diff --git a/module3/exo3/exercice.html b/module3/exo3/exercice.html
new file mode 100644
index 0000000000000000000000000000000000000000..ec705e1ed27e4a8aa4f999af5fb82d9e9a5be30a
--- /dev/null
+++ b/module3/exo3/exercice.html
@@ -0,0 +1,724 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Subject 2: Purchasing power of English workers from the 16th to the 19th century"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "William Playfair was one of the pioneers of the graphical presentation of data, being credited in particular with the invention of the histogram. One of his famous graphs, taken from his book \"A Letter on Our Agricultural Distresses, Their Causes and Remedies\", shows the evolution of the wheat price and average salaries from 1565 to 1821. First, we will replicate his famous graph and then present alternative versions of the graph to improve the readability."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plotting the original graph"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The data used by Playfair are available on [github](https://vincentarelbundock.github.io/Rdatasets/doc/HistData/Wheat.html) in a csv format using the url:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = 'https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We load the data. The first column and empty row are deleted. The array is made of three columns : the year, the wheat price (in Shilling/quarter) and the wages (in Shilling/week)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Year \n",
+ " Wheat \n",
+ " Wages \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1565 \n",
+ " 41.0 \n",
+ " 5.00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1570 \n",
+ " 45.0 \n",
+ " 5.05 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1575 \n",
+ " 42.0 \n",
+ " 5.08 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1580 \n",
+ " 49.0 \n",
+ " 5.12 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1585 \n",
+ " 41.5 \n",
+ " 5.15 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 1590 \n",
+ " 47.0 \n",
+ " 5.25 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1595 \n",
+ " 64.0 \n",
+ " 5.54 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 1600 \n",
+ " 27.0 \n",
+ " 5.61 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 1605 \n",
+ " 33.0 \n",
+ " 5.69 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 1610 \n",
+ " 32.0 \n",
+ " 5.78 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1615 \n",
+ " 33.0 \n",
+ " 5.94 \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 1620 \n",
+ " 35.0 \n",
+ " 6.01 \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 1625 \n",
+ " 33.0 \n",
+ " 6.12 \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 1630 \n",
+ " 45.0 \n",
+ " 6.22 \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 1635 \n",
+ " 33.0 \n",
+ " 6.30 \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 1640 \n",
+ " 39.0 \n",
+ " 6.37 \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 1645 \n",
+ " 53.0 \n",
+ " 6.45 \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 1650 \n",
+ " 42.0 \n",
+ " 6.50 \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 1655 \n",
+ " 40.5 \n",
+ " 6.60 \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 1660 \n",
+ " 46.5 \n",
+ " 6.75 \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 1665 \n",
+ " 32.0 \n",
+ " 6.80 \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 1670 \n",
+ " 37.0 \n",
+ " 6.90 \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 1675 \n",
+ " 43.0 \n",
+ " 7.00 \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 1680 \n",
+ " 35.0 \n",
+ " 7.30 \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 1685 \n",
+ " 27.0 \n",
+ " 7.60 \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 1690 \n",
+ " 40.0 \n",
+ " 8.00 \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 1695 \n",
+ " 50.0 \n",
+ " 8.50 \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 1700 \n",
+ " 30.0 \n",
+ " 9.00 \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 1705 \n",
+ " 32.0 \n",
+ " 10.00 \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 1710 \n",
+ " 44.0 \n",
+ " 11.00 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1715 \n",
+ " 33.0 \n",
+ " 11.75 \n",
+ " \n",
+ " \n",
+ " 31 \n",
+ " 1720 \n",
+ " 29.0 \n",
+ " 12.50 \n",
+ " \n",
+ " \n",
+ " 32 \n",
+ " 1725 \n",
+ " 39.0 \n",
+ " 13.00 \n",
+ " \n",
+ " \n",
+ " 33 \n",
+ " 1730 \n",
+ " 26.0 \n",
+ " 13.30 \n",
+ " \n",
+ " \n",
+ " 34 \n",
+ " 1735 \n",
+ " 32.0 \n",
+ " 13.60 \n",
+ " \n",
+ " \n",
+ " 35 \n",
+ " 1740 \n",
+ " 27.0 \n",
+ " 14.00 \n",
+ " \n",
+ " \n",
+ " 36 \n",
+ " 1745 \n",
+ " 27.5 \n",
+ " 14.50 \n",
+ " \n",
+ " \n",
+ " 37 \n",
+ " 1750 \n",
+ " 31.0 \n",
+ " 15.00 \n",
+ " \n",
+ " \n",
+ " 38 \n",
+ " 1755 \n",
+ " 35.5 \n",
+ " 15.70 \n",
+ " \n",
+ " \n",
+ " 39 \n",
+ " 1760 \n",
+ " 31.0 \n",
+ " 16.50 \n",
+ " \n",
+ " \n",
+ " 40 \n",
+ " 1765 \n",
+ " 43.0 \n",
+ " 17.60 \n",
+ " \n",
+ " \n",
+ " 41 \n",
+ " 1770 \n",
+ " 47.0 \n",
+ " 18.50 \n",
+ " \n",
+ " \n",
+ " 42 \n",
+ " 1775 \n",
+ " 44.0 \n",
+ " 19.50 \n",
+ " \n",
+ " \n",
+ " 43 \n",
+ " 1780 \n",
+ " 46.0 \n",
+ " 21.00 \n",
+ " \n",
+ " \n",
+ " 44 \n",
+ " 1785 \n",
+ " 42.0 \n",
+ " 23.00 \n",
+ " \n",
+ " \n",
+ " 45 \n",
+ " 1790 \n",
+ " 47.5 \n",
+ " 25.50 \n",
+ " \n",
+ " \n",
+ " 46 \n",
+ " 1795 \n",
+ " 76.0 \n",
+ " 27.50 \n",
+ " \n",
+ " \n",
+ " 47 \n",
+ " 1800 \n",
+ " 79.0 \n",
+ " 28.50 \n",
+ " \n",
+ " \n",
+ " 48 \n",
+ " 1805 \n",
+ " 81.0 \n",
+ " 29.50 \n",
+ " \n",
+ " \n",
+ " 49 \n",
+ " 1810 \n",
+ " 99.0 \n",
+ " 30.00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Year Wheat Wages\n",
+ "0 1565 41.0 5.00\n",
+ "1 1570 45.0 5.05\n",
+ "2 1575 42.0 5.08\n",
+ "3 1580 49.0 5.12\n",
+ "4 1585 41.5 5.15\n",
+ "5 1590 47.0 5.25\n",
+ "6 1595 64.0 5.54\n",
+ "7 1600 27.0 5.61\n",
+ "8 1605 33.0 5.69\n",
+ "9 1610 32.0 5.78\n",
+ "10 1615 33.0 5.94\n",
+ "11 1620 35.0 6.01\n",
+ "12 1625 33.0 6.12\n",
+ "13 1630 45.0 6.22\n",
+ "14 1635 33.0 6.30\n",
+ "15 1640 39.0 6.37\n",
+ "16 1645 53.0 6.45\n",
+ "17 1650 42.0 6.50\n",
+ "18 1655 40.5 6.60\n",
+ "19 1660 46.5 6.75\n",
+ "20 1665 32.0 6.80\n",
+ "21 1670 37.0 6.90\n",
+ "22 1675 43.0 7.00\n",
+ "23 1680 35.0 7.30\n",
+ "24 1685 27.0 7.60\n",
+ "25 1690 40.0 8.00\n",
+ "26 1695 50.0 8.50\n",
+ "27 1700 30.0 9.00\n",
+ "28 1705 32.0 10.00\n",
+ "29 1710 44.0 11.00\n",
+ "30 1715 33.0 11.75\n",
+ "31 1720 29.0 12.50\n",
+ "32 1725 39.0 13.00\n",
+ "33 1730 26.0 13.30\n",
+ "34 1735 32.0 13.60\n",
+ "35 1740 27.0 14.00\n",
+ "36 1745 27.5 14.50\n",
+ "37 1750 31.0 15.00\n",
+ "38 1755 35.5 15.70\n",
+ "39 1760 31.0 16.50\n",
+ "40 1765 43.0 17.60\n",
+ "41 1770 47.0 18.50\n",
+ "42 1775 44.0 19.50\n",
+ "43 1780 46.0 21.00\n",
+ "44 1785 42.0 23.00\n",
+ "45 1790 47.5 25.50\n",
+ "46 1795 76.0 27.50\n",
+ "47 1800 79.0 28.50\n",
+ "48 1805 81.0 29.50\n",
+ "49 1810 99.0 30.00"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url)\n",
+ "data = raw_data.dropna().copy()\n",
+ "data.pop('Unnamed: 0')\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can replace the index by the column year and sort by increasing years. We verify that the gap between two points is not more than 5 years:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "hidePrompt": true
+ },
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('Year').sort_index()\n",
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " assert (p2-p1)<=5 "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Eventually plotting Playfair's graph:**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0,0.5,'Price of a quarter of wheat (Shillings)')"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEKCAYAAADNSVhkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcXGWd7/HPtzvpTmjSMQkhRBZBdlxQQIQBZfOqA0iQuTh6dS6iM4yOIq4jzNwrMHecYbzujDqTCyIyoiI44jbKogmuQIKBkASELCQh+7500t1V9bt/nNNJJfRy6lRXdXf19/161avqPHWec57TJ3l+9TznOc9RRGBmZlZPTUNdADMzG30cfMzMrO4cfMzMrO4cfMzMrO4cfMzMrO4cfMzMrO4GDD6Svi5pnaQny9ImS7pf0jPp+6Sy766T9KykpyW9qVYFNzOz/g3n+jtLy+cbwJv3S7sWeDAijgUeTJeRdBLwduBlaZ6vSmoetNKamVklvsEwrb8HDD4R8RCwab/kGcDt6efbgUvL0r8TEZ0RsRR4Fjh9kMpqZmYVGM7195ic+aZFxGqAiFgt6eA0/VDg92XrrUzTXkDSVcBV6eKpBxxwQM6imJmNTh0dHQE8VpY0MyJmDpCt6vp7MOQNPn1RL2m9zt+T/oFmArS1tcXOnTsHuShmZo1N0q6IOG2wNtdLWs3mX8s72m2tpOkA6fu6NH0lcHjZeocBq/IXz8zMBtmwqL/ztnx+CFwB3JS+31uWfqekzwMvBo4FHqm2kGZmI92NN97Ya/r1119f55IMj/p7wOAj6dvAucBBklYC15MU+i5J7wWWA5cDRMQCSXcBC4EC8IGIKNao7GZm1o/hXH8PGHwi4h19fHVBH+t/Gvh0NYUyM7PqDef62zMcmJlZ3Tn4mJlZ3Tn4mJlZ3Tn4mJlZ3Tn4mJlZ3Tn4mJlZ3Tn4mJlZ3Tn4mJlZ3Tn4mJlZ3Tn4mJlZ3Tn4mJlZ3Tn4mJlZ3Q32w+TMzGwUkHQa8DqSxy/sAp4EHoiI/R/b3Su3fMzMLDNJ75b0GHAdMB54muSBdGcD90u6XdIRA23HLR8zM6tEG3BWROzq7UtJryJ5EN3y/jbi4GNmZplFxFcG+H5elu24283MzCom6TOS2iWNlfSgpA2S3pU1v4OPmZnl8caI2AZcDKwEjgM+kTWzg4+ZmeUxNn2/EPh21lFuPXzNx8zM8viRpKdIhln/jaSpwO6smd3yMTOzikXEtcCZwGkR0Q10ADOy5nfLx8zMKibpsrLPPR+3SipFxLqB8jv4mJlZHu8lafn8Ml0+F/g9cJykf4iIO/rL7OBjZmZ5lIATI2ItgKRpwNeA1wIPAf0GH1/zMTOzPI7sCTypdcBx6ai37oEyu+VjZmZ5/ErSj4Hvpct/BjwkqQ3YMlBmBx8zM8vjAyQB5yxAwDeBeyIigPMGyuzgY2ZmFUuDzN3pq2K+5mNmZhWTdJmkZyRtlbRN0nZJ27Lmd8vHzMzy+AzwlohYlCezWz5mZpbH2ryBB9zyMTOzfOZI+i7wA6CzJzEivp8ls4OPmZnl0U4yn9sby9ICcPAxM7PaiIgrq8nv4GNmZplJ+tuI+Iykm0laOvuIiA9l2U5VwUfSR4C/TAswH7gSOAD4LnAksAx4W0RsrmY/ZmaWTw3q6Z5BBnOqKldyn1COjNKhwK+BkyJil6S7gJ8CJwGbIuImSdcCkyLik/1tq62tLXbu3JmrHGZmw8mNN95Y0frXX3997n1J6oiItn6+H7R6erBV2+02BhgvqZskkq4CriOZWhvgdmAWUNeDMjOzPQa1npb0I3rpbusREZdkLVQuEfG8pM8Cy0keo3pfRNwnaVpErE7XWS3p4N7yS7oKuAqgpaUlbzHMzEazMZLKu79mRsTMnoVq6+k+fHZQCp43o6RJJI9MPYpkBtPvSXpX1vzpH2gmJN1uecthZjaKFSLitL6+rLae7k1EzK4mf49qut3eACyNiPUAkr4P/AmwVtL0NJpOJ3nGg5lZQ6n02s4QGfR6WtJ8+u92e2WW7VQTfJYDZ0g6gKQ5dwHJ6IedwBXATen7vVXsw8zM8qtFPX3xYBSsmms+D0u6G3gMKAB/IOlGOxC4S9J7SQ788sEoqJmZVaYW9XREPDcYZatqtFtEXA/sP06wkyS6mpnZEBvselrSryPibEnb2bf7Tcnuoj3LdjzDgZmZZRYRZ6fvE6rZjoOPmZnlIqkZmEZZLImI5VnyOviYmVnFJF1N0p23FiilyQHUfLSbmVnDGyFDqofCNcDxEbExT2Y/ydTMzPJYAWzNm9ktHzMzy0zSR9OPS4BZkn7Cvk8y/XyW7Tj4mJlZJXpGuS1PXy3pqyIOPmZmlllEvOAiWDqH3Jao4Bk9vuZjZmaZSfqUpBPSz62SfgEsJpkv7g1Zt+PgY2Zmlfhz4On08xUkcWQqcA7wT1k34uBjZmaV6CrrXnsT8O2IKEbEIiq4lOPgY2ZmleiU9HJJU4HzgPvKvjsg60Y84MDMzCrxYeBukq62L0TEUgBJF5LMmp2Jg4+ZmWUWEb8HTugl/afAT7Nux91uZmaWmaR3SVI/3x8t6eyBtuOWj5mZVWIKME/SXGAusB4YBxxDMuJtA3DtQBtx8DEzs8wi4kuS/hU4HziLZBbrXcAi4C/8SAUzM6uJiCgC96evXHzNx8zM6s7Bx8zM6s7Bx8zMKibpqCxpfXHwMTOzPO7pJe3urJk94MDMzDJLZ7R+GTBR0mVlX7WTDLnOxMHHzMwqcTxwMfAi4C1l6duBv8q6EQcfMzPLLCLuBe6VdGZE/C7vdhx8zMwsjz9I+gBJF9ye7raIeE+WzB5wYGZmedwBHELyTJ/ZwGEkXW+ZOPiYmVkex0TE/wZ2RsTtwEXAK7JmdvAxM7M8utP3LZJeDkwEjsya2dd8auDGG2/sNf3666+vc0nMzGpmpqRJwP8GfggcCHwqa2YHHzMzq1hE3JJ+nA28tNL87nYzM7OKSZom6VZJ/5UunyTpvVnzO/iYmVke3wB+Drw4Xf4j8OGsmR18zMwsj4Mi4i6gBBARBaCYNXNVwUfSiyTdLekpSYsknSlpsqT7JT2Tvk+qZh9mZpZfDevpnZKmAJHu5wxga9bM1bZ8vgT8LCJOAE4meYzqtcCDEXEs8CAZnuVtZmY1U6t6+qMko9yOlvQb4JvA1Vkz5x7tJqkdeD3wboCI6AK6JM0Azk1Xux2YBXwy737MzCyfWtbTEfGYpHNIJhoV8HREdA+QbY9qhlq/FFgP3CbpZGAucA0wLSJWp4VbLeng3jJLugq4CqClpaWKYpiZjVpjJM0pW54ZETPLlquqpzM4neTG0jHAKZKIiG9mKnjOHfbkPQW4OiIelvQlKmi6pX+gmQBtbW1RRTnMzEarQkSc1s/3VdXT/ZF0B3A0MI+9Aw2CpPttQNUEn5XAyoh4OF2+m+Sg1kqankbT6cC6KvZhZmb51bKePg04KSJyNR5yDziIiDXACknHp0kXAAtJLkBdkaZdAdybdx9mZpZfjevpJ0lmtc6l2ul1rga+JakFWAJcSRLQ7krvdF0OXF7lPszMLL9Bracl/Yike20CsFDSI0Bnz/cRcUmW7VQVfCJiHknTa38XVLNdMzMbHDWopz9bRXH28MSiZmaWWUTMBpD0HuBXEfFMnu04+JiZWR5HAu+S9BKSIdy/IglG87Jk9txuZmZWsYj4VEScD7wc+DXwCZIglIlbPmZmVjFJ/ws4i+Qhcn8APk7S+snEwcfMzPK4DCgAPyF5oNzvI2J31szudjMzs4pFxCkkI+YeAf4bMF/Sr7Pmd8vHzMwqJunlwOuAc0iGcq/A3W5mZlZj/0LS3fZl4NFKZrQGBx8zM8shIi6qJr+v+ZiZWd255WOD4sYbb+w1/frrr69zScxsJHDLx8zMMkuf44Oka6rZjoOPmZlV4tR0Sp33SJokaXL5K+tG3O1mZmaV+DfgZySP6J4LqOy7SNMH5JaPmZllFhFfjogTga9HxEsj4qiyV6bAA275mJlZDhHxfkknk9xoCvBQRDyRNb+Dj1lOHuFno5mkDwFXAd9Pk74laWZE3Jwlv4OPmZnl8ZfAayNiJ4CkfwF+Bzj4VMq/ZM3MMhNQLFsusu/gg345+JiZWR63AQ9L+s90+VLg1qyZHXzMzKxiEfF5SbOAs0laPFdGxB+y5nfwMTOzXCLiMeCxPHkdfMxs1Ovreq/VjoNPFfwP1qw+PBio8Tj42LDiSsZs+JPUDPw8It6QdxsOPmbWcPwjprYioiipQ9LEiNiaZxsOPmZmlsduYL6k+4GdPYkR8aEsmRs6+PjXz8D8NzKznH6SvnJp6OBjZma1ERG3SxoPHBERT1ea38HHbIi59ZmfR5wOHUlvAT4LtABHSXoV8A8RcUmW/H6ej5mZ5XEDcDqwBSAi5gFHZc3slo81pP5+EbtFMXy5JTOiFCJiq7TPXKKRNbODj5mZ5fGkpP8BNEs6FvgQ8NusmUdl8PGvq/rx9QwbTvx/f1BdDfw90AncCfwc+D9ZM4/K4GNmZlW7KCL+niQAASDpcuB7WTJXHXzSaRbmAM9HxMWSJgPfBY4ElgFvi4jN1e5nKPnXkpmNZDWqp6/jhYGmt7ReDUbL5xpgEdCeLl8LPBgRN0m6Nl3+5CDsp08ODmZm/Rq0elrSnwIXAodK+nLZV+1AIWuBqgo+kg4DLgI+DXw0TZ4BnJt+vh2YRY2Dj408/sFgVh81qKdXkbSiLgHmlqVvBz6StVzVtny+CPwtMKEsbVpErAaIiNWSDu4to6SrgKsAWlpaqiyGWe04UNowNkbSnLLlmRExc791ctfTvYmIxyU9CbwxIm7PXfC8GSVdDKyLiLmSzq00f/oHmgnQ1taWeWy4mZntUYiI0/r6stp6ui/prNZTJLVERFeebVTT8jkLuETShcA4oF3SfwBrJU1Po+l0YF0V+7Bhxq2A4cvD2q0XtaynnwN+I+mH7Dur9eezZM49vU5EXBcRh0XEkcDbgV9ExLuAHwJXpKtdAdybdx9mZpZfjevpVcCPSeLIhLJXJrW4z+cm4C5J7wWWA5fXYB9mZpZf1fV0RFTVDTIowSciZpGMliAiNgIXDMZ2zcxscAx2PS1pKslAhpeRdOn17Of8LPk9w4GNaL4GZTZkvkVyo+rFwPtIuu/WZ83sRyqYmVkeUyLiVqA7ImZHxHuAM7JmdsvHzMzy6E7fV0u6iGQAwmFZMzv4mJlZHv8oaSLwMeBmkul16jbDgZlZn3zvUeOKiB+nH7cC51Wa38Gnwfg/+8D8NzKrnqTb6OXJpem1nwE5+JiZWR4/Lvs8DngryXWfTBx8zMysYhFxT/mypG8DD2TN76HWZmY2GI4Fjsi6sls+w0Cl1yDy3FhZaR7fvDn0fG3KhjNJ20mu+Sh9X0MFz25z8DEzs4pFROZJRHvj4DOMufWxVyP8LYbjMbh1ZXlJOqW/7yPisf6+d/AxM7M8vgqcAjxB0vX2SuBhkpkPAuh3glEHHzOrmq8pVmZ3NNNCkSYNdUmqsgz4q4iYDyDp5cDHI+LdWTI7+JiZ1UgxxNYYx+bSeDbFeDaXDmBzaTwdtHBJ6wKmaNdQF7EaJ/QEHoCIeFLSq7JmdvAxMxtE20stLC5O4bniJDbHOKKPO1o2lQ5gStOIDj6LJN0C/AdJN9u7gEVZMzv4mA2y0d6lNBrtjjEsLU5iSXEK60oHDrh+a6GL3WNGfPV7JfB+4Jp0+SHga1kzj/ijNzMbCoVoYnlxIkuKU1hZau+zhXP4ljUcv34ZJ65fxgnrlnL8+uc4qGsrX/r4x+pc4sEVEbuBL6Svijn4mI0wblkNnVLA6lI7i4uTea44iQLNL1hnTLHA65c+xqULZ3Hu4jm0d3W8YJ0dbW31KO6w5uBjZjaAHaWxLCxMY0lxMrto6XWdU55fxKULZnHRU79iyq5tdS7hyOPgY2bWjyWFSfyu+yV09VJdHrVpJW9dMIsZC2fxki1rhqB0I5eDj5llNpq6/Lqjid91H8Hi4kH7pB+0czOXLJzNpQtn8Yo1zzKyb9XJT9JUkrncTiJ5pAIAEdHvzaU9HHzqaDT9xx2JfH72Gu1/i/WlNmZ3HcX22FOncviWNdzwwL9zzpK5jInSEJZu2PgW8F3gIuB9wBXA+qyZHXzMzFKlgCcK05lXeDFR1qa57MlfcOP9X2NC14i+L2ewTYmIWyVdExGzgdmSZmfN7OBj1uBGeysmq65o4pddR7OqNHFP2oGdO/n0z7/CjEUPDWHJhq3u9H21pItInmJ6WNbMDj5mNup1xFju7zyWTXHAnrRTVy7giz/6HIdvWzeEJRvW/lHSROBjwM1AO/CRrJkdfMxsVNtaauW+ruPYEa170q7+7Xe45td3+tpOPyLix+nHrcB5leZ38DGzUWtdsY0Huo6lM60Km0tF/vlnN/O2+Q8Mcckan4OPmY1Ky4sTmdV1NMV0Wpzx3bv56g/+mfOWzB3iko0OvU9GZGbWoCJgUWEqv+g6Zk/gmdyxhe/ceZ0DTwaSrknfz6pmOw4+ZjZq7I5mftF1NL/vfsmeodRHbF7N9+/4BCeveWaISzdiXJm+31zNRtztZmajwqriBH7VdRQdZXOzvWL1M9x29w0c1LF1CEs24iyStAyYKumJsnQBERGvzLIRBx8za2jFEI8VDuXJwjQou3H0irk/4rpZtzGu0DV0hRuBIuIdkg4Bfg5cknc7Dj5m1rC2lMbxUNdRbIy9jzCY3LGFz/7ki5y/ZM4Qlmxki4g1wMmSWoDj0uSnI6K7n2z7yH3NR9Lhkn4paZGkBWUXoSZLul/SM+n7pLz7MDPLoyPG8LuuI/hB50n7BJ5zlszhZ1//4KgJPLWspyWdAzwDfAX4KvBHSa/Pmr+alk8B+FhEPCZpAjBX0v3Au4EHI+ImSdcC15LMfGpmVlNd0cSThUNYUJi2z4Pexha6uXb2bVw550c0EUNYwrqrZT39eeCNEfE0gKTjgG8Dp2bJnDv4RMRqYHX6ebukRcChwAzg3HS124FZOPiYWQ0VQzxVPJjHuw+hk7H7fHf68vnc+MC/c+L6ZUNTuCFU43p6bE/gSbf/R0lj+8tQblCu+Ug6Eng18DAwLT1gImK1pIP7yHMVcBVAS0vvTwY0M+tLBGyINhYXJrO0OJnd+wWdE9Yt5ZOzb+fcJXMa+Zk7YySV9yHOjIiZva2Yp54ewBxJtwJ3pMvvBDLfKFV18JF0IHAP8OGI2CZlO83pH2gmQFtb26hqB5tZfltLrSwpTmFxcfI+z9vpcejWtXz8oTuYsXD2aOhiK0TEaQOtlLeeHsD7gQ8AHyIZRvgQybWfTKoKPmkT6x7gWxHx/TR5raTpaTSdDnhKWDOrytZSK88VJ/FccRIbygYQlJu2fSN//fA9vHPeT2ktFupcwuGrVvV0RHSSXPf5fJ5y5Q4+SkLnrcCiiCjf+Q9Jnmh3U/p+b959mNnoFAGbYzzPFSexrDiJLTG+1/XaOju48OnfcOnCWZyxfD7NnoV6H8O5nq6m5XMW8BfAfEnz0rS/IzmYuyS9F1gOXF5dEc1stNgVY3imcBDPFA9iWy9dagBji92cs2Qub13wSy5Y/KhvEu3fsK2nqxnt9mvo8zreBXm3a2ajSylgVamdpwtTWVGaSPRy+2FrdyfnLH2MN//xt1zw7CNM7Nw5BCUdeepRT0tqi4iKT4hnODCzuisFbIw2VhQn8mxxCjvLHuTWo62zgwsWP8Kb//g7zlkyl7bu3UNQUuuLpD8BbgEOBI6QdDLw1xHxN1nyO/iYWV3sjjE8X2xnZWkizxfbX3A/To/XrFjAnz/xcy566jeML3TWuZRWgS8AbyK5fkREPF6vGQ7MzPrUFU2sKx3I6tIE1hTb2RAH0FcP0KSOrfz3Jx/kz5+4j2M2rqxvQS23iFix37DtYta8Dj5mVrUI6GAsm0oHsKZ0IGuKE9gYbXuemdObqTs2cc7SuVzw7KOcv/gRD48eeVakXW+RTjD6IWBR1swOPmZWke5oYkuMZ1NpPJtL49kcB7CpNJ6uAaqTplKRU59/inOXzOGcJXM5ad3S0XATaCN7H/Alkul6VgL3kdx0momDj5n1qhSwPVrZHOPZXEoCzOYYz/Zope8BVHspSpy0dglnrHiSM5Y/wekrFniUWgOJiA0kU+rk4uBjNkpFQBfNdMRYdkYL22Ic20qtbItxbI9WtkdLr8Oe+3Jg505OXLeMV6x5hjOWz+f0lQt40e4dNTwCG0qSbgeuiYgt6fIk4HMR8Z4s+R18zBpQKWA3Y9kZY+mIlj0BZu978rn8sQNZNZeKHLXpeU5ct5QT1i/jhPXLOH79Mg7dtr6RJ/C0F3plT+ABiIjNkl6dNbODj9kIFgE7o4VNadfY5vRazLZorajV0pdp2zdy3IbnkiCzLgkyx2xcwbhi5gdWWuNqkjQpIjZD8oA6KogpDj5mI0gEbIrxrCq2s6rUzvpSG91V/Dce37WbQ3ZsZNr2jbxky2qO3LyKIzcn7y/ZspoDun2fjfXpc8BvJd2dLl8OfDprZgcfs2FuR6mFVaV2VpUmsLrY/oLn1vRlUsdWDtm+kUN2bOSQ7RvKPve8NtDeudNdZZZLRHwzfZbQ+SQjUC6LiIVZ8zv4mA0zndHMmtKEPa2bvibY7DFx13ZOWL9sn2swx25Y7ulorCYktafPBJoMrAHuLPtuckRsyrIdBx+zYWBbqZUlxcmsLE5kwwA3Z07u2MpZy+bxumXzOPO5xzls2zq3Xqye7gQuJnlqafmNWkqXX5plIw4+ZkNkd4xhSXESSwpTWB8H9rlea3cnp69cwNnL5nH2sj9w4rplvjnThkxEXJw+J+iciFiedzsOPmZ11B1NrCi+iMXFyTxfmthrC0dR4uVrFifB5rl5nLpyoUeX2bASESHpP4FT827DwcesxkoBq0vtLC5O4bnii3q9t2ZMscC5S+bylkWzef3SPzBp9/YhKKlZRX4v6TUR8WiezA4+ZjXQHU1sKh3AsuIklhYns6uPEWqnrVzAjAWzuOjp3zB517Y6l9KsKucB75O0DNhJes0nIl6ZJbODj1kV+p7/rO8RakdvXMFbF/ySGQtnc/jWtXUsrdmg+tNqMjv4mGUQAZ2MYXNpfDqbQM+MAuMoZpiiZuqOTcxYOJtLF87iZWsXe3SajViSxpHMaH0MMB+4NSIqfh6Gg49ZqhTQkc6Fti1a2R7j2BatbCsl7wM9MqBcc6nISzet5FWr/siMhbM4c/l8mqNUw9Kb1c3tQDfwK5LWz0nANZVuxMHHRoXuaNoTWHbueW/ZJ203Y/u9v6YvU3ds2nNz5wnrlnHC+qUcvXGlR6hZozopIl4BIOlW4JE8G3HwsSETAUVEgSa6o5lumumOZrpopjuaKNBECRGIEqIUyeciokgThWhK3mmimK5fRHs+l6dX0mrpy/iu3Ry9aWU6k8BSTlj/HMevX8ZBHVsH4a9hNmLs+VUVEYX9HqOdmYPPKBNBWkk3UYikEi+vwEtpMCjF3kq+lFbopbTiL6WVfGlP/jQt9q7f84ro+QylfQJCsm6Wh5LV00E7NnPIjo0cvnUtR25axZFbVqXvqzl4x6ZhVlqzIXGypJ6hmQLGp8s9o93as2zEwWcYiGCfir08KBTTSr2nddBV1jroimYKNO8TCPbdzgtbAMVBmGZ/JBpb7ObgHZuYvn0D07ZvZPr+E25u38DBOzbTUqr4uqnZqBIRlT8EqhcOPjn1dBn1BIjdMSa9frD34V0d0UIXzRSjrLXQ05qI8lbE6AwIkASF8d2dTOjs4MCuDg7see/axfju3YwtFhhTKjKmVGRssUBzqcTYUoHWQhfjCp2M6+5iXM/nQvq5u3PvcncX4wudvGjXdk9JYzaMNEzwmdt9KN2xX5fPPtcKINK0vZ/Zs06k65TK1imlnSx712FPt9Rw7DLKalz37rKKOqm4WwtdyavYTWuhm5Zi2StdHlss0Jq+jy0WaCl201roSt7T9ZLvu5NgUUqCxZg0gLQUu/fut9BJa6HbI8DMRqmGCT5PF6bSOYIPZ2xZJT+u0EVroZvWYhIcWotJYOhpHUzo7GBC504O7OxgQlcHrYWkwu8JCC3p+7juTsYXOhnfnb7SIDMyQ6aZNZKRW1vvZyi6VMb2BIruLto7d3DI9k1M27GRaekDu6bt2MSkXdv2th5KaYuh0M3YUncaYJLv3CVkZqNJwwSfV499nhc/t4KXL1xAa6F7T1dPz6spSjSXSjRHKf1cpCmC5lKRMVGkqVTaZ72etKaIJE+ad2xZ15G7jMzM8mmY4HP8mA2ctnE+b3z8PsYWPGLJzGw4G73DrMzMbMg4+JiZWd05+JiZWd05+JiZWd05+JiZWd3VLPhIerOkpyU9K+naWu3HzMz6Nlzr4poEH0nNwFfY+6Chd0g6qRb7MjOz3g3nurhWLZ/TgWcjYklEdAHfAWbUaF/7UHimADOz1JDVxQOp1U2mhwIrypZXAq8tX0HSVcBVZcsd1e60CZpboKXa7dRDERiUeclHEB/z6OBjHlhp585S1w03dALccMMN1ex6vKQ5ZcszI2Jm2fKAdfFQqVXw6W3uyn2aJOkfaCaApDkRcVqNyjIsSZrT5WNueD7m0WEYH/OAdfFQqVW320rg8LLlw4BVNdqXmZn1btjWxbUKPo8Cx0o6SlIL8HbghzXal5mZ9W7Y1sU16XaLiIKkDwI/J+kK/XpELOgny8x+vmtUPubRwcc8OgzLY85RF9eNwqPDzMyszjzDgZmZ1Z2Dj5mZ1V0tp9f5uqR1kp4sS7tB0vOS5qWvC9P0IyXtKkv/t7I8p0qan04N8WVJvQ0dHBZ6O+Y0/ep0eosFkj5Tln5delxPS3pTWfqIOOZKjreRz7Gk75Yd1zJJ88q+G9HnGCo75gY/z6+S9Pv0uOZIOr3suxF/nusuImryAl4PnAI8WZZ2A/DxXtY9sny9/b57BDiTZLz6fwF/Wqsy1+iYzwMeAFrT5YPT95OAx4FW4ChgMdA8ko65wuNt2HO83/efAz7VKOc4xzE37HkG7uspM3AhMKuRznO9XzVr+UTEQ8CmarYhaTrQHhG/i+RMfhO4dDDKVwt9HPP7gZuhsLS7AAAEy0lEQVQiojNdZ12aPgP4TkR0RsRS4Fng9JF0zBUeb69G0vFC//+u01+1bwO+nSaN+HMMFR9zrxrkmANoTz9PZO/9Mg1xnuttKK75fFDSE2mzdlJZ+lGS/iBptqTXpWmHktwk1WNlmjaSHAe8TtLD6bG9Jk3vbdqLQxn5x9zX8ULjnuMerwPWRsQz6XKjnuNy+x8zNO55/jDwfyWtAD4LXJemj4bzPOjqHXy+BhwNvApYTdJcJ/18RES8GvgocKekdobx1BAVGANMAs4APgHclf5a7OvYRvox93W8jXyOe7yDfVsAjXqOy+1/zI18nt8PfCQiDgc+Atyapo+G8zzoajW3W68iYm3PZ0n/D/hxmt4J9HTTzJW0mOQX9EqS6SB6DJupISqwEvh+2ux+RFIJOIi+p70Y6cfc6/FGxHoa9xwjaQxwGXBqWXKjnmOg92Nu8P/LVwDXpJ+/B9ySfm7o81wrdW35pH2gPd4KPJmmT1Xy3AkkvRQ4FlgSEauB7ZLOSH89/0/g3nqWeRD8ADgfQNJxJLNubyCZ4uLtklolHUVyzI80wDH3erwNfo4B3gA8FRHl3SyNeo57vOCYG/w8rwLOST+fD/R0NTb6ea6NWo1kIGmKrwa6SX4BvBe4A5gPPEFywqan6/4ZsIBkxMhjwFvKtnMaSZBaDPwr6awMw/HVxzG3AP+RHsNjwPll6/99elxPUzYKZqQccyXH28jnOE3/BvC+XtYf0ee40mNu5PMMnA3MTY/tYeDURjrP9X55eh0zM6s7z3BgZmZ15+BjZmZ15+BjZmZ15+BjZmZ15+BjZmZ15+BjI4qkKWUzJq/RvrOk/7ZG+3y1pFsGXrOqfUyV9LNa7sNsOKnrDAdm1YqIjSTTMyHpBmBHRHy2xrv9O+Afa7VxSWMiYr2k1ZLOiojf1GpfZsOFWz7WMCTtSN/PTSe1vEvSHyXdJOmdkh5Jn61ydLreVEn3SHo0fZ3VyzYnAK+MiMclNUl6RtLU9LsmJc9pOaivbUk6XdJv04k2fyvp+DT93ZK+J+lHJFP1QzI7xDtr/5cyG3oOPtaoTiaZh+sVwF8Ax0XE6STzcV2drvMl4AsR8RqSO/N761rruUOdiCiRzN7QEyDeADweERv62dZTwOsjmWjzU8A/lW37TOCKiDg/XZ5DMku0WcNzt5s1qkcjmVuLdHLLntbFfJIH3kESPE7S3odLtkuaEBHby7YzHVhftvx1kvm5vgi8B7itv22RPPfldknHksxoPLZsW/dHRPkzY9YBL85xrGYjjoOPNarOss+lsuUSe//dNwFnRsSufrazCxjXsxARKyStlXQ+8Fr2toJ63Zakm4FfRsRbJR0JzCr7eud++xqX7s+s4bnbzUaz+4AP9ixIelUv6ywCjtkv7RaS7re7IqI4wLYmAs+nn989QHmOI+3iM2t0Dj42mn0IOE3Jk3UXAu/bf4WIeAqYmHah9fghcCB7u9z629ZngH+W9BugeYDynAf8JN+hmI0sntXabACSPgJsj4hb0uXTSAYXDOrgAEkPATMiYvNgbtdsOHLLx2xgXyO9ZiTpWuAe4LrB3EE6fPvzDjw2WrjlY2ZmdeeWj5mZ1Z2Dj5mZ1Z2Dj5mZ1Z2Dj5mZ1Z2Dj5mZ1d3/B+ZeNlUgK0QHAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure()\n",
+ "ax1 = plt.gca()\n",
+ "ax1.set_xlabel('Time (year)')\n",
+ "ax1.plot(sorted_data['Wages'], linewidth=3)\n",
+ "ax1.fill_between(sorted_data.index, 0, sorted_data['Wages'],\n",
+ " color='red')\n",
+ "ax1.bar(sorted_data.index, sorted_data['Wheat'], width=5,\n",
+ " color='grey', zorder=0)\n",
+ "\n",
+ "ax2 = ax1.twinx()\n",
+ "ax1.set_ylim([0, 100])\n",
+ "ax2.set_ylim([0, 100])\n",
+ "ax2.set_ylabel('Price of a quarter of wheat (Shillings)')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Re-labeling the axis"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The left and right axis can be labeled with the proper units 'Shillings/week' and 'Shillings/quarter', resp."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAEKCAYAAAChTwphAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXeYVdXVuN81M8wMDL2DikhXFCyoKCqxxRZLEjUaTNQUoyaxRb9ofqmfRlOMUWOMYoux10+wJBY0FqwgIiggVZBeBIY+M3f9/tjncs6dueXcmXvntvU+z3nuObudfW7Z6661115bVBXDMAzDKATKct0BwzAMwwiLCS3DMAyjYDChZRiGYRQMJrQMwzCMgsGElmEYhlEwmNAyDMMwCoasCS0RuVdEVonIzEBaVxF5WUTmeq9dAnnXiMg8EZkjIsdlq1+GYRhGcvJ5/M6mpvVP4PhGaVcDk1R1MDDJu0ZE9gLOAoZ7dW4XkfIs9s0wDMNIzD/J0/E7a0JLVd8A1jVKPhW43zu/HzgtkP6oqm5X1YXAPOCgbPXNMAzDSEw+j98V2Wo4Ab1UdTmAqi4XkZ5e+i7Au4FyX3hpTRCRC4ALvMsD2rVrl62+GoZh5B1lXhSjiEiz29iyZYsCHwaSxqvq+BTVWjx+Z4LWFlqJiPfux40v5b2x4wFqamp08+bN2eyXYRhGfnHjjXDVVdC3r3u97LK0mxCRrao6KkM9Cj1+Z4LW9h5cKSJ9ALzXVV76F8BugXK7AstauW+GYRj5z+zZ7nXZMmiBttUM8mL8bm2hNRE41zs/F5gQSD9LRKpEZA9gMPB+K/fNMAwj/5k1yz/fc8/WvHNejN9ZMw+KyCPAV4DuIvIF8BvgD8DjIvJ9YDFwBoCqfiIijwOfAvXAj1W1IVt9MwzDKEhUW0Vo5fP4LYW8NYnNaRmGUVKsWgW9ernzmhqorW2WiVBEtqhqTYZ71ypYRAzDMIxCIahlDRvW2nNaeYEJLcMwjEIh6oQBrT2flTeY0DIMwygUGmtaJYgJLcMwjEIhd56DeYMJLcMwjELBzIMmtAzDMAqCTZtg8WJ3Xl4OAwfmtj85woSWYRhGITBnjn8+aBBUVuauLznEhJZhGEYhEDQNlqgTBpjQMgzDKAzMCQMwoWUYhlEYmBMGYELLMAyjMLA1WoAJLcMwjPynvh7mzvWvTWgZhmEYecuCBVBX58532QU6dsxtf3KICS3DMIx8x0yDOzGhZRiGke+Y5+BOTGgZhmHkO+Y5uBMTWoZhGPmOmQd3YkLLMAwjn1E182AAE1qGYRj5zPLlUFvrzjt1gt69c9ufHGNCyzAMI59pbBoUyV1f8gATWoZhGPmMOWHEYELLMAwjnzEnjBhMaBmGYeQz5oQRQ0WuO2AYhmEkoZjMgyK7AmcBhwN9ga3ATOB54N+oRlI2oapZ7WM2qamp0c2bN+e6G4ZhGNlhwwbo3NmdV1bC5s1Q0XJdQ0S2qGpNixtK76b3AbsAzwFTgFVANTAEOBI4ALga1TeSNWOalmEYRr4S1LIGD86IwMohf0F1Zpz0mcDTiFQC/VI1YnNahmEY+UoxmQZVZyJSjsiDCfJ3oDovVTMmtAzDMPKVYvMcVG0AenhaVbMoaF3TMAyjqCkmTctnETAZkYmA75SgelOYyia0DMMw8pXidHdf5h1lQId0K5v3oGEYRj6yYwe0awcNDe560yaoyYzDX068B5t2ogbVtAdwm9MyDMPIR+bN8wXW7rtnTGDlHJFDEPkUmOVdj0Tk9rDVTWgZhmHkI8VpGgS4GTgOWAuA6nTgiLCVTWgZhmHkI8XmORhEdUmjlIawVc0RwzAMIx/5+GP/vLg0rSWIHAqo5/p+CVFTYQhyommJyOUi8omIzBSRR0SkWkS6isjLIjLXe+2Si74ZhmHklI0b4bzz4Ikn/LQcCK0sjtMXAj/GhXT6AtgXuDhs5VYXWiKyC06yjlLVvYFyXADFq4FJqjoYmORdG4ZhlA5vvgkjR8L99/tpQ4bAQQe1ajeyPE4PRXUcqr1Q7YnqOUBoqZyrOa0KoK2IVADtcD77pwLRT+p+4LQc9c0wDKN12bEDrrkGxo6FRYv89HHj4L33oKoqF73K1jj9t5BpCTvVqqjqUhG5EViMC0v/kqq+JCK9VHW5V2a5iPSMV19ELgAuAKisbHYkEMMwjPxgzhw4+2yYNs1P69wZ7rgDvvWtbN21QkSmBK7Hq+r46EVLx+m4iBwCHIoL43RFIKcjTpML1/HQN8wQng30VGAPYD3whIicE7a+98aOB7e4OCudNAzDaA1mznTa1bp1ftpRRznz4K67ZvPO9ao6KlFmS8fpBFQC7XFyJxgJYyNwethGcuE9eAywUFVXA4jI0zjpu1JE+njSuw9urxXDMIziZO5cOPZYX2BVVcENN8Cll0JZzlcjZX6cVn0dkbeAfVD9XXM7lot3ZjEwWkTaiYgAR+PcHScC53plzgUm5KBvhmEY2efzz+Hoo2HFCnfdoQO88QZcfnk+CCzI1jjtorx3bUnHcjGn9Z6IPAl8CNQD03DmvvbA4yLyfdwbdkZr980wDCPrLF8OxxwDS7z1tW3bwvPPt7qHYDKyPE5P8yK8P0FslPenw1S2gLmGYRitxdq1bg7rk0/cdWUlPPssfPWrrdqNnAbMFbkvTqqi+r0w1S0ihmEYRmuwYQMcd5wvsMrL4fHHW11g5RzV81tS3YSWYRhGtlGF006DqVPdtQg88ACcempu+5ULRKqB7wPDgeqd6SE1rbyY8TMMwyhqpk6F//7Xvx4/3q3NKk0eAHrjIr2/DuwK1IatnFLTEqEnMAboi1tkNhOYokqkOb01DMMoORYu9M9POgl+8IPc9SX3DEL1DERORfV+RB4GXgxbOaHQEuFIXFyprjjPkVU4Ve40YKAITwJ/UWVji7pvGIZR7Cxb5p/vvnvu+pEf1Hmv6xHZG1gB9A9bOZmmdSLwQ1UWN84QoQL4GnAs8FTorhqGYZQiy5f753365K4f+cF4XMSNX+HWfbUHfh22ckKhpcpVACJUqbK9UXZHVZ5pRmcNwzBKj6Cm1bdv7vqRD6je7Z29DgxIt3oY78GnRThN1al0IvQBngMOSPdmhmEYJUlQaJW6piUSX6tS/d8w1cN4Dz4DPCFCuQj9cRNm14Ttn2EYRskTNA+WuqblomBEjwbgBNKY0woVEUOEHwPHew3/SJW3m9HRjGMRMQzDKAi6dIH16935qlXQo0dOu5PTiBiNEakCJqJ6XJjiybwHg/udCLAb8BEwWoTRqtzUoo4ahmGUAlu3+gKrogK6dcttf/KPdqQxt5VsTqtDo+v/S5BuGIZhJKKx52B+RHHPHSIzgKiJrxzoAYSaz4Lk3oMx+52IUKOK2eIMwzDSwTwHG/O1wHk9sBLV+rCVU4p8EQ4R4VPcXiqIMFKE29PupmEYRilinoONqQ0cW4GOiHTdeaQgjMv7zbgYURMBVJkuwhEt6LBhGEbpYJ6DjfkQ5yPxJc5fojPsDGKhpJjfCmVcVWVJo6SG9PpoGIZRoph5sDH/AU5GtTuq3XDmwqdR3QPVlA4ZYYTWEhEOBVSEShGuxDMVGoZhGCkw82BjDkT1hZ1Xqv8GxoatHEZoXQj8GNgF+ALY17s2DMMwUmHmwcasQeSXiPRHZHdE/h+wNmzllHNaqqwBxrWgg4ZhGKWLmQcbczbwG9wyKgXe8NJCEWY/rSHAP4BequwtwgjgFFWua15/DcMwSggzDzpErgH+g+o04NLmNhPGPHgXLtZgHYAqHwNnNfeGhmEYJcOWLbBhgztv06bUo2EsBC5FZBoi/0TkW94WJWkRxuW9nSrvi8SkhV4IZhiGUbJYNAwf1UeBRwEQ2Q8Xz/ZpRMqBV3Ba2PupmgnzDq4RYSBe2A0RTgeWJ69iGIZhmGkwAarTUL0B1SNxLu+fAD8IUzWM0PoxcCcwTISlwGU4j0LDMAwjGeY52BSRMxDp4J3/EvgnsBDVC8JUTym0VFmgyjG4oIbDVDlMlc+b32PDMIwSwTwH4/ErVGsROQwXbel+nLNfKMLEHpwvwkPAd3ChNwzDMIwwmHkwHtGISicB/0B1AlAZtnIY8+BeOPNgN+BGERaI7NymxDAMw0iEmQfjsRSRO4EzgRe8TSBDe6iEKdiAc3dvACLASmBVMzpqJGP2bDj2WPjpTyHEbtKGYRQAZh6Mx5nAi8DxqK4HugJXha0smmKAFGELMAO4CXhFNXy4jWxTU1OjmzcXyRZfZ50Fjz3mzl99FY48Mrf9MQyj5ey5p/tDCjB9OowYkdv+eIjIFlWtydHN420/UotqXZjqYTSts3FhNi4GHhXhdyIcnUYXjTBMmeKfL1yYu34YhpE5zDwYjw+B1cBnwFzvfCEiHyJyQKrKYbwHJ6hyFfAj4AXgPOC5lvTYaMSWLbBggX+9Zk3u+mIYRmbYvNmiYcTnP8CJga1JTgAexylGKTcYDuM9+JQI84FbgBrgu0DaoTeMJMyeHTuPtTZvLLCGYTSXxtEwGoUVKmFGofrizivVl4AjUH0XqEpVOWEYJxH6qLIc+APwoapt/Jg1Pvkk9to0LcMofMw0mIh1iPycaEgn+BbwpRfOKZKqcjJN614R3gW+CRwuEipOodEcTGgZRvFhnoOJ+DawK/AMMAHo56WV4zwLk5JQEKlyggjVwFeAr+PWaC3G2SP/o8ri5vZYRDoDdwN742Iafg+YAzwG9AcWAWeq6pfNvUdBYULLMIqPAl9YnLVxWnUN8NMEufNSVU86p6XKNlX+o8qlqowCfoYTdLeJkDIabