90VjnO4pgLnT2NI4eNz73IWOaQAsn1NLfWWITdMwrhFPJDnSlX+sqLEmTNdAnMHEqb9LLjb2HutFFZbMHp+lMTCYPOWu0YmKhgI/E5HNInK9a5urqocB3PMc174QOJDWt8W1LXSvR7YP66OqceAEMGuCcy45/JIL4w2EA8ytj0xb0Th0vJ+qimDOexXkQyAgrFhQz84jXQUfu9g5fGKARFLztjQabIFfipfd9+bs+fV594246hCxUyy+ExWNS1T1fOA9wA0i8rYsx2ayEDRLe7Y+wwcWuV5ENonIpra2trHmXHIc64khAg0TuOjNqa+kayCe2s95OnH4RD8LZlYyWUbqGU217GnrnXbBcD9r7PULZ+TVb+FMz014oHN6xoHSeelwF+FggDOaavPuO1UbMU1INFT1kHtuBX4ArAaOOpcT7rnVHd4CLErr3gwccu3NGdqH9RGREDADOCkpXlVvV9VVqrqqqalpIh+pKGnvjdJQHc4rQ2Ukfg54a/f0szYOHs+/7HQ+nNFUy4n+wWm39uCZve3UVYbyvktePqcOgFeO9kzGtEqKlw93s2xO7biqL/uWxqnOoBr3VUhEakSkzn8NXApsAx4C1rnD1gEPutcPAWtdRtRSvID3RufC6haRi1284toRffyxrgIe1+l2O8fEVoP7zK33XFtHp2Ew/NDxfhbMmDzRWDbHu0vc3Tq9LoLPvNrB6iWNea8vWDiziqqKIK8c7Z6kmZUOOw53cdb8unH1rfQtjVNcSmQixXjmAj9wJn8I+I6q/lREngXuF5HrgP3A1QCqul1E7gdeAuLADarqS+RHgTuBKuAR9wC4A7hHRHbjWRhrJzDfkqW9NzahzCkYsjSmW1wjGk/Q1h2dXEvDicaeth4uPn16hNxauwZ49Vgva1cvGvvgEQQCwvK5teya5pZGe0+U1u4oK8YRz4AhS+NUu6fGLRqq+irwxgzt7cCaUfrcDNycoX0TsDJD+wBOdKYzbRP4YvnMrZueouFXoV0ws/Dptj7z6yupqghOC0sjkVS+s3F/Koh90dLxieTyOXX8Zlf5xR/z4eUjnqV11rxxioazNErGPWWcGqLxBPs7+lg6u2ZC49RXhYiEArROs1IihyYx3dYnEBDOmFMzLQoX/uqVVj73w218ecMr1EZCnLNgfBe8M+fW0tod5UTf9K0QvOOwnzk1TvdUqVkaxqlh77FeEkll+dz8syvSEfEKok03S+Ml98M8fRzZKflwRlPttFjg98SudiKhAJ9413Jm10TGnZxx5lwXDG/tTi2QnG5seq2TefWV4670kMqeMkvDSMfPMPF/ZBNhOq7V2Li3ncWN1cybhNXg6ZzRVMvB4/30xeKT+nemmid3H2P10kY+9vZl/OGF+cczfPyboOkSDD/Q0cfF//gYv9jpJZN2Dwzy+M5WLl85b9xjlmTKrTH57DraTTAgnN40MfcUeGs1plMpEVVl494OVi+d/DvZ5S4YvuNw+V4EW7sH2Hm0mzefMXvCYy2cWUVNODhtguHf29zCka4B/uZ7L9LRG+Nn248Siyf5vTcuGPeYQ+4pszSMNF452s1ps6qJhCa+gdDcuum1p/Xu1h46+wZPiWi86YxZBAPCL15uHfvgEuW3u9sBeMuyiYuGiPCG5pn8ds+xCY9V7KgqD245yLI5tZzoj/Hx7zzHdzbup7mhivMXzxz3uEOBcLM0jDR2tfak7mInSnNDFX2xxLRZ4PfMXm8d6EWnQDRmVodZdVoDP99xdNL/1lTxm13HmFldwYpxBr9HcvnKebxytKfss862HDjOvvY+rn/b6fzDlSt5bn8nm/d18vtvXDChKgURszSMkUTjCfa19xUkngGkfuzl7EJJZ+PeDubWR1Lbsk42714xl5ePdHOgDMukDwwm+NlLR3jH6+bkvZhvNC47x/Pn/3Tb4YKMV6zcu/EA4VCAy1fO44MXLuZXf/MO/vbys/jIW0+f0LiVFtMwRvJqm585VRjRONvlg790qPyL66kqT7/azuqlsyat5tRI1pw9F6AsrY1Htx+heyDO1Rc0j31wjsybUcn5i2fyyLYjBRuz2Ljnqde4b9MB1l64iPpKr3bc3PpKPvr2MyZc5aHkyogYk8vOI93c8tOXAXhdgURjRnUFC2dWpfLDy5k9bT20dke55IxTt0J76ewals+p5cEth8queOH3NrXQ3FBV8BXv71k5n+2HutjdWn7W76Pbj/D3D23nXWfP4XO/u6Lg409VGRETjSLk8Il+PnDbb9n8WiefeveZnDnBNRrpnD2/PrV2oZx5YpcXYL2kAEHbfLj2Taex5cBxnnq1/ZT+3cnih88f5IbvPMeTe45x1QXNBArkmvL5g/MXUhMO8uUNrxR03Klmx+Eu/vq+LbyheSZf+6Pzx1WQcCxCwQDBgDBgMQ3j8w9tJ55M8pO/eit/uWZ5Qd0rKxbU82pbz5TsLXwqeXKPtz5j0SmKZ/hcvWoRTXUR/uMXu0/p350MfvTCIT553xae39fJxUtn8aHViwv+N2bVRvizt53Ow1uP8Pz+8lgc+cKB41xzx0bqKkN845oLUqmxk0EkFDBLYzrzi5dbueE7z/Ho9qN88l1nsnhW4S94K+bXkVTP/VVqbDlwnN7o2Ivn4okkT+9pP+VWBni583/21qU8ubud7YdOnPK/Xyi2HTzBp773AhcuaeAXf/N2vnv9xamil4XmI289ndm1Yf7+we0lfzOz7eAJPnj7U1RWBPj2Ry5iziSdMx9vy1cTjbImFk/yH7/YzXV3Pss1dzzDnU/upTcaZ+eRbj5817M882o7f3LxYq57y9JJ+fsr5nsb5mwuse1Jv/PMfq78jyd5362/4cndx2jLUEMrmVQ+9u3N/MFtv6U7GueSZVNTcfYPzveCxb/cWZoF+WLxJP/7ey/QUF3Bf12zqiBrhLJRGwnxj+9/PVsPnuDvH9xW0vGgW376MtXhED/42CUsm1OYWGQ2vC1fT63QWu2pU0hvNM5ffGszv9l1jDPn1pJU+PyPXuKRbUeoiYSoDYfY8Ne/k9oOczJobqjitFnVfOHHL/GrV9r4+h+fT02keL8GqsoPnj/I5x7cxuqljRzo6OOPv/kMAFecu4BbPvCGlPn/0AuHeHjrEZbPqeX02TUFWYQ2HmbXRjhrXh1P7j7GDe9YNiVzGA8Dgwl+8uJhnth9jJePdPONa1dNOMMnVy49Zx5/+c5lfPXx3bxn5XzecdacsTsVGU+/2s5vdh3j7957Nk1149+aOR8ioYAVLCxXVJVP3LuFJ3cf45+uegN/uMqr2/OD51v46/teAOBT7z5zUgUDvIqsP/zYJXxn437+9Wc7+ewPtvKlP3gDLZ19LJtTe8rSU3OhP5bgw3c+y1OvtnPe4pn8959eSDypPLWnnef3d/Jfv36Vfe193H7tBdRXVvDPj+5k5cJ6HrrhLQUP2ObLW5bN5u6n9tEfS1AVntw79ULxuR9u43ubWwD40OrFvHvF3FP69/9qzXIe2NzCf/16T1GKhqoST2oqqN0Xi3PfsweYU1fJGxfN4KYHtzO3PsI1bzrtlM3Jc0+ZpVGWPLjlED/fcZS/e+/ZKcEAeP95zbR1R/nJi4f58CS5pEbSUBPmhncsQ1X5l5+9wiNbjxBLJFk6u4a//70VvON1xfGDfWDzAZ56tZ3P/e4K/vTNS1KLyi5fOY/LV87jvMUz+eR9W7jya09SGQ5y8Hg//3z1G6ZcMAAuWT6bbz6xl037Onjr8qnbgjgWT/KdZ/bRG0sQDAgdvTF2HO7iYGc/jTVhLj59Fr9/7gJ2HO7ie5tb+PPfOZ2/eufyKbE+K4IBPnzJUm5+eAdbW07w+ub89h6fLFSVH714mK//YjevtvVyxbkLqImEeGTb4dROmMGAUFUR5Gt/dN6kBr5HEqkI0tV/aotkSin4D0XkcuDfgSDwTVX90mjHrlq1Sjdt2pT334jGE/x2TzuxeJJQQFjUWE1zQxWvtvXy1cd3cdk581K+6nx5bMdR/r/7X+D0phoe+Is3F2xF7URJJpUv/uSl1ALC/35iL72xOL/+9DsK6sf23R7dA4MsmFnF285sGvOHlUwqa778K+orQ/zwhktGtYC2HTzBX3xrM011ET7yltN53xvmF2zeE6E3GufcL/yMD79lKTe+5+y8+vZE44SDAcKhiYUcj5wY4IbvPDcsfhUOBlg+t5bTZlXT2hVl8/5O/EvAWfPqeOjjb5nw350I3QODvPn/Pc7KhTP4zz+5gBnVFVM2F4CO3hif/f5Wfrr9CGfOreXcRTN56IVDCMIFpzXwV2uWc6Cjj8d3tvK/L33dhPe9yZd/+PFL3PXUa2z87Lsm7KUQkc2qumrM44pdNEQkCLwCvBtoAZ4FPqSqL2U6fryicawnyqp/+HnG9wICCnz5D9/I+89r5siJAb7/fAt7Wns5c24t17zpNKrD3p1Z98AgP3nxMLFEkpULZ/DVx3bxi51tnNFUwzfXXXjKv1T58JtdbVxzx0Zu+cDr+eCFJ6dXDgwm+NELhzjaNcBFp8/igsUNo97VqyqPbj/Chpdaefzlo3SmbbbTWBPmbctns3R2LUubalg6q4bmhiriSaU/lqBvMM6m1zr5Pz/cxr+vPZcrzl04aZ95Mvnjbz7Nlv3H+bv3raB7YJAZVRV88MJFRONJDnT0UREMsMvVXXrX2XPY39HHvz+2ix+9cIhwMMCqJY2cNa+OS8+ZxwWnNeT8d/ticb7x673816/3oAr/cvUbWXP2HBJJpTocHCbALZ19PP1qBwGBt79uzimLYWTjuxv387kfbqOxJsx7Vs5jzdlzeevy2bx0uIvn9nXSVBehqa6SufURmuoio97gqCqDCR2XCLZ09vFjZ130Dyb4m8tex0fecjqBgDAwmCAUkHHvJVJIXjrUxXtv/Q1fvOIcrnnTkgmNVU6i8Sbg86p6mfv3jQCq+v8yHT9e0Ygnkrx48AThYIBYIklLZz8HOvoQgasuaOYT393CU6+28/qFM9jd2kP/YILZtRGO9USZWV3BG5tn0h9L8ELL8WGBqdpIiE+sWc66Ny+Z0ju4XFBVfu9rT9AbTfC1PzqPnoE4T+5p56k9xzh0fICu/kG601Je39g8gw9euJj2niiHTgzQNTBIZSjI8rm1vHy4ix9uOURjTZg3nTGLP7noNM6cW8v2Q13c9+wBthw4zqET/WT7+i2YUcmvPv2OSVkYdSo4dLyfv/zu88Pu9N+6fDY7j3SftIPiuYtm8vKRLgIifOD8ZpKqbN7XyattvcQSSVad1kBCPVHNREN1mNfN87J1frrtCEe6BnjPynl85j1ncdqs4r1RGY2tLSe45acv89z+TvpiCc5Z4C1KzfR9aaiuYMnsGt73es/K3HG4m2M9UV4+0sWxnhiXnTOXcDDA8weOUxEM0BuN094T4+wF9SydVU1CIZFMMqOqgqWza3hk2xGe338c8P6//s/7VqTObTFy+b/9msqKID+84ZIJjVNOonEVcLmqfsT9+xrgIlX9eKbjxysaY9EfS/Cdjfv5/nMtLJldw99edhaLZ1WzeV8n335mHzsOdxMJBTh/cYPzeQbZuLeTd509Z9JztQvJYzuO8pG7N6V+nAGB1y+cwRlzaqmsCPK7r5/P2fPr+dlLR/jKhl2pUuuzasLMqK6gL5rgSNcAIvDX7zqTG96xbFR33MCgV5Bx77EeWjr7iYQCVIVD1ISDVIWDnDm3jgWTuE3rqSCeSPLE7mMsn1vHj184xJd++jLnL27gj1YvJqHK6bNr2Hm0my89/DKrlzZy8/tfP2zDqL5YnDt/+xoPbz3MzKow1RmC6gq0dg2wq7WHYEA4a14dn778rLLYES8WT3LP0/v41tP7+J0zm7juLUs50T9IW3eUo10DtLrnF1qOs+2gV+lgbn2EOXWVnNFUw4yqCh584RABES4+vRFVqKoIMrM6zNaDxznaFSUUEAIBobVrgK6BOKfPruGDFy5izdlzWVagCtOTye2/3sM/Pvwyy+bUcvb8er76ofPGNU45icbVwGUjRGO1qv5l2jHXA9cDLF68+IJ9+/ZNyVzLhQMdfWw5cJxIKMBFp89iRlVmv/LAYIKjXQPMra8cFqNo644yMJg45auxS4HO3hgzqytOitHEE8micHeUMvvae6kKB5lTN/wmLZn0rnFjJUgkk8rR7gHm1lUWRTJFrhzvi/HFH++gfzDOklk1fPrys8Y1TjmJxilxTxmGYUxnchWNUri1eRZYLiJLRSQMrAUemuI5GYZhTEuKfp2GqsZF5OPAo3gpt+tVdfsUT8swDGNaUvSiAaCqDwMPT/U8DMMwpjul4J4yDMMwigQTDcMwDCNnTDQMwzCMnDHRMAzDMHLGRMMwDMPImaJf3JcvItIPFDIldwZQyH07Cz3ebOBYAccr9s9b6PGgcOewFD7rZIxbyO9gsZ/DYj53MP75zQZqVHXsOv6qWlYPoK3A491e5ONtKvL5FfV4hTyHpfBZJ2meBfsOFvs5LOZzN5H55TOPcnRPHS/weD8q8vEKTbF/3mI+f6XyWe0cFs94hWbS51eO7qlNmkP9lHJhun3eycDO4cSw8zd+iuXc5TOPcrQ0bp/qCZxiptvnnQzsHE4MO3/jp1jOXc7zKDtLwzAMw5g8ytHSMAzDMCYJE40iQ0QWicgvRGSHiGwXkU+49kYR2SAiu9xzg2uf5Y7vEZGvpY1TJyJb0h7HROTfpupznUoKdQ7dex8Ska0i8qKI/FREZk/FZzqVFPj8fdCdu+0i8k9T8XlOJeM4d+8Wkc3uO7ZZRN6ZNtYFrn23iNwqI3fumioKme5lj4KkzM0Hznev64BXgBXAPwGfce2fAW5xr2uAtwB/AXwty7ibgbdN9ecrpXOIVwW6FZjt/v1PeBuCTflnLJHzNwvYDzS5f98FrJnqz1dk5+48YIF7vRI4mDbWRuBNgACPAO+Z6s+nWp4ptyWNqh5W1efc625gB7AQuALvR4d7vtId06uqTwADo40pIsuBOcBvJnHqRUMBz6G4R427y6sHDk3+J5haCnj+TgdeUdU29++fAx+Y5OlPKeM4d8+rqv+d2g5UikhEROYD9ar6lHoKcrffZ6ox0ShiRGQJ3p3IM8BcVT0M3hcTTwRy5UPAfe7LN62YyDlU1UHgo8BWPLFYAdwxidMtOib4HdwNnCUiS0QkhPmx7TMAAANxSURBVHfRWzR5sy0uxnHuPgA8r6pRPKFpSXuvxbVNOSYaRYqI1AL/A3xSVbsmONxa4LsTn1VpMdFzKCIVeKJxHrAAeBG4saCTLGImev5UtRPv/N2HZ+W+BsQLOcdiJd9zJyLnALcAf+43ZTisKG76TDSKEHex+h/g26r6fdd81JmsuOfWHMd6IxBS1c2TMtkipUDn8FwAVd3jrLT7gTdP0pSLikJ9B1X1R6p6kaq+CdgJ7JqsORcL+Z47EWkGfgBcq6p7XHML0Jw2bDNF4ho10SgynO/8DmCHqn457a2HgHXu9TrgwRyH/BDTzMoo4Dk8CKwQEb+I27vxfNRlTSG/gyIyxz03AB8DvlnY2RYX+Z47EZkJ/AS4UVWf9A92LqxuEbnYjXktuf/mJ5epjsTbY/gDLwtF8VwhW9zjvXiZKI/h3ak9BjSm9XkN6AB68O5QVqS99ypw1lR/rlI9h3gZQTvcWD8CZk315yux8/dd4CX3WDvVn63Yzh3wf4DetGO3AHPce6uAbcAe4Gu4xdhT/bAV4YZhGEbOmHvKMAzDyBkTDcMwDCNnTDQMwzCMnDHRMAzDMHLGRMMwDMPIGRMNwzjFiMhfiMi1eRy/RES2TeacDCNXQlM9AcOYTohISFX/c6rnYRjjxUTDMPLEFaL7KV4huvPwyl9fC5wNfBmoBY4Bf6qqh0Xkl8BvgUuAh0SkDuhR1X8RkXOB/wSq8RZxfVhVO0XkAmA90Ac8ceo+nWFkx9xThjE+XgfcrqpvALqAG4CvAlepqn/Bvznt+Jmq+juq+q8jxrkb+Fs3zlbgJtf+38BfqVezyTCKBrM0DGN8HNChWkHfAj6Lt4nOBrfBWhA4nHb8fSMHEJEZeGLyK9d0F/C9DO33AO8p/EcwjPwx0TCM8TGy/k43sD2LZdCbx9iSYXzDKArMPWUY42OxiPgC8SHgaaDJbxORCrdHwqio6gmgU0Te6pquAX6lqseBEyLyFtf+x4WfvmGMD7M0DGN87ADWich/4VUu/SrwKHCrcy+FgH/D28IzG+uA/xSRaryKxP/Ltf8vYL2I9LlxDaMosCq3hpEnLnvqx6q6coqnYhinHHNPGYZhGDljloZhGIaRM2ZpGIZhGDljomEYhmHkjImGYRiGkTMmGoZhGEbOmGgYhmEYOWOiYRiGYeTM/w/Re3KoGZ0tKwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -251,10 +2295,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 16, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -273,10 +2315,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 12, + "metadata": {}, "outputs": [], "source": [ "year = []\n", @@ -299,9 +2339,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+w1fV95/HnC0GwiSgQMPxQYSPJBE0Xyx10x+5uxC2QHxOwNQ2rVWbqDIniju1mVqTJjqnSmZhpYsu6ISE1FbWK1MSRTaF4jTq1XQJcgr+Q0Hu7UkSIXOaiYmegXnjvH9/Pqd97cjmcc/lyftz7esycOd/7OZ/P53zul8N9n8+P7/ejiMDMzKxIwxrdADMzG3wcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4YY3ugH19JGPfCSmTp3a6GaYmbWU7du3H4qI8bWUGVLBZerUqXR0dDS6GWZmLUXSP9daxsNiZmZWOAcXMzMrnIOLmZkVrqrgImmPpFckvSipI6V9Q9KbKe1FSZ/N5V8uqUvSbknzcumzUj1dklZKUkofKenxlL5F0tRcmcWSOtNjcS59Wsrbmcqeffqnw8zMilBLz+XqiJgZEW25tPtS2syI2AAgaQawCLgUmA98V9JZKf8qYAkwPT3mp/SbgcMRcQlwH3BvqmsscBdwBTAbuEvSmFTm3vT+04HDqQ4zM2sCZ2JYbAGwNiKORcTrQBcwW9JEYHREbI5sh7KHgIW5MmvS8RPANalXMw9oj4ieiDgMtAPz02tzUl5S2VJdLe/gu0f53e9v5uCRo41uipnZgFQbXAJ4WtJ2SUty6bdJelnSD3M9isnAG7k8+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr6vlrfxpJ9v29LDymc5GN8XMbECqvc7lqojYL2kC0C7pF2RDXPeQBZ57gG8Dvw+on/JRIZ0BlKlUVx8pGC4BuOiii/rL0jQ+8fWNHOs98W8/P7JlL49s2cvI4cPYveIzDWyZmVltquq5RMT+9HwQeBKYHRFvRcTxiDgB/IBsTgSyXsSFueJTgP0pfUo/6X3KSBoOnAf0VKjrEHB+ylteV3nbV0dEW0S0jR9f0wWmdffCHVfzhZmTGDUi+2cZNWIYC2ZO4oVlVze4ZWZmtTllcJH0IUnnlo6BucCraQ6l5Frg1XS8HliUVoBNI5u43xoRB4Ajkq5McyY3AU/lypRWgl0HPJvmZTYBcyWNScNuc4FN6bXnUl5S2VJdLWvC6FGcO3I4x3pPMHL4MI71nuDckcOZcO6oRjfNzKwm1QyLXQA8mVYNDwcejYi/lfSwpJlkw1F7gC8DRMROSeuA14BeYGlEHE913QI8CJwDbEwPgAeAhyV1kfVYFqW6eiTdA2xL+e6OiJ50vAxYK2kFsCPV0fIOvXeMG664mOtnX8SjW/fS7Ul9M2tByjoBQ0NbW1v43mJmZrWRtL3sMpRT8hX6ZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3BpUb7/mJk1MweXFuX7j5lZM6v23mLWJHz/MTNrBe65tBjff8zMWoGDS4vx/cfMrBV4WKwF+f5jZtbsfG+xKhx89yi3PbaD+6+/3D0EMxtyfG+xM8Qrs8zMauNhsQq8MsvMbGDcc6nAK7PMzAbGwaUCr8wyMxuYqoKLpD2SXpH0oqSOlDZWUrukzvQ8Jpd/uaQuSbslzculz0r1dElambY7Jm2J/HhK3yJpaq7M4vQenZIW59KnpbydqezZp386flVpZdaTt17FDVdcTPd7x87E25iZDSpVrRaTtAdoi4hDubRvAT0R8U1JdwJjImKZpBnAY8BsYBLwDPDxiDguaStwO/AzYAOwMiI2SroV+PWI+IqkRcC1EfElSWOBDqCNbDvl7cCsiDictlL+cUSslfQ94KWIWFXp9/BOlGZmtav3arEFwJp0vAZYmEtfGxHHIuJ1oAuYLWkiMDoiNkcW0R4qK1Oq6wngmtSrmQe0R0RPRBwG2oH56bU5KW/5+5uZWYNVG1wCeFrSdklLUtoFEXEAID1PSOmTgTdyZfeltMnpuDy9T5mI6AXeAcZVqGsc8HbKW16XmZk1WLVLka+KiP2SJgDtkn5RIa/6SYsK6QMpU6muvo3JguESgIsuuqi/LGZmVrCqei4RsT89HwSeJJtPeSsNdZGeD6bs+4ALc8WnAPtT+pR+0vuUkTQcOA/oqVDXIeD8lLe8rvK2r46ItohoGz9+fDW/rpmZnaZTBhdJH5J0bukYmAu8CqwHSqu3FgNPpeP1wKK0AmwaMB3YmobOjki6Ms2Z3FRWplTXdcCzaV5mEzBX0pi0Gm0usCm99lzKW/7+ZmbWYNUMi10APJlWDQ8HHo2Iv5W0DVgn6WZgL/BFgIjYmVZyvQb0Aksj4niq6xbgQeAcYGN6ADwAPCypi6zHsijV1SPpHmBbynd3RPSk42XAWkkrgB2pDjMzawK+caWZmVXkG1eamVlTcHAxM7PCObiYmVnhHFzMzKxwDi5mZlY4BxczMyucg4uZmRXOwcXMzArn4GJmZoVzcDEzs8I5uJiZWeEcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhas6uEg6S9IOST9JP39D0puSXkyPz+byLpfUJWm3pHm59FmSXkmvrVTaO1nSSEmPp/QtkqbmyiyW1Jkei3Pp01LezlT27NM7FWZmVpRaei63A7vK0u6LiJnpsQFA0gxgEXApMB/4rqSzUv5VwBJgenrMT+k3A4cj4hLgPuDeVNdY4C7gCmA2cJekManMven9pwOHUx1mZtYEqgoukqYAnwP+oorsC4C1EXEsIl4HuoDZkiYCoyNic0QE8BCwMFdmTTp+Argm9WrmAe0R0RMRh4F2YH56bU7KSypbqsvMzBqs2p7LnwF3ACfK0m+T9LKkH+Z6FJOBN3J59qW0yem4PL1PmYjoBd4BxlWoaxzwdspbXpeZmTXYKYOLpM8DByNie9lLq4CPATOBA8C3S0X6qSYqpA+kTKW6+pC0RFKHpI7u7u7+spiZWcGq6blcBXxB0h5gLTBH0iMR8VZEHI+IE8APyOZEIOtFXJgrPwXYn9Kn9JPep4yk4cB5QE+Fug4B56e85XX1ERGrI6ItItrGjx9fxa9rZman65TBJSKWR8SUiJhKNlH/bET8XppDKbkWeDUdrwcWpRVg08gm7rdGxAHgiKQr05zJTcBTuTKllWDXpfcIYBMwV9KYNOw2F9iUXnsu5SWVLdVlZmYNNvzUWU7qW5Jmkg1H7QG+DBAROyWtA14DeoGlEXE8lbkFeBA4B9iYHgAPAA9L6iLrsSxKdfVIugfYlvLdHRE96XgZsFbSCmBHqsPMzJqAsk7A0NDW1hYdHR2NboaZWUuRtD0i2mop4yv0zcyscA4uZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3AxM7PCObiYmVnhHFzMbMg7+O5Rfvf7mzl45GijmzJoOLiY2ZC38qedbNvTw8pnOhvdlEHjdO4tZmbW0j7x9Y0c6/1gm6pHtuzlkS17GTl8GLtXfKaBLWt97rmY2ZD1wh1X84WZkxg1IvtTOGrEMBbMnMQLy65ucMtan4OLmTWdes2BTBg9inNHDudY7wlGDh/Gsd4TnDtyOBPOHXVG33cocHAxs6ZTzzmQQ+8d44YrLubJW6/ihisupvu9Y2f8PYcC33LfzJpG+RxIiedAGsu33DezluY5kMHDwcXMmobnQAaPqoOLpLMk7ZD0k/TzWEntkjrT85hc3uWSuiTtljQvlz5L0ivptZWSlNJHSno8pW+RNDVXZnF6j05Ji3Pp01LezlT27NM7FWbWDDwHMjhUPeci6b8DbcDoiPi8pG8BPRHxTUl3AmMiYpmkGcBjwGxgEvAM8PGIOC5pK3A78DNgA7AyIjZKuhX49Yj4iqRFwLUR8SVJY4GO9L4BbAdmRcRhSeuAH0fEWknfA16KiFWVfgfPuZiZ1e6MzblImgJ8DviLXPICYE06XgMszKWvjYhjEfE60AXMljSRLDBtjiyiPVRWplTXE8A1qVczD2iPiJ6IOAy0A/PTa3NS3vL3NzOzBqt2WOzPgDuA/DKOCyLiAEB6npDSJwNv5PLtS2mT03F5ep8yEdELvAOMq1DXOODtlLe8rj4kLZHUIamju7u7yl/XzMxOxymDi6TPAwcjYnuVdaqftKiQPpAylerqmxixOiLaIqJt/Pjx/WUxM7OCVdNzuQr4gqQ9wFpgjqRHgLfSUBfp+WDKvw+4MFd+CrA/pU/pJ71PGUnDgfOAngp1HQLOT3nL6zKrie+Ia1a8UwaXiFgeEVMiYiqwCHg2In4PWA+UVm8tBp5Kx+uBRWkF2DRgOrA1DZ0dkXRlmjO5qaxMqa7r0nsEsAmYK2lMWo02F9iUXnsu5S1/f7Oa+I64ZsU7nbsifxNYJ+lmYC/wRYCI2JlWcr0G9AJLI+J4KnML8CBwDrAxPQAeAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIdZ1XxHXLMzx7d/sSHr4LtHWbFhF0/v/CVH3z/BqBHDmHfpR/na5z7pi/bMcnz7F7Ma1HI1eKvOy7Rqu631ObjYkFbt1eCtOi/Tqu221udhMbMKWvUuva3abmtOHhYzK1ir3qW3Vdttg4eDi1kFrXqX3lZttw0ep7MU2WxIKM3LXD/7Ih7dupfuFpkcb9V22+DgORczM6vIcy5mZtYUHFzMzKxwDi5mZgXyhasZBxczswL5wtWMV4tZSzr47lFue2wH919/uZfXWlPwjVD7cs/FWpK/HVqz8YWrfbnnYi3F3w4/4N5bc/GFq32552Itxd8OP+DeW/Op9kaoQ4F7LtZ0Kn0j97dD996a2fdv/OA6wxULL2tgSxrvlD0XSaMkbZX0kqSdkv44pX9D0puSXkyPz+bKLJfUJWm3pHm59FmSXkmvrUzbHZO2RH48pW+RNDVXZrGkzvRYnEuflvJ2prJnF3NKbKCKWoJ5qm/kQ/3boXtv1gqq6bkcA+ZExHuSRgB/L6m0PfF9EfGn+cySZpBtU3wpMAl4RtLH01bHq4AlwM+ADcB8sq2ObwYOR8QlkhYB9wJfkjQWuAtoAwLYLml9RBxOee6LiLWSvpfqWDXwU2GnKx8UVlz7qZrLV/uNfKh/O3TvzVrBKXsukXkv/TgiPSrdkGwBsDYijkXE60AXMFvSRGB0RGyO7IZmDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVmef+PpGpt75NzyyZS8RWVCYeuff8Imvbzx14Rx/I6/eUO+9WfOras5F0lnAduAS4H9HxBZJnwFuk3QT0AF8NQWAyWQ9k5J9Ke39dFyeTnp+AyAieiW9A4zLp5eVGQe8HRG9/dRldfbCHVefdC/6WvgbefWGeu/Nml9Vq8Ui4nhEzASmkPVCLiMbgvoYMBM4AHw7ZVd/VVRIH0iZSnX1IWmJpA5JHd3d3f1lsdNUZFDwN/LBz7dHGRpqWi0WEW9Leh6Yn59rkfQD4Cfpx33AhbliU4D9KX1KP+n5MvskDQfOA3pS+qfLyjwPHALOlzQ89V7ydZW3eTWwGrJb7tfy+1r1ito7xN/IB7/TnZuz1nDK/VwkjQfeT4HlHOBpssn07RFxIOX5Q+CKiFgk6VLgUWA22YT+T4HpEXFc0jbgvwFbyCb0/1dEbJC0FPhURHwlTej/dkT8bprQ3w78RmrOz4FZEdEj6a+BH+Um9F+OiO9W+l28n4tZ45Qv2CjxEurmN5D9XKrpuUwE1qR5l2HAuoj4iaSHJc0kG47aA3wZICJ2SloHvAb0AkvTSjGAW4AHgXPIVomVZnwfAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIeZNami5uasNZwyuETEy8Dl/aTfWKHMnwB/0k96B/ArYx0RcRT44knq+iHww37S/x9Z78jMWoAXbAwtvkLfzOqmqLk5a36nnHMZTDznYmZWu4HMufjGlWZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4RxczMyscA4uZmZWOAcXszrzfiY2FDi4mNVZfj8Ts8HKN640q5Py/Uwe2bKXR7bs9X4mNii552JWJy/ccTVfmDmJUSOy/3ajRgxjwcxJvLDs6ga3zKx4Di5mdeL9TGwocXCxQa3ZJs9L+5k8eetV3HDFxXS/d6zRTTI7I04ZXCSNkrRV0kuSdkr645Q+VlK7pM70PCZXZrmkLkm7Jc3Lpc+S9Ep6baUkpfSRkh5P6VskTc2VWZzeo1PS4lz6tJS3M5U9u5hTYoNJs02ef//GNlYsvIwZk0azYuFlfP/GmrbIMGsZp9wsLAWAD0XEe5JGAH8P3A78NtATEd+UdCcwJiKWSZoBPEa2BfEk4Bng4xFxXNLWVPZnwAZgZURslHQr8OsR8RVJi4BrI+JLksYCHUAbEMB2YFZEHJa0DvhxRKyV9D3gpYhYVel38WZhQ0f55HmJJ8/NandGNguLzHvpxxHpEcACYE1KXwMsTMcLgLURcSwiXge6gNmSJgKjI2JzZBHtobIypbqeAK5JQW0e0B4RPRFxGGgH5qfX5qS85e9v5snzBmm2YUhrnKrmXCSdJelF4CDZH/stwAURcQAgPU9I2ScDb+SK70tpk9NxeXqfMhHRC7wDjKtQ1zjg7ZS3vK7yti+R1CGpo7u7u5pf1wYBT543RrMNQ1rjVHWdS0QcB2ZKOh94UtJlFbKrvyoqpA+kTKW6+iZGrAZWQzYs1l8eG5xKk+fXz76IR7fupdvfps8YX8Nj5Wq6iDIi3pb0PDAfeEvSxIg4kIa8DqZs+4ALc8WmAPtT+pR+0vNl9kkaDpwH9KT0T5eVeR44BJwvaXjqveTrMgPoM1m+YmGl70N2ul6442pWbNjF0zt/ydH3TzBqxDDmXfpRvva5Tza6adYg1awWG596LEg6B/gvwC+A9UBp9dZi4Kl0vB5YlFaATQOmA1vT0NkRSVemOZObysqU6roOeDbNy2wC5koak1ajzQU2pdeeS3nL39/M6szDkFaump7LRGCNpLPIgtG6iPiJpM3AOkk3A3uBLwJExM60kus1oBdYmobVAG4BHgTOATamB8ADwMOSush6LItSXT2S7gG2pXx3R0RPOl4GrJW0AtiR6jCzBvEwpOWdcinyYHImlyIffPcotz22g/uvv9zf1szqpFX/37Vau8/IUmSrjlfJmNVfq/6/a9V218I9l9Pki/XM6q9V/9+1arvdc2kAX6xnVn+t+v+uVds9EA4up6mWVTK+etlaWTN9flt1dVqrtnsgHFwKUO2dbofCOKsNXs32+W3VO0y3artr5TmXOmjVcVYz8OfXPOfStIbSOKsNPv78Nq9mGqos5+BSB4NhnLWZP8R2Zg2Gz+9g1WxDlXk13VvMBq7Vr17Of4hXXPupRjfH6qzVP7+DTSvcKNRzLlaRx9vNms/Bd4+e9EahZ6JH6TkXK5zH282aTysMVXpYzCpqhQ+x2VDU7EOVDi52Ss3+ITYbipp9vyLPuQxxrXZ3VjOrP8+5WM2aeSmjmbUuD4sNUa2wlLHVuBdo9oFqtjm+UNJzknZJ2inp9pT+DUlvSnoxPT6bK7NcUpek3ZLm5dJnSXolvbYybXdM2hL58ZS+RdLUXJnFkjrTY3EufVrK25nKnl3MKRkavAqseO4Fmn2gmp5LL/DViPi5pHOB7ZLa02v3RcSf5jNLmkG2TfGlwCTgGUkfT1sdrwKWAD8DNgDzybY6vhk4HBGXSFoE3At8SdJY4C6gDYj03usj4nDKc19ErJX0vVTHqoGfiqHFq8CK416g2a86Zc8lIg5ExM/T8RFgFzC5QpEFwNqIOBYRrwNdwGxJE4HREbE5slUEDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVqWhcnfWM829QLNfVdOcSxquuhzYAlwF3CbpJqCDrHdzmCzw/CxXbF9Kez8dl6eTnt8AiIheSe8A4/LpZWXGAW9HRG8/dVmVmn0pY6twL9DsV1W9WkzSh4EfAX8QEe+SDUF9DJgJHAC+XcraT/GokD6QMpXqKm/3Ekkdkjq6u7v7y2J22twLNOurqp6LpBFkgeWvIuLHABHxVu71HwA/ST/uAy7MFZ8C7E/pU/pJz5fZJ2k4cB7Qk9I/XVbmeeAQcL6k4an3kq+rj4hYDayG7DqXan5fs1q5F2jWVzWrxQQ8AOyKiO/k0ifmsl0LvJqO1wOL0gqwacB0YGtEHACOSLoy1XkT8FSuTGkl2HXAs2leZhMwV9IYSWOAucCm9NpzKS+pbKkuMzNrsGp6LlcBNwKvSHoxpf0R8F8lzSQbjtoDfBkgInZKWge8RrbSbGlaKQZwC/AgcA7ZKrGNKf0B4GFJXWQ9lkWprh5J9wDbUr67I6InHS8D1kpaAexIdZiZWRPw7V/MzKwi3/7FzMyagoOLmVkTavWtxR1czKzl/5ANRq1+OyHfuNLM+vwhW3HtpxrdnCFtsNxOyBP6ZkNY+R+yklb7QzaYHHz3KCs27OLpnb/k6PsnGDViGPMu/Shf+9wnB3TXhyLu1u0JfTOrie+L1nyKvp1Qo4bXPCxm1oTqtTeM74vWnIrYWrzRw2sOLmZNqJ5zIEX8IbNiFXE7oRfuuPqkw2v14OBi1kQa8W3T90UbnBrdK/Wci1kT8RxI8YbyMutG3q3bPRezJtLob5uD0VBeZt3IXqmDi1mT8RxIMRo9oT3U+ToXMxuUir5eZCjzdS5mZomHGBvLw2JmNmh5iLFxPCxmZmYVeVjMzMyawimDi6QLJT0naZeknZJuT+ljJbVL6kzPY3JllkvqkrRb0rxc+ixJr6TXVkpSSh8p6fGUvkXS1FyZxek9OiUtzqVPS3k7U9mzizklZmZ2uqrpufQCX42ITwJXAkslzQDuBH4aEdOBn6afSa8tAi4F5gPflXRWqmsVsASYnh7zU/rNwOGIuAS4D7g31TUWuAu4ApgN3JULYvcC96X3P5zqMDOzJnDK4BIRByLi5+n4CLALmAwsANakbGuAhel4AbA2Io5FxOtAFzBb0kRgdERsjmyi56GyMqW6ngCuSb2aeUB7RPRExGGgHZifXpuT8pa/v5mZNVhNcy5puOpyYAtwQUQcgCwAARNStsnAG7li+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr8vMzBqs6uAi6cPAj4A/iIh3K2XtJy0qpA+kTKW6+jZGWiKpQ1JHd3d3f1nMzKxgVQUXSSPIAstfRcSPU/JbaaiL9Hwwpe8DLswVnwLsT+lT+knvU0bScOA8oKdCXYeA81Pe8rr6iIjVEdEWEW3jx4+v5tc1M7PTVM1qMQEPALsi4ju5l9YDpdVbi4GncumL0gqwaWQT91vT0NkRSVemOm8qK1Oq6zrg2TQvswmYK2lMmsifC2xKrz2X8pa/v5mZNVg1V+hfBdwIvCLpxZT2R8A3gXWSbgb2Al8EiIidktYBr5GtNFsaEcdTuVuAB4FzgI3pAVnwelhSF1mPZVGqq0fSPcC2lO/uiOhJx8uAtZJWADtSHWZm1gR8hb6ZmVXkK/St6Q3ljZvMhhIHF6ur/MZNZjZ4+a7IVhfeuMlsaHHPxerCe8ObDS0OLlYX3rjJbGjxsJjVjTduMhs6vBTZzMwq8lJkMzNrCg4uZmZWOAeXQcwXLJpZozi4DGK+YNHMGsWrxQYhX7BoZo3mnssg5AsWzYrnYebaOLgMQr5g0ax4HmaujYfFBilfsGhWDA8zD4wvojQzq+Dgu0dZsWEXT+/8JUffP8GoEcOYd+lH+drnPjlkRgPOyEWUkn4o6aCkV3Np35D0pqQX0+OzudeWS+qStFvSvFz6LEmvpNdWpq2OSdshP57St0iamiuzWFJneizOpU9LeTtT2bNr+aXNzKrlYeaBqWbO5UFgfj/p90XEzPTYACBpBtkWxZemMt+VdFbKvwpYAkxPj1KdNwOHI+IS4D7g3lTXWOAu4ApgNnCXpDGpzL3p/acDh1MdZmZnRGmY+clbr+KGKy6m+71jjW5S0zvlnEtE/F2+N3EKC4C1EXEMeF1SFzBb0h5gdERsBpD0ELAQ2JjKfCOVfwK4P/Vq5gHtEdGTyrQD8yWtBeYA16cya1L5VVW20cysJt+/8YMRoRULL2tgS1rH6awWu03Sy2nYrNSjmAy8kcuzL6VNTsfl6X3KREQv8A4wrkJd44C3U97yuszMrAkMNLisAj4GzAQOAN9O6eonb1RIH0iZSnX9CklLJHVI6uju7j5ZNjMzK9CAgktEvBURxyPiBPADsjkRyHoRF+ayTgH2p/Qp/aT3KSNpOHAe0FOhrkPA+SlveV39tXV1RLRFRNv48eNr/VXNzGwABhRcJE3M/XgtUFpJth5YlFaATSObuN8aEQeAI5KuTPMpNwFP5cqUVoJdBzwb2froTcBcSWPSsNtcYFN67bmUl1S2VJeZmTWBU07oS3oM+DTwEUn7yFZwfVrSTLLhqD3AlwEiYqekdcBrQC+wNCKOp6puIVt5dg7ZRP7GlP4A8HCa/O8hW21GRPRIugfYlvLdXZrcB5YBayWtAHakOszMrEn4IkozM6toIBdRDqngIqkb+Od+XvoI2VxOq3G768vtrq9WbTe0bttP1u6LI6KmSeshFVxORlJHrVG5Gbjd9eV211erthtat+1Fttt3RTYzs8I5uJiZWeEcXDKrG92AAXK768vtrq9WbTe0btsLa7fnXMzMrHDuuZiZWeEGZXA5yR40/17S5rSnzP+RNDqlj5C0JqXvkrQ8V+b5tC9Nad+aCU3U7rMl/WVKf0nSp3Nl+t07pwXaXe/zfaGk59K/+05Jt6f0sZLa035B7bkbs9a8X1ELtLtu57zWdksal/K/J+n+srrq/Rkvsu3NfM5/S9L2dG63S5qTq6u2cx4Rg+4B/CfgN4BXc2nbgP+cjn8fuCcdX0+2TQDAr5HdcWBq+vl5oK1J270U+Mt0PAHYDgxLP28F/gPZTT43Ap9pkXbX+3xPBH4jHZ8L/CMwA/jPDIkDAAADj0lEQVQWcGdKvxO4Nx3PAF4CRgLTgH8Czqr3OS+43XU75wNo94eA3wS+AtxfVle9P+NFtr2Zz/nlwKR0fBnw5kDP+aDsuUTE35HdSibvE8DfpeN24HdK2YEPKbsR5jnAvwLv1qOd5Wps9wzgp6ncQeBtoE3Zfd9GR8TmyD4Rpb1zmrrdZ7J9JxMRByLi5+n4CLCLbPuGBWT7BJGeS+fv3/YriojXgdJ+RXU950W1+0y172RqbXdE/EtE/D1wNF9Pgz7jhbS93gbQ7h0RUboR8E5glLJ7RdZ8zgdlcDmJV4EvpOMv8sEdl58A/oVs64C9wJ/GB/cwA/jL1HX9n2e6630SJ2v3S8ACScOV3SR0Vnqt0t459VRru0sacr6VbYh3ObAFuCCym62SnkvDFgPZr+iMOs12l9T9nFfZ7pNp6Gf8NNte0grn/HeAHZFt/ljzOR9KweX3gaWStpN1D/81pc8GjgOTyIYMvirp36XXboiITwH/MT1urG+TgZO3+4dk/8AdwJ8B/5fsZqE17XdzBtXabmjQ+Zb0YeBHwB9ERKVeayF7DBWlgHZDA855De0+aRX9pNXlM15A26EFzrmkS8m2k/9yKamfbBXP+ZAJLhHxi4iYGxGzgMfIxp0hm3P524h4Pw3T/ANpmCYi3kzPR4BHacxQQr/tjojeiPjDiJgZEQuA84FOKu+d08ztbsj5ljSC7D/dX0XEj1PyW2kYoDQEczClD2S/omZud93PeY3tPpmGfMYLanvTn3NJU4AngZsiovR3suZzPmSCS2lFhqRhwNeB76WX9gJzlPkQcCXwizRs85FUZgTweT7Yt6bh7Zb0a6m9SPotoDciXovKe+c0bbsbcb7T+XkA2BUR38m9lN9jKL9f0ED2K2radtf7nA+g3f1qxGe8qLY3+zmXdD7wN8DyiPiHUuYBnfNKs/2t+iD7pnwAeJ8s4t4M3E62UuIfgW/ywQWkHwb+mmzy6jXgf8QHqz22Ay+n1/6ctMKmSdo9FdhNNkH3DNldS0v1tJF9YP8JuL9Uppnb3aDz/ZtkXfuXgRfT47PAOLJFB53peWyuzNfSed1NbrVMPc95Ue2u9zkfYLv3kC0WeS99tmY06DNeSNub/ZyTfRH8l1zeF4EJAznnvkLfzMwKN2SGxczMrH4cXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwv1/q4MdzlEclD8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -315,9 +2378,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -332,9 +2440,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGalJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDsr4QAhIqzgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq+69XcXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvaqO4CZmfWWC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJ+TnzVqlWxZs2aWYc9+OCDrFixop+zr6zJ2aDZ+Zytuibnc7bqyubbunXrPRFxUFczjYi+/a1duzbmctVVV805rG5NzhbR7HzOVl2T8zlbdWXzARPRZe11V4yZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmVGGX9B5JN0u6SdJFkvbtVzAzM6um48IuaTXwbqAVEUcDS4DX9SuYmZlVU7YrZimwXNJSYD/gzt5HMjOzbihK/OappLOAc4DdwFcj4tRZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuuyZng97nm9yxq2fTGlwOO3d3Pv7Q6pU9m/dCftVe115yturK5hsZGdkaEa1u5tlxYZf0JOAS4BTgfuAfgIsj4vNzPafVasXExMSsw8bHxxkeHi6bd1E0ORv0Pt+aDVt6Nq31Q3vYNNn5N1Vs37iuZ/NeyK/a69pLzlZd2XySui7sZbpiXg7cHhE/iYhHgUuBF3czczMz670yhf1HwH+QtJ8kAS8DtvUnlpmZVdVxYY+I64CLgRuAyeK5m/uUy8zMKir1tb0R8UHgg33KYmZmPeArT83MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy03Fhl3SEpO+0/f1M0h/1M5yZmZXX8U/jRcQtwPMBJC0BdgCX9SmXmZlVVLUr5mXA/4mI/9vLMGZm1j1FRPknSZ8BboiIv5hl2CgwCjA4OLh2bGxs1mlMTU0xMDBQet6LocnZoPf5Jnfs6tm0BpfDzt2djz+0emXP5r2Q9nbr5TKXMd/yNnm9c7bqyuYbGRnZGhGtbuZZurBL2hu4E3hOROycb9xWqxUTExOzDhsfH2d4eLjUvBdLk7NB7/Ot2bClZ9NaP7SHTZMd9/CxfeO6ns17Ie3t1stlLmO+5W3yeuds1ZXNJ6nrwl6lK+aVpK31eYu6mZnVo0phfz1wUa+DmJlZb5Qq7JL2A34LuLQ/cczMrFudd4YCEfEQ8OQ+ZTEzsx7wladmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmSn703gHSrpY0g8kbZN0XL+CmZlZNaV+Gg84F7giIk6WtDewXx8ymZlZFzou7JIOAF4KnA4QEY8Aj/QnlpmZVaWI6GxE6fnAZuD7wPOArcBZEfHgjPFGgVGAwcHBtWNjY7NOb2pqioGBgerJ+6jJ2aD3+SZ37OrZtAaXw87dnY8/tHplz+a9kPZ26+UylzHf8jZ5vXO26srmGxkZ2RoRrW7mWaawt4B/AY6PiOsknQv8LCLeP9dzWq1WTExMzDpsfHyc4eHh8okXQZOzQe/zrdmwpWfTWj+0h02Tnffwbd+4rmfzXkh7u/VymcuYb3mbvN45W3Vl80nqurCXOXh6B3BHRFxX3L8YeEE3Mzczs97ruLBHxF3AjyUdUTz0MlK3jJmZNUjZs2LeBXyhOCPmNuAtvY9kZmbdKFXYI+I7QFd9P2Zm1l++8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM6V+QUnSduAB4OfAnm5/SdvMzHqv7G+eAoxExD09T2JmZj3hrhgzs8woIjofWbod+CkQwF9HxOZZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuq8kduxhcDjt3L/68h1av7Gi8Xrfd5I5dPZtW2bbrdJl7ob3dernMZcy3vE19T4CzdaNsvpGRka3ddnOXLexPjYg7JR0MfA14V0RcM9f4rVYrJiYmZh02Pj7O8PBwybj9t2bDFtYP7WHTZJVequ5s37iuo/F63XZrNmzp2bTKtl2ny9wL7e3Wy2UuY77lbep7ApytG2XzSeq6sJfqiomIO4v/dwOXAS/sZuZmZtZ7HRd2SSsk7T99G3gFcFO/gpmZWTVl+hsGgcskTT/vwoi4oi+pzMysso4Le0TcBjyvj1nMzKwHfLqjmVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZKF3ZJSyTdKOnyfgQyM7PuVNliPwvY1usgZmbWG6UKu6RDgXXA3/YnjpmZdUsR0fnI0sXAR4D9gT+OiJNmGWcUGAUYHBxcOzY2Nuu0pqamGBgYqJK5ryZ37GJwOezcXXeSuTU5X9lsQ6tX9i/MDO3r3OSOXYs233bzLW9T3xPgbN0om29kZGRrRLS6mefSTkeUdBJwd0RslTQ813gRsRnYDNBqtWJ4ePZRx8fHmWtYnU7fsIX1Q3vYNNlx0yy6Jucrm237qcP9CzND+zp3+oYtizbfdvMtb1PfE+Bs3agjX5mumOOB10jaDowBJ0j6fF9SmZlZZR0X9oj4LxFxaESsAV4HXBkRp/UtmZmZVeLz2M3MMlOpozYixoHxniYxM7Oe8Ba7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8tMx4Vd0r6Svi3pu5JulvShfgYzM7NqyvyC0sPACRExJWkZ8A1J/xQR/9KnbGZmVkHHhT0iApgq7i4r/qIfoczMrDqlet3hyNISYCvwbOC8iPiTWcYZBUYBBgcH146Njc06rampKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT85XNNrR6Zf/CzNC+ztW1fs23vAu9J+r0RM3WhNe5bNuNjIxsjYhWN/MvVdh/8STpQOAy4F0RcdNc47VarZiYmJh12Pj4OMPDw3POY82GLaVz9cr6oT1smqz0O9+Losn5ymbbvnFdH9P8e+3rXF3r13zLu9B7ok5P1GxNeJ3Ltp2krgt7pbNiIuJ+YBw4sZuZm5lZ75U5K+agYksdScuBlwM/6FcwMzOrpsz+/FOAC4p+9r2AL0bE5f2JZWZmVZU5K+Z7wDF9zGJmZj3gK0/NzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMlPmN0+fJukqSdsk3SzprH4GMzOzasr85ukeYH1E3CBpf2CrpK9FxPf7lM3MzCroeIs9Iv4tIm4obj8AbANW9yuYmZlVo4go/yRpDXANcHRE/GzGsFFgFGBwcHDt2NjYrNOYmppiYGBgznlM7thVOlevDC6Hnbtrm/2CmpzP2arrd76h1SsrP3eh92ud5stWVx1pb+uybTcyMrI1IlrdzL90YZc0AFwNnBMRl843bqvViomJiVmHjY+PMzw8POdz12zYUipXL60f2sOmyTK9VIuryfmcrbp+59u+cV3l5y70fq3TfNnqqiPtbV227SR1XdhLnRUjaRlwCfCFhYq6mZnVo8xZMQI+DWyLiD/tXyQzM+tGmS3244E3AidI+k7x96o+5TIzs4o67tCLiG8A6mMWMzPrAV95amaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpaZMr95+hlJd0u6qZ+BzMysO2W22M8HTuxTDjMz65GOC3tEXAPc18csZmbWA4qIzkeW1gCXR8TR84wzCowCDA4Orh0bG5t1vKmpKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT8zlbdf3ON7R6ZeXnLvR+rdN82eqqI+1tXbbtRkZGtkZEq5v597ywt2u1WjExMTHrsPHxcYaHh+d87poNWzrO1Wvrh/awaXJpbfNfSJPzOVt1/c63feO6ys9d6P1ap/my1VVH2tu6bNtJ6rqw+6wYM7PMuLCbmWWmzOmOFwHfAo6QdIekt/YvlpmZVdVxh15EvL6fQczMrDfcFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWmVKFXdKJkm6R9ENJG/oVyszMqivzm6dLgPOAVwJHAa+XdFS/gpmZWTVltthfCPwwIm6LiEeAMeC3+xPLzMyqUkR0NqJ0MnBiRJxR3H8j8KKIeOeM8UaB0eLuEcAtc0xyFXBPldCLoMnZoNn5nK26JudzturK5jssIg7qZoZLS4yrWR77pU+FiNgMbF5wYtJERLRKzH/RNDkbNDufs1XX5HzOVl0d+cp0xdwBPK3t/qHAnb2NY2Zm3SpT2K8HDpf0DEl7A68D/rE/sczMrKqOu2IiYo+kdwJfAZYAn4mIm7uY94LdNTVqcjZodj5nq67J+ZytukXP1/HBUzMze2LwladmZplxYTczy4wLu5lZZp6QhV3Sakmr684xG0nPlPQeSSfUnWWmJmeDZudztuqanK/J2aB6vidUYZe0RtLVwBXAxyW9pO5M7ST9R+BrpO/SeZukt9cc6ReanA2anc/ZqmtyviZngy7zRUSj/4B9226/FvhEcfvNwD8AQ8V91ZDtBOAZ0/MHPgCcVtx/EfAlYLiOfE3O1vR8zpZnviZn63W+Rm6xSzpA0l9JuhX4hKTDikG/A/youD0G/BA4Y/ppi5jvKEnfA/4b8FlJJ0Rq7aOAQwAi4jrgm8BbFjNfk7M1PZ+z5Zmvydn6la+RhR04EdiXtGCPAB+QtJy0W/JqgIh4GLgYeElx/7F+hZF0qKQD2h46BbgkIl5K+oB5g6TDgQun8xUuA46WtE+/8jU5W9PzOVue+ZqcbbHy1VbYlSyV9FZJX5d0lqRnFYOfDTwSEXuAPwN+CpwGfBV4iqRfK8a7FfixpOP6lPFISV8GvgF8WNL01xT/P2C/4vYXgbuAdaRP1Ce37WHcR/p2y+f9KmVrej5nyzNfk7Mtdr7aCnuxq/GbwJuAjwH7AH9TDL4LuLv4ZPoxaWGeRWqA7/P41wIvA+4tHu8JSSva7j4fuCMi1gBXAp8oHr8PeFjS/hFxH/CvwFOLHN8E3luMtzfwc2B77tmans/Z8szX5Gx15lu0wi7pOEkflXR6cV/AkcAVEfGliPgYcJikFwM7SJ9gRxZP3wYMFI/9BfAqSa8mfSgMAt/tMtuTJJ0v6Xpgo6SDinxDwLWSFBH/CNwvaR1pT2H/YjjF/YOBx0h7GAdL+hvgImBPRNydY7am53O26pqcr8nZmpJvUQq7pOcAfwk8APyepPcW814NPFAsNMD5wBtIhXoP8OLi8RtIR4wfiohrgA3A6cDxwH+PiMfaplHFS4v5vYp0UOJs4ADSl50dUuxdAFxQ5Pt2sSyvBIiIbxXTWBoR24AzgZuB/xkRb6E7Tc7W9HzOlme+JmdrRr65Tpep+kfasj6DtNuxtHjsT4Gzitst4JPAycDLga+0PfdppF0VSIX8RtKvMB0D/G/gKW3jlj4dqWjYM4GrSd05q4rHvwi8u7j9DGBjMfxYUn/YkrZl+0kxndWkPYl3Ap8FPgWs6KLdGput6fmcza+r2+7f//V0i13S80kHOH8b+CDwvmLQDtJvpkL65LkW+F3gn4FDJD1X0rJI/ek7JL0kIq4kfd3lR4FLgYsi4t+m5xVFy5R0EvAa4EPAcaS+fUhn20zvHfwY+Drwyoi4nvSJO1LMcwq4Djg2InYAbyR1Bd0FvC8iHiwbqG1P49VNyzaD266axrUbuO26yfZEaLsyP433SyS9EDgc+GpE/IS0NX5rRJwu6QXAOZJawDjwnyTtFxEPSfou8HukczQvBP4A+KSk3cAkcHsxi78CLoyIXSUyKSJC0rGk3ZyvA1sinR7568BtEXGlpNtJV6++AtgK/I6kVRFxj6R/BR6U9HTgz4HTJB1M+tWoe0m7TkTEBDBRod1apL2aB4CPA3cDz6w7m9uuWrYnQru57fJru/mU2mJXskzSmyTdSOrYPxCYLrw/B7YXW983kHYtjgMe4vFTeAAeJe2CHELaKr+J1L9+NXBPRNwBaau8YlF/KfAZ0lHllwMfKUZ5DLhV0vKIuL3I91zSi3Un6XzS6eVYQmqfS4qMpwJrgc1R8RxXSSslfbaY5u3AuRFxt6S9SJ/kdWZbUrTdb5J2BRvTdsV6NyDpfBrWdsU8Q9IwzVzn9pG0oqFtd0DD225A0r6SLqBhbbegTvprgBXAi4vbBxbBPjnLeGeRLoNdXdw/mdSffhjpKwCuLh7fl9QNs6rtuccAe3eSZ8Y89wPexuNb/suAPwLeUQx/EvC9YvqnkPq71hTDTiqWZVVxexJYSerf/3J7HmCvLrJdRLpibIDUtXRm2zjTxyHeCfyPxcrW9rqeQVrZ1pMO8DSl7aazXVqsVwc1rO32B7aQfkkM4D1NaLcZ+b4M/HVx/2PA2+puO9J74s2k9/8lTWu7tnxXAn9fPNaY9a7TvwW32CWdDdwGbJE0GBH3k/qF7iz6xl+jxy8Q+hbpAOj0hUbXkg6iPhQRFwA/lfQ50kHRW4Bf9CFFxI0R8chCeWZkOwS4HBgGPkc6QPFa0l7CnmK6PyUdeH03qe/rYB4/jfIa0rn0j0TE5cCnSVeznkc6Yv1oW75Sn6ozsv0d8PYi263AEZI2FltRv690wdUVpD2Yvmcr8q0gvblOIF0/8ArScY9jSVtKdbZde7bNpLMFXku6huE36m67wnLStRfPkrSKtM4vKaZZS7vNkm9v0rr2VFIXx9GSPlJX20laRjrGdjLw8Yj43WLQMW3TrK3tZuT7WERMb3FPAkfV2XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI7txacSaeV9Udv900lbJm8Gvt32+FOBO4vb7yBdtvuk4vlfAp7eNu6qPmV7E+lI968Df1/8vR74X6Rz+RctW9v0Dmy7/Z9Jb6ZT6267WbL9MemUsWc2qO3eTOprfT/wVtKBtOvrbrdZ8r2PtMezqgltR9oDO3XGY6cA1zWh7ebI9/QiQ+3rXcfL0cGCTp+acwowXtxeRtqaWlncP4y0tX4saRfwYtKW1j+RPqn26Uv41Mcl+MVvt76Ax7t77iWdMzo97tcoCi1p9+mrxTh/skjZjgG+Mb3ito23jHRw+YTi/jn9zjYj5wGk4xs7gQ8X9+8FButqu1my3VXMdwVFN19dbdf2er6F1M32WuALxWP31N1uc+QbKx5rP124lvWO1EVxK7CpmP8HivpxH3BwA9a59nxXkb6Y69C617vSy1FigZ9MulDoOcX9pTOGnw+cPL0CkboezqRPRX2OlfkCHj9f/nPAR4vbv0ba43h62wtzNG1fCbxI2d7R/lhx+5Ci7Z672NnaMvwh6XzbzaR+7W8WbzjV2XYzsp1HOq3s2U1oO9JXRi8h9aFeTdoyvgl4f93r3Cz5/pl0htkLGtJ2XyHtgT2NtBV8FmnDsCnrXHu+L5Au/T+8CW3X6d900emIpE8BP4uIDcX9vUjnXb4DeA5wSpTsJ+8VSYeS+rTeFRG3Kn2h2GiRazXwnejNVWXdZHt7RNxWPHYMqVtqXZHtD+vI1k7pOoQzSW+yI0kr66HU2HZt2Y4mvdn+nHSW1UnU1HaSBkjdHPuQ2uk3SBeenE3aUj6cGtttlnyHk45P/BbpmNfLSO1Xy3qn4rTn4vbzSO/Ta0mX1Ne+zs3IdzTpSvdzSd80W9t6V0bZ89g3A+cWBxmOJK3Ex5NelLPrKuqFYyjOgZd0Bqn//2xSF9IPIp1+WXe2HxXZbietHHtIW/E31pit3b2kg4Dvi4i/k3QacHND8t1P6ie+ifS6LqO+tttDOnviUdKW+s9J6/8k8N4GtNtc+R6W9BpSwa9tvZsumoX7Sced3h8RFzag7Wbme4C08boN+K/Uu951rOwW++tIB0ofJn3j2JURcUufspUi6VrSwbXtpHNIPxQR36s1VGFGtruADQ1qt5WkLbg3kL7/fjNwXkQ8Ou8TF8Es2T4dEZvqTfXLigtPpvuy76o7z0xFvpOBz0Y666TuPPuQfnPhjaQ96r8EPhXpa7prN0u+zRHxZ/WmKqfjwi7puaTzOS8mHSzq2VfldqvYg/ggaUv485GuWmuEJmcDkLSU1P3yMClfk17XxmaDdFEX8FiU2TpaRE3OJ+lM0mm1n2va6wrNz7eQUlvsZmbWfE39aTwzM6vIhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpn/D0QBdzhJVkBDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -342,9 +2473,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } @@ -365,7 +2494,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4, diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 0bbbe37..4e88e81 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -1,5 +1,1401 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Incidence of chickenpox" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Downloading the data from the [Réseau Sentinelles](http://www.sentiweb.fr/)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The first line of the CSV file is a comment, which we ignore with skip=1." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020201474624260266467410FRFrance
1202013773715268947411814FRFrance
22020127812357901045612816FRFrance
3202011710198756812828151119FRFrance
420201079011669111331141018FRFrance
52020097136311054416718211626FRFrance
6202008710424770813140161220FRFrance
720200778959657411344141018FRFrance
820200679264692511603141018FRFrance
920200578505631410696131016FRFrance
102020047799158311015112915FRFrance
1120200375968410078369612FRFrance
12202002765344530853810713FRFrance
1320200179835701912651151119FRFrance
142019527794152461063612816FRFrance
1520195175823367579719612FRFrance
16201950764244276857210713FRFrance
17201949766214540870210713FRFrance
1820194875542338377018511FRFrance
192019477753650581001411715FRFrance
202019467263813163960426FRFrance
2120194574492261563697410FRFrance
2220194475728362778299612FRFrance
2320194374834275169177410FRFrance
24201942762793989856910713FRFrance
252019417413020306230639FRFrance
262019407421122186204639FRFrance
272019397313713104964528FRFrance
282019387307814164740528FRFrance
2920193779701621778102FRFrance
.................................
15011991267176081130423912312042FRFrance
15021991257161691070021638281838FRFrance
15031991247161711007122271281739FRFrance
1504199123711947767116223211329FRFrance
1505199122715452995320951271737FRFrance
1506199121714903897520831261636FRFrance
15071991207190531274225364342345FRFrance
15081991197167391124622232291939FRFrance
15091991187213851388228888382551FRFrance
1510199117713462887718047241632FRFrance
15111991167148571006819646261834FRFrance
1512199115713975978118169251832FRFrance
1513199114712265768416846221430FRFrance
151419911379567604113093171123FRFrance
1515199112710864733114397191325FRFrance
15161991117155741118419964271935FRFrance
15171991107166431137221914292038FRFrance
1518199109713741878018702241533FRFrance
1519199108713289881317765231531FRFrance
1520199107712337807716597221529FRFrance
1521199106710877701314741191226FRFrance
1522199105710442654414340181125FRFrance
15231991047791345631126314820FRFrance
15241991037153871048420290271836FRFrance
15251991027162771104621508292038FRFrance
15261991017155651027120859271836FRFrance
15271990527193751329525455342345FRFrance
15281990517190801380724353342543FRFrance
1529199050711079666015498201228FRFrance
15301990497114302610205FRFrance
\n", + "

1531 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202014 7 4624 2602 6646 7 4 \n", + "1 202013 7 7371 5268 9474 11 8 \n", + "2 202012 7 8123 5790 10456 12 8 \n", + "3 202011 7 10198 7568 12828 15 11 \n", + "4 202010 7 9011 6691 11331 14 10 \n", + "5 202009 7 13631 10544 16718 21 16 \n", + "6 202008 7 10424 7708 13140 16 12 \n", + "7 202007 7 8959 6574 11344 14 10 \n", + "8 202006 7 9264 6925 11603 14 10 \n", + "9 202005 7 8505 6314 10696 13 10 \n", + "10 202004 7 7991 5831 10151 12 9 \n", + "11 202003 7 5968 4100 7836 9 6 \n", + "12 202002 7 6534 4530 8538 10 7 \n", + "13 202001 7 9835 7019 12651 15 11 \n", + "14 201952 7 7941 5246 10636 12 8 \n", + "15 201951 7 5823 3675 7971 9 6 \n", + "16 201950 7 6424 4276 8572 10 7 \n", + "17 201949 7 6621 4540 8702 10 7 \n", + "18 201948 7 5542 3383 7701 8 5 \n", + "19 201947 7 7536 5058 10014 11 7 \n", + "20 201946 7 2638 1316 3960 4 2 \n", + "21 201945 7 4492 2615 6369 7 4 \n", + "22 201944 7 5728 3627 7829 9 6 \n", + "23 201943 7 4834 2751 6917 7 4 \n", + "24 201942 7 6279 3989 8569 10 7 \n", + "25 201941 7 4130 2030 6230 6 3 \n", + "26 201940 7 4211 2218 6204 6 3 \n", + "27 201939 7 3137 1310 4964 5 2 \n", + "28 201938 7 3078 1416 4740 5 2 \n", + "29 201937 7 970 162 1778 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "1501 199126 7 17608 11304 23912 31 20 \n", + "1502 199125 7 16169 10700 21638 28 18 \n", + "1503 199124 7 16171 10071 22271 28 17 \n", + "1504 199123 7 11947 7671 16223 21 13 \n", + "1505 199122 7 15452 9953 20951 27 17 \n", + "1506 199121 7 14903 8975 20831 26 16 \n", + "1507 199120 7 19053 12742 25364 34 23 \n", + "1508 199119 7 16739 11246 22232 29 19 \n", + "1509 199118 7 21385 13882 28888 38 25 \n", + "1510 199117 7 13462 8877 18047 24 16 \n", + "1511 199116 7 14857 10068 19646 26 18 \n", + "1512 199115 7 13975 9781 18169 25 18 \n", + "1513 199114 7 12265 7684 16846 22 14 \n", + "1514 199113 7 9567 6041 13093 17 11 \n", + "1515 199112 7 10864 7331 14397 19 13 \n", + "1516 199111 7 15574 11184 19964 27 19 \n", + "1517 199110 7 16643 11372 21914 29 20 \n", + "1518 199109 7 13741 8780 18702 24 15 \n", + "1519 199108 7 13289 8813 17765 23 15 \n", + "1520 199107 7 12337 8077 16597 22 15 \n", + "1521 199106 7 10877 7013 14741 19 12 \n", + "1522 199105 7 10442 6544 14340 18 11 \n", + "1523 199104 7 7913 4563 11263 14 8 \n", + "1524 199103 7 15387 10484 20290 27 18 \n", + "1525 199102 7 16277 11046 21508 29 20 \n", + "1526 199101 7 15565 10271 20859 27 18 \n", + "1527 199052 7 19375 13295 25455 34 23 \n", + "1528 199051 7 19080 13807 24353 34 25 \n", + "1529 199050 7 11079 6660 15498 20 12 \n", + "1530 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 10 FR France \n", + "1 14 FR France \n", + "2 16 FR France \n", + "3 19 FR France \n", + "4 18 FR France \n", + "5 26 FR France \n", + "6 20 FR France \n", + "7 18 FR France \n", + "8 18 FR France \n", + "9 16 FR France \n", + "10 15 FR France \n", + "11 12 FR France \n", + "12 13 FR France \n", + "13 19 FR France \n", + "14 16 FR France \n", + "15 12 FR France \n", + "16 13 FR France \n", + "17 13 FR France \n", + "18 11 FR France \n", + "19 15 FR France \n", + "20 6 FR France \n", + "21 10 FR France \n", + "22 12 FR France \n", + "23 10 FR France \n", + "24 13 FR France \n", + "25 9 FR France \n", + "26 9 FR France \n", + "27 8 FR France \n", + "28 8 FR France \n", + "29 2 FR France \n", + "... ... ... ... \n", + "1501 42 FR France \n", + "1502 38 FR France \n", + "1503 39 FR France \n", + "1504 29 FR France \n", + "1505 37 FR France \n", + "1506 36 FR France \n", + "1507 45 FR France \n", + "1508 39 FR France \n", + "1509 51 FR France \n", + "1510 32 FR France \n", + "1511 34 FR France \n", + "1512 32 FR France \n", + "1513 30 FR France \n", + "1514 23 FR France \n", + "1515 25 FR France \n", + "1516 35 FR France \n", + "1517 38 FR France \n", + "1518 33 FR France \n", + "1519 31 FR France \n", + "1520 29 FR France \n", + "1521 26 FR France \n", + "1522 25 FR France \n", + "1523 20 FR France \n", + "1524 36 FR France \n", + "1525 38 FR France \n", + "1526 36 FR France \n", + "1527 45 FR France \n", + "1528 43 FR France \n", + "1529 28 FR France \n", + "1530 5 FR France \n", + "\n", + "[1531 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data = pd.read_csv(data_url, skiprows=1)\n", + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "No missing data." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Converting the date into a format readable by the pandas library and sort is ascendingly." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "data = raw_data.copy()\n", + "\n", + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]\n", + "sorted_data = data.set_index('period').sort_index()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Checking if all data are still present. Apparently, no gaps of more than 1 week." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Having a visual inspection :" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYHUW5P/55zzmzZF+HkA0SQghLhEBi2FSWgMQNVEADKly/eFHE3asXrveHaxS9LIoKCuIFvCogoCB7SMImISFsCUkIWUlC9n2dzMw59fuju7qrq2vrM2fOTDj1eZ55pk91dVV1d3W9+1vEGIOHh4eHh4eIXGcPwMPDw8Oj68ETBw8PDw+PFDxx8PDw8PBIwRMHDw8PD48UPHHw8PDw8EjBEwcPDw8PjxQ8cfDw8PDwSMETBw8PDw+PFDxx8PDw8PBIodDZAygXAwcOZCNGjOjsYXh4eHgcUHj55Zc3M8aabPUOWOIwYsQIzJ07t7OH4eHh4XFAgYjedqnn1UoeHh4eHil44uDh4eHhkYInDh4eHh4eKXji4OHh4eGRgicOHh4eHh4peOLg4eHh4ZGCJw4eHh4eHil44uBRM5i/ZgdeX729s4fh4XFA4IANgvPwyIqP/eZ5AMDKaz/SySPx8Oj68JKDh4eHh0cKnjh4eHh4eKTgiYOHh4eHRwpW4kBEjUQ0h4heJ6IFRPTDsPwHRPQOEb0W/n1YuOZqIlpKRIuJ6ByhfDwRzQ/P3UREFJY3ENE9YflsIhpR+Vv18PDw8HCFi+SwH8CZjLHjAIwDMJmITgrP3cgYGxf+PQoARHQ0gCkAjgEwGcDNRJQP698C4HIAo8O/yWH5ZQC2McYOB3AjgJ+3/9Y8PDw8PMqFlTiwALvDn3XhHzNcch6Auxlj+xljKwAsBTCRiAYD6M0Ym8UYYwDuAvBx4Zo7w+P7AEziUoWHh4eHR/XhZHMgojwRvQZgI4BpjLHZ4amvENE8IvojEfULy4YCWC1cviYsGxoey+WJaxhjbQB2ABigGMflRDSXiOZu2rTJ6QY9PDw8PLLDiTgwxoqMsXEAhiGQAsYiUBGNQqBqWgfg+rC6iuNnhnLTNfI4bmWMTWCMTWhqsm5k5OFRETDG8PC8tWgrljp7KB4eVUMmbyXG2HYATwOYzBjbEBKNEoDbAEwMq60BMFy4bBiAtWH5MEV54hoiKgDoA2Brpjvx8OggPPT6WnzlL6/itudWdPZQPDyqBhdvpSYi6hsedwNwFoA3QxsCxycAvBEePwRgSuiBNBKB4XkOY2wdgF1EdFJoT7gEwIPCNZeGxxcAmBHaJTw8Oh1bdrcAADbsbO7kkXh4VA8u6TMGA7gz9DjKAbiXMfYwEf2JiMYhUP+sBPBFAGCMLSCiewEsBNAG4ErGWDFs6woAdwDoBuCx8A8AbgfwJyJaikBimFKBe/Pw8PDwKBNW4sAYmwfgeEX55wzXTAUwVVE+F8BYRXkzgAttY/Hw6AxwvzkvzHrUEnyEtEdN4u+vrsEX7nzJqS73lvCkwaOW4LOyetQkvnnP6851fciNRy3CSw4eHh4eHil44uDh4QhvcvCoJXji4OFhQbW1Ss8t2YSfP/5mdTv18JDgiYOHhyNYlUzSn7t9Dm55ellV+vLw0METBw8PC7w52qMW4YmDh4eHh0cKnjh4eNgQGh28QdqjluCJg4eHBT4IzqMW4YmDh4eHh0cKnjgcYFi4dic27drf2cOoSXi1kkctwROHAwwfvuk5nH3jM509jJqCz57hUYvwxOEAxPa9rZ09hBqFFx08ageeOHh4WEA+0sGjBuGJg4eHhweAjbuacc9Lq/xe4SE8cfDwcIQ3SL+78aunluA/75+PV1dv7+yhdAl44uDhYUG8E1znjsOjY7Fs024AQKuXHAA4EAciaiSiOUT0OhEtIKIfhuX9iWgaES0J//cTrrmaiJYS0WIiOkcoH09E88NzN1G4iwoRNRDRPWH5bCIaUflb9fAoD3EQ3LufOoy46hFc/cC8zh5G5+Ld/5qd4CI57AdwJmPsOADjAEwmopMAXAVgOmNsNIDp4W8Q0dEApgA4BsBkADcTUT5s6xYAlwMYHf5NDssvA7CNMXY4gBsB/LwC91ZxPLFgPVZs3tPZw/CoMmrNlfWvc1Z39hA6BdzxwNOGAFbiwALsDn/WhX8MwHkA7gzL7wTw8fD4PAB3M8b2M8ZWAFgKYCIRDQbQmzE2iwU7td8lXcPbug/AJOqCezN+8U8v44zrnu7sYXh4eHQAvPowCSebAxHlieg1ABsBTGOMzQYwiDG2DgDC/weF1YcCEFmPNWHZ0PBYLk9cwxhrA7ADwIBybsjDo6PgF413N3I8waKXHQA4EgfGWJExNg7AMARSwFhDdRXHzwzlpmuSDRNdTkRziWjupk2bbMP28KgIfJxDbcBLDklk8lZijG0H8DQCW8GGUFWE8P/GsNoaAMOFy4YBWBuWD1OUJ64hogKAPgC2Kvq/lTE2gTE2oampKcvQPQ4gbNvTgl3NPgq80mgrlvDga++A+dXPCP90Arh4KzURUd/wuBuAswC8CeAhAJeG1S4F8GB4/BCAKaEH0kgEhuc5oeppFxGdFNoTLpGu4W1dAGAG68Iz+AcPLcDGnc2dPYx3LY7/8TSc/LMZzvVb2kqYcussvLJqWweO6sBfNG59bjm+fvdrePC1tfbKNYwuvPRUFS6Sw2AAM4loHoCXENgcHgZwLYCziWgJgLPD32CMLQBwL4CFAB4HcCVjrBi2dQWAPyAwUi8D8FhYfjuAAUS0FMC3EHo+dVXc8cJK/Nff51esvbe37MHm3T7Tqojd+9uc6y7fvBsvLt+Kq++v3DtJ4ADXKi1evwsbdjZjy+4WAPBZfTUgv6lTAgVbBcbYPADHK8q3AJikuWYqgKmK8rkAUvYKxlgzgAsdxttl0Fqs3Aw67X+eRj5HWPbTD1esTQ899rcV7ZUUOFAXjXN++SyIgMs/cBgAoK10gN5IB4PzAKUD9UVXGD5CukxUevoU/Qfbbrh6mTz31uZM7b4bguAYAwq54E587iAzPG0I4IlDmfB6yQMX3erz9koCumDITVko5ILP3UsOaoS000sOITxxKBN+/hy4yEocIlT5nVeaAYkkh5JaclD1d/2TizF7+ZaKjqOrgjMBnnYG8MShTBzIKoZ3G7LGITQUsk37zpIbKs2AFPJ6yWFfSxFrtu1Llf96xlJ8+tYXKzuQLopIfeg5PwAOBmkPNTpj/vhJWxmUG9R2oD99LjkUFc4UX7jrJfxraW1ICDpQpFbq3HF0FXjJoUzkc9XnJ9fu8LEVlUBWqa+zTA6VXqPykVop3XKtEwYRXisQwBOHMlHoBOJw/ROLq97ngQRXwepAEcAqLSnW5YM56/cr0MHbHER44lAm6vLVf3Tei6JzcaCr9XI5vvi53UepxlbJXJRbqbbuWwdPHMpEZxAHP2XNcFX/ZCWy7xa1Ui5jBHCxxhZJ8q6sCXjiUCYK+eqvGH7OVgblBhzarpq3ZjtGXPUIlmzYFZW1Fkv45+try+JGK/2+s0YA12pgpv/OAnjiUCa85HDg4hM3v5CpfrRDmOUFPDxvHQBg+psbo7Jbnl6Gr/71VTz+xvpsg4S7YfQPzy3HSs0OhUdf83h0nMvox19rxIG8zSEBTxzKRF2nSA5+1prQUY/HVa2kqrYu9DDburelcgMSsLO5FT95ZBEuuk0di7C3Jc4j9eKKwCPJWXKosfnm1UpJeOJQJjrDlbWW5+xLK7fioderk2qaMYaZizdGnPOMUBJoz+Mv5925XMONxnscstguXLszbNit/1ozSJM3SCfgiYMj5AnTKUFwNaxYuvB3s/C1v75alb6eXrwJn//fl3DL00uxt6WtXfsftNeYfd0Ti/GqYZ8KPg9d8j/F6SHs86i5tejVSjUOTxwcIX9PnTF/3m0Mza3PLsOidTvb3Y7LApyFC966J1ABLdu0J9oDIQsq9Z4YA34zc6nRRsK7chFkY4O0ve6R/9/jEXHoDCm5U+C3CU3AEwdHyPOlc9JnVL/PjsRPH30TH77puar01Zoh2VxdmHuppa2EHftajXUT6IQ1lEsBLpJDmJTVWad+xnVPAwDy75KstDbwuywyht8/swzrazwjgScOZaP6K/W7Ua1ULYLXlmFzpvrQE62lWMq2MVCF78VlEY/UShnadR3mntCYXSO0ISKwyzftxs8eexNf/L+XO3lEnQtPHBzRFWwOXhdqhunx6IiD6j3WF4JFoqWtBDHTRLUf/+urt1vrcIbBRXLg95rV4JqrEeoQqd3CD22XIDXWIqzEgYiGE9FMIlpERAuI6Oth+Q+I6B0iei38+7BwzdVEtJSIFhPROUL5eCKaH567icIZTUQNRHRPWD6biEZU/lbbB69WOrChUyupUJ8P9ntoLZaSex/Ynn+F19CL/zDbWofbBVzW75g4ZBtHJW0Oq7fujWw6XRWc0NaaK68MF8mhDcC3GWNHATgJwJVEdHR47kbG2Ljw71EACM9NAXAMgMkAbiYivrvKLQAuBzA6/Jscll8GYBtj7HAANwL4eftvrbJIG6Q7xSTdCX12DDrCXdC0hGXxvOFrYWux1OU9dq574i0ASNhGdOB30pnpQ97/i5k45drplWuwgpDvs9bjHazEgTG2jjH2Sni8C8AiAEMNl5wH4G7G2H7G2AoASwFMJKLBAHozxmaxYGW4C8DHhWvuDI/vAzCJXOTkKkImBl5yaB864l5MTeoykaqu4fQgUCsxoa7boFX1OurV/XNe4Gbb0maXjDhBzkrvKu2t1NyqH+u+liLOufFZvPz21or26QL5LjMIm+9KZLI5hOqe4wFwefcrRDSPiP5IRP3CsqEAVguXrQnLhobHcnniGsZYG4AdAAZkGVtHo0u4snZCnx2Fat+LqwQwe/mWKK6gpcgySQ6qTYQ6msMpL2dTtmuq6a20YO0OLN6wC1MfWVS1Pjlk24qXHBxBRD0B3A/gG4yxnQhURKMAjAOwDsD1vKricmYoN10jj+FyIppLRHM3bdrkOvQOgd8JLsCcFVvx9OKN9ooSqn0vrmv8p299EddPC1Q1LW1F5cY4Byr4I39q0UbMWua+uU81hfiWUMLrjNxlcZxD8KC6ukqxo+H0BoioDgFh+DNj7AEAYIxtYIwVGWMlALcBmBhWXwNguHD5MABrw/JhivLENURUANAHQEquZIzdyhibwBib0NTU5HaHHYTOsDl0xbn6qd/Pwr/970uZr6vkrbgsXTpiZCJSyzbtwd6WNqFu1pElOmrHxXpkmRMiJ6zLxaRCNWPguFfZ+p3N+Mer71SvYwFFTxwAuHkrEYDbASxijN0glA8Wqn0CwBvh8UMApoQeSCMRGJ7nMMbWAdhFRCeFbV4C4EHhmkvD4wsAzGBdjE1OjaZT0md0HtZu34eLbn0R89bY3Su7Isp9dtc/+Vb2vqr4oqqh+qhmhDT3Dnt7y158457XqtJnS1sJZ1z3NJ59K9BGcPNUrauVCg51TgXwOQDziYi/rf8CcBERjUPw3a0E8EUAYIwtIKJ7ASxE4Ol0JWOMRxJdAeAOAN0APBb+AQHx+RMRLUUgMUxp321lR1uxhGkLN2Dy2IOVYnTKIF2tgYl9duJknb1iC2Yt34I/v7gKx17Qt93tVftWyu0vGSFtrmvUvnSQaibLfZX7yKsZ59DSVv05vmFnM1YIKc+LIYGqdcnBShwYY89DLbk/arhmKoCpivK5AMYqypsBXGgbS0fijhdW4iePLMKvpozDeePSzlgpg3SNcRXc2LqvNUPEsAEdoZYzvxONWsnaaLmj6Xood87mqqj+b8voIrSzuRXb9rTg0AE9yu4z7cKa/F+r8BHSIXaGHOLyTepNU7qAVqlTXVmzMI8L1+7EG+/sMNY5UCSHd88AAhtKOaimt5LscmwjaOff/AJO+5+n29WnrCngEdJereQBAOjdrQ6APpioGukz2oolFAxeGl0ht5LLCHgyvZXXfqRjB5MBunHb3iNLHJsrq5bQSqyrnR3xU021kiw4lBhg2ldrycbd7e5Tbp57qNW6WslLDiEawkycolj71MINGHHVI1i2KT0BO2LatGgCtThGDixfdG4vOHdVKXVaJYlrltQR7UFnMZKdHQ2a68SU3dXg3uUeuLdSjQsOnjhwcCZB5JIemR/sCfz66u2K3EqVnzm2KNc+oXRz3LA+Fe/bFZW46217WvDHf62oQEsBXF5FuVKXSHg6a63o7GQB1aQNnZHCQt7rg//uCpJ6Z8IThxB8EqpEaMY6JkJ65eY9iV2+9luIA5/D1Z6yb7yzI96FrQKdf/f+efifJxa3v6EM0K0x5aiK7H1VNn1Gp0sODsSpVGK456VVTmk8TJC7cqUN7dnSVCZAXJ1U65KDtzmEUM0tPk/3t5Wwcae08UcFJs7p4WYqHLYPq9RJ4u7fhWAk02K6cVczejXUWdvbvrf6WTnLfWY2VZ8I1RqqSqlxoMElzuGf89biP++fj7Xbm/HNs4+oWN+u762txFBfpogj2xb4d+YN0h4AYm5P9YH/19/np+t3AP9ulRy6uLg7cep0vGdo56m8TCj3mYlJ4spZKyrxrkyM+/knDMP9r6zBheOH6Su1Ey6SA3fkaG86bpmYmhZosS+T8fiuWSsxe/lW/PYzJyjPy33s3BdExXfNr6x68GolCa6eGe1lKq5+YF6qzC45hP+rnC1SvFfbfc+3uLCq22/fw3S5+tHQfpTuu11dV6VNk/RRHzpS9GzsOD4vC0NeLjFcu30fgGw2hxN+PC06Nu3Xcc2DCyL7oQoyXZmzMsjcU+OCgycOHLHNwa1+eyfOX+esTpXZVBiRWql9XbcLlfhg5MVuwdqd7W8U+udy16yV+O3MZZnaGn9oP3slCeqsrJXwZVUXM8bw1zmrwuP2d6NDR6fP+Mer7+CUa2dg9vJ0MkD5tkZc9Qi+/+AbqXrFDNvApq6tcZdVHTxxCKHyVjKhI1Q7Nsmh3G0e24uOVmNl0eurYHsc1zy4IHOb6sCvzllEdDOyUtHqNphibzZItrhyiOHLbwdOGW+u35U6xxRT485Zb6fKXHb6G/29R7FkQ7oPTxzU8MQhRCS+VkFy0E1GmwGsswxkCbVSJRbIA8BGq0oZ0WlxDprnJU6jjmQY6jXE4dVV23DiT6fjb3PTUrAKunlv4sdc57zLAt9aZEqJvdYNzzp44hAipg3CTDVM2vZMJ52E4EocOnMud8XvqCMkG5UqxbUXVb2OeG6iKqUjX0tBE6K8ZEMQHDpnRZxd3/Qu7pq1MnPfrvfV5qhWKiokDC85qOGJQwiW0eYwbeGGsvvSEgHLHOXal870VuqIntu7cLbnet215aSMULqyVsTkoG5EjOYvlhi2tdNTSIdChTLvbdq131pHfh+uXL1zPISiXlbasH1vC6597E20tVMd2tXhiUMIPrmqkUdGNxdtk5R1AcmhVlDNPQxs0E1J0ZXzz7NX4fgfT9PmBmsP6kzJjQD87eU12LM/sH+0xwDPGEsRA1fi4Kx+UtTLqlaa+sgi/O6ZZXh8wfpM19mwtAJ5oiqJmicOb23YhcP/61Gs2roXQFJy6KgAJt1kdFUrVVtHKuqzO6Zr90aV0ccdMKaCSq1UBhdbGe8uNc6+8dlU2c4OIA4mgzTHDdOCiHdRqp27cmvCAKx7FOL9pVPju43R9TGrIqmzqpV4PFIl1VHTFm7AWTc8g3++vtZeuUqoeeJw95zVaCsxPP5GwAVUI49NmVqlTkufkYR777qUBu15wpUmBDoVXTUzkXYW2pNyAkDiRbYqdP4X/G5WgoC5ZMCVq7iri8o3XJf7HB6bv75ii/lbIRFdtK4ybt2VQM0TB74G8MlVlTVBMxedvZWqSB1Wb92bcB3UEjbFiVueyRZb4AKlsbcDHogyx5bjteKlWeeT7BoatJFu5MHX1PsrZ+mvI6aRSdrWvSfx/uR5VGmbg1qt5HYtBx/u4wvW46s859i7EJ44hP/5BKlGLhzdhLepLVxpQ6nE8NuZSzHiqkfwo38uNNZdv6PZaMj8zB9mJ37PUgQqAeoPbLbgxWJCFmnAuFhUcLXLW/TsJrRHuvnvf6QDvOSRtBZL+Prd7d9f2V1NVnkyojPmyj25EwdH24RKreSNeEp44hB+ecUqSg66qWibo3G2SHPFmYs3RllPbamxT/rZdBwvpCGQISfJ29sSB16JInoWO0h7nrGqm47wVipn9zPTFS6L18tvb1MTaqnhJwyG0CxqUVeO2cVWENd1I94/ejjNtDCFXqnSNgduWxSRVa3UkUtEVyJTVuJARMOJaCYRLSKiBUT09bC8PxFNI6Il4f9+wjVXE9FSIlpMROcI5eOJaH547iYKZzIRNRDRPWH5bCIaUflb1d4fgPI8gcrlqHTX2eaoa/oMlf63kuDpu3//bKw2UhEH148oy2ir5carjHOwdK3K35NlITn/lhcw9+1tqXK5jd6N+sy3WfqrumODcDxz8UYAQcI+MeGk/H4rbXN4ZdV27NnflijzcQ5quEgObQC+zRg7CsBJAK4koqMBXAVgOmNsNIDp4W+E56YAOAbAZAA3E1E+bOsWAJcDGB3+TQ7LLwOwjTF2OIAbAfy8AveWCRFXLkxOGxNW7pzSXWeb4Py0rV4l3TBVnOhDoRFuhbAnsSp7ge75uaruKuWZdNJh/TNfkzV5xtY9LWXv0Wwdi/QgebI9FTIRWtfKGRp1fbfcpnPcD5+M80MpxqSb6/KCnmVeyMQhK5HsSKeVrqThshIHxtg6xtgr4fEuAIsADAVwHoA7w2p3Avh4eHwegLsZY/sZYysALAUwkYgGA+jNGJvFgq/+Luka3tZ9ACZRR74BAbLNoWL6bwN03K+tOdcIaZUbZkdAHEaWZ+HK/VdKhTRmUC/DWNzhqn5Q3d/Lq7Zn6MmMlxXSRdR3R7wHB0OyS5vi2HQz1GRzEK+fvigZhJplXsip8btC+oyu6ByXyeYQqnuOBzAbwCDG2DogICAADgqrDQUgJjBZE5YNDY/l8sQ1jLE2ADsADFD0fzkRzSWiuZs2bcoydMNNJX9mWizKVivpyt28lWzddsaev+1RK+ng6pnUId+2YvCthohY27trj8ujvHCYdtHLxtyUOaAyIY5N5yqclhzU5/704ttSPTcJA0gneswa6NyxNofOJ1QczsSBiHoCuB/ANxhjJmdcnURuktSdpHjG2K2MsQmMsQlNTU22ITtBFoNduJu4bnl96q6zfayuk7gcY6oOpqbE+1DupKe5OP3M1e2rPnhVP7YPynRWt6ir1CNG4mAcQfvQUXaESruJ2vsTfujSkKcjHRRHwHNLNjv1qSQOkuTQFbyVuuKOgU7EgYjqEBCGPzPGHgiLN4SqIoT/N4blawAMFy4fBmBtWD5MUZ64hogKAPoAcPODbCfK3bMWMH9cjDGMuOoRXP9kmsvTqpVsi1wkOZjrVSgVjhXJyOl2GKQzRIxXK125iq61Gah3Uv1R6bFU3gMJsI/zsKYeOGJQT+151ahMi5z4jNR7tTOL5OD2/G3lMnHIPKe63jreIXDxViIAtwNYxBi7QTj1EIBLw+NLATwolE8JPZBGIjA8zwlVT7uI6KSwzUuka3hbFwCYwTpwFfj072fhV08tUZ7LItaZPkQuuv5m5lLn6yrlrVSJJ5f18as4NK1Buh1p0ZWSg2WolZpJg3o3GjqpTB/tRSbbj0vIMjJ68BkehDg23RSYtyZpm0kQXVO/GcaYVivFF5982AAM7dvNvbEKY9ueFqxWuNt2Blx4zFMBfA7AmUT0Wvj3YQDXAjibiJYAODv8DcbYAgD3AlgI4HEAVzLGuHP8FQD+gMBIvQzAY2H57QAGENFSAN9C6PnUEWCMYfaKrbjxqbc0593bMn2InDtR6svKDIJri+IczOMycbgca7fvw8w3NyrP7dnfhpFXP4qbn04TNhFiL397eY2iRvtYLOV9Gm5t+Wa1t5DRSKopV428W11eUWodVoSZizdixFWPZE6wluUpZiHq1kSPCCSBSunBbZIDANw7NzmPxNsx3Vp7JAeRONQZPME4OkIFxB/HvXPX4P2/mFnx9suBdeNZxtjz0M/PSZprpgKYqiifC2CsorwZwIW2sVQCuyU3NvnGbJ/B5R84DLc+uzyoq1FBtxZLmLcm2EtZLT6rr3MNgrOm2XAgDqdcO0N7bn2YwuFvc1ULfgxxIXpREzntAt1olWollUHa1r5Q4YrTR+GWp+1pPYiCJIwJtYahvu6diCqhO/61EkCQkO7wg/TqGtVYXJFFreQiZVTSi0bszrXdpOSQncirblFmnsQ+6jopG29X1FTVXIS07I+fZUNzADhmSG9l3WKJRYv31EcWRWknVB9BFgOsiEhyMNZykxxM2N0cENAeDXnjpBW7WbYpzQ27qpW0xNLSpwojrnoEl981V9vOmUcehHOPG2JuBAF3KO9jYOLKmQMReeatwMPOZNjWjcYVWdRKG3fa91cA9O8nK+FI2KNdt+N1lByy2K1k5kn8WciT9Rm63veW3ftx4k+fwsIy9kj/w3PLM19TadQccZC5j5SIaPm2ckT40XnHAEhOvGN/8AROvy4QB19dFfuhZ/EFt3sruamV2hvxyYOEejaYBUvx/ldv3Zc6r9teUkZ7DdJy2ZOGjZgIyY/btPDJwYRy1dZiCSf9dDoef2NdpkW5JWMEe6Zkehma/vBNzxnP8/uvlDllx944nbha3Zoua69HlapY/j7E34V8rmI2qmeXbMKGnftx67PZE1D+n+Sq2xmoPeIgvfgUF2s4BwTEgS/4ogvcnpZitECyRP10G7q122pziDhOi1qpnbO7uS0wETUadOyAfSGyXR+1oymfsWgj/jZ3dSJJm+ud6fagyLLQysGE8vvZsrsF63c24/sPLci0oGTdQayzUmIUcpTJU8qGNdtjBsLVo87d5qC5XvGoZddVWa1ke4b7WovG8xxcpbxUIVXb0MPCmFUDtUccbOctEyOfixd8F/WQynilN0ibx+ZqkP7F42+aKzgi4LKzp2DmaKxzm15vrhc2hBFu7hv3vIbv3DcPd7ywMipT2yHSSC4WCZLvtNgSpYMJXdfdm6arPeE42koMN065Ley9AAAgAElEQVR7Cz97dJHQtlvjNntSJX386kLJr1Jqpf2WRVU1n8T3bXMdV0F1jUlyqMvnrBK87E2k3bckfEBvvLMTa7aZPZDkZ9mj3hOHqkOeRCmDtINaiXMELlya62KmqtvcWsSp187Ac0sCXXXRweaws7kVK7dUxhXOdneqfEoi6hzVSj9WZOgUsU3MDOu4+JkkhwTB07ZHCslB6gP2hUvnLfOr6Uvw+2djvbJpKonDdd7zowLI5zghLY+Z4fjQr57DXbNWSkyA27XuDgHqche1Uvpai81Bbk9zM2IwarOjtBH10QUs1LVHHOQC6S2IE0XFYwbEIV030YdFFNZKDtLv5Zv24J3t+zD1kYDDjCUH/eQ9/+YXtOcqjXJdHP+1VO/ZpLo10eNL1aPyGWvOE9zUNGqbQ9zQ8k27cd0Tb4VtknaxU9l/2hRU1fQkxXloJdgVlRzIuEi59rVo3U5c8+CCRJnqef300bTEawu0jM5p7XhmaQRIcv5tpXQgngxZmtYRZHH6ZN1ZsCvke6o94iDbHOTziXD99AvK5wTJQfN12NIE6N67Lf8O11WbPsolFdik3NWP26Y6L2eCq64QPyx1m/YFgEP+sKe/qTZeE4Dzxw9LlInP/czrn8H9r8SuvnppMF3WpjBImxY+lQG9LtyM6GuTRkv9qRfT75wzJnNCRu6tVa53nQnOhmbNcaqeA6PGkVIrSc/MNjb5MeokaHGu2TwI5W+uK2QRrz3iIOeLl88LBaoXGvi/U6puFuhe/AvLkhy1zGy4SA6VQCJtualeB6g4lGk4HLyL0u0Ix/L9CO3d/ZKYIzKJL31gVOI3X1TkDZCIgqBCFVQMhByhG4xRD/Ed8HvhYzEZzeVn9fvPjXceIxC4dRKZYgjKn4eqZ6CCODazK6uu3G5zEDewKjF7yg5ZotSplcRqKobABC85dAakZ140KM5VLzSfo8jTIs6SKhEcZl5cs6pjeHMuNgcd/vj8imgTc9ePmix92Vqp1Py2SQ5q1Z36mCjJpemIHxFA0tfBibOc8pmx5HaqYopw1cKhinMwPatd+9siqZHX4wuYvFCZOM5JRw3CGWPSCSs37krHO/RsKODa84/VSpFLN+7GEwv0LsM27Gtx08En7sdwb9qtdxVlMnHYuS92sS0xZiSwgLtaSXw3NvfyjbuSe4d7yaETID9zWToQJ4ZKN5wXDNLFiDjo+8sSBGe7NtrhrYyJ86OHF+KjNz2PZZt249v3vp69AQXsxlG3dv7tlBHRseqSrcLWmc6SgyabZyojrOZ6UiyLfIG2fegDetZHx6pnpFQrGV7qruY2fPtvwTuTm0vZRRISUww+l1QbQamI1c/PPzbKMaRiJs664RnM0KRfccFeR+LwwrI4+2o5EdJKbyWmJw6MJZ+hS8ZWneSVS6iV9Ezoj/65ELc9t8KpzWqi5oiDyRgFJCeZ6iMmiiNn+XlxAn33vtcTH5uK88oqMu5rLWL3/rZIysk6bfjH3VIs4eoH5uOBV9/JfK36nPVqpz5E1YjNIO3ai1FycFC9i+pDIFhUo/ctzRk5JYvNIUGpVrI8qgdfC+xR8gIpq5V0NgeOrHELJrVSe+DqvfPrGXF+L9Mz0koOimL5m+dxPUDwfMWzSkYgpX2wPyGVirpUYtjZ3Krc592rlToB8jOXv9O7Zr0tnFOrlbj/Pp/gYr17565JbBfZLskhJCyrtu7F2O8/UbbNQazep5t+/2FVfd2837iz2ei7XZcnq6urqg+1E4BY1+3eTfWcvJWQfHenjBqA1vCG5MU9RRyEe3DZT0CF75wzRllukxy0hvjwrlU2aaPkqz8V4ebPnOBQK8BBvRoAABdNPMT5Gg7VMG/hfWvuwSXOQazSWkwapF3ye+m+EbGfFYotZH87cymO/cGTmnGr26wmao84CMdnXPe0kmpzqKh9joCGQhD5y3XPWT+ucpmCOPFetuvECd5LE3m5fkes8xTb14m3E3863bhnciGXc7atzH073rpDKTlYJAurK6ucMsWReRalvkKOoudvy41kU0s0t9olhytOG5WqA2Sz86jUSspEkJZWbfN10lEHmSsI6NlQQCFH6F7vFj2fHEd6IENC1VcWyUFWCDAWP5+mXg2pnGm2Nl1iXL57/7xUjqXpBrWcVyt1AsQJtkKT4pnj2GF9UmU5leRgdEN0/xgP6d9dujZ5nqs1Mhu0Heqc9LPpcf3wfoio7F2yggRmbnXnrdkRPUvVhyYGE7mORkyb8MArsRrNNSkhUdLHP5/LRTYfG+cv9nCkYv9qlUrFRsDi2JqgXkOYWnrnvqTUYtt0KEuWYD4Q2xOrU+TC0Em3RcbKVlWprrF5DrqolRgYxgzqhb/8+4m4+kNH4rCBPYW6iuulRv+uUdPK9eRcVn2766X4rrBdaA0SB/e6clZOIFioeM4glVpJRhbJIeVmK9XjRq3m1pLzhiB5KVeMy+3zOoyxspP4BWkI3K/lUdCq7m4WUmw7J+PT3GlrseQcxyGuo3V5igzS1qyqQtf5fLovJXGQhiszFVESvLDeuOF9AQBD+iY3INK9Lt5a1shbW/WcIs2IaRyMmYMGTVB7DvH+7Nw7h8ggrNuxD08s2IBVW/filFED0auxDnddNhGnHRF4damYI7nkl5q9YWzTpF/3eu25rrBtaM0RBxdE23EqFpgcCZJDpFbKpldyFYFNus3XpR2zACg3kcnnkh+ii70iaXMojzjkc9nYw6KjPcXZW0lTr7Wt5GyQTqiV8rlojFl81lXjULqyWtqJOP6w4gePORgPXnkqLkgF6omMgHr+Zu3b9E50KVJs30Q5nLHqGumxKK5JQ3xGJ/8s2NdE9J4a2LMBZ4WqMhe1UqtmPtikbpPk0BVQc8TBZXHhddT6b6QipLNy1661TQZd1a5kZ93wTKrs2KF9yljgzTpXF7hktxTB79XenZ2TA4AnFqxXXt1aYm7EAUm1UiFHkUHaupjadPiKMntULs9yFKr8ABw3vC+ICH/70slx20I7TwpxCLHNQTEeo1rUOCwtcdDnOmIBya2U5MCzP2WQHFxApG9XLqlTSIeAOYYKcHMO6UzUHnFwmJVM+i9CTLwXRatm9Ixx1Y/eMG2xtl3TlpUiejQUnJOXcfD6MxdvKttrIp+366pF/HJ6IJrbo67TZapLVHt3A4HkkLxY3xd/d4c19UA+Ryhym4/lxmznXQP5RMhqJXGRF/c85uc3796Pr/711ag89lZKz0hTyhUbHS1oFkaTdFy2zcGoVrJfM6xfaLx2mNT8eSu/balMRyC/eY85nihrOpNqw0ociOiPRLSRiN4Qyn5ARO9Ie0rzc1cT0VIiWkxE5wjl44lofnjuJgpJMxE1ENE9YflsIhpR2VtMwvQR8skTqZVYmsusL+TiCVmyt6k0SDtyM08t0nszNDimw5YjPrm/vAmVcLEu5Oypj0Vwo7F1X+N2qpUO7tMIccnTMQtEgSrptksm4O7LT4KoJbOqvhLjSNY9fUwTlqu8vCz3JRukxXmVjCAP/uskPnk+rty8B1/808vGvk2367qhU2IMoLJSb6jeFV9gU1HPza14Z/u+qJ/rLzwOT33rNABu3n7cCUKpVpJ+H3Vw71Qd0fuvHBwoWVnvADBZUX4jY2xc+PcoABDR0QCmADgmvOZmIuIs7i0ALgcwOvzjbV4GYBtj7HAANwL4eZn34gTTvIjUSQBeWLoZv56xNPVhjBzQQ5AcAmxSpB/g2LGvNfUhLN6wS1nX5YMZ1LvBWkdGVu7fJF2dfNgAjD+0n7UNIncimOjbKjmoPla3fqZ/+zSMHdon8eHpDH+89OyjB+GgXo3IUawmy3JX8nDr8zlldLDtHuRd2RL3IBzzMcrxDzq10oad5kWMiIxj021KY5UcKqRWKoTESY5A/tAvn8Op186IRt6tPh95eLmomriRXaUZki+fs3JrKubn63e/ChVc1bSVYNDaCytxYIw9C2CrrV6I8wDczRjbzxhbAWApgIlENBhAb8bYLBZ8/XcB+LhwzZ3h8X0AJpGK3a4QXPSrjAH3CRk3RYieGXySnfub5419ymL7K2+njcmA26Jz1OCAS3HdTEyWHFxgqh4YuO3tkaUdHSonOaQrjmoKXBTFyWWSHJK/Y9dcu1oprrBaWjR00d6qNu/9YmxLkF02xVaSiQmZsZ8suZjkflTQxSuY2iXo5zr3wlJBdQ3X98tG4XfCRIiRpAWzHUEGF4hUaiUVcfnJw4sSvzfvVjOM8wRHkq5AAExoj83hK0Q0L1Q7cVZyKAAxzeWasGxoeCyXJ65hjLUB2AFgQDvGZYTL+wiMZvFnsehHScEpIhBhY7YPTJ5MbaUSRgzojt99Npkl02WycDHaOVK4BCzLuE2hqWVXfbHIaWfq26qyUemAnYoyQeZPcoIkZOPyxflw79wkk6HbHlPV4sSR/SOXylwkOXDqYFYr6Z6jTDOyeq/JkHcsY5b+gzHoXVk/cEQTThml/vxVbXJ9v869mHP+/H3myE2SzpnUSorrZQlqZ3NbuhKS362RgB4gaiUVbgEwCsA4AOsAXB+WK+2vhnLTNSkQ0eVENJeI5m7atCnbiHnDDhODi74c3STuiJ9yXfzS+W+CyScH2bmoR2x7ScgoMYav/fU1p7rROCwftuvHpbbluS+s6rHZ+7ahnA8vl0Fy4NjV3Joq0wnFtsVc3ppWnFJiizrV1z/nrVP2b3O3tD0rne1LbyBmoeSgrpAjfZ+qoXLioHMvjry7oudoVpNx5DVM2P62Ihau25mq36sxSRxU714eZ1fIn2RCWcSBMbaBMVZkjJUA3AZgYnhqDYDhQtVhANaG5cMU5YlriKgAoA80aizG2K2MsQmMsQlNTenUw46j154hzQcnQ7Y52CETB5ZK7AY4Sg55PmndemYIJnQWWFzUnQZKpJ781sW/jFQOqivM92CnDnKNHOkXXt14VLYFrVpJ0xZ/XvLGO+I9qCWHZDsrQunx6MFJ46mLDtz0LDnjw4cQq2bNk0h3mkDaZ6TsP1IrqSWH3z8TbMWaiyQHN+ZGZ5C+cZp6f3CZgVSlSJHba19Sy45HWcQhtCFwfAIA92R6CMCU0ANpJALD8xzG2DoAu4jopNCecAmAB4VrLg2PLwAwg3XgbjYuiwZjep0hYI/KlJFO9MWQo/QWjK7qmix9M8acc+fH49C37RrbRpq0C6bUxUD7iUfWelqobA6uiQ8jb7f0KZ33ot69OTiRl9RK4txJbKPK1GPkAZufOfEQfO/DR1n75SCkOe2756xK9Z2F0TEzXibpKl3GvaV+8sii9EkAD4W7K+YE4uXy7ZCGOOgM+HlHgpbYdc5QrytIFWpXAwFE9FcApwMYSERrAHwfwOlENA7B/a0E8EUAYIwtIKJ7ASwE0AbgSsYYX5muQOD51A3AY+EfANwO4E9EtBSBxDClEjemg8sjv/+VNZi5OKm2evwb749EQtm3ultdHvsMKYjlBbFY0hCHDDYH15xHJQbj2BJ1Swy5nDm1ATnaEgKDtEJysBjSV1ryXbnGOZjvwTwGIC1diGoy293zMaqek15yCOp+46zROH1MnMgudl0N60WSQ2KwcTuaMfJ8UESEsUNjdabtXcqeRYwxXPXA/MR5IFh8i0L/ps13TP4mqlQc8bXpNl1jBUTJxuXTkeNK5HYA4LnvnoH3/2ImAD3RlyGm7jA9+84nDQ7EgTF2kaL4dkP9qQCmKsrnAhirKG8GcKFtHJWCy6Lx4vJ4u07OmRwp+DLnpC/1iIN74fXVag8kIK0PLbHgI8i66TggGCadiQNzVkEVGUMOZrE75/hx5XLqejaidvldc43nXe+b11LuaeBwvSrxXcmROpjUT9pXHlYe2LMh4bHDOVdKVkvMHXFhincnTDZ/xelxlldxDIsU+nN5vCJBl72C+EIf/BcXPnV7TgZrTbnqEtH7an9bMcqYnG5TUCs5fBDcC6qlmGSsRKZhuJAo09XBslSyPyPAfZ53JHyEtAWyLhEQDdJhm5YXqdptLkeqj8A+tjjox1o17MutHiAuLKaL3HS2BLWEYZMMWi2Nq84adwhTnCrHUzqXEwzSlvfEEzOqFiFdTAyvKQ9NbiJqU6NW0o3xQiEHk9jFdU+qk8aJbYttyfarSF0jjd/0jEweb0EGAvU58Zph/brhqW99IPEuF69Xxw8BcRbbnEbdKaN3mNpCznqrG5sro1d0lRw6nzbUIHEwcsVpQ7MqTUXscx7UtInmbdJKzr2VTHraHXvV3g75nHsgjzhGFT523JDkuHjEt6E9U3BbU684QE9nm7jwd7MMrdvTYb/y9rZUfVUabpt6Q64nQ/7URV217dGb+nxuyWZlucrQHJzg/SfLxV+qIDj5kai2B3VBcN/xb3n/bNnmEEsG6vZ4biXd+ZzCUYNDzFU0ZlAvHH5QMh26yWW7MWTyXG0OfUPisGNf8jvU0QDXx5uwYZgkB035g6+9o10bKg1PHASo3m+jwlVPtjnY9OiyUasUSg4p4iAcy8FTHDw4x12tpD83cWT/5Dgd1Caqj+ATxw9NlelcXl3tHzrIhscj/vsxfP5/X1LU1Kt2XJBWK5F14QOCCHaXejJUhmYg9sZJ2Rw0cQ46g3Q5Kkx+ndiWTBx0kde6BfiTJwwzRl0T6e0OogeQSvrL64JIADSG6iadi7WMnqFr6q79suSgHps8ZrGaSJhNNod+3euinfJUz2/F5j34+t2v4ev3qKOvK43aIw4Zl4tGheRAkoRh40RkVUmJhW0IE+iiiYckPkKdax53aXRWKxnu91xJcojSZptUAgp10SdPCIiDWGySMKoBk+SQcFnWrJlpg7SbK+uRB/d2lihV45WHc92FxwGII4fFrKwcjXV53Pq58WGfyfY4xAXKRa126IBYn56QHCTiTpLkwKG69bFDe+M7HxxjlBz2t5a0XLi4PavqFkxZULtllByi9y/V1UsOyRNNPWMpWvRksgXB8dQ0qpxV3OuwvXmbXFF7xCHjevXri45Plcm+3G8adJ1AWq3EbQ7iKlMnZTHV7VimC87RwSTVyBOdj9NokFYYmuPJH59w5dB0OPLg9A5qWcC7VtocxMR7mjGKTglAMuLbRPQSCfpcByvUld/JkL7dMLRvt2jM/N3ITDInHrp5kSUD6PP/eUbk0WSTHKJFUfAG0o2jR30BuRxFNgfVc3zg1XdSKjBeb78gOSidHXjad8UE5uph18j92HYil2skB6l4QEgcBvSoT7wrUxAcA3DDp8ZhQI/6VFBdcL66zFbNEQcjFO+d5+MRIepXZy3bkjovQ96APlArUSK6VOamdJJDZuJgXMiSN9zstCc2YcuelmQ7ioWHMowRAI4YlHzOuo/QNVV5rF5RnHP4yOZKto1EbiXDdaKrbzbJgUsE6vvmY9bWk1Sdcte5hORgHsuwfrHUINuOZOLAbUAuNoe4Xz3j0FYqpd49r9tiEZe55NCsCPrk6mFXb7uI3ZGfo+bZqQjaxJH9MeM/Tk9IDqJbu2oc3erzOHpIb0tqjfJUhFlRc8TB6XsV6ugWPiD4+LfvbUmdlzFt4YbEbx7n0FiXx3FhCg2SODRd5OrwfuYN1WVksbHw7St1i2c+dLHaKRnpVPv4qiQH0/aaY4ckU4nopv9l7xupbUNEzL2n78VlJzeevp0jTl/BLE4NdqOsClFdxY3ncohuSCdhyO7V8vwQF6gsS4sc1yKrlXiCO/kzUd07H2PwT/0cS6V0QBnvX+5bBp9equjkWK3k6G0nOZ1wuNpuGAtsCH261SWuaRHmnk4C1XlUVVtLa41zeLfBtKi6fjSiV5PLXHl43jr85mJxDLFa4IEvn4oSY5j6yKKkWkmYRDO+fRqG9euOeWu246BejQAWVMTmIIOL7bpHlA89rAp5Sqi9IiO5WFmh2/3F428q2x3SpzFVV2db1G2sIiO2OaTPuQQQfv9jxyTHQ6JaxzCHRAkjw9fMuWLVdBLtPHovn6TaSa6WkFIzUAeZ035VE88jc7MmWw+XklW3wp01RPB6SckhfTWXHFROD1yHLyZQNCGtKE2Wy0g7l7DYk0u4IXGzqTtnvZ245uTDBjiNsTpyQy1KDoZzruKaqFctR8Tj6TOAgBuvy4cbCAmDExffw5p6or6Qw4QR/Z1Td/CPIcteDlwcNyWBI0WbsmtvUJZ+1rOWq1VwDXX5VJs69UrWtALKbR4d2pBpkLjZjk0aY4xh+abduP35Fc7j5ITzlVXpxVeMC3h+yaZwPGmDOR8fkLzHC8cPQ/f6cvnAJKd97WNqAu/irfSvpcH7p5DgqN4Dl6rltl5+exv27FdnOhWvBaBMFxMF62nib9L1g/9yVd33ropPUXlymaTnGz89LqyvHmPsqaYfdyVRe8Qhi8JRd1qYOGJVWW8+YkB3nHXUoNQeszzOIdll8rfO8yIO6zffx5fPGIWPHjs402LK1UpPCmqwi088JDou5IIAJdngp4oPkQ2ZgDoRHaD2INFJPM4R0ly9oniMLsnmUnEFEWcej+ysowalruPqtM/8YTbufml16rwOq7YG6hlVTi/RHvWDfy4Mx6Mer0pyOHKwvFOZ++riymnbJJdk73pX1v496lPDW7B2J86/5QX8WNgzQTUkzlA1G9RPcsru+oJ6CYwdAJId6RZmeTxMYBxFF1sTceCekUTqeatzd+4o1B5xqEAb4qbm4iL/5DdPS/U1qHdDaiNxnpXVNDadt1KcZ166VpqdbUUGU958VWpkrlYSA7VEQhB4mlBKLaPKQ0OUljB0CQBV9gnduF0locMPCgj17c8vL6sN+fWIdhU+NpVxkhM62XCrgsg08GPZs433nVZvqCUHlSG+PS7FnMvXYeKI/lG9ZP8m1ZterfSrKbF3IN9IiEeVi44dYsAlh4sjgPxN6FJpkGZldM2qKzKOohTa4mDv0iWtjCSHKimWao84KJ76hNC3+D1D+6RPKiDm1jdR8Za2UmqR3NdSxKurtqcWSjkuQMfdciZE/gDktAw79rVGXJ8Y7Pbts4+IjmX9vYrjEvvJ50jpo65WK7lLDjly3z7RJglx//xxw4N3+vqaHZnbCMakV9twDk61UPCF3MWrShwGdzVVMgUKyUpnkFapldpjyLTtf3DzZ08Ih5hkEFx2glONS1z0h4deU3K9H557DK752NGpa/mzs7tixxV0cyGyOaTmurpdea4zxNKcaGB3k8I06lA+Ni85dBTSD/1jxw3By/99FiaM6KerkoAowpu8F5pbi5A3U//z7MAIlXKVlLrVedToUnb/19/nJ353b8iD564XuSPRfzpFHBQugBeMj7fnyBOl1C2HH9RTm5pB/khVXPHDX32fUsd6zJD0pu1ym3IsAhA8x96Nhag91dDE5yH2+lchFbV+8Y0XjPPHD0MK4UKuysn1kWMHJ36L98yDG1VqB5IHCr1kwy8Xq8uLu2lx+ekn3pNqV7fYDuxZj4GhP3/a5pGuz+cJ596VWVYFaUqWRjg+c+IhShuKLqW6OD/luaa7tzjQVa1C5Xj4q+9TXi8a1sVvxoUJ0tscQrWStYXKoOaIg27SDujZ4CyuxbuEMuOb2tdaTBlmdb7asvium0ScC5HFYdl975tnHRGpOBKeRRJBEDk1lQvgxJH98ZcvnAgAUQCTDGnX1LAsKRrPWrZFee9jh/ZRLkCfPEGx8CL+QDbsbMaUW19MnSeiMO24nrvXSfZXi6mopRcrOgLwy0cO7A4ZudB6rJIcTh01MHkvwnEhUiulB6dKNyETab4AcltVUq0ktZfqIcBvLz4hYWPilZ0krSj+BuF/8zUMDKu3plPEiMF6sh0FCOZaQeOxppMcGgrJeKI47Y1B/cTHmdbnJTBiYI+wz7jiuh378PaWvVE/InFy8ZRTqWQBYb74OIeOgerVxByNWxuuksOQvt0gbhID6PWF8gLAJ/pvLz4hUU82/C3ftBs79rXi+aXJhG6NdflQakkSGjlS9qlvnRZxPzo/cv4BBK6s0riB1J7awf3EC/kNTy7GRbe9mEr3HN1TKOr/dubSRLsq8I9Qa9wGsH1vK+6c9TZ2NbcqvUvED1nXj3yfkeqsJHKm6aspbF8VH3P0kN74vqAOET12Du7TCAAYGT5reSwqg6eIumhHtJB7Fl5GyhMsw+LCiR0AzHxzo7aezOUbOd9QTP7544tTdQLVZfg98uuEe9Gl5AaE9C9S36LRWeTKzbYJ3ncSaUeSsJ5Q8ZM3vwAAeHUVDxCMz4n1dKpHOeaJg68j1ZIcai7OQTUf+MtLSAQWUKh8172o2y+dgLFD++CWp5c5GcFlXT7nAE88LJkcjySbw5nXP4PDFAsKEOsuTcShT7c61DUF1zdrjKj8evHDFcGlmZTkEBbcNGNp6hpIdUuM4X+eiBcL3eJvk8rFb/exN9anXFIBvVop2ZA8Rt6/QFg0UhRLXw4gSHGxtyXpjsntVscf0g8PvPIOvvXBI1LXqdwv5XxdRIR8jqIIXNHbpT2753FiBwCfv0OV4DCA7LFmYpD5+1blCCoInj38UJy/Ou8isZ7ctdim6BZstoskbShxufRbIiLz1+zAuvC++LUJyUHotG/3OuzbkZ7ndTlSStnR3h5Vog41SBzSMyKK3MxAk7l4qpMcJoVujrInjvbFSuonLjnIi3mkVhIaXa7ZI4Gra8QJqbIPxCoJ9dcS6e9zKhfK+HzPhkLkUZLYHMcCVdSqTv3margGQqnGIjnor01eF6tN4jgH1avkEcU6w6XcbryYBkeqhGsqjyGVq3MhR5Fa6pVVsU1rYI+kZ0+WtcW8LWxSlw+YbQ5imyWmfg+yfUBuq8FAHKJFX5oj4iMVHSXcJAfzXJGJCI8YB4Bdza1h//E9Je0d6rZ7d6vDruZ0TEeWmKVKwKuVRESisb0d7sXxy6eSm6X07Z50W5W9kPjiLqe5Jok6iNy63G9w3j7G2OYQV1YRB5W3kYhoLAqDNBCnJvjECb0BQyMAACAASURBVOI9uaUpCPpPfyhnHzUIN110PO794smJcpu3x7nHxWNoKzE89sb6VB2XcaXUZ6JBOvI3V6iVwoXcNc1CpOLQvG8OecgqFV0hF0Sub9vTgv/+R7Ct+7nHDcEFkuE8C+dp2hZWfBe8TT5XjDm9coE7tO07U6mVVJLD/1xwbKJPXZAmP+afg046FSGPUXYYkImI6J7MGbxrPhpH27vsBNersYBdzW2puR5tGWsddWVgJQ5E9Eci2khEbwhl/YloGhEtCf/3E85dTURLiWgxEZ0jlI8novnhuZso/LKIqIGI7gnLZxPRiMreYhKqCWniBHXgRiPZ62jmt0/HtG9+IPqtM0j/7JNJr5BA3I1rxpJD8hXpXFk5+navi2wInCMXJ6Eq/YRsx+DghuhDB/TAuccNwW8uPiEtOYAwuE83PPfdM/CdD47BJScfit99drxz8BTvP+UymCOce9yQVI4j28Iubof5qsA9H9YUq95ctomUF35VbiWl5BDaebR5/6Vi2fVTRXBUz+eUUQNS9Qr5HNqKpUSMxUePHWzcl9kGldTCIS6UqcR7ivpMqMuYnifnwaRD+nZLtAmoJYcLJwxHY11O6DvZsvguOMO0t6UNJ/x4mmYEegKq24yK9y0ayzmhjLwgkZy/uu+jV2MdiiWWSgMSq5WqQx5cJIc7AEyWyq4CMJ0xNhrA9PA3iOhoAFMAHBNeczMRcavLLQAuBzA6/ONtXgZgG2PscAA3Avh5uTfjAtWU5B4E8X649nZ0AWb9etRj9KBeiXpy4jKi9CRP2xzMkoNugTt2WF8h3TIAuEgOwf8SY3hs/rqo/JTDB0bX3HTR8aFnkbJbDO/fHbkc4UfnjcXksQdbg6fk/nXqoh6Sy6JNJSSOT7xX8bIjB9vTgesM0qIrqzxP7r78pIgo6uaQLgeRyfVWlD4H92nEpyYMS2RO5ajLE1pLSZWWKs+QzqirerSc2KkgesHxPlujtO/695QnSrxvmdD9+/sPw31fOhnvH90EIDk3dGMX1UVpRkO4n5Bh2q1Q24gQA11FyEFsMhNQUMw5sY7oraTjUbhqUSZE0TplHHnlYCUOjLFnAWyVis8DcGd4fCeAjwvldzPG9jPGVgBYCmAiEQ0G0JsxNosFT/su6Rre1n0AJlFHkkbFC5E3cXdBsJi76K6Tk3Xjrv1oLOSt1J/rjmWbg47Lj8/Hx6u27sXm3S2JSabK6y+qTKwbzju7+5qDp+T+dYuJnNfexvTLKgSOUYLk8M2zjrAGqcmvJxkEF9YBJbZaHdKnW2Tn0b3eY4f1wQmH9E3FPKgWEnEskT6dpXMPcWze3YK/zF6F9TtjQ6/quY7JsFeGSQIU3W75vIg9huJ6PRsKiTK+H7eo+//bl07Gc989Izo/YUT/RLAph84gLbpDmzLScoYpS4ocEfKCHbk4K5g5VbqLpFpJ/Vz5Pcp2N/68ZW1FR6Fcm8Mgxtg6AAj/HxSWDwUgJpRZE5YNDY/l8sQ1jLE2ADsApGXmCkH1OiJdXgbq4LpRuRgKP2fFVtz90molNycuAEBgcCRCSiWg8pqRx8XxWpjEbcPOOHpap9Pm3lc2P2yVQVpXz9XmkNdIYUD6/vmCsk2RKv3Z75yRqC/e639/JHYhLeRzOOHQvpZRJftN5FYS5suvLzoeQ0P1B1GsthCJ6HUXHoelUz8EIHAxfuDLp0bR+GnJIf1A97UU8faWPWE9u1ph4dqYwOtsUx84oilKT8GhegWmILhWQSIdFLri8ud//i2BO+fnTjoU//v594ZtIfpfKsXquRID3juiP4b3T0pDKqOwdv5CbwxP2RwYLMZH0d4RY+ueFuwPA0Uf+sqpynqqADtxxInzwoP9479NiI655CDblWz7q1calTZIq94cM5Sbrkk3TnQ5Ec0lormbNm0qa4CqRagcFzFZFfKL0CgmQ1QJiB4kqXpSJHVbiWm5fNFDSDUuju995KjUedmGEV+Xtk/o6rlA56vNcfqYJvwuTL2QyyXvhy+2HIPDhQeI612mcKs8ZEBycRHH2lAnq/HM96FTK7UVGf5v9qrEuSjgLsw9xZBUZeRz6cAtmSuObQ7psSzbtAfLNu2J+rKZEBL7FOtyB0H9LaTqGeaaWPyrMKPoCOkd/McHx2BAj/qwrWDg+RxpF8lk30k7BgC8rOGauRqzVGKpRVS0wXDnB5kJmnTkQYnfct9rt+/DCT+ehofnrcOYQb1w7LC+ynrimqAKxBSJtTiEM4+MkzjWFYL6Ynrvx+avU+YJ60iUSxw2hKoihP95dMwaAMOFesMArA3LhynKE9cQUQFAH6TVWAAAxtitjLEJjLEJTU1NZQ1caXOI1Erc5mBfAPO5pN5UVFuI4B/hH55bjn+8+o62vbTkwLRcUt6ghjn+kNj4pdr/mi9aqsWqxJiTsdYFtm1C7/j8REweOziqK97PL6eM017Hh7dtb6u2TlxX1Imrn6U+PblaYvvby6vxerinQaRSYHEdoiDPldifKsOmnPXTJDkcJWRVNblPnxkucKKhWJs7iNLfgupZ6JLAAUmnin496tGroZCSVHo1FqLxiukkiizuXyetRp55DlSMR8X/+11z8YW75ibOibEl3OYgqsSmfmIsbv+39yauiSWCoN4qIZq7Xoq4FusVE2oj3mfcrktep7pIcogf5hV/fkWZzr0jUS5xeAjApeHxpQAeFMqnhB5IIxEYnueEqqddRHRSaE+4RLqGt3UBgBmsA3emV7V8dJjHh79EeScqFQr5nGREVV/D1U8/eWSRca9pmZMLJAc9l69TF1xxWuyto/JSyRPhm2cdgX98+dRk/5HkkE2tpK2H8uMcTPYAUa1jg8hBuwxb3LdaJznsa0l76IgLO2cAEpltlYtu8J+fibnM9LhOPmwAeoV6+2JJLzl85czDAcjEQV2XoCZaqnHqnvdFE5OpNnK5NNOSy1EqjihPSa8v0xhN5+W6JQZMV0Rxiyli+P3YGAfZ5pA0iqc3TlLVi+sIkoODQZoTB9u2qB0NF1fWvwKYBWAMEa0hossAXAvgbCJaAuDs8DcYYwsA3AtgIYDHAVzJGOMK9isA/AGBkXoZgMfC8tsBDCCipQC+hdDzqaMgvo+eDQXM+d4knCLlvNFx7HIdXVptESaxPFUxxJ9nv43nl2zWjkPOLJk8Jxvf5G4IXz9rdEQQxbpBNHXwW7chfSp9gMFl05XCy0ZPEwFiLMnFmVAUdbZa24hOhy3fZ/BftaOaaLNS+c7rdPkAwMLnzZ+7aqHK58S8QfoNpvi1oq5ax3WrUq+r21QzVN86Ox3JXRAitJN98QNE41uyYXe0+OnnMoznk+PUO0Dc+f8mJuuxJOOgYgbjxHvAC0s347E3Yi++ZHLAuB6gT7X/+8+NBwA8+NraqExrkNZ4K1Ub1ghpxthFmlOTNPWnApiqKJ8LYKyivBnAhbZxVAryIhRsu8l/c/HXgTgQSVGq+o/QiTYI4/ve34OQEq6rlcHVMPJHw/cwEMfoCt4mn7CFvG7RdIPJA0ndt9iHvhddm985Z0yqLOlqqW5TXMzFptPeSkFBo+BKycdZF21B6a66kgmLySkin8tFCzljeuaFF4uLik5NGEifDsxNmLpj6cbdifKvTRqdbjOnlmg5w8LHN/+dZBp1m3OFLidXYpwGw/ngPrENK7I5lJLrgBaM4eI/zE4Uvbg8qfXmzhyA/nmfc8zBqqaVqNMYpKuN2kufIRzrkmi5bFMsSw66F+2+mKbb0QUvcbWS3OeVZ4xK/M6aYE1UK9XpVFqOAVXcQKiC7CUjR0jrhl3I6RcAZfZVgXjLZ3l1m+uuXJ8bC8Wy//vCifjn62u1xFz1HNK5iFjo7aSWHMTIY90riBfT+L6zpBtRtxmMcelGvUo0GieRcnGMBQf1wHXaE/4sdLsiJus6upaHTItoc9ARddkOqG0TsYrIRZvAobc5pN9jZ6DmiIP4ttMpEtybKeTJKYGbu44+uVgAJtUOElw+R15a0FUcpm483EYQBd85Sg6629MFT7149SQM6i3l+nHkYgt5vTSiIugmyUHVjOldqfJv8aNRTT3xjbPSahYO1a2lJQf9IpXPBfYtris3LWaAm0H6qUUblOXpNoN5rrN/JccZq6oKOcLHwxQxskFahsmjCnBbcHXqL1U9l3xjvH9Vm+8fnVRDixmVn17s5kV5/8trtPeli3OwjbfSqDniYPKZjj1I7O24Sg7urp+8Hfuk5YY/uUtZjaS0ORj6Zyy+d+1i4DgvdcFTBwtuqcm6+raYMCbGmJIDVT1ncZHMQvhVUMaXOLapzHYquUCaJII42aI5zoE/g4RaqZ2+HXxe6JiFRP+5eKEv5CmSpOL4BnUbNrWSiwedboMcGQHTUkpsOaplmDR2jLsEG0bQZvweF2+wS6JtxRK+/bfXtecjtZLG5qBKztgRqL3EewnJQb2YukzGguTKqnWJdByXqp5OcuCurC+tSOo+5TmTJacOdwXkIry7QVrdHlGGIDjJy8XYpkbSVgaPtYpqJbdx60CKhco1WlwZrxL+Z4LkoFv0uf2HSw82tdL2fbGbb3s1E3kibcyNri4QuIqKO78FB+rrzj56kLI8Tsnhsug7JlTMBWvARbfFG0VpJTHoJMz0XOLVxg23BVemnQQe+VpyNzkuOejuu72qQlfUHHEoGYiDLOqbkM/lkpKDpl7WRUhsZ+UWtVcOhTYH2VCWJnbuaiVuc+D3pFsLXG/HlZMLxkRYIhg8TVKYS/AfR7NgbNZtGK+D3E0UBOdqyAzxobEH4xPHp3e1U9kcdA4EfJGds2IrWot2tdLm3XFEfBbJQVW1oS6HlmLJzUkjyrbKEgQlZ6ANH37PwfiPD6adCYD4fpwM5wrHj8a6HH5z8fGJMtUcMmUNcLM5xH2biPGXThuF+kIuNc5jhiT3rlfFOYhodfFBrgBqjjiIHH56TrirldKSg7qeq1FYZZDWQaeySSfpU/akbVM01OmG4S45uKUXUbWpr6d/N/L2pwCwt1VQHUjn5Ky4Ln0DSLhq2kY9sGcDbvnseGU+IJW3ku4xcKLx2dtnJ8aiG+POffF9f1DDlaugUqE0FvIolhiahZQvYwapczPlc4F9IlJNhu8k8gJUDHxAjwathBsZpF1cWRXu3Q9/9f346LFDEmUqryY9I+TmaRhk2w/fo2Hx4I4FInE6dIA6gSKgtjn0aiyAseoYq2uPOAjHp6dC5oP/bpKDe5yDC1QbmsuuqWLfqjHKH1kWV9YoclSxB3Gynmt7wce6wyGSWf445cju44YHnFX3+kIQPKVYxBpUxEGQHGQCNKRPN7l6Arq0z0nJwfwwzAbusB/By0UbES/bxrSSQ1DOF47FP5mcyBBcDnhch6ijP0hyKODg7rG8fz7uKBeV8hp93/HeJW62hFQAnqJtFWNl9FbKGAsiErIfnntMoh7PRivez42fTmcDqDdIDgN7Bs/eZS+K9qL2DNLhe7ntkgk4fUwyBQefIi7EIZAc4penC8Bx5Yrl8QHA+w4fqKyji5CWiUE2V9bgQ2hT7EEsQs4PpSNA/IPZuCvOEHpI/zSXFNRNtiHvo3zjp8fhrQ27cc2Db6DImFJ6UHGXCbWSNEzbo5Gbi1QciUykaQzsWY/Nu1u05+P2uJQa6+hVe20AaeJgswdFi3N7rfCICXXSgKsnYqLHGx9nnF5EpebUjzG2Odi5ZJVUqewPbvWCsWVRK8WSw7B+3fD8f56ZHmMuTex45LuIOikITkz/0adbXVTGjzsKNSc58Nc9tG+31McYGx3treRyhNY2YeroOG3HUanmpzY9sSZCWl5EVJyobptFrovlnLGOPv5r6ZboePyh/fCbi09Q1uOcnJj0jGfnTNUVhjnh0H6p893rCxg3vK8xxYeqbK+gCkkbpLMtnCrJQdWnKZAu0b9Uv7VY0jsgyMRBQ0RkA25Wl0elzSGcL3sE4qD1qgql6WijqnCccRZbSo3LxDxltTnI0dmqplWR1HrHvHTySJ6NVe5HlBxMOdGApKFZ9S65AwJn1I6+5onoXO+QIIjvo6NQc8SBv0TVxOFFLjrOQo6wvyhKDmo4q2GizUWSfaiQI3XqA533FQB8d/IY/PDcY3CMlDYj7j/gqPhiwPfANuGajx6dSrMs9r1tb2uC4+zdqOZ0dHswyIhz8iiIg2IB2WuQHEQ8Mm9dqkxujV//6uo4+ZlKrSiWmLyZ5J3TWisoObQVSwiSALZfcuCb6+zZHz/L4YqNhnj/xRJDWzHp8davRz2aejVEapb7vhRv/WokoFnUSgS0tEmLvkZSkZk/s1op/j24T2OUjVVEXT4XMUHFkt6xgEsOIhGrU7gIyzm7RPQO9zephlqp9ohD+F/1/mKKbRcd8jnC/lZ16gURrmol/iGJi/7bGm+lvMKoxseU6Fv4PbBnAy49ZYRRX11iDA2FHBrrcvjRecco6316Qpx018SZzg7dbG+aviQqk9NmR+MUm7HooAO1RfqcuID0CCOwRX9/02u48i+vYJ/lY+M7h70uEAfVYu7ikgvE+1E8uTDY47qtVFIuFEBaPWTckwNAq2PQmowjD04zDnwOiRKgzruoIKuVwvupy+fw0vfOijY4EsfmYnNoc3BlzSkkB3W99KKr2hsECF1Zhd+6hJDD+3eL8n2VGNMa2Pl7s90Pr6f6xrmaL0skdrmoPeLAJQfFKpQlp0khR4nFx3XXMxumC5GrTy9OZ5gEeAyBSq2U/C0SJpufei4HgAX3Pqxfdy0X+7mTDxX607fJM9Bu3BW7VTZqtnhMqhkMYwy5vp89tih1bmRTbLy/67ITldeacNQ1j+Od7fui37J00qr4GPsr0mWY4mhE8Odz+/MrAAQLhk5dJDejIyKizaEM2pBKxgjEhIlvcgMYiHzowdcm2RxSbTqqlWIPMReDdNo2oVqkVankRako0aZUt0FDHHo31mFvSxu27N6PR+ev1/I3/FmKXkh9u6fnkMkxpjF89tWIdag9g7Ri6z4OPpldsiHmc7kEN/XeEf2V9VxFe65++frdr0VlqgUJ4IukXa0kcpw2/XPAeTFs3dNiJCQi0XDRafcQ8ijpFjVR3WRSxXCiKKcouO9LJ2OC8Pz7dEtPa5e3sEvYV1h+us2K3ftUcE0nLkdcZ7E5yGlS4jZjzrQcyUHdd/A/uWGOXsIplhjue3mNcZyqrKYqxFuPukgElGLqlBkCKC0p6PT3geQQtzm8n9rDLZ8jNLcyXPPQAgBIxOwkxiNJDj/75HuiLVTlewHUqlL+/Xni0AGIJYc0OOfmkke9kKOIm/rxeccoN9YBzJywDboJoHNlTbs86s/JyBHhodeDdMKyt5AI0UjuojJLbIyiqS+m1DCtabpMojLHq+onq9eYjP0ScXj4q+9T1kvYHBxUJvx2WoslrbQmj12XMZe/4pZiCY0ax4Os4H3vbxWJg7puPvwmbpj2FgA9M1BwlhSD/+Ka/4njhyrrEgEbhb2zATWj0dJWSkizADB5bDpjathAYoEe0ldNHPi8tDGV/HFwCcclXYqM+ioSh9pTK4X/VR8un8wuXGI+T9EHo+OQAHdvJdWrvmjicEVpHCEtIyU5CLPPplYSL91t8IQQP3gXyYEv1J/UfNRAMq7BaMTNqUVtXXbd5DgsA5UgZ1jl/uW63xyu3kqxVxiLfmvTpLuOnathiiWtiorjtksmGM9z8HcsqpV0hDaXo8RCrpsfSZuDSVJM2wDPHTdEWffN9btSGQVU/e9XLOCHDtDv4tgi3JApDqXI7ClG+PUxcTC/7yJjWCuoOoF4nfDEoQMQi/3pF8Mn7eqte9GroYDXrjlb204hR2gOPxjTpFDpPQ/qpVhYFIveF953mLLNvKMrq6sXkHze5B8vSgKm+/7LFwK9P+e4/0Ox3wKH2IqN21YRB5njzupPr4K8YHDukhNH3a0n9gsxELoBPQPi0ytUqbUWS/o06dLYdQuDKI3Y3recGVcHPn9djPt5idPWqp8SaiV93/xcMsGl+6Joy0o8sGcDbvjUcYb+k3ZFk9qvWNK7GHPE3krBPeiJA0UBeKdcOyNxjn9PLh6V7UXNEQcOk+Swp6WIkU09lMYijnwu1nHqOD5AzcXefflJqTLVq9arD9SurLIXhDhXTWMM2hSv09dtyMdcvimx3+GDAgPxvnAy6+Irgr7diJhuQxeTOq1SICL071EfvXMdsfnTF2JjuImR/GaY4punf97fVtIaeuX703nTZXFAcE0aGBukReKgXyTFjXw2Seob1djMQXBp3XuWNVHF5IjP6ANHDMQnT0jnvYrHljRy674hvo+FTo0mjyeSHAyrr26f+OZQW1GswkZANUccXGwOgF1l4mrslSd/fSGHw5rUaTFS49HMHiLC1j2xUY1Pyu4N+VQ9jiySg2nSipvdmCQM3h6fzLqAvmCgwqFFB+26ZWRHwEVXfsIh/fDxUPVhWvga6/Lo170umo/NraUopkCG3Jdu0XUl8MHYjKdT7Tzzln2fgqcWJb3rdC6i7t5pwX+X1PjK6xVTTrxvnZ0wqoukxKRTH3O1kk7yi8fDiYNZcuDnVDwAl2CrITnUnkEaes5P/PhtnJfIRZg8Q2Ruom+GkHd9pCWwbme8QHzptFG4cPxwHCIl8cqT2xjT7RvUSgIBtRmPgdh+YyIOrpKDvJ1otZEkDnZVom39FaN197cVtZKDPFcvGK+3RXG4OCC4oD2EdtKR6kBK1+cY2RwEb6UsWWZVc16c2yZplve/T7A/aoMPc4HkYNvzgvfdZrE5BH2nGaFnv3NGlEyyy9sciGglEc0noteIaG5Y1p+IphHRkvB/P6H+1US0lIgWE9E5Qvn4sJ2lRHQTVSK0UwOT5JDFTVM8b6orTtDxh/ZTqpTEcSXHo1crNUsBeDJh4PVcxijXNamLEvft4KPOPy7TBiWkOVa1KS8OqsCkLPtYZIH48ZsWguhZWoYhqsn2t5b0cSDCc77k5EOV7zroV7jGJa7FAeXuOvbZkw7Be4b1UZ5zlRwim4OgQsmyJKruUezbRXIQ3VxNzFpbiVk34clnkBxUHomHDOgezYUuTxxCnMEYG8cY4+4PVwGYzhgbDWB6+BtEdDSAKQCOATAZwM1ExN/OLQAuBzA6/JtcgXEpYUqfIU4m20chLvomKUOUML42abRWpaQKojPtBCdyNLoAvEyurMK969QbQZtu0ghfoJtbi6jP58y6ZaGZfQZPMdnmMKh3Axb+6JxUPVE6u/jEQ3D/FSen6pQDV6M9P2dbVjl3+NLKrXhn+z6tv734fGwLCkfFbA5lrhBmadru3gzE9zpb2NRKJzj87rPpHF+qdyR+j3bJIbA/cmiZtTD4zx5ompSEbAGfolqJp17n7/hAIQ4yzgNwZ3h8J4CPC+V3M8b2M8ZWAFgKYCIRDQbQmzE2iwVy1F3CNRVH7KuUfjNJTtuNCwDMxt6ENGL4EFSTXregL16/K9LlA4Y9DhylGyB5740a9UbqGge1UmuRoVejWXspvosXlm3R1pNtDpe9b6RycenRUIhcUZt6NmD8oeoAxawQ05mYnmekVrLaeYL3fuuzywEgYcwVIbZjarJ7ffycrZ4zjgJBuWolVyJmszHJqC9oFmhFQ6p3JH7XNskBoERGVK3NITQe25552iBtlrxFyYEHyx1IxIEBeJKIXiaiy8OyQYyxdQAQ/uebJgwFsFq4dk1YNjQ8lstTIKLLiWguEc3dtMltI+/UgKMMkelzWbw9XPWmdY46etWr1ompO/Yl90jQbeiSRa20TIjq1Kk3ZBgXSOGUKagOcDeOyq6svTSJ/MQ2y1GL2DhKW7v8lK1rnrmW1zNlzFUdqzA+zGpr85xx1dyWq1YyMUx5x/uRGbjvTh6D0484SFlX7baqkByEejZ3XqJkgjuzKyvD755ZZmwvi1qJb9vLwY3yEXE4AFxZT2WMnQDgQwCuJKIPGOqqngQzlKcLGbuVMTaBMTahqalJVcUK0yMV373tI3T9aMSPxCQ5fHjs4MTvldd+xMqJAMDfv3wKjj8kneYaSBIjG7ETxeexQ9WZW1PtO6gEADuHlsU4WmJBdkwA+NQEtWEWiCUx03s6YlBaxTe0b7fUnr4qGNVKkUHaLjmUWDxWbVbWDES+e5iuxO6dZjwt1CuPOLhIVrZxyF1fcdooLbftamcSx9XUs9FQM1iYRLdhXReyfUCnxpQT79nUSmL6nKJMHLq65MAYWxv+3wjg7wAmAtgQqooQ/uf+bWsAiF/zMABrw/JhivKOgcHmQGVKDiaI7m2mD+Y9w/pEEsBH3jNYWw9IbppjUtlkkRxEfHfykU71zC688bEtxsJ1/SEKfN4ZAz41YZixf/7pmN7T1ycdkSr77uQxOPwg++5pZpUAVyuZ2+CJ3biaoU6rMhGvMbfJ16jXhOyxur5FTHmvmtCKz3hgz3r866r0JjbK6yrgDZXekta9rg4Jj0Sbd1EuGQRnUt+Ki7VOjclpv5taidAq9M3tFAcEcSCiHkTUix8D+CCANwA8BODSsNqlAB4Mjx8CMIWIGohoJALD85xQ9bSLiE4KvZQuEa6pOEyurOK7mvv2ttR5ETabBIdrkjEA2BLGLuxsNm+t+WnhQx7QQy8aZ+E4Reg4WFP7MpIqOpv+O65rInacQ2sr2dNDcE7OdN+qJmz2ERe4LlTcID0zTCSoe+5Z4lVcIT6Wh75yKq49/1hlPfH59W6sw1BNfiEgqQZ1nW+ujgo2OBOjDHa4+kIu4SChq54jck4rDsSpSExxETlKBuBxYtC3Wz3+8u8n4iyH/Vbai/Z8CYMA/D18uQUAf2GMPU5ELwG4l4guA7AKwIUAwBhbQET3AlgIoA3AlYwx/uSvAHAHgG4AHgv/OgQmV1bxw9u8Wx1oxOHqxZElF9HLIUF6bslmYz2R+zFtFViu5OAKF+4ZcNB/C8d3/r+JxjZLLNDZ2twGSyU7cVAttK72FhP4k/yabQAAEo1JREFU0GxENohziKG7J1fXT8BdvSLeu0n9JT4P2/pblydw7aQzcTCec5+zroTE1VYIBO8jwaBr6udzyY2/dODPhDuTmL6LHBHe2hDbAbnNob6Qwymj1NsHVxplEwfG2HIAqcQkjLEtACZprpkKYKqifC6AseWOJQv4u1ZNjCxc2WurY88SE8/g6q2UBXySdavLmxdo0TW340JH1H0n1Er2YCOOIX30nCkRop3GbGo9F7WSchtVR08tE/g8snuIJT1SdGnfxWZ0G0BlhTgdTFPjIMFoa/s+gvdsD3oUYda7OzUBwH1+Z/Hgk+9BV72+kHNL8y9JDqbvIp8jLNm4K/rtIplUGjWXPqNk8FbKsn5u16QGkJHIQFmhp80ndb/u5mjrjpYcTBAX/Dqbz314emjfbon03TLyFHhwtJbsboOcOpjUfyrCaorxcAVv154JN6mr/ubZaRsIr8exs9m8d7D7fhJxmybvLNGZwDaHRE7YNWV4naGeeN8PfPkUYzuuEpP4TmwERX4uOjXQO9v2Kctl8DH+dmbg1WQMDKXk2uGyy12lUXPEwVWtZIPrYps1xbUL+ARvrDcvZGJ/Lu6ZHQabKiR87qMV3kNyvRILPEhsqqrY5qCvo1ocTDEervEfvF0XQ3wyd4+6fkIKs0lM4fx+z1B1dLLYN4eNy7/qQ0eG47CrYTh0u6aZrpEh3qo1b5Gz5ODOrInP5ayjDtKmC7epoDnknepM8yNHyUDXahigU2Ooeo+djOgRK95LlrVbfLHjFJuOx/XcctdnAedAbO2JpyvBEZeLWYbANsAeScyRywUcVInZjdz8PZskB9Vi3LNBL425PkPXGAuC28ZSWSKfOb502ihzm8LksBGHnOP9iHPdlZCa+hYlB5u6z9m1PJNaKX7f155/rNYl29WJQY6AN9mk5DarsWe0jJojDpy1skVIW9PvCotOH4N6J4sBzBW8TZtYnM/wcWXB9z92NK443bz4JMZh0707Di1HFKWOtnHlXHIw7rWheH4mtdavLzreZZjRvtD/WmomijkiJ121mC7bdt/cG89WT1zIbcZ9/pxsC34hoVYyE1IegGbqW+S0D7dkMi7L5mC5RtziNmt2AxV2SSpB03cxqHdyHnrJoQqI0mdYbA4jNLtDcbhycCJn5Mrd2JP+BW3avgdXvXJWfP7UkfhPx1gIwL74cEJt+8jExdSuVgr+m11Zk+dMG78AwAeOcAu8dN1v2pU4HDU4Dkq0SkxRQJ2NOIiMg1uQYpNqkyoB5wt7I9gCH7lLrEly2Be6Ph07rI/VpuDKdyU8vyxtim67pkSLI5vMawXH6WOS0d2mBb+3LDl4g3THw2RzEMXY31ycTuRVDrIYwFzr8bU2i1qpAxPdWmFbfFxiEoBAvcHVMNYU5E7EIfnbtPELx9fOPBwnHWbO1XTzZ4K5o9o8XgSRm1pJbMcqOYT3bXs+og7fLjkE/3sb0pUAwJcFabKH5d6jvg3Ege+Wd84xmj2eBbiqdt43OnYDtX1nfQWNgIkZ/PbZ+l0ORTT1asDEkfHc6WawGcoqzM6QHGpvP4fIW8k8Mfr30O8CBwCnjBqAGW9uxMeOUxupOBI2B0dSbOPQuORga68cgqDcwrSd6G4xnPN57+LD78oZ80U3y0ZMLvjWB+0LwUGhSsDmOSRuQ/neEeoUKDJsEitfRFyifzlsz9I1kaB43vbOOUyEaVi/7pjzvUlo0uzXLWKwwQVaxAmH9EO/7nXYtrfVwfvKzV7o6rYLxASpR33eGFDI1cDcTbYzvJVqjziE/23Lgm3iXPa+kfjYcUNSukEZ4odn4/R7Nxaws7kNt14y3liPLxCuNowejh8qALzgmB4hC2y6ar6g2RYfca11yTsFmLnD/7+9Mw2Wo6oC8HfekoSsj0ACZCNhEQghJhCWQMKSEsIDJAguLJIAKiCLuFUBAi6lFGApJYtVCJoUKApliQoIUkAJiCBLFJAYw2oJyFpgSAKELMcffTuv82am752X7tfd752vamp67ty5c8+cnj59zr333Lxc9fiC52td6BpP+Ow+2wa1ffacHVPfX+kGPYelDKzDxudlqJHs6YSNesTJI9O24gUYPSz9/xXT/QK9YGbj37Pr5ircOISGkX3E15WZnoVscRh4bMdmvPjWqoYbPOVJ/zMOKbmVkvhcThHxGgbY2L0PHXNIWwgGbEhHHeJqPvmtQ4Lv4iCnldTei74LK3nqvbb8gw3HoX/WtF8oJN7fE+ILo3cMpaXLOISmLBk/sv5GPzGxcRjqS5PehNcUstq8O9ttmT6AfMnRU7nuzy+ww+iwLXObYcl35qae87HoPnHaezBe+InpdRNK13z3dp5xijistPngdu6+uLPX1ylBfxxzcM++pfm+Lf9CacZzCK2327gRbD9qSNDd5ojN2oMvPJDP2ITvxI7TD/vCZMnVxKEypRnQeKVq1oT2rUVkQ/irGR2lcX7nznQMbmdMR9gddwjrNoT9ws8NX6hlr0kjuW7+jFwueoPaWz1J+sLaiW9W5uw8Ovh/cfzeE1Lfj6ezbu25sYw9BxGhzbNZVl70Q88hZUQ6QVbpJpJK9Q1QDh3Y5l0BC9GmLvd+7cBN7Vqv4RvoXR948UkaB1/YIiYt7u8b2+kp8WCvL5wmdHkvofL46NxtGzo9WX2bJf4Ns5qKnTf+9SVhnl1MyJhHzK5j0tPdx9NZOzzZDeIxhyIGomP6nXGI8U4DzcGnSpudAHDjF/bhriWvpa6bqCJHegbtQy8+axJjBN7ZSo60/9bUcR1sMWTAhmy4WRGLUW9/643rdQ1I+2YMFUnXXgIFdyQjYtsRetkNsYmjhw1kzbr1G+3GV4847JeWMBO6wkpFGoc+ou5wAh2HTBPVXXj4LkFz5CdtOcS7srUvEjqVNTlG4JthE+PbMSu5hiAr4pDKnpPSp7yKJJKwFRBTBv8dLHQZ2CKnQ2fJEe5mxTf9tZkZQg+dN4dHL/iYt158g+NbbR+Hlcxz6EXS9nNIkmUs9POzt+Pzs7fLrL2+Rvwf9F17kmMEobOV1nv+XBp8/xjOVsMHccsZ+zLZY3jiXFHgl+fCw3fh3qVvpNZplnu+eoB3yjZ0GeK8BvB7m3MP3ZkzDtzeu24jzpIbsv4l9Hxc505235jMADMOvU+o59BX7pKqwLrAsFJywZgv02vMeo/nsP+Oo7xpLnrC7g22bk2SlMDnCeVxgxE6UygOlbz/YT4D+L1Na4t4p9BC5FW+eMlhmV4L1iX2ZUgj/splr69IrZcn/S+s5J7t2r8xi07ek28eMbmQ7+4ac0ivt3pNl3Hw/bni6b6zdkifT37q/sV5dMndBleu9k9EKIohA6MQyHsBaUGGD2oLXtBXBbK+SdxgHDyexlsrsh0H6wn9znPonLI1H9lqaKFZSsvIQTuN5qCwLADB/O7M/YLqhc5WSiag860xWXzRwUHfLSKMH7kZL70dlpM/L8Zvnr5+oUjm7ro1R08fy9fn+k+Qp749txd6VJ+T9p2YaYLJPFgb6Dn40vH3Bv3OOGy7xRC29STV891tGmFMG984lXmSeMGSL/6djHmPSUk90Cy3nzWbt1aF5eTPgwFtLd7FbUUyqL2Vyz8zrehuePn2kbsW3QUvg9pbWb12vTcR5nF7jue91Wu96ybypDTGQUQOBa4AWoGfquqlRfTjme8VsxqxP/PxqWNY/v4aPj0jPUXAeZ078+WbnwCynTAwYnB7odOHv9gPZ6j1V6aN7+D+Z970hrXbWls4reDzohQ+mIi0Aj8GOoHJwHEiUkgAfEBbixmHXqalRZg/c6I3zfNRntQEVeWsOTsU3QWjl7jq+Olcffx0xpU4jBhTFs9hL+A5VX0BQERuAuYB/yy0V0bpuPOc2d4FRFUjq9QZRvkZPqidI6amLwotC2UxDmOBlxKvXwb2LqgvRonJY9FaUdx+9iweefHtorthGHUpi3GoF8epmaAuIqcCpwJMmFDcQI1hZMGUsSOYMnZE0d0wjLqUxZ99GUiORo4D/tu9kqpeq6ozVHXGqFFhWzYahmEYzVMW4/AYsKOITBKRAcCxwK0F98kwDKPfUoqwkqquFZGzgLuIprIuVNUlBXfLMAyj31IK4wCgqncAdxTdD8MwDKM8YSXDMAyjRJhxMAzDMGow42AYhmHUYMbBMAzDqEHSNmAvMyKyAlhW560JwH8CmhgBLM+wXh5thsqSx3fn0abJk129PNosUp485M76WtBM3TLLs5OqDvO2oqqVfACPNyh/M/Dz12ZZL482Q2UxeUyeqsuTk9yZXgv6ijyNrp3dH30xrPS/wHq3ZVwvjzZDZcnju/No0+TJrl4ebRYpTx5yZ30taKZuVeRpSJXDSo+r6ozQ8irSl2QBk6fsmDzlJit5QtupsudwbZPlVaQvyQImT9kxecpNVvIEtVNZz8EwDMPIjyp7DoZhGEZOlN44iMhCEXlDRJ5OlH1URB4WkX+IyG0iMtyVDxCRRa78SRE5MPGZPVz5cyJypYhvF9d8yFCe+0RkmYg84R6jC5BlvIj8SUSWisgSETnHlY8UkbtF5Fn3vHniM+c7HSwTkbmJ8sL1k7E8ldOPiGzh6q8Ukau7tVU5/XjkqaJ+DhaRxU4Pi0VkTqKt7PUTOt2qqAewP7A78HSi7DHgAHd8CvBdd3wmsMgdjwYWAy3u9aPATKKNhe4EOisuz33AjIJ1sw2wuzseBjxDtAf494HzXPl5wGXueDLwJDAQmAQ8D7SWRT8Zy1NF/QwBZgGnA1d3a6uK+kmTp4r6mQ6MccdTgFfy1E/pPQdVfQDovpfiTsAD7vhu4Bh3PBm4133uDaKpXzNEZBtguKo+rNEveQNwVN59r0cW8vRCN4NQ1VdV9W/ueAWwlGjL13nA9a7a9XT91vOAm1R1taq+CDwH7FUW/WQlT+/2ujHNyqOqq1T1QeCDZDtV1U8jecpCD+T5u6rGm6AtAQaJyMC89FN649CAp4Ej3fGn6NpF7klgnoi0icgkYA/33lii3eZiXnZlZaFZeWIWOZf4oiLc/CQiMpHozuYRYCtVfRWiPwCR1wP19wofSwn1s4nyxFRNP42oqn58VFk/xwB/V9XV5KSfqhqHU4AzRWQxkTv2oStfSPTDPA78CHgIWEvgHtUF0qw8ACeo6m7AbPc4sVd7nEBEhgK/Ab6squ+mVa1TpinlhZCBPFBN/TRsok5ZFfSTRmX1IyK7ApcBp8VFdaptsn4qaRxU9V+qeoiq7gH8iijWi6quVdWvqOo0VZ0HdADPEl1gxyWaqLtHdVH0QB5U9RX3vAL4JQWFM0SknejEvlFVb3HFrztXNw5JvOHKG+0VXhr9ZCRPVfXTiKrqpyFV1Y+IjAN+C8xX1eddcS76qaRxiGcWiEgLcCFwjXs9WESGuOODgbWq+k/nmq0QkX2c+zgf+H0xva+lWXlcmGlLV94OHEEUmurtfgvwM2Cpql6eeOtWYIE7XkDXb30rcKyLk04CdgQeLYt+spKnwvqpS4X106idSupHRDqAPwDnq+pf4sq56WdTR7TzfhDdSb8KrCGykJ8DziEa2X8GuJSuxXwTiTK1LgXuAbZNtDOD6AR4Hrg6/kwV5SGahbEYeIpoYOoK3CyZXpZlFpH7+hTwhHscBmxBNJD+rHsemfjMBU4Hy0jMqCiDfrKSp+L6+TfRhImV7vycXHH91MhTVf0Q3TiuStR9Ahidl35shbRhGIZRQyXDSoZhGEa+mHEwDMMwajDjYBiGYdRgxsEwDMOowYyDYRiGUYMZB8PIARE5XUTmN1F/oiQy9RpG0bQV3QHD6GuISJuqXlN0PwxjUzDjYBh1cInQ/kiUCG060QLF+cAuwOXAUOAt4CRVfVVE7iPKfbUfcKuIDANWquoPRGQa0ar3wUSLlE5R1XdEZA+i/FnvAQ/2nnSG4cfCSobRmJ2Aa1V1KvAu0f4aVwGf1CgP1kLg4kT9DlU9QFV/2K2dG4BzXTv/AL7lyhcBX1LVmXkKYRg9wTwHw2jMS9qVw+YXwDeINlm522V4biVKhRJzc/cGRGQEkdG43xVdD/y6TvnPgc7sRTCMnmHGwTAa0z23zApgScqd/qom2pY67RtGabCwkmE0ZoKIxIbgOOCvwKi4TETaXW79hqjqcuAdEZntik4E7lfV/wHLRWSWKz8h++4bRs8xz8EwGrMUWCAiPyHKkHkVcBdwpQsLtRFtwrTE084C4BoRGQy8AJzsyk8GForIe65dwygNlpXVMOrgZivdrqpTCu6KYRSChZUMwzCMGsxzMAzDMGowz8EwDMOowYyDYRiGUYMZB8MwDKMGMw6GYRhGDWYcDMMwjBrMOBiGYRg1/B8LPzmx1+2eBgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And zooming :" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4JVV9NvqumvZ05qmn03Q30M0oNtIBnFBEBDUGkosRo0ASnw9j8MYp8dOMehPyOFxjYpwuigGNUYga4YsiGiAIARu6EWiGbrqbnk736dPn9Jn3WMO6f1St2qtqV+15qH16vc9znrPP2lX7VO2qWr/1/t7fQCilEBAQEBAQ4CF1+gAEBAQEBKIHYRwEBAQEBEogjIOAgICAQAmEcRAQEBAQKIEwDgICAgICJRDGQUBAQECgBMI4CAgICAiUQBgHAQEBAYESCOMgICAgIFACpdMHUC9GRkboxo0bO30YAgICAl2FnTt3zlBKRytt17XGYePGjdixY0enD0NAQECgq0AIOVTNdsKtJCAgICBQAmEcBAQEBARKIIyDgICAgEAJhHEQEBAQECiBMA4CAgICAiUQxkFAQEBAoATCOAgICAgIlEAYBwEBga4EpRQ/2DmBnG52+lBWJIRxEBAQ6Ersn17Gn/77M3ho94lOH8qKhDAOAgICXYmcbgEACqbV4SNZmRDGQUBAoCvBjIJp0Q4fycqEMA4CAgJdCcO0jYIhjENLIIyDgIBAV8IQzKGlEMZBQECgK6Fbgjm0EsI4CAgIdCVc5iAE6ZZAGAcBAYGuhC40h5aionEghMQJIU8QQp4hhDxPCPm0Mz5ECPkFIWSv83uQ2+eThJB9hJA9hJCruPGLCCG7nPe+RAghzniMEHKXM76dELKx+acqUCt2TSwIf65AZGFYQnNoJaphDnkAb6KUvhLAVgBXE0IuBfAJAA9QSjcDeMD5G4SQcwFcD+A8AFcD+CohRHY+62sAbgaw2fm52hl/H4A5SumZAL4I4LNNODeBBnBsPot3fPlRPCgSjAQiChGt1FpUNA7UxrLzp+r8UADXALjTGb8TwLXO62sAfJ9SmqeUHgCwD8DFhJA1APoopY9TSimAb/v2YZ/1AwBXMFYh0Bks5w0AwGJW7/CRCAgEQxfRSi1FVZoDIUQmhDwN4ASAX1BKtwNYRSmdBADn95iz+ToAR7jdJ5yxdc5r/7hnH0qpAWABwHDAcdxMCNlBCNkxPT1d3RkK1AX2wJlUPHgC0YQhopVaiqqMA6XUpJRuBTAOmwWcX2bzoBU/LTNebh//cdxGKd1GKd02Ojpa6bAFGoBrHMSDJxBRFPMcRLRSK1BTtBKldB7Af8PWCqYcVxGc38w5PQFgPbfbOIBjzvh4wLhnH0KIAqAfwGwtxybQXIhVmUDUURCaQ0tRTbTSKCFkwHmdAPBmALsB3AvgJmezmwDc47y+F8D1TgTSJtjC8xOO62mJEHKpoyfc6NuHfdZ1AB50dAmBDoExBqvCg/f1h/fj+WML7TgkAQEPinkOYqpoBZQqtlkD4E4n4kgCcDel9D8JIY8DuJsQ8j4AhwG8EwAopc8TQu4G8AIAA8AtlFJWcP0DAO4AkABwn/MDALcD+A4hZB9sxnB9M05OoH6YVTCHbMHEZ+7bjcn5Dfj0Nf3tOjQBAQCC3bYaFY0DpfRZABcGjJ8EcEXIPrcCuDVgfAeAEr2CUpqDY1wEooFiDHm4P/f4Yg4AcGQu25ZjEqgNE3MZvO6zD+Erv/cqvP2CNZ0+nKZDRCu1FiJDWiAQzCaUW5VNLthGYWIu045DEqgRe44vAQD+feeRClt2J0SeQ2shjINAIBhzKKc5HF9wmMNsFkIiih40xX689RVae0iv4h4VqB/COAgEohrNgbmVsrqJk+lCW45LoHrEFLswQcFYmcZBMIfWQhgHgUBUk+fAmAMAHJkVrqWoQZXt9KH8ijUOIs+hlRDGQSAQ1RiHyYWc67oQonT0IDkVaFYqcxD9HFoLYRwEAmFUYRymFnN45bgdwiqYQ/TASp+sVOMgOsG1FsI4CATCopVXZZMLOZwx2oOYIokCfREEE2pXmluJUooHd0+55yWYQ2tQTRKcwCkIJvaFrcoKhoWZ5TxW9cWhypJ4QCMIdkkKKyxa6flji/jDO3agP6ECEMyhVRDMQSAQlTSHE0s5UAqs6Y9DlohL8QWiA3btVppbaS5jR8YtOGxVLExaA2EcBAJhVnArTTlhrKv741AkIh7QCMJaoZpD2uk1wiCilVoDYRwEAsEm+7AEo0knjHVNfwKKTFw3lEB04BqHFcbqlvOm529x77UGwjgIBMI0y4t9LMdhdV8ciiQ0hyhipfbkKGUOK+v8ogJhHAQCwRZjYZT9+EIOCVVGX0KBIhNB7SOIlVrRZNlnHMTCpDUQxkEgEGyyD2Psk4s5rOmPgxACWSJuQpJAdLBSV9SCObQHwjgIBKKYBBfOHFb3xwEAqiSJhisRxErt/+03DoI5tAbCOAgEggnRYWLf8YUcVvfZxkGWiFvFVSA6WKmVcv2CtHBptgbCOAgEolz5DMuimFrMYZXDHBRZhLJGESssSMmFYA7tgTAOAoFgzCHINVEwLRgWdTNUFUmEskYR/LVbST0d0gWvcRD9HFoDYRwEAlGOObC4eVW2bx87lHXlTD4rBbxbKaubZbbsLohopfZAGAeBQJhlNAfdybjVnH4BdiireECjBv6a5AorxziIaKX2QBgHgUCYZdxKumMwGHOQJeKOCUQH/JyZ01cOs0v7M6SFcWgJhHEQCEQ5t5LucyupsiRWbxEE74tfyW4lce+1BhWNAyFkPSHkIULIi4SQ5wkhH3LGP0UIOUoIedr5eRu3zycJIfsIIXsIIVdx4xcRQnY5732JELtVFSEkRgi5yxnfTgjZ2PxTFagF5XpIu5qDwjOHlbMyXSkwV6DmQCktjVYS915LUA1zMAB8jFJ6DoBLAdxCCDnXee+LlNKtzs9PAcB573oA5wG4GsBXCSGys/3XANwMYLPzc7Uz/j4Ac5TSMwF8EcBnGz81gUbAJpagSBCXOUiO5iAJzSGKsDjjkFshxiFvWCULFnHvtQYVjQOldJJS+pTzegnAiwDWldnlGgDfp5TmKaUHAOwDcDEhZA2APkrp49QOo/g2gGu5fe50Xv8AwBWMVQh0BizjOYg56IZXc1CEWymSWIluJcYaZKk4PQjNoTWoSXNw3D0XAtjuDH2QEPIsIeRbhJBBZ2wdgCPcbhPO2DrntX/csw+l1ACwAGC4lmMTaC7Klc/wu5UUiUAXoayRw0qMVmJi9HBKc8fEwqQ1qNo4EEJ6APwQwIcppYuwXURnANgKYBLAF9imAbvTMuPl9vEfw82EkB2EkB3T09PVHrpAHWAuifKCNOdWEtFKkQN/6ZZ8fvpuBROjh3tiAOx70LDoii0V0klUZRwIISpsw/BdSumPAIBSOkUpNSmlFoBvALjY2XwCwHpu93EAx5zx8YBxzz6EEAVAP4BZ/3FQSm+jlG6jlG4bHR2t7gwF6kI10Uqa61YSVVmjCF5zmJzPdfBImoeMkx3NmENcseVMcfs1H9VEKxEAtwN4kVL6D9z4Gm6z3wbwnPP6XgDXOxFIm2ALz09QSicBLBFCLnU+80YA93D73OS8vg7Ag1QsBToK5k4K1BwCMqQFtY8emHHoiSk4Op/p8NE0B3knAbM/aZduiam2cRAZ+s2HUsU2rwVwA4BdhJCnnbE/B/BuQshW2O6fgwDeDwCU0ucJIXcDeAF2pNMtlFLm8PwAgDsAJADc5/wAtvH5DiFkH2zGcH1jpyXQKNhkHxStVPAJ0iKUNZpgl2T9UBJH57OdPZgmgfXDZnW94qp9D4rFSfNR0ThQSh9FsCbw0zL73Arg1oDxHQDODxjPAXhnpWNZCfj3HUdwxlgPXnXaYOWNO4hyeQ6uW0kRoaxRBmMOpw0lsPv4UoePpjnIG/Y6s2gcGHMQ91+zITKk24w/+8Gz+J2vPtbpw6iIWjKkFVn0kI4iGOtbP5jE5HxuRVQvzYcxBxEQ0XQI49AhHF+ItkBYDXMoag5EZKlGECyR8bThJAqmhenlfIePqHGUGAdFMIdWQRiHNoJfud333GQHj6QyymoOvsJ7ikxgUVFXP2pg12N8MAEAmJjrft2hVHNg0Uri3ms2hHFoI9iqBwCeO7rYsv+zf3oZ//CLlxqK/TYCmINpUfzJ936NnQftKGONYw7+bQU6D4vawQLjg0kAWBGiNHuGWP/yQSekVdx7zYcwDm1Ehutg1crQu58/P4UvPbC3ocQnK0BzOJnO495njuHhl+wERJUJ0rKIGIkiTEohEWDdgM0cjq4g5nDO6j78+JbX4g1b7HwnoTk0H8I4tBF8fZtWttVk/v9G/ocrSHPsI+OULljM2UZH9TEHUUIjWrAohUQIUjEFA0l1ReQ6sGglTZGwdf2Am6Uv8hyaD2Ec2ogsV9+mlXkBLFu5kf9hcsyBuadY6QL2HjMKrAiaWL21D4s5HV/8xUtlAwEsyzYOgM0eVormoEjEvefce0+w1qZDGIc2wsMcWngzswmjYJQ3DicWwyOmTJ/WAHjbM2qyBFY4l7mVhN+3fXh4zzT+6YG9ZfMXTKs4ea4bSKwIt1LesBBTitOW0LtaB2Ec2oh2MQezCubw418fxcV//wCePjJf9jOAomspwx0/o/MA/4AKat8uMBaXL7MAsBzNAQDWDSZwdD7b9QXqCoYFjTMOsiT0rlZBGIc2IuMwB02WWutWCunFkNNN3LfLDqH9qfP7yGywH5qf6E2LYmoxh8Wc7o6pQas34VZqOqYWc/iX/zlQMqkv55hxCC/FbVEKiWMOmYKJ+Yweun03IG+YiCmy+7dgDq2DMA5tBKup35dQWitIW8FupQdePIEPfPcpHJxJuwlRPAPgwT9rJ5cLeP3nHsLdO4ptOpgYDdh5Dvb/FQ9os/Hub/wKn/4/L+C4zwXImEM516FpUciO62+lhLOWMgemOQjW2mwI49BGMLdMX1xtaYlrxhz87IRpBlndxIxjHJbzwStPnjkcmEmjYFh4cbLo39Z44+BSe/GANhsvT6cBALPpgme8GuNgUbjMYaUkwoVqDoK1Nh3COLQRTJDujSvQK4jFjYAJ0rrvgcm74xamlxzjkAt2M/CRR2y1yU9QQZqD//8JNAY+YGAu7b1O6Wo0B6uoOYz22s1xur2ERjhzEPdesyGMQxvBBOneuNpS8dYIEaTZKnMpZyCn26+XQxLl+PyGoCgX3q0kHtDW4LH9J93XJ9PeSX2pKuZQdCux1XalCLaoo4Q5CJdmyyCMQxvBM4fWag7BxoGJl/tOLLtjYVnUpkVddhDkp1Y446CKUNaWYMrDHHxuJUeQLpQJbDApdcONmYjb7cZBRCu1D8I4tBFZ3YQmS0iockuzicPcSmxiODCTdsfYJFPyGRZ1dYUg5qBxbiXGHK6/7XH82/bDDRy5AA/euPs1B9etpJeJVrKoe220FcMcRLRSuyCMQxuRLZiIqxIUmbSUOYQJ0rxbiSHUrWRRtwVjEHMIilbK6RaeO7bQwJEL8CiYFIQAg0kVs5kQQbpchjSFJ5NYlggKZrgx6QbkfcyBZYCLYIjmQxiHJuH+54978gCCkC2YSGgylBbnOTA9I8w4ZHV7YumJKaHMweSZQyXjIBVf58qsZAVqg25aUGUJQyktNFopr1dyKxX/1mSp7PbdgILQHNoGYRyagPlMAe//zk7c8/SxsttldBNJTYEqkZZG9jBW4nchsFVm2glfHUypoZqDYVHPCs0PNeABBcpHzwjUBt2woMkShlMxnFyugzlweQ4AEFOlstt3A/zMQYSytg7CODQBLPInXaFEtu1WsplDKzunMcbgX02xVSMrHT6U1EKZg2VRzwptVV/M874WEMpq/w/BHJqFgmlBlQmGUhrmOLcSpbQoSFcsn1G8NposrQDNwfJoDozBdvt5RRHCODQBbDKu5FLJ6gaSmgxVllqaBBcaylrCHLRAzYFSWsIctqzq9WwTFMoKFA2lQONgbqVBn1spb1juNS7H1EyrmAQH2KJ0t0+iBcP0LFrY63yXM6IwdNJNK4xDE8Am4UoulWzBREKVocqt7bnMJo4St5KrOdg33FAy2Dgwu8UbhzPHegAU2zOqAaGsgNAcmomCQaHKEoZTGuYyutuAib9m5e45Sim4SwNNkbre7efPc1gJUViZgoGvPLSvZDE3uZDFKz51P359eK4jxyWMQxPAJuPKzMGy3UqSBIu2LjabD2X9n30zeO1nHkSmYLgTA3N/DaWC3UrsuPiH8IxR2ziM9NhtGUOZQ5lCcAK1QTdt//pQSoNpUTfgIe0xDuHft+lzK8UUuauNA6UUBdOrOawE4/DI3hl8/v492HHQawSOzWehm7Rj9bAqGgdCyHpCyEOEkBcJIc8TQj7kjA8RQn5BCNnr/B7k9vkkIWQfIWQPIeQqbvwiQsgu570vESdDhxASI4Tc5YxvJ4RsbP6ptg5Ft1Il5mC7lZiA26qIJYMLZd11dAFH57M4uVxwJxJW42kgqaJgWiUTDDMOGufbLRqHmPNecdJRPdFK3fuQRg26ozn0xBQAQNq5bnwocqXCex7NQeluQVo3KSj1LlpYRF0ro/9aDXY9Jxe8RoA9p506t2qYgwHgY5TScwBcCuAWQsi5AD4B4AFK6WYADzh/w3nvegDnAbgawFcJIWyW+RqAmwFsdn6udsbfB2COUnomgC8C+GwTzq1tYJNxJTE2qxfdSkDrwu90LpSVZdbmDdOdSDIFA5osoTduu4j87IGFwvLF9c5d24eRHg0XjPcD8DEHmdccBHNoFpjmEFPt75qVX+HdSuWMA6VeVheTJRS6mNkxw+aJVpIlSKS7mcOSwwgnF7yVd5k22Klzq2gcKKWTlNKnnNdLAF4EsA7ANQDudDa7E8C1zutrAHyfUpqnlB4AsA/AxYSQNQD6KKWPU7s4/bd9+7DP+gGAKxir6AawybSSSyWdN5GMycVyEy1nDtQVMnO65T5cFoVnRerXHVg+EZuUAFtr2PGXV+I3L1gLwKc5SCKUtRUomLbmkHCSEZnhZW4liVQSpIuF9wD7enbz9WGLLz5aCeh+RsQWZ8d87iOWj1ToUJhuTZqD4+65EMB2AKsopZOAbUAAjDmbrQNwhNttwhlb57z2j3v2oZQaABYADNdybJ2E7jKH8g/qct5Ab1x16xK16oYuag6WGwKZ003PCkRTJPTEbeOwFMIcYnLp7ZHU7AczPFqpe1emUQPLc0hoXuPAjPlAUivvVlphoaxBzAHo/vNiuUbHfczBdStFlTkwEEJ6APwQwIcppYvlNg0Yo2XGy+3jP4abCSE7CCE7pqenKx1y2+BqDmWYA3ug++KKu9JuVeIOH8o667qVLM+qUZWlUObAKrIGJcHFnVWsN8+huF23Z+BGCbppQVWI+52zKDPmXhpIqGUFaeo3Dl0eysrurZjfOHS50M7cSscWcphNF3DD7dtxYinnXucoaw4ghKiwDcN3KaU/coanHFcRnN8nnPEJAOu53ccBHHPGxwPGPfsQQhQA/QBm/cdBKb2NUrqNUrptdHS0mkNvC9gkX06MZTdAb1xxmUM7jMOc0xbSzxxUWXInHf9qPyhaiSERwBz4DOmCaYkKmU0C0xyKbiVvKHK/E1AQBpMrvAd0fyhrGHOIdbnR4wXp3ccX8cjeGTx/bNHVHCJrHBzf/+0AXqSU/gP31r0AbnJe3wTgHm78eicCaRNs4fkJx/W0RAi51PnMG337sM+6DsCDtIs6oVeTBMdugN646grSrarMyo6nYPg0B59bKe5oCn6jxowWewhZbgNg12PSZAl93Bg/AQHlwyujjLxh4re/+j94bP9Mpw8FQFFzYNeJGYUMxxyq7QQHdP8kWmQOK0tzYHPDfEbHYtbp1lgwkdErZ8G3EtUwh9cCuAHAmwghTzs/bwPwGQBXEkL2ArjS+RuU0ucB3A3gBQA/A3ALpZTNFh8A8E3YIvV+APc547cDGCaE7APwUTiRT63GkdkMvvTA3pLm7bWimmzVonFQOEG6VXkODpMxTDc2Pm+YngdIlUmJ0MlgOd8HYzgDyaIhiKsy/uOW1+B3txXJoerTJro1nPXwyQx+fXge218uIa0dgW7amoOf4eV0E4TYC42yneCoV5Du9kmUVZQN1hy6c0ECFL0KgD0nAfYCgLmVOiVIK5U2oJQ+imBNAACuCNnnVgC3BozvAHB+wHgOwDsrHUuz8frPPQQAuO6icawdSNT9OdUxB+ZWUlvuS2SC8sxSHszu5XTLE2qrKUWhM+s7bn9S3wDHEgDgvLX9nr99xKFrmQPrr3xiKRqtNFmeg9+IZwomkqpckQmYvsJ7mix3NXPIFuxjj5doDt3NiJbzBlKajHTBdBs8ZXWzK/IcViSePFhcHbKLUC94zeHuHUc8HbwYgphDKy46pdSNnuInuZzuZw5FX3bWd/7sfM5e3Yv+hIr//dazy/5Pf9RxtzKHCSeUcDoqxsGwPNoQu05Z3S79Xik01e9WsjWH7jTcAJB2CkamYt41bbczoqWcgSGn8kDGDTow3AKZwji0Gbsmik1pGg2/ZCv12XQeH//Bs/jRU0dLtvEK0q1LguM/kjdSWd30lAn3TDq+82c35WhvDM/8zVvwmjNGajqGKIezmhbFNx95OfAYJ+ZsSj+9VGrcO4GCSaEqvFvJEaSdviCVmIDlz3NQJOgmdWs0dRtYfkeP3zh0eyhrzsBQyq48kMkzzcFyF61R1hxWJHhr3ChzYD5B9sxlC6X1ihZzLJRVdUM/W7EiCDsvf7iqJkuIKRIIKc3sZivUpFbR6+jiQ1dsxh+94QwArTMOLFekETx3dAF/95MX8cjeUtH5aATdSposQZYINFnyhLImVLmiO8WipdFKQOvya1oNZhySsQBBukuNg+Xc08MpmzmwEikZ3SgaB8Ec2gt+1Z4JmMxr+izfxfOvxAF7dcAmZFaXqBWCdBgbWch6u9SpMgEhBHFFDmAOzDh4H8Jy+MiVW3DZZpthtMqt9PEfPIvz/+b+hgIImGsiaDI5yrmVorC6LhiWG9kWV6Wi5qCbSGiKrTmYFjZ+4icu6+Fhd4LzRisBXWwcnPuyhDl0cYjusnM/DiYdt5Lzd44TpFvZGKwcTlnjwK+wG3Yr+S5e0OS4mNPRG1dACGkpcwgqyRFTJCz6jANbRSa0UuPAJtBamAMAt+d0qyqz/vApO8G+kcmNXeug735iLgtCbAM7ny3f8rUdYHkOgB0l5kYrFUwkVMkTtbPzUGlZ55JOcKz3QZdqQum8AULgamUM3aw5sNIZw0xzKBSDDthzGPkM6ZUGfkJv1K3kz1cIYw69TrmKYlXW5q8I/J+ZUGX0JdSSEhls0kmoshsFwpCtgzkAcOPxWz35NOJCYOfqn0xyuonppTy2jNlNjU50WHewLG/DJd6IZ3QDSYc5MLCVp+czfIX3ut2tZEf1KCUBELEu1RxOLObw4e8/DYBjDvkiO+yKDOmVCH5Cb1a0EkOwcdDdKqhunkMLkuD8nzmU0hBXJTffgUFzV6RSyUq/HreS/Vn29q2IiFnIFI+/ERdCWATIzLKtM7zCqTp7YrGzugO7P3kjnvNpDrxxCJpATIuC+PIcgM4InLPpgicIpB5k8iZSsdJ7sls1h/tfmMITTtQk0xxY4luuYArNoVPgJ/TG3Uq+VWiAsfEwhxbWVvJ/5mBKRVyRS9xKHndFwW8c6nMrhZXjaAZemCyW82rEOLhuJd9nzDvGZ8squ29Fp0VpxgCZEY+pMrL+aCXOOARNjhYtzXMI27bV+OYjL+O9t29v6DOWC0ZJGCvQHW6lgzNp/O1/vuDRsvjClv1OoqnLHPgkOOFWai8M03KFrcbdSj7NIWDlvORoDgBamufABGnmTRhMaoirshstxeYK1RHFE2qwIK1IJLDwXjmwlWwrBGneODTysGRCRD4m2LOmRrPpDhsHgzEHdp0k14hndRNJTfaELQdNjv5oJVdz6ECuw0JWx0JWb0joTztuJT+6IZT1v/ecwO2PHsAMd1+xeeJNZ4/hwvUDAIr351Jed6+pcCu1GbpFEVclaLLUuHHw3Zj+pDKAMQevW6kVmgNjMWzVP5TSPII0e7jYKjJIkM4UzJpdSkBrmcNxrktWI5MbO1f/ZMqYw5p+O1O+0XuiUbAJQVU4hsd18kuosqf+f5DOY1reBEVm7LMFE39zz3N4cbJcceXmgi0YGglWCHMrqV3gVmLPOn+cbJ748u9d6NYqY/fn7HKhZN9245Q1DoZpQZHsEhKNJ8H5NQfvjUopxUJWdwvYFZPgWpHnYB8Lm6gZc2CuGPZwMeYQV+USY5YpGDW7lIBiWYNWMAd+sm5E8M6GRCsx5jDcYxvTIAPfTjDj5Q0cMGFZFHnDQkKT8YYtxcrE+YDVJaUUfNkrZhwe2H0Cdz5+CP/v/XtaeAZe5HwtauvBct4oCWMFbOZgWNFO7mPXkzcO7DmJK3JJfbKZNG8cBHNoKwyTQnHq1jSa5+C/eH5js5izE1pW98UBFHsut4Q5WIw52EaACdIMzGercZOO34dfL3NQZAmKRFrituAnlUb8y2ERIPNZ+2HsT6hIBrCpdsOvOTD3HzuuhCpj28YhPPPXbwEQ7GrzN/thbqWfPDsJADh7TW/rTsCHPKeX1It0yKKlG6KwmBbIH2NWN6EpEiSJQJaIJ5udv55Cc2gzdMsuh5zU5OZHK/k+j3V4Wt1vGweXObQkQ9o+Fja5D6Y0T4lj5lZSuWilTMHA9pdPusllmYJZkoVaLex4/OafV5rLjG6IOYRpDhkdMadUhb1g6LRx8DKHmPO9MuPAri9r5RpkkO02oaVuJZbs5y993Urkm8Ac0nkzUJAuainRNQ56IHMwPUUE/ewBAHpjiohWajdstxJpilvJn+fg96tOOv7ytQMOc2ihIM0a7bCKq0NJzdML2nUrcSvSqcU83nXbr/DkQTuRKlMwkFRrdysBdvYqW4U3E1nddMXVoImQUlrSZjEIrLCZfzU2n9Hd0uQJrdTV1m4USgRp+z5lx1XsyBcenkp9eQ7+5k2tqO0VBjcMt4FnLZ030BMSygp0boUE9yljAAAgAElEQVRdDcKMQ4Jj6FqAcVg3mBBupXaD77LVDObAR/b4J5ZJlznYYid74BdzRtNdMIyNJFzNQXUnEsB2MwHFByrO3Zws1j/bAHPYMJzEoZOlpRwaRTpvuIlCQZPAT3ZN4vWfe7BiRdVcGbfSQML+/KSmNOxqbBSlgrRdPqOYg2Ibb0kiUCQS7FbyFd5jQQjF99s36bBVfdD3Or2Ux3e3Hyq7v2lRJ0orWHMAOuebrwbBmoPpeTbVgOjAM8Z6hCDdbugmtWvlV+lWKjdZ6FxYLKvzwotjkws5EAKM9dqVFwmxfYy3/fJlfOre5xs8E9+xWEFuJfsypzQZax0DpXErUgYW0ZSuU3MAgNNHUzgwk67v4MsgUzAx6Kzsg9wHTx2ah25STwRPEMIE6fmM7saaB4X3thtBmoNhUbe6b0IrPrphfR1MSktKdvP7dIQ5BDxrdz15GH/xH8+5DDsI7PkLFKS7gDkw13PepznEOdeeKpOS/Vb1xkX5jHbDsCwojuZQya307MQ8zv3r+/HAi1OB7+smxVhvDH/w2o14xwVrAXhdS8cXshjrjXl8isz988uXmtuSkjEHtiKxBWn79RljPe6DxLuVGFiJDTsDtz630ukjPZhNFzCfaa5ryTYO9so+iG3tmbLDMk9WyE8ol+fAmhpFwa3k1xyY+4G1feWvj7/wHNuX+pLgxnpj+P3XbMR/ffQyKBKB2cYVKdOhghZie08sAwCmymSls37KYUlwQLQFad6ttO/EEm761hOYy+ge5u7XHPoTqn1thVupvdBNCkUijguh/ESw+/gSAODeZ44Fvm9YFjRFwt+84zxc4JRf4CeXyYWc61Ly4+h8tipfebVgk97V56/GH73hDIz1xtzVyaaRlNv6k8+QZmCr0kzBCIwnrwabRlIA0HT2kCkYGEzZk3fQCnGPc41OLpc3SrmQPIeFbFFzaEaQQqMohrLakzsraugaB95XzTGHwycz2PwX9+Fv//OFEkFakgg+9Vvn4cyxXsgSiQxz2OcYhxMBTbIYWKn2wPIZZXSXqIB3K+08NIeHX5rGnuNLHkHarzmM9GjQZALdtBpuZVwPTlnjYJjFLluHZzP4o+/sDF0tMhdLmD/bcAwNUFyJ55wbNZ03MDGXxVonUikITx0urahZL1go6+axXnzirWeDEALTubHGBxOuO4n5Nz1uJYc5pAteoawWbBptlXHgmUNpXaQZxyicTJc3Di5zCBCkWR5KJNxKhpc5jDpVOw85PYZ5t19Mkd3JZ2Lefv/2Rw+UdILjociSy17bAXbN/N+rZVHsn3aMQxm9iLmVAjOknXv53d/4FXYfb19iXy0wuCQ49l0sZHXPc+ZnDsM9treBUrT1WjGcusbBsvMc2EP2s+eP49mJ+cBtWRhlmHHQTctdkbPIIGZorvjCwzgwk8b4YDBziCkSdhxsnnFgN5HC+S+ZH358MOkeJ1ul8H7opZwBw7RQMKzAh7AarB9MQpZIU42DZVFkCiYGQozDSw5rAICTy+XdSkGaQ87JH2CfHwW3Epvs2fUZH0wCKJbmZoEFbBu2avYfd4ht6Bhz8DOyo/NZ1+X04O4TuOH27YHaAyttXc6ttJQz8M8P7GvqcTcLrlvJtDxubI/moHgv1mhPzF3EdUKUPmWNg+1WkjwrsN3cJMOD+eKnQyYew6KekEPAfhhMi+L4Yg4bh5N4v9MlzY8Nw0kcnW9edA+7iViiHVBcZZ451uMyHNZwiK/WupTT3VDPegVpTZEw2hML7KNdL5h+M+ATpPdOLeGjdz2Nz96/B5osoS+uVGQOuQDNgQnxrIRBFNxKfs1h/ZBtHJ46NIe+uOJW8QRsQx+WRyCTEOYgkbZFK1FKi8zBF9jBXEqAbRwe2TuDG29/okRXYv291wQwcD5E93SHuXYK9zx9FNff9njJOK858Hk65ZjDpacPuWOdcJmdssbBdisRj58vjJIyf+d8Rg8UQ1kpDqB4sbO66a4Q3n3xaRjpiXn2OXt1L/6vV41DkZpL75kgzTOHj199Nv753RfiNzYOlQjS/A25mNPdlWe9biWg+SWUeTHSFl/tvx/cfQI/+vVRPHNkHv90/VZsHEnhR08dxcZP/CTQf00pLeY5cMyBXd8+pzBiQlOQ1c2OlmPQDcfIO9exP6GiP6HCsChOH+3xdnhTJW7y9TGHEOrQLuYws5zHr48UGbnfeDGGyaoHALZAfd+u4zjiuHvTeQOHT2YgSwTrAhg4H6Lrz+VoN3YemsOvXp4tuXf0ALcSAE/1AvYsXn7WKH58y2vx3ks3dFRsr893sAJgu5UkTMwVKeyLk8HMYZlrlHNkNoMzx7xlBwpmKXPIFrhSBwET7c8+fBkA4JovP9pUyshCWRVuUuiJKXjHK9c6416j8M6LxiETgp/smsTMct59eOt1K9mfTZp6M7slxJ0eBnlf5Mtjn3gT1g4kcPeOI+4+R+ezGOvzrjJ1k7qGOKjXNouhZ9eQ1TDqBFy3Eme81w8lsHBUL1kd81VJ076VuVSWObTeOHz5wX2468nidfFrDoy5bl7Vg+OLObz9FWvw/LEFfHf7IXz94f3YfXwJN05swOHZDNYOxAOziD05Rh3WihgL9d87vFuJX2DyASEat2Db6lRp1dzGYBFkDoSQbxFCThBCnuPGPkUIOUoIedr5eRv33icJIfsIIXsIIVdx4xcRQnY5732JOEsfQkiMEHKXM76dELKxuacYDN20oEoEm536/a89cxgvTS0Frhb5pvZHZkv9oUzcBooX+993TrironiZMgWKLDW1AF+ROQRfWmbE2PEqsoTf/Y31GEiqmF7K42N3252p1g8FayTVQFNkFIzmTTyuwYrJHvE1q5uIqxLWDtjHOpQqsrOg/85PHPzDxjSllPMwM5daJxPh/G4lwNZzgGJZcQY+lJV9V2xtEHIbtI05HF/Ieb53P7NJ5w0k1GL+zblr+/CeSzbgyYNzrpvXtCgOzWawYSjYZcTbP39Xw3aDFXD0h8ez65k3LE95GU8SnO/Z5F9H0jgAuAPA1QHjX6SUbnV+fgoAhJBzAVwP4Dxnn68SQtjZfw3AzQA2Oz/sM98HYI5SeiaALwL4bJ3nUhNY4b0/eO0mPPLxy/GbF6xFpmC6dWd4LHHGIWhlwlgIULzY/+eZY/jQ935tj5VZfcoSaajpz907juCdX3+seCxmqSDNw63V46PfvXEFJ5byeOrwPD79W+fhog1DdR9Ts5qvZAsmphZznuZDMUXCicUcHtk7XVLff8gJdQWCy4bzE5POGS+XOcSYW8m+Xv/x66NlwytbgaWcjq8/vB/fe+IwAG/W7GmO7sDChRliPkFaIsW2k2HMQW5TnsOsTwNi3/Uje6fxx9/diaWc3cBnrM827Gev7sUNr97gNl0CbOZ++GTa1V382DzWg1t/+/xIRJkx4+A/Dq9bqfheQi3VHPhkuEgbB0rpLwHMVvl51wD4PqU0Tyk9AGAfgIsJIWsA9FFKH6d2wO63AVzL7XOn8/oHAK4g/iaxLQBLgpMlgvVDSbcRT5AQuZwzXDE0aNJhLATwupDYyszfEJ2HKje2gnvmyDyePDjnTg6sVAcvSPNg58HCNhlYrwkAePsFa+o+HsCmws3I6vzCz/fg7V96xA2xTWq2W+m/XjyBm771BE4uFzzfN98n2x/RtJjT3ZaMgH3NFjI6Lv37B/DIXjsRkTEHdr3+7icv4t+cSbpd+Pbjh/CZ+3aDgOB3t427xwQApw3bk+OZY17mwLMpVrmURfWEG4f2ZEj7kxKZ5nPD7U/gp7uOY3Ihh964gg3DKcgSwfnr+hFXZXz1Pa/CxRvtBcrkQg5zGR0bhoONAyEE77lkA0Z7Yy3pJVIL2L0axhzKag5Kkc27Y3Lnigo2ojl8kBByI4AdAD5GKZ0DsA7Ar7htJpwx3XntH4fz+wgAUEoNQsgCgGEAzU0d9kE3qTuhA+Ut9HLewEhPDPMZPbDiKGMhgNcQ9CdUnFjKe24APxRJgmHW775gN+N8toCdB+fwrf85gDefMxb6Py/bPIr7PvT6klUYM46aInkiYeqBpkhNqcy68/AcZpYLePKAPaknNcX1L1sUmFrKeaKqNgwXV9R8RMj+6WW87Z8ecR+wpGZPppOLWRxfzGHnIefznQmV/0z/yrfVWMza1WHv/8hlJe9du3UdemIKNo+VupV45pDUZPcc5LA8B4nAakNi1VzG2542WzA8Wsex+SxSMRnXbF2LC08bwCpHJzpzrBf/3w0X4cK//YXbBXBDCHNgYD0vOomiW8lCtmDi8GwGZ63u5TQH02M4EiGagzumMM2he0JZvwbgDABbAUwC+IIzHnQn0jLj5fYpASHkZkLIDkLIjunp6dqO2Aed0wmAIpULWk0t5wyM9JSWbigYFv76nudwfDHnWnt+YpnLsFIHZTSHBn2/TACbS+t4aM8JDKc0fPU9FyGMfEkSwTlr+krGGXMY7YmF7lstmtG20bQodjsBAv/llC2xNYfiNTuxmPcUYvtfr9+Ef7p+KwDvdTownUbesFxGdPpoCrppuSyRsS2XOXiuoXdyazX8xdh4pGIKrtm6ruT6+ENZk5rs1iDqZJ6DaVH3GQBsI5bVTTx/bMEdOzafRU9MgSpLJVoKYz+svAbTlsIQj0AfDtc4GCa+u/0Q3vHlR5HTzcAkOKCY+Q4U5yCNcyuxSKxIupWCQCmdopSalFILwDcAXOy8NQFgPbfpOIBjzvh4wLhnH0KIAqAfIW4sSultlNJtlNJto6OjQZtUDXu1X53ws5w3MOyEovIr4ueOLeDbj9vVJBkLiasyvv7eizDWG3NXnWEPO2BrA41oDizaYzZdwJ6pZZy9prfm3s9AMYyT+X4bgSpLDd/MB2bS7oP+0pQ9OSQ02dODYHop7zHGiixhm+OK4JkD+47+9C1nYf/fvw1b1w9AN6mb88DyV/zRSgAw12bmkNXNsouJIMTUojHOFEwkNMVlQaEZ0m3Ic1jI6uDJyVBSQ6Zg4kdPHXXH0gUzsJgeYBuTmCJhwskKH6rAaBOq1FHjkNNN9zrkCiaOzedQMCzMpgue8hmePIcAzUEJWLR2ovheXcbB0RAYfhsAi2S6F8D1TgTSJtjC8xOU0kkAS4SQSx094UYA93D73OS8vg7Ag7QNhUR0y/IIP4oUbhyWcjpGnBuTp4S7udBXnoVcff5qjA8m3Abw5Y2DVNIPohYw5jCbLmDv1BI2jzXW3YtVjm0EzchzYK6E15wx7I6lOLcSYIcF+ks4M2bBFz5kWkRfXIEsEdt4GUXmQKm9+mafzX/mXJMLCFZCTrfKuiGDwDO1TMFASpNdFhSWBNdoIEQ1mPXpDQNJFROzWdzx2EFceNqAOx6U9czQEysmNjK9LAwJVUa+g8aBPYuAff+x4pOz6YI3QzoklDUo90jtYJ5DNaGs3wPwOICzCCEThJD3AficE5b6LIDLAXwEACilzwO4G8ALAH4G4BZKKfsmPgDgm7BF6v0A7nPGbwcwTAjZB+CjAD7RrJMLg2lRUFo0CEC4b49SiuW8gT5WIZGb9PikOX/oKH/Dl4uVryXePKebnoxmoKg57Dq6gEzBxFmr6zMOTKC+9PThCltWhu3maNA4HFuEKhP83bXnu2MJVS6JsvJncrtdwXjm4Dy0zHWmyXY0Fb/K5PtX8J85HyG3Uhj8oawJTa7YA1yRW5/n4C+COJTSUDAtbB7rweevu8AdD2MOANDjMFpFImW3A5yyJx00Dgu8cdAtzDrGYT6je6OVPKGs/BxUGq3UyaKCFQVpSum7A4ZvL7P9rQBuDRjfAeD8gPEcgHdWOo5mQndzAUqZg791Z1Y3YVH7Bo4pUhnm4F2h8RNMec1BqnoF9/n792DHwVnc88HXuWNs4tt+4CQAYMuq+ozDG7aM4gd/9GpctGGwrv15aErjbqWTy3mM9MRw+mgPLtsyil++NA3JWfXz8BuHOFe+hGEpbyCuSp7scN20POIlHxLLT87tZg7ZOoxDTLF7PVgWRbZgYlVfzK1eGha9Y0crtXYi9X9344MJaIqEf/69Cz0JimWNg/PeQFKrqIXFlc4aB37hltNNV6+azRQ8eQ7hoazheQ4iQ7pNYEJcNfHELDu6J64grsruhaWU4kWeOUj+SYufbMIJmuqU5K0GU4s5HOPKe+d0010x/vqwXaKAjw+vBYQQ11/fKJqR55AzLHeSvOP3f8N96P3lS/wrZMVp1M4zl6Wc7gnVVWUJFvUmN/JGhp+sMgWzrtV8vcjX41biXA8Z3c79YN9LOiR6px0Z0swdxIIu/u83bcaH37wFawcSsCwKQmyXXjnjwBj4YAWXEuAI0h1MgvMzB6ZXzXPGoVA2CY5pDsV5yc3Wb0Ff9ko4JWsruVnEUoDw41vFswQ4xhzYRTq+mMNSznCFXD/4yaZchrRcw0NqmNS7Is55Q2BPG0p6JsFOgfn0G0G2UJyQJYm4kwQ/oQOlzIEQ4jHiALCY9V4nVv2Sf5iTPjfg3e9/Nf78bWcDaK9rKWfU51YCbIOYydtuJdZrOSzLux3RSmxyZGHTfQnVjTiSJII+514tpzn0usahcng167PdKSxmvcmycx7NwXErmXa00uq+OCQCDPcUz4sZB75kClsodIIRnZLGwa1cWgNz6HWYAxOTWPjjK50aKP5kH3bDxxQpNGKE/d9qmYNhWYFROAznrysNUe0EmsEc8oYZuIJezvuYQ0Dzl5gvz2LRxxzYw8cbh5TPyFy8acgtV9FO11LO1zqyGjCd5Y++sxMn0wUnz8FhDvlyzKE1q9Hdxxfxy5emcTJdQE9MwagT6ee/nn0J+xh7QhZY/Hv9VTAHliHdicY4gPd+SucNd/E2my64C0CWIX31+avx4MfeiDVcE7CgPAdWXaETRu+UNA6slhEvIjMq5/f/7zpqx2SvG0g6Td7tfWec3g4sZ8Df64HRwUqrwFryHHSTomBa7o3GR0cAwHlr+6v6nFZDkyXoJm2oqmnYJLmc955zMuD7LWEOOcMtxw0UHz7euAatXll/h3Yah6xee6Mlxhwef9nWnewMafsz0vn2M4er//ER3PitJzCfsbvr9SVUEFLa6Ywxh2o0h2rcSglNhmnRjiSMAV7jMMm5f09w7U+ZIB1XZWz0lUFhi9Ugt5IwDm2CW38oKEPat5q69+lj2DzWgy2rehBTipMOi40/b61tHPxlN9jDWSlmXa6hfAZjGOxGWfS5lV6xLiLGQQn+LmtB2CTJmBxbhQZF5fiZg605cG4lZhzKMAcAblvSuXQb3Up1aA5BEVyXnz2GnpiCG1+9MXCfdmgO85kCBpMaBpIqYopUIiizCLlKoaxAdW4lNxghoKx+O7CU05FQZSRU2dOw6MQSpxMaJgqmFVhaXFVKmYMqS1AkItxK7UJQxUvXOHC+8qPzWTxxcBbXbF3r+LKLkw5jCledtxo3X3a6J+QSsHsC2L/LGwdVkkoipMLAjJprHEqYQ0TcSk0IvwubJC/ZZIfaMpdPkFupoubgrMx4H3EyYIIa6gBzyOmmJ9GvGvhX5ElNxlhvHM99+iq8Yjx4wSDXECVXC3gX6dRiHgNJFReeNoBXnVYaBVcLcxioUnMAig2d2o1MwUQqJiOuSpictw1CXJU87U+Li5vSaxxUeI9t2wmh/ZSOVvKEsgaUz9jhFGp709mrANjCMhMnp5fyGEppiKsy/vxt55T8D7YSrdR8RJEJLGq3wiynTQDFlTjrT83cIl9/70V4YXLRzeLuNNjNXY9xWMzpyOTNULfSF9+1FX86n8Vf/ngX9p4I7lgX8+WjLOV0dyICisymnOYAFCekmQqtR5uJeiKj/KvKSjkOQOuYw+HZjOf16aMpvOeSDXjPJRtKtnU1hyryHKqKVuqgeAsUgyhMi7rMYdNID/Y75T8IKQaRBM0LQZoD4BiHDpzTKWkc2KTlSYILiCfeO7UMWSI4Y8z2DfIdt6aX8q7QFoRklcyBubYMi0KrYBzYSo/F57Mb7bItI7j6/NVl920nNIXVg6l98vnC/Xvwq5dn7Uky4LtLaDLOHOtBT4y19AxwK3FRK3nDDvcNdCtxmkPQ52iKhM1jPW7f5laD+ctrLZ/BugwyQbaaAAepRZrDy9PF3uHLeaNsVjNzK5UTpFN1MIdOGQdW10o3qas5nD6awotOtn9KU9xou1gAK3ZDWX1h8QlN6kjm9ynpVmIPhabwSXClgvTeE0vYOJx0aX5cKU46M8t5jPSG37BsRVvpQWeieDUNf0o0h6wORSI1Tyathht3XwdzOJkuYGopZ7uVyrhX2GRfiTm4pTMCBOmFrO6ynFSAewoAXrd5BE8enG2LIMj+R62aw2VbRvHo/74cn3jr2VXv06popZenlz1/DyTCnxHXrVSG6fTWmOcAlDYUahdsnUzxML8zONGZv1eDXIdu4T3Fu0jsVJ+KU9M4BOQ5yBIBIV6f6d6pZU+tohivOSyXZw5ssqkmWgkIrgZbctzONv4KnG1of1ETXLdSHeGsBcPCcs5wHrTw25O5IoKMQ1yV3etULJ1RqjlkCibGeuPO5wRPUK87cwQ53cJ/75nGJX//X24TnlagaBxqN/bjg0nccOkG/OO7tuK6i8Yrbt+qaCWeOQDl6yG945Vr8fGrz3LdS0G45PRh/O628VDthEenmUO2YCKhSq5xH0iqWM2FqvLus6AFQJAgbW8rjEPboAd0SyOEQJUk972cbuLgybQn45hFK1FKbbdSmSJ1QRU+gxDEWMJguMyhmIqv1ShetgOxBpiDblowLLvXcznm0OMyh+BoJWZAi0X3SvMcAOCs1b14zRnDoWVDLjl9GJoi4cN3/RpTi3n8dNdkzedULdye43UyQUkiuPbCdaEtYnkoEmko1DgM08t5j0HwN5XisXEkhT9+45llFzdDKQ2fu+6VVekonQz7BICMbjdaYvft+GDC052Qj8oKYg6shEtQSZhOsKFT0jgwF47fQqsycSfgAzNpWBTYzNUqiqsy8rqF5byBnG5VMA5VMgfmVqpila37opV00/LUfo8K+HIOtYLfp9x3V445xBTZTRb82fPHAcAj1vOtNweTGv7tf10a2OOC/Z9v3rjN7XEc1qqyGWBGP8gf3WzUEkJdCxayuqfpUjVaQbOQcN1KnSmhwYoesuMYH0h6zt/rViq9xts2DOLr770IF673LlQSquwGobQTp6ZxCMhzAJzy2c7kdOikTY/5fr0xJ/OXhbEOpyozh0r+43JNhvxgx8ZWmAXDqqt3Q6vRSN9bvrdzud7bv3nBGvzZVWcFrkzjqs0cdhycxdf+ez+uu2gcF3A5IPyioJzriuGyLaN48E/fiLX98ZbW1W/ErVQrWhWtNJ8pYN1A3H22KpXZbiY6zRxyBdNTOdhmDkXj4HUrlV5jSSK4+vzVJVGLCVXuSHhu9GaWNiAoz8H+m0B3HhgWbcB3n2IXlMUtl7vxq06Cc6vBVq85sBWmv5tdVNBInkOeZw5lDN+G4RRuuTzYJcGYwz4nhPAjV27xPHC8W6kadwWD2oRqs+XQTuPAekg3u9TEQtZAf0Jzn42BMm6lZiPe6Wgl3dYAWbHD8cGEJ3mPr6NUKcSdR6dKkUdvZmkDgvIcAG/BuOMLOWiK5ImSYCyAMYdyRe7iir2CKOdztf+nU/CvjmilyDKHBjQHfp96J8m4KiFnmDi2kAMhpQ2MTuMa1dfyP1RZaklphtl0AbsmFlyj347oM7aybyZ5oJRiIVtAf0J17/tqaiI1C+z5bDdzmFnO4zmnn0pCk93SOuODSc8C8spzi+HmtbgO7eRbYRzaAj0gWglwWnZyzGFNf9yzMmUiUtE4hK86JYngrve/OrR8gfs/nWOohuL7M6QLUWcO9biVuH3qnSRjih1rfnQui9GeWMl31BNTcJqjHQRpFmFQ5cYLCgbhCz/fg3fd9jjSBW9pkFZCdqPkmnc+do4FxUBSdX3tlRZHzYTLHNrsgvnKQ/tww+3bUTAsJFTZLcI5PpSAKkvuPMEvUmp5bkW0UhthBFRltf8uPvzHF3JYzTUkATjmsFzZOADA1vUDFVdO7CGtxl3BHmSPIB1B5tBItFKzmANg60ZrQprSs6ZI5VxXfmg19N6oBTsPzSFTMPHScbt5VLs0B6C6RUm1YNUD+hMqBpMqkr6e362GKktQ5fbXIZpZLriNffjFxjrn3mOuJUUm+Nf3XYILxvvdAIdq0KlS5NGbWdqAoKqsgLfO0eRiFmv6/cbBvvAzVbiVqoUaUg3WD0opF61UbBzir6sTBTQiSHuNQ33nxozTwZMZrPEZeIazVtshytM1lMaopbx6tVjOG3hpyjYKzzoVgNvhVpJryK+pFqwcyYDTt2FtiGFuJdq5ymbdBPkaZwlNwbf/8BJ88q1nu/PDoCNKa7KE120ewb0ffF1NlXcTqs2Eq63B1iyckuUz3H4OvqgAVSFuqemphbwngQUoTjpsQqnU07YaFDOkyz+k/PtF5kBL2E8U0EiGtF5lKGs5uEZ8OY/V/cHG4fKzxvCVh/a7Bfyqga1JNVdzeHZi3vX775qwjUM7Qlld5tBEDcVlDkkVf3rVWaHlwluJRlfZuyYW3BItlfD5+/fgsf0z3ug3VcZZq3s9vdyZbllN/kkQitVmLfS0cTF4ShoHN0Pa90Urkr0ynM0UUDCtUOYwvZRHT0xxV1+NoJgEV34i5ZkFK0kcVUG6oTyHJriV+MnVfw0Ztm0cwsN/9sbajIMiIZttbvlu1t51MKni+CKr5NkG5lDloqQWMObQn1DRF1c9iYftQkJrLGHsHV9+FABw8DNvr7jt04fnsf9EGmsHivdYkIbFqvvWu5Djy4I0Y0FaLaI3s7QBYdFKmmyXMT7uhLH6V50uc1jKh7YHrRXV+n75aKaoh7KqzQplrXMFzU9KYcwBsMNhK1XC5dEKzWHv1BLW9sex1ekoCJRvK9sstEJzWMjapc3bmSu5xO8AACAASURBVPjmR4IrndJqvDyTRlY3Pc18gtxFvFupHnQqfyN6M0sbwIyDGhCtpJuW6wNe5/OZsgt/Ml1oWq9mxl70Sm4ljjlkuWilKDKHWB3M4f7nj+Nff3WoKdFKr9886q7g1tQg/FVCKzSHI3NZrB9K4hXjtnHoiSltcRW2IlqJZw6dQrs0h6Wc7pZyX+LcZ0H3bKNupU7VjDol3UpsteR3CymyhHTBxI+fPoZ1Awmc6yupwKKXTItWjFSqFtW7lYrv5/k8hwgzh1r88+//zs6SsXrdK5oi4eE/uxz/tv2wZ0XeKFqR53BkNoM3bBnFBy8/E2/YMoqBpNqWQooyaU20kiKRwN4Y7UJclZoyiVbqr3JwJhM4HuRWuvLc1XbjozqNZqfyNyrOLISQbxFCThBCnuPGhgghvyCE7HV+D3LvfZIQso8QsocQchU3fhEhZJfz3peI8wQQQmKEkLuc8e2EkI3NPcVShJXP0GSCo3NZPLp3Gr994bqSm8Nu7mN/ZU0zDlWWz9A9gnS03UqyRCBLBAWzupv5xGIucLwR3/tobwwfevPmpjIrVZYa6m7nR043cWIpj/VDSWiKhIs2DOKM0cpCaDNQ7X1XC+azOvoT7TFuYWhW2Oe8w4I+c99ufOHne0ref3lmuWQMCDYOZ63uxd9ee35NLkweiQ7lb1Tz5NwB4Grf2CcAPEAp3QzgAedvEELOBXA9gPOcfb5KCGHf1tcA3Axgs/PDPvN9AOYopWcC+CKAz9Z7MtXCtCwQgpKLpUgSZpbzsCjwlvNWlexHCMG4I2A2y63EJvdKoax8TZ+oZ0gDtn+12on00X0zgfs3Q/BvJjSluZrDxJzdLWz9UPtDPuWWaA56WzOig9CoIM3wzJF5HF/I4esP78c/P7iv5P0DM+mAvVoTTOAK0lFjDpTSXwKY9Q1fA+BO5/WdAK7lxr9PKc1TSg8A2AfgYkLIGgB9lNLHqV3M5du+fdhn/QDAFaTFSw/DoiWsAfBW6wyruMp0iGYxh2p9v/z7WU8oazSNgyqTql0wj+0/WTLWjnDOWtEMzWE5b7gZ9kfmbNdELRFTzUItpeKrxUJG76jeADRPc/iDO57EB//tqdD3D53MBEYO1VKrq1ow5vD7//IkXji22PTPD0O9T+AqSukkADi/x5zxdQCOcNtNOGPrnNf+cc8+lFIDwAKA4TqPqyqYFg1clfJ5D2FheOsGmXFoEnOosvAem2glYjMHSmlkBWnAbhWar5I5TPncShKpraxFu9AMzeEz972IP7jjCQDAhNNvuZVlwMPACj5aTSy8t5DV21poLwiNuJX8RQh3lGkPe3g2g3PX9IFNGczd3Ir7dhWXyPn0kfmmf34Ymj2zBK34aZnxcvuUfjghNxNCdhBCdkxPT9d5iPZE66+rBBRdPLJEQi/yuGMcynWvqgVF3291eQ49MQU53XInqSj2cwCchjtVPqT+ZKk/fuOZ+MzvXNCKw2oIzaitNLWYx5QT+vjyTBqaIpXtKNgq1NKBsFrMO0X3OolGQlnLXVu/4Tgym8Fpw8V+DRuGUiCktmqr1WIopeGpv7oSAJAptC+xsN4zmXJcRXB+n3DGJwCs57YbB3DMGR8PGPfsQwhRAPSj1I0FAKCU3kYp3UYp3TY6OlrnoduaQxBzYBN1X1wJFdWKbqUmhbK6tZWqy3MY6YlhIau77o2oMoe+hIrFXHUJY8s+43Du2j5cfvZYyNadA8tzKFfm+vljC9jrhEIHIVMwkCuYWMjq+OHOCVy2eaRuobIRFDWHJoayZvSO5jgAxfLW9ZQiL/cM5n2a34mlPNZzVVc3jaSQ0sLnjUbBXFjtFKXrnVnuBXCT8/omAPdw49c7EUibYAvPTziupyVCyKWOnnCjbx/2WdcBeJA2u8i8D4YVXHaCMYe+MqsfJkg3LQlOrq4qK2MOq/vjWM4bbvvLqGoO/QkFi9nqVjnLOcNjrKN6TqosgdLy1+ovf/wc/p//fCH0/UzBREY38a+/OoTFnIEPv3lLKw61IpqtOZgWxWLOKPvstANxVYZp0brcf/4ACr7cNr/QOTpfDCRg2c8fuXIL/vFdW+s55KqgKRIUqb1FBasJZf0egMcBnEUImSCEvA/AZwBcSQjZC+BK529QSp8HcDeAFwD8DMAtlFJ2Nh8A8E3YIvV+APc547cDGCaE7APwUTiRT61EqObgMofwG/yV4/346JVb8MazmrOyZWylktDJ3me5FpML9g0a1Ym0L666SVGVsJw3PK6VqLIhFrBQbuJZzOqu4ByEbMGEaVG8MLmI9UMJnM91qGsnmh2ttJQrFt3rJBpp+MMbh/PW9uHarevcMttsMQbYLiXA1ooGUxo0WcKWVT1487mlEY7NREKTkWkjc6i4/KWUvjvkrStCtr8VwK0B4zsAnB8wngPwzkrH0UzY0UqlE5DiMofwr0WRJfzJFZubdizV+n5d49DPjIMt4kZ1Iu1PVGccKKVYzhvYMJxyawtFsZggwJUFMS0kEKxJ5Zwe42FgD/fMUt5tKN8J1Jvn8LG7n8FIr4ZPvvUczzgrutfOtqBB4EtN1Kp/sGfs89ddgN951ThkieCyLSP4wzt2eI2DE4I8PpjA2v44RntjbcntSKjNCdOtFqdshnQwc3CMQxsLhlXb7Id3KwHAMYfaRjFDGqjeOOR0Cxb1hg63QtRrBrQqWF5WN7GU00EpDZwwmHE4me6seCvX0GSKxzMT8xhOleoKUSidARR7gtcziTJdIabK7vzAtMUlzq00MZeBJktY1RvHh968BTdUaOjVLCQ1GZkouZVWIkLzHJyxVsQqh6EoSFeX58DC2o53AXPI6mbFRLilvP3QedxKcvTCWIHq+lRkCgZ0k4ayh6wTbTKznO9ouG690UrZgonFXOm5sYziqDCHRtxKfAQgy2fimcPkfA5rBuKQJIKhlFZVee9mIKEpXSFIdzXCopWYT5mtPtoBSSKQSPV5DkXNgblgonkJmTBZKWIpnbdvdp45qEq03UphNaMsi7phlHPp0vOmlLorv/mM3lG3Ur3RSpmC4WluwxAV5tCI5hAUAciYA3/OSzm9I+XIk5qMrB79UNauhmEGu5VYjFQ7mQNg6xiVm/3YN25fQkVClTlBOpoTKZskKrmWlp0VGW8couoqUytUm+XDHVkfYf/7fBxeMtZ9zCHj63zGsJCxy3X3JzocytpAeWt2XXnmGsQc0nkTqQ5cu2SbBeloPoUthmHRkl4OQHG10Y42jTxUiVSsyup2r5MJhnu0rhCkgSqMQ77UOESVDVXSHPgEpTlnsvS+732wo8EcqjcOpkWRNyws5Y2S/fj+0Z0EK6tfi3GYWc5jOW+4biV+wdWjKSDEqzks5Y22Nt1hiLdZkI7mU9hiGBZ1BTkezB9cS3/XZkCWSNXRSqosYaQnVjQOEZ1IXbdSHcYhqoJ0Jc2Bd2WcXA4yDl6XQCeZg1xHngN//MvcSno5b+DQbAZJTe74YsV1KxWqd5e995vb8fmf7S4yB+4cJImgJ6Z4dJZ03kCqA8YhqbWvPzZwykYrWSX9o4Hiw91uoVCVparLZygSwUhPkbp3+mEMQ7XMgZXOGE5pIMR27UX1nCoZB361GsQc/Ku+bmMO/PEv5ooVWD9619P4+QtTzT3AOlGPIH1kNoMNw8miIO27//riqs+t1DnjINxKLUaY5sC++Ha7lRSZVCFIF/teD6ei74JhuSKVmAProtUTV9zvParnVGx/Gnyt+Af3ZLoKt1IHJhgGFkJdi+bAHz9v9FnJ9dV94S1Z24Uic6hOuM3pJtIFE5mCyUUree+/3rjicSstd8itlFBFtFLLYYZoDpdusovBnre2vVmrilSNIF3UHMb6op9NXCtz6IkpLmOL6jlpSnnNgX9w5zjj8IWf78H1tz0eoDl03q1US7QSf/y80e+NK3j95hF87+ZLm3eAdYIJxdWusBnDS+eN0HplvXHFjbozTAt5w+qMcdAkZApGXXWj6sEp6VYyLIpkgObwzm3juOKcMQy3uUqmzRyqaxOqSBLGuBVaVDWHmCIjrkqBMfE8lnMGJGKzNbbqC8pBiQJq0RxmOePAmsW8Yp3X9ZLsKHOoPVqJD6Nkk6VlUZxcLuCCi/qxaSTV3IOsA3FFBiFAukrjwK5TOm+GupXWDSTw6L4ZWBZ1Q68741ZSYFE76q0VTYX8iObM0mKYIUlwhJC2GwbAflD1ioI0xxy6ILIHcLKkM5UF6VTMrmbJBM1Otpksh4rGoVDM2ZjhBOmNw3axxm88csCzfUeZg1y75sAmRgBuUcX5rA7DohjpwHMTBEkiSKoyMmVKmPBg+SjpguEK0v5n6vWbRzGzXMALk4tYLjCm2/5r10iYbj2I7szSQhgh5TM6BUWSYFahOSgSASHE0/wjqi4YwM7mPubkY4RhOW+g11mFJVQ5skwI4GsrBV8rxhxOG0p6iu+FiaPtzqfhodQhSGd8gjRgh4EC4Z0TO4FUTEG6Ss1h1nEreTQH3zP1+i0jAICHX5p2o7Q6JUgD1bvMGkV0n8QWwrSsSLkukjG5bLE2wJub4WUO0TkPPzYOp3DwZHCvXQY+8iOudj4Ushw0N0O6vFtpw1AS08t51zc8n9HB325sYdKJRCqGmFL7RMO7lRayOibmMnj6sN2ZLCrMAXCMQ75Kt5Jj3NJ5g0uC896DY71xnLumD4/unXGf004Yh4QwDq1H1JjDcCoWGN3CQzctt6WoJ5s4wpPpxpEUjs5lkTfCb+aT6QIGnZr4SS3izKFKQXr9kB0WeXQ+i6nFHPKGhVeuH3C3G0qx8+1sKGtPTPGEaFaCX5B+3Wcfwsd/+CyAaDEHO+SzWuZgM6C8YSHnnF/QPXjBeD9emlryBFC0G26YrjAOrYNhBmsOncJIj+bS8zAYZpE58D5RNUBYjwpOH0nBosX690GYXMhizYDtJktocmTrKgHVaw6nOT2hb7j9Cbz3m9sBAFs54zDo5Ad0kjkAdsOq+WwBV//jL/F73/iVR0QPAju/gaRaEmgQKeagKRWZOAMfVTaf1aFIJLAz36aRFE6mC27Zmk7kqLDFRLsS4U7JaCUzJEO6UxjpiWE2XYBl0dCWkYZluf0meHSixWS12OhErxyYyeDMsd6S9y2LYmoh75Yhf+8lGzAxX16j6CQqaQ4Z3YQiEdfYHZgputQuGC+GRyech7yTzAGws9iPzWex+7jd1vTOxw7iI1eGd6ZjzGF1X7wkRLlZnRGbgWRMrmjoGPjt5jJ6KBM/fdSuvLrr6AKADjEH163UnuJ70bmibYRhWZHy1Q/3aDAtioWsjsGAWvmAHa0UlNUdZWwaZsZhGUBpl6zZTAEF08IaR2B/zZkj7Ty8mqFVwRwSmuzRhBhW9yXc1wnV/pxORisBtnE4dLLI6ipNqOmCAU2WMNobw0kf041ShFkqppRlqzw8xiFdCI3+Y2G6u44uArCTNtsN4VZqA8Ka/XQKLHw2qJInQ043A5lDlNGfVDGU0nBgJvhBZT0pVvcnAt+PGtiCIkyQzukmEqqM0Z7STGG+z0FSUxBTpI5fz7646tboAooJiWFgxm+0J+ZhRVFDqoYyE3OZgntd57OFUOZw2lASEgGec5hDp6qyAu0TpE9R5hAxzcFhC9NLBZwZ0Jr64Ewav3hhCledt9ode/Bjb8DL09F9QBnGemOYDTF6bGJaO9D5sgvVQJYICClXldWePPsSCjRZ8pT2Hkxq+Kfrt2JiLosXji12tHQGg7+CaiU/faZgIqnJGO2NuZrDR968Bb/zqnUtO8Z6kKxScygYFo7MZrBpJIWXppYxl9ZDAyI0RcL6oSQOncxAlYkb7dVOMOPQLs2hu5aiTYJpRktzqMQcvvLQPigSwV+8vdi39/TR1jc0bwbKNUVn4h7THKIOQghUWSqb55BQZRBCSqJ3BpIqrtm6DrdcfibWDSawbqDzbInvlT6c0irmBmQd48CLz+et7cN6R4CPClIx+56rVGZix8FZpAumu+iaz4QzB8AOsAA6V5WAaQ7CrdRChPVz6BSGnSqrQWWeAeD4Yg5bVvd6kt+6BeUqSU4u5Owqs6noRLpUgiZLZauysgd4pDeGM0ZTIMQuQc6XO/jYW7ZEog4R381sfCiJ5YDcgLufPIJfvXwShmlhOW8gqSkY6S3qYoOpzvZvCEIqpri9J8Kwf3oZ//LYQWiKhCudRVa6YJad+G98zUZ3u06AaQ7CrdRCRE1zGExqkAhKRD6GxayOgWRnO2zVi4SqYDYdHIF0fCGHVX3xSEdc+RFXw41dpmC6D/CfveUsAMDH/v1pEHjPL6bIiIBXyXUryRLBmr449k8vl2zzuft344LxAXwhp+PJg3O4eOOQR1MZjOB9ycJM03kjsAYRpRTXfe0xzGV0vH7zSNUtai8/awyXbBpCrM1VmxkUWYImS8i0qVVoBG7R9sOIWIa07DQqnw5hDos5A6cNd76oWT1IanJJ+eQvPbAXMUXC1GLOU2G2GzCYVDEf0KvhyGwGL00t4Y1n2aLR6zbbkVfrBhJtrcFfC1hDpsGkip64UiJImxbFbLqAPceXcNQJMX726LyXOUTQOPDC7XDA+wtZHXMZHesGEvjzt53jCSmu5DL6focZX0KT3WS9VqMh40AIOQhgCYAJwKCUbiOEDAG4C8BGAAcB/C6ldM7Z/pMA3uds/yeU0vud8YsA3AEgAeCnAD5EW1SX1rIoLIpIMQfAzpotxxyiFEdeC1IxuYSG/8MvXgIAnLOmD2u7RG9gGEiqgY18/uqe5wAAH/PlCbz/DWe0rVBarWD31EBSQ0+sVMSdzxRgUbiGIa5K+PO3nYNRR3MgpGhgogQm9odpKEdm7fP5q988B+es6fO4CStVHOh0yG47G/40Q3O4nFK6lVK6zfn7EwAeoJRuBvCA8zcIIecCuB7AeQCuBvBVQgjjZ18DcDOAzc7P1U04rkCwEsVRYg6AnVQTdNEppVjM6ZF8CKuBv0EJ3zRlIVPoOnfZQFJz+yXzODCTxuVnjbmJfwxXnbca12yNVjQPA3MrDSU114jzazJ/SZcffuA1uPHVGzGY1CBLBP0JNXKLLIAzDiH1lY7M2aHV44O2kK7KkmsUolzlGLB1h0wXRytdA+BO5/WdAK7lxr9PKc1TSg8A2AfgYkLIGgB9lNLHHbbwbW6fpoNVoex0jLkfMUUOXGHmdAu6ST3iYTeB1blhk85LU0W/9lxGd0tJdAsGQ5hDOm9GIjy1FrAFx0BSRVIrFXH5ki4SAc5wsoQliWA4pUXSpQQUkwvDuhCyBDk+yortE9X+5QwJTe6aaCUK4OeEkJ2EkJudsVWU0kkAcH6zyP11AI5w+044Y+uc1/7xloD1ao4ac4irUmB0BSuNzIcddhMSmuw2KAGAPU6pBsAO/QzLCI8qBkOYQ6ZgdKTGfyNgxmEopbnlIHjXEh89t3Ek5RF3R3pinsS+KIFpCH9wx5O468nDJe8fmcugL6548jzmHUOyNgIhxuWQbKNxaHTGeS2l9BghZAzALwghu8tsGzQb0zLjpR9gG6CbAeC0006r9VgBFJlD1OhwXA1mDmz1063MIcWJg3FVxp7ji573ozrBhGEgqSFvWG62MGDrWHaCWHcZcDY5DqY0zhVjuHkMTAMbTKolrXPf/4bT3T7UUQOfvfzLl2bwrt/wzhVHZrMluRmf/q3zsJDR8Yev29SWY6wXCU2p2Hq3WWjobqaUHnN+nyCE/AeAiwFMEULWUEonHZfRCWfzCQDrud3HARxzxscDxoP+320AbgOAbdu21SVYR1VziCkScgGlrYvMobsmUQY2YWYKBoZSmsetBEQz2qUcmBtsLlNAQrNXmcwH3Okqq7Uipcm44dINePM5qzC9ZGere5hDugCJAD/649ei1xcQEVUdBfD2WggqJX5kLoMtvkKQN756Y6sPqylIqBKOL7QnlLVu008ISRFCetlrAG8B8ByAewHc5Gx2E4B7nNf3ArieEBIjhGyCLTw/4bielgghlxI7FOBGbp+mo8gcorXqiasy8nrRrWRaFLppue0YuzVayZ/VObWUwzDnSupG5gDAozuwlpTdxhwIIfjba8/HRRsGA0XcmeUChlIxbBpJRaokdyUMpzTcfNnpAEp1h4MzaRycSeOs1aVVgrsBSS04cKUVaORuXgXgP5zQLgX4/9u79xi56iqA498zMzu7s4/uUnf74lUClVJaQNgQjLykUaERNIARggqCUQhEiTGREIwPIKBRo6Ch9o82PgIKEiIqFp+1CooUrEJ5UwggbbcPdrfbdh+ze/zj3rt7d2a2u3s7M/f+Zs4nmXT27t47v5M7nTO/N/eq6noReRK4X0SuAd4APgagqltE5H7gOSAPXK+qQZTXMTGU9Xf+oyKSWnMobFY6/3sb2dE/yK0fXQ64XHOYPKtz98AwSxe0sfu1PYC7NYdwv0MwVNe1mkNYuFnpoX+/xdIFc9g9MERnq1v3B7ykd/OqE3jslV3jNe/A3X9+hWwmxRVnRGuWjlsuW7r5uRIiJwdV3QqcXOL4bmDlFOfcDtxe4vgmYHnUssxGsFdz0vocGgs6pF/u8ZpfXO9zCGoO+4bzjIyO0XdghOPmtfKEq8mhpbjmEEwei2MDmHJpDc0NuOWhZ1m1YiG79w2PL+3iojlNDeM1b/Amv/1q8//4xBlHM6/Nrfk1geaDzNAvN3ffzRGNj1ZK0NpK4A1lHcqPoaqTJtoEY80L23xdEXxg3vTgM5y31Bu4FmycAg42K+WCPodQzSHGfYXLJSh77/4R9g2P0rN3iF0DQ5x0RMc0ZybXnFxm0n4VG17sIT+mXHTKohhLdWhy2TQHRkaLPicqIVkN71WQT+xoJe9WFA5nfXnHQNHCbS4JmpXe2LOf+zd5I5kXtjfR1pihqcG9uII+h97QBLHgm1xzzJv3HIpWP4kHK+Xu6B9ke98gCxxb3iTMqzlMJPHfP7eDrrZGTnE44eWyaVS9+U+VVn/JYTShfQ7++vBDBTf9+e39zvY3wESzEkx8iM5tydLR0uBckxJ4yyu0ZNOTaw7DtVBz8O7T273eqKWtu/YxlB9L/Lj/g5mTm9jrWlXZ+OJOVi6d59RCj4Wag93gqtDvUHfJYXyGdMJGKzX6NYfB/OQlDLbu3OdskxKUHsHT2ZplbnPWuaUzAl1tjewMzR7eP+R+zSGTTtHUkOItf2mJYb8G63RyaGpgYChP3u/r2juUZ8l8N0cpBcJDwyvN3U+diII+h3TC+hyCmsPgyGhR01LhmGyXlPrAnNvSyKoVC6fcFyHpFrQ3sa13YhnyoOYQx6bz5fSulkZeLdhdMAmbEkUVrCowMJRne79XI5rvcDMZVHfDH7ffzRGMJngoK3h9DnsHJ38r+OCJyd/xbSqFa9WkxOvU/dw5x8ZUokO3qD3HE6/tYdfAELmG9HiHtGvzHAp1tTWy+c3eScdcrzmAN0ppfL9yBzfMCqvmhj9uv5sjSGqHdPAhumtgaLxKHwhG+biocETF3Jas022+4NUcdvQPcuk9j3PWki5amzI0pGXa5Z6TrnA2cVNDyrmFEcOCvrr+A3l6+r1mQBd3Uwyr5j7SdZccktrnENQcbrj33+PfDpYuaOOYzhZn2+YLNWZSzHVsob1SFnbkyI8pr+/ez6KOAZbMa3W+1gAwryA5LOrIxb5/waEIVhXoHxwZb1ZybXOpQtasVEFJrTkEQ1n3hIZIfvXCE3nvsaX2snLT4YflaiM5hL59bu8bZFFHbnyBQZcFNYfGjDch0+X+BgjXHLzkMLclS2PG7fs00SFtyaHsRhO6ZHepN63rHZyBj3cfyfz2JpYtnOP0iJ7AgtDuddv6Btk3lHd6GGsgSA7B2lfHdLq5NW0gWHW2f3CEnv5B55uUINznYKOVym4koctnBDWHsFaHh7CGffPSk+IuQlmFO2kPjIyyrW+Q5lpIDv7ienNyDaz+xGlOzkMJC2oO/+sdZHu/2xP6Ajnrc6iciZ3gkpYcarfmUGsOa26gMZNieHQMVXi1Z4AVR7RPf2LCBTWH9lxD0XanLmptzHDmcZ2s2fgqgyNjXH76kdOflHCdrVme/8b5Jb9MlluyemWrIJ/QDulS2xNackgmEeHiU4/gMn8Tmb1D+drokPabXdodnpFf6LsfP3l8kb0lDs8XCogIuWy6KgMF3H9Hz1Ji+xwKag7plFTl24GJ5o6LV/B27wHu+5e3DeVRBTuLuShYnruWksO8tiY2fOlc+g6MOLfIY9zqLjnkHelzaKnStwMTXXhewCWnJXdntJlqzKRZuqDN2Y1wppJKiXN7lSdB3SWHpPY5ZNMpRCBYVqnN0f0b6klDeiKhF+6x7Kr1N54ddxFMQtRdckjqPAcR8faRHhkjm0lZf4Mj1l7VTVer+0MkjSlUd59ASZ0hDcFWoWMcP7/N+hsccd5Sd9e9MuZg6i45JLXmAN6IpWwmxR0Xr2AstGy3McZUW90lh6SOVgKv5tCRg+WH10b7tTHGXXWXHE496jA+v3JJIlfQbMqkx/d1MMaYONVdcuhePJfuxXPjLkZJjQ0pSw7GmESou+SQZNeec2zJmdLGGFNtifkkEpHzReRFEXlFRG6KuzxxWLViIStPsNEvxpj4JSI5iEga+CFwAbAMuFxElsVbKmOMqV+JSA7A6cArqrpVVYeBnwMfiblMxhhTt5KSHA4H3gz9/JZ/zBhjTAySkhxKTToomgUmIp8VkU0ismnnzp1VKJYxxtSnpCSHt4DwThxHAG8X/pGqrlHVblXt7urqqlrhjDGm3iQlOTwJLBGRY0QkC1wGPBxzmYwxpm4lYp6DquZF5AbgUSANrFXVLTEXyxhj6lYikgOAqj4CPBJ3OYwxxoCoo6t/ishe4MUSv2oH+mZ5uU5gV4RiRHmtap1jMUV/najnWUyeWowJaiOuTqBFVafvtFVVJx/ApimOrynXtWZwXpTXqtY5FlPEnj/eswAABZBJREFU17GYLKZajWs2MSSlQ7qcfp3w16rWOVHVWkxRX8diOrTXqtbrJDmmQ3mt2ONyuVlpk6p2J+1aSWExucFickctxDWbGFyuOaxJ6LWSwmJyg8XkjlqIa8YxOFtzMMYYUzku1xyMMcZUSM0mBxFZKyI9IvJs6NjJIvIPEXlGRH4tInP841kRWecf/4+InBs653YReVNEBmIIY5JyxCQizSLyWxF5QUS2iMidMYUTlL9c92m9f2yLiKz2l4GPRbliCp37cPha1VbGe7TB37Nls/+YF0M448oYV1ZE1ojIS/7/q0tiCKf8ogyzcuEBnA2cCjwbOvYkcI7//GrgVv/59cA6//k84Ckg5f98BrAQGKiFmIBm4P3+8SzwN+ACl2Pyf57j/yvAg8BlrsfkH7sYuDd8LVfjATYA3XHFUcG4vg7c5j9PAZ1xx1aOR83WHFR1I7Cn4PDxwEb/+R+AIMMvA/7kn9cD9ALd/s//VNVtFS/wDJQjJlXdr6p/8Y8PA0/jLXQYizLep37/bzJ4SS+2zrRyxSQircAXgdsqXOSDKlc8SVPGuK4G7vB/N6aqUSafJk7NJocpPAtc5D//GBMrwf4H+IiIZETkGOA0Jq8Sm2SRYxKRDuBC/Dd9gkSKSUQeBXqAvcAvq1fcGYkS063Ad4D91SzoDEV9363zm5S+IiKlluqP26zi8v8PAdwqIk+LyAMiUhN7/dZbcrgauF5EngLagGH/+Fq8ZcM3Ad8DHgfysZRw9iLFJCIZ4D7gLlXdWtUSTy9STKr6IbwmwEbgvGoWeAZmFZOInAIcp6oPxVHYGYhyj65Q1RXAWf7jk1Ut8czMNq4MXs37MVU9FfgH8O1qF7oi4m7XquQDWMwUbbXAu4F/TfG7x4FlBcdi73MoZ0x4b/a74o6n3PfJP34l8AOXYwKuw9vT5HW8D6VhYIOr8ZQ4flXc96hM90mAfUz0PxwJbIk7rnI86qrmEIyOEJEUcAuw2v+5WURa/OcfAPKq+lxsBZ2FKDGJyG14i3TdGEuhpzHbmESkVUQW+sczwCrghVgKP4XZxqSq96jqIlVdDJwJvKSq58ZS+BIi3KOMiHT6xxuAD+M14SRKhPukeMtWnOtfYiXgxGfHtOLOThX8RnAfsA0YwfvmdQ3wBeAl/3EnE5MAF+Ot8Po88Efg6NB1vuWfP+b/+zWXY8KrAqt/fLP/+IzjMc3HG2XyX2ALcDeQcTmmgustJt7RSuW4Ry14I3yCe/R9IB1XTOW8T8DReJ3Y/8XrvzsqzrjK9bAZ0sYYY4rUVbOSMcaYmbHkYIwxpoglB2OMMUUsORhjjCliycEYY0wRSw7GVICIXCsin5rF3y+Oc+VVYwpl4i6AMbVGRDKqujruchhzKCw5GFOCiCwG1gNPAO/BmxT1KeAE4LtAK7ALuEpVt4nIBrwlFd4HPCwibXhLrnzbXydpNd5y6a8CV6vqOyJyGt4yJvuBv1cvOmOmZ81KxkzteGCNqp4E9OOt6X83cKmqBh/st4f+vkNVz1HV7xRc5yfAl/3rPAN81T++Dvi8qr63kkEYE4XVHIyZ2puq+pj//GfAzcBy4A/+atNpvOUXAr8ovICItOMljb/6h34MPFDi+E+BC8ofgjHRWHIwZmqFa8vsxVtxc6pv+vtmcW0pcX1jEsOalYyZ2lEiEiSCy4F/Al3BMRFpEJETD3YBVe0D3hGRs/xDnwT+qqq9QJ+InOkfv6L8xTcmOqs5GDO154ErReRHwMt4/Q2PAnf5zUIZvI1ftkxznSuB1SLSDGwFPu0f/zSwVkT2+9c1JjFsVVZjSvBHK/1GVZfHXBRjYmHNSsYYY4pYzcEYY0wRqzkYY4wpYsnBGGNMEUsOxhhjilhyMMYYU8SSgzHGmCKWHIwxxhT5P8Q7r4y81WsVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][:300].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since the peak arrives at the autumn, the year are re-sampled by starting on September 1st.\n", + "First finding all the September 1st for each year :" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Period('1991-07-29/1991-08-04', 'W-SUN'),\n", + " Period('1992-07-27/1992-08-02', 'W-SUN'),\n", + " Period('1993-07-26/1993-08-01', 'W-SUN'),\n", + " Period('1994-08-01/1994-08-07', 'W-SUN'),\n", + " Period('1995-07-31/1995-08-06', 'W-SUN'),\n", + " Period('1996-07-29/1996-08-04', 'W-SUN'),\n", + " Period('1997-07-28/1997-08-03', 'W-SUN'),\n", + " Period('1998-07-27/1998-08-02', 'W-SUN'),\n", + " Period('1999-07-26/1999-08-01', 'W-SUN'),\n", + " Period('2000-07-31/2000-08-06', 'W-SUN'),\n", + " Period('2001-07-30/2001-08-05', 'W-SUN'),\n", + " Period('2002-07-29/2002-08-04', 'W-SUN'),\n", + " Period('2003-07-28/2003-08-03', 'W-SUN'),\n", + " Period('2004-07-26/2004-08-01', 'W-SUN'),\n", + " Period('2005-08-01/2005-08-07', 'W-SUN'),\n", + " Period('2006-07-31/2006-08-06', 'W-SUN'),\n", + " Period('2007-07-30/2007-08-05', 'W-SUN'),\n", + " Period('2008-07-28/2008-08-03', 'W-SUN'),\n", + " Period('2009-07-27/2009-08-02', 'W-SUN'),\n", + " Period('2010-07-26/2010-08-01', 'W-SUN'),\n", + " Period('2011-08-01/2011-08-07', 'W-SUN'),\n", + " Period('2012-07-30/2012-08-05', 'W-SUN'),\n", + " Period('2013-07-29/2013-08-04', 'W-SUN'),\n", + " Period('2014-07-28/2014-08-03', 'W-SUN'),\n", + " Period('2015-07-27/2015-08-02', 'W-SUN'),\n", + " Period('2016-08-01/2016-08-07', 'W-SUN'),\n", + " Period('2017-07-31/2017-08-06', 'W-SUN'),\n", + " Period('2018-07-30/2018-08-05', 'W-SUN'),\n", + " Period('2019-07-29/2019-08-04', 'W-SUN')]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "first_september_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", + " for y in range(1991,\n", + " sorted_data.index[-1].year)]\n", + "first_september_week" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Starting from this list of weeks that contain September 1st, we obtain intervals of approximately one year as the periods between two adjacent weeks in this list. We compute the sums of weekly incidences for all these periods.\n", + "\n", + "We also check that our periods contain between 51 and 52 weeks, as a safeguard against potential mistakes in our code.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_september_week[:-1], first_september_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Displaying the annual incidence." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHvhJREFUeJzt3X+QVeWd5/H3B9uAOmDAgBEQcaLDBM2EhK7GxN2srhPAZEuwRjNER9mJVRijmSS1VQlU2MJSJhtTSdwQSxcSfysqw4bSHSWKONa4u6ShiSaIhKETSYugtNWMYGbp2PDdP85z5XbbdN/u0933R39eVafu6e89z8N5OF39vc/znPscRQRmZmZ5jCj3CZiZWfVzMjEzs9ycTMzMLDcnEzMzy83JxMzMcnMyMTOz3JxMzMwsNycTMzPLzcnEzMxyqyv3CQy0D33oQzF16tRyn4aZWVXZunXrWxExvr/lay6ZTJ06laampnKfhplZVZH0+zzlPcxlZma5OZmYmVluTiZmZpabk4mZmeVWUjKR9A1J2yW9LOkRSaMk3SzpdUkvpe1zRccvkdQsaaekOUXxmZK2pfdWSFKKj5T0WIo3SppaVGahpF1pWzhwTTczs4HSazKRNAn4O6A+Is4HTgAWpLdvj4gZaXsqHT89vX8eMBe4U9IJ6fi7gEXAuWmbm+LXAQci4hzgduC2VNc4YBkwC2gAlkkam6/JZpbX/oOH+cLKTew/dLjcp2IVotRhrjrgJEl1wMnA3h6OnQc8GhHtEfEq0Aw0SDoDGBMRmyJ7vOMDwPyiMven/bXAJanXMgfYEBFtEXEA2MCxBGRmZbJi4y627G5jxbO7yn0qViF6/Z5JRLwu6ftAC/D/gGci4hlJnwZuknQt0AT8l/QHfxLwi6Iq9qTYu2m/a5z0+lr69zokvQ2cVhzvpsx7JC0i6/EwZcqU3ppkZv00bel62juOvvfzQ40tPNTYwsi6EexcfmkZz8zKrZRhrrFkPYezgYnAKZL+hmzI6iPADGAf8INCkW6qiR7i/S1zLBCxKiLqI6J+/Ph+f4HTzHrxwjcv5rIZExl1YvanY9SJI5g3YyIvfOviMp+ZlVspw1x/CbwaEa0R8S7wM+DTEfFmRByJiKPAT8jmNCDrPZxZVH4y2bDYnrTfNd6pTBpKOxVo66EuMyuDCWNGMXpkHe0dRxlZN4L2jqOMHlnHhNGjyn1qVmalJJMW4AJJJ6d5jEuAHWkOpOBy4OW0/wSwIN2hdTbZRPvmiNgHHJJ0QarnWuDxojKFO7WuAJ5L8ypPA7MljU09pNkpZmZl8tY77Vw96yzWfeVCrp51Fq3vtJf7lKwClDJn0ihpLfBLoAN4EVgF/FTSDLJhp93A9en47ZLWAK+k42+MiCOpuhuA+4CTgPVpA7gbeFBSM1mPZEGqq03SrcCWdNwtEdGWp8Fmls/Ka+rf218+//wynolVEmUdgNpRX18fXujRzKxvJG2NiPrej+yevwFvZma5OZmYmVluTiZmZpabk4mZmeXmZGJmZrk5mZiZWW5OJmZmlpuTSREvq23DlX/3LS8nkyJeVtuGK//uW17+BjzvX1a7wMtqW63z774V+BvwA8DLattw5d99GyhOJnhZbRu+/LtvA6XXVYOHi8Ky2lc1TGH15hZaPRFpw4R/920geM7EzMw8Z2JmZuXnZGJmZrk5mZiZWW5OJmZmlpuTiZmZ5VZSMpH0DUnbJb0s6RFJoySNk7RB0q70Orbo+CWSmiXtlDSnKD5T0rb03gpJSvGRkh5L8UZJU4vKLEz/xi5JCweu6WZmNlB6TSaSJgF/B9RHxPnACcACYDGwMSLOBTamn5E0Pb1/HjAXuFPSCam6u4BFwLlpm5vi1wEHIuIc4HbgtlTXOGAZMAtoAJYVJy0zM6sMpQ5z1QEnSaoDTgb2AvOA+9P79wPz0/484NGIaI+IV4FmoEHSGcCYiNgU2ZdbHuhSplDXWuCS1GuZA2yIiLaIOABs4FgCMjOzCtFrMomI14HvAy3APuDtiHgGOD0i9qVj9gETUpFJwGtFVexJsUlpv2u8U5mI6ADeBk7roS4zM6sgpQxzjSXrOZwNTAROkfQ3PRXpJhY9xPtbpvgcF0lqktTU2traw6mZmdlgKGWY6y+BVyOiNSLeBX4GfBp4Mw1dkV73p+P3AGcWlZ9MNiy2J+13jXcqk4bSTgXaeqirk4hYFRH1EVE/fvz4EppkZmYDqZRk0gJcIOnkNI9xCbADeAIo3F21EHg87T8BLEh3aJ1NNtG+OQ2FHZJ0Qarn2i5lCnVdATyX5lWeBmZLGpt6SLNTzMzMKkivqwZHRKOktcAvgQ7gRWAV8CfAGknXkSWcK9Px2yWtAV5Jx98YEUdSdTcA9wEnAevTBnA38KCkZrIeyYJUV5ukW4Et6bhbIqItV4vNzGzAedVgMzPzqsFWGfYfPMwXVm5iv5+FYTYsOZnYgFixcRdbdrex4tld5T4VMysDP2nRcpm2dD3tHUff+/mhxhYeamxhZN0Idi6/tIxnZmZDyT0Ty+WFb17MZTMmMurE7Fdp1IkjmDdjIi986+Iyn5nZ0PAQb8bJxHKZMGYUo0fW0d5xlJF1I2jvOMrokXVMGD2q3KdmNiQ8xJvxMJfl9tY77Vw96yyuapjC6s0ttA7zT2g2PHiItzPfGmxm1g/7Dx5m+VM7eGb7Gxx+9yijThzBnPM+zLc//9Gq7Jn71mAzszLwEG9nHuYyM+snD/Ee42EuG7b2HzzMTY+8yB1XfWLYfpo0K/Awl1k/+S4cs4HjYS4bdnwXjtnAc8/Ehh1/0dJs4DmZ2LDju3DMBp6HuWxY8l04ZgPLd3OZmZnv5jIzs/JzMjEzs9ycTMzMLDcnEzMzy63XZCJpmqSXiraDkr4u6WZJrxfFP1dUZomkZkk7Jc0pis+UtC29t0KSUnykpMdSvFHS1KIyCyXtStvCgW2+mZkNhF6TSUTsjIgZETEDmAn8G7AuvX174b2IeApA0nRgAXAeMBe4U9IJ6fi7gEXAuWmbm+LXAQci4hzgduC2VNc4YBkwC2gAlkkam7PNZmY2wPo6zHUJ8NuI+H0Px8wDHo2I9oh4FWgGGiSdAYyJiE2R3Y/8ADC/qMz9aX8tcEnqtcwBNkREW0QcADZwLAGZmVmF6GsyWQA8UvTzTZJ+Lemeoh7DJOC1omP2pNiktN813qlMRHQAbwOn9VBXJ5IWSWqS1NTa2trHJpnVJj+b3IZSyclE0geAy4B/SKG7gI8AM4B9wA8Kh3ZTPHqI97fMsUDEqoioj4j68ePHH7cNZsOJV0W2odSX5VQuBX4ZEW8CFF4BJP0E+Mf04x7gzKJyk4G9KT65m3hxmT2S6oBTgbYUv6hLmef7cM5mw45XRbZy6Msw1xcpGuJKcyAFlwMvp/0ngAXpDq2zySbaN0fEPuCQpAvSfMi1wONFZQp3al0BPJfmVZ4GZksam4bRZqeYmR2HV0W2ciipZyLpZOCzwPVF4e9JmkE27LS78F5EbJe0BngF6ABujIgjqcwNwH3AScD6tAHcDTwoqZmsR7Ig1dUm6VZgSzruloho63szzYYPr4ps5eCFHs1KUG2P+L3+wSbGjx7VaVXkldf0ew0/GwbyLvToZGJWgqXrtvHw5haubpjC8ss/Vu7TMRtweZOJn2di1gNPZpuVxmtzmfXAk9lmpXEyMeuBJ7PNSuNhLrNe+BG/Zr3zBLyZmfmxvWZmVn5OJmZmlpuTiZmZ5eZkYmZmuTmZmJlZbk4mZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmVpX2HzzMF1ZuYr+Xt6kITiZmVpVWbNzFlt1trHh2V7lPxfBCj2ZWZfyMmcrknomZVRU/Y6Yy9ZpMJE2T9FLRdlDS1yWNk7RB0q70OraozBJJzZJ2SppTFJ8paVt6b4UkpfhISY+leKOkqUVlFqZ/Y5ekhQPbfLPq4nkCP2OmUvWaTCJiZ0TMiIgZwEzg34B1wGJgY0ScC2xMPyNpOrAAOA+YC9wp6YRU3V3AIuDctM1N8euAAxFxDnA7cFuqaxywDJgFNADLipOW2XDjeYJM4Rkz675yIVfPOovWd9rLfUrDXp+eZyJpNrAsIi6UtBO4KCL2SToDeD4ipklaAhAR/y2VeRq4GdgN/FNE/HmKfzGVv75wTERsklQHvAGMJ0tKF0XE9anMyvTvPHK8c/TzTKwWdZ0nKPA8gQ2UoX6eyQKg8If89IjYB5BeJ6T4JOC1ojJ7UmxS2u8a71QmIjqAt4HTeqjLbFjxPIFVupKTiaQPAJcB/9Dbod3Eood4f8sUn9siSU2SmlpbW3s5PbPq43kCq3R96ZlcCvwyIt5MP7+ZhrdIr/tTfA9wZlG5ycDeFJ/cTbxTmTTMdSrQ1kNdnUTEqoioj4j68ePH96FJZtXD8wRWyfryPZMvcmyIC+AJYCHw3fT6eFF8taQfAhPJJto3R8QRSYckXQA0AtcCP+5S1ybgCuC5iIg0l/Kdokn32cCSPrbRrCasvObYcPby+eeX8UzM3q+kZCLpZOCzwPVF4e8CayRdB7QAVwJExHZJa4BXgA7gxog4ksrcANwHnASsTxvA3cCDkprJeiQLUl1tkm4FtqTjbomItn6008zMBlGf7uaqBr6by8ys74b6bi4zM7P3cTIxM7PcnEyGgJfAMLNa52QyBLwEhpnVOi9BP4gqbans/QcPc9MjL3LHVZ/wl93MbEC5ZzKIKm0JDPeQzGywuGcyiCplCYxK6yGZWe1xz2SQVcISGJXWQzIrB98IM7jcMxlklbAERqX0kMzKqXiYd/nlHyv36dQcJ5NhotBDuqphCqs3t9DqT2c2THiYd2h4ORUzq2n7Dx5m+VM7eGb7Gxx+9yijThzBnPM+zLc//1H3zot4ORUzsx54mHdoeJjLzGqeh3kHn4e5zMzMw1xmZlZ+TibWLd+Tb2Z94WRi3fLSK0PDSdtqhSfgrRPfkz+0/EU6qxWegLdOfE9+fqWsztw1aRc4aVu5eAK+TGp1eML35OdXyhCh10uzWlNSMpH0QUlrJf1G0g5Jn5J0s6TXJb2Uts8VHb9EUrOknZLmFMVnStqW3lshSSk+UtJjKd4oaWpRmYWSdqVt4cA1PZ9anlOohMUpC6opaU9bup6pi5/kocYWIrIhwqmLn2Ta0vXvO9ZJ22pNScNcku4HXoiIn0r6AHAy8HXgnYj4fpdjpwOPAA3AROBZ4M8i4oikzcDXgF8ATwErImK9pK8AfxERX5a0ALg8Iv5a0jigCagHAtgKzIyIA8c718Ee5hrs4Qk/wKqzpeu28fDmFq5umFLxcwp9HSK8/sEmxo8e1emLdMULg5oNpbzDXL1OwEsaA3wG+M8AEfFH4I+pU9GdecCjEdEOvCqpGWiQtBsYExGbUr0PAPOB9anMzan8WuCO1GuZA2yIiLZUZgMwlyxZlcUL37z4uH8wBoInZDPVeCNAX3sblbCitNlAKWWY60+BVuBeSS9K+qmkU9J7N0n6taR7JI1NsUnAa0Xl96TYpLTfNd6pTER0AG8Dp/VQV9kM1vBEX4ZIhoNqnVOopCHCSlFNQ5XWf6Ukkzrgk8BdEfEJ4A/AYuAu4CPADGAf8IN0fHddlugh3t8y75G0SFKTpKbW1tYemjIwBuMPRrX+8Rws1TqnsPKaepbPP5/pE8ewfP75HraitucX7ZhSvmeyB9gTEY3p57XA4oh4s3CApJ8A/1h0/JlF5ScDe1N8cjfx4jJ7JNUBpwJtKX5RlzLPdz3BiFgFrIJszqSENuUyGMMT1frHczB5cb7qVo1DldZ/vSaTiHhD0muSpkXETuAS4BVJZ0TEvnTY5cDLaf8JYLWkH5JNwJ8LbE4T8IckXQA0AtcCPy4qsxDYBFwBPBcRIelp4DtFQ2izgSV5G12p/MezM88pVLfBnl+0ylLqN+C/Cjyc7uT6HfC3wApJM8iGnXYD1wNExHZJa4BXgA7gxog4kuq5AbgPOIls4r0wIXA38GCarG8DFqS62iTdCmxJx91SmIyvRf7jabXEve3hxd+AN7NB49ufq0feW4OdTMzMzMupmJlZ+TmZmJlZbk4mZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmZpabk4mZVQyvMFy9nEzMrGJ4heHqVeraXGZmg8YrDFc/90zMrOz8PJ/q52RiZmVXaSsMe+6m75xMzKwiVNIjjz1303deNdjMLOk6d1MwHOZuvGqwmdkA8dxN/zmZmJkllTZ3U02cTGzIeXLTKlklzd1UE8+Z2JBbum4bD29u4eqGKSy//GPlPh0zY4jmTCR9UNJaSb+RtEPSpySNk7RB0q70Orbo+CWSmiXtlDSnKD5T0rb03gpJSvGRkh5L8UZJU4vKLEz/xi5JC/vbUCu/aUvXM3XxkzzU2EJE9sW0qYufZNrS9eU+NTPLqdRhrh8BP4+IPwc+DuwAFgMbI+JcYGP6GUnTgQXAecBc4E5JJ6R67gIWAeembW6KXwcciIhzgNuB21Jd44BlwCygAVhWnLSsunhy06x29ZpMJI0BPgPcDRARf4yIfwXmAfenw+4H5qf9ecCjEdEeEa8CzUCDpDOAMRGxKbKxtQe6lCnUtRa4JPVa5gAbIqItIg4AGziWgKzKeHLTrHaVsjbXnwKtwL2SPg5sBb4GnB4R+wAiYp+kCen4ScAvisrvSbF3037XeKHMa6muDklvA6cVx7spY1WoMLl5VcMUVm9uodWT8GY1oZRkUgd8EvhqRDRK+hFpSOs41E0seoj3t8yxf1BaRDZ8xpQpU3o4NSu3ldccm99bPv/8Mp6JmQ2kUuZM9gB7IqIx/byWLLm8mYauSK/7i44/s6j8ZGBvik/uJt6pjKQ64FSgrYe6OomIVRFRHxH148ePL6FJZmY2kHpNJhHxBvCapGkpdAnwCvAEULi7aiHweNp/AliQ7tA6m2yifXMaEjsk6YI0H3JtlzKFuq4AnkvzKk8DsyWNTRPvs1PMzMwqSKnPM/kq8LCkDwC/A/6WLBGtkXQd0AJcCRAR2yWtIUs4HcCNEXEk1XMDcB9wErA+bZBN7j8oqZmsR7Ig1dUm6VZgSzruloho62dbzcxskPhLi2Zm5oUezcys/JxMzMxqQLnXvHMyMTOrAeV+oFepE/BmZlaBuj7Q66HGFh5qbBnyB3q5Z2JmVsUqZc07JxMzsypWKWveeZjLzKzKVcKad/6eiZmZ+XsmZmZWfk4mZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmZpabk4mZmeXmZGJmZrk5mZiZDZFyLxM/mJxMzMyGSLmXiR9MXpuryu0/eJibHnmRO676xJAv7GZmpamUZeIHk3smVa6WP+mY1YpKWSZ+MJWUTCTtlrRN0kuSmlLsZkmvp9hLkj5XdPwSSc2SdkqaUxSfmepplrRCklJ8pKTHUrxR0tSiMgsl7UrbwoFqeLWbtnQ9Uxc/yUONLURkn3SmLn6SaUvXl/vUzKyLSlkmfjD1pWdycUTM6LKq5O0pNiMingKQNB1YAJwHzAXulHRCOv4uYBFwbtrmpvh1wIGIOAe4Hbgt1TUOWAbMAhqAZZLG9qOdNWc4fNIxqyWFZeLXfeVCrp51Fq3vtJf7lAbUYMyZzAMejYh24FVJzUCDpN3AmIjYBCDpAWA+sD6VuTmVXwvckXotc4ANEdGWymwgS0CPDMJ5V5Xh8EnHrJasvObY5/Dl888v45kMjlJ7JgE8I2mrpEVF8Zsk/VrSPUU9hknAa0XH7EmxSWm/a7xTmYjoAN4GTuuhLqP2P+mYWfUotWdyYUTslTQB2CDpN2RDVreSJZpbgR8AXwLUTfnoIU4/y7wnJbhFAFOmTOm5JTWk1j/pmA131XS3Zkk9k4jYm173A+uAhoh4MyKORMRR4CdkcxqQ9R7OLCo+Gdib4pO7iXcqI6kOOBVo66Gurue3KiLqI6J+/PjxpTTJzKziVdPdmr32TCSdAoyIiENpfzZwi6QzImJfOuxy4OW0/wSwWtIPgYlkE+2bI+KIpEOSLgAagWuBHxeVWQhsAq4AnouIkPQ08J2iIbTZwJKcbTYzq2jV+L2UUoa5TgfWpbt464DVEfFzSQ9KmkE27LQbuB4gIrZLWgO8AnQAN0bEkVTXDcB9wElkE++F+1jvBh5Mk/VtZHeDERFtkm4FtqTjbilMxpuZ1aoXvnkxy5/awTPb3+Dwu0cZdeII5pz3Yb79+Y+W+9SOq9dkEhG/Az7eTfyaHsr8PfD33cSbgPcN7kfEYeDK49R1D3BPb+dpZlYrqvFuTS+nYmZWgQp3a17VMIXVm1torfDFIRXxvpujqlp9fX00NTWV+zTMzKqKpK1dvpTeJ16by8zMcnMyMTOz3JxMzMwsNycTMzPLzcnEzMxyczIxM7PcnEzMzCw3JxMzM8vNycTMzHJzMjEzs9ycTMzMLDcnEzMzy83JxMzMcnMyMTOz3JxMzMwsNycTMzPLzcnEzMxyczKxmrH/4GG+sHIT+yv88aZmtaikZCJpt6Rtkl6S1JRi4yRtkLQrvY4tOn6JpGZJOyXNKYrPTPU0S1ohSSk+UtJjKd4oaWpRmYXp39glaeFANdxqz4qNu9iyu40Vz+4q96mYDTslPQNe0m6gPiLeKop9D2iLiO9KWgyMjYhvSZoOPAI0ABOBZ4E/i4gjkjYDXwN+ATwFrIiI9ZK+AvxFRHxZ0gLg8oj4a0njgCagHghgKzAzIg4c71z9DPjhZ9rS9bR3HH1ffGTdCHYuv7QMZ2RWfcr5DPh5wP1p/35gflH80Yhoj4hXgWagQdIZwJiI2BRZBnugS5lCXWuBS1KvZQ6wISLaUgLZAMzNcc5Wg1745sVcNmMio07Mfp1HnTiCeTMm8sK3Li7zmZkNH6UmkwCekbRV0qIUOz0i9gGk1wkpPgl4rajsnhSblPa7xjuViYgO4G3gtB7q6kTSIklNkppaW1tLbJLVigljRjF6ZB3tHUcZWTeC9o6jjB5Zx4TRo8p9ambDRl2Jx10YEXslTQA2SPpND8eqm1j0EO9vmWOBiFXAKsiGuXo4N6tRb73TztWzzuKqhims3txCqyfhzYZUSckkIvam1/2S1pHNh7wp6YyI2JeGsPanw/cAZxYVnwzsTfHJ3cSLy+yRVAecCrSl+EVdyjxfauNs+Fh5zbGh3uXzzy/jmZgNT70Oc0k6RdLowj4wG3gZeAIo3F21EHg87T8BLEh3aJ0NnAtsTkNhhyRdkOZDru1SplDXFcBzaV7laWC2pLHpbrHZKWZmZhWklJ7J6cC6dBdvHbA6In4uaQuwRtJ1QAtwJUBEbJe0BngF6ABujIgjqa4bgPuAk4D1aQO4G3hQUjNZj2RBqqtN0q3AlnTcLRHRlqO9ZmY2CEq6Nbia+NZgM7O+K+etwWZmZoCTiZmZDQAnEzMzy63m5kwktQK/L/d55PQh4K1ej6putd7GWm8f1H4bh1v7zoqI8f2trOaSSS2Q1JRnIqwa1Hoba719UPttdPv6xsNcZmaWm5OJmZnl5mRSmVaV+wSGQK23sdbbB7XfRrevDzxnYmZmublnYmZmuTmZDBFJ90jaL+nlotjHJW1KjzL+X5LGpPgHJN2b4r+SdFFRmefT45BfStuEbv65ISfpTEn/JGmHpO2SvpbiA/Z453Ia4PbVxDWUdFo6/h1Jd3Spq+qvYS/tq7hr2I/2fVbZM6q2pdf/WFRX369fRHgbgg34DPBJ4OWi2BbgP6T9LwG3pv0bgXvT/gSyxxWPSD8/T/YI5bK3qUv7zgA+mfZHA/8CTAe+ByxO8cXAbWl/OvArYCRwNvBb4IT03mbgU2TPs1kPXFpj7auVa3gK8O+ALwN3dKmrFq5hT+2ruGvYj/Z9ApiY9s8HXs9z/dwzGSIR8c9kKyIXmwb8c9rfAPxV2p8ObEzl9gP/ClT0/e4RsS8ifpn2DwE7yJ6KOZCPdy6bgWrf0J513/S1jRHxh4j430CnJ5HVyjU8XvsqVT/a92KkZ1UB24FRyh4d0q/r52RSXi8Dl6X9Kzn2ULFfAfMk1Sl7JsxMOj9w7N7Utf6vlTB80JWkqWSfehoZ2Mc7V4Sc7SuohWt4PLVyDXtTsdewH+37K+DFiGinn9fPyaS8vgTcKGkrWbf0jyl+D9kFbAL+O/B/yZ4NA3B1RHwM+Pdpu2ZIz7gXkv4E+J/A1yPiYE+HdhMr+VHN5TIA7YPauYbHraKbWDVew55U7DXsa/sknQfcBlxfCHVzWK/Xz8mkjCLiNxExOyJmAo+QjasTER0R8Y2ImBER84APArvSe6+n10PAaipo6ETSiWS/xA9HxM9S+M3UbS4Mf+R5vHNZDVD7aukaHk+tXMPjqtRr2Nf2SZoMrAOujYjfpnC/rp+TSRkV7gCRNAJYCvyP9PPJyh6RjKTPAh0R8Uoa9vpQip8I/CeyobKyS938u4EdEfHDorcG8vHOZTNQ7auxa9itGrqGx6unIq9hX9sn6YPAk8CSiPg/hYP7ff3KdefBcNvIeh77gHfJMv91wNfI7rj4F+C7HPsS6VRgJ9kE2rNkq3lCdnfJVuDXZBNmPyLdIVTujeyul0jn9lLaPgecRnYzwa70Oq6ozLfJemM7KbpbhOxmg5fTe3cU/l9qoX01eA13k91Y8k76vZ5eY9fwfe2r1GvY1/aRfYD9Q9GxLwET+nv9/A14MzPLzcNcZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmZpabk4mZmeXmZGJmZrk5mZiZWW7/H6DC9bohFXlSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The year with the maximum number of cases :" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2010" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.idxmax()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The year with the minimum number of cases :" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2002" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.idxmin()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +1412,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - -- 2.18.1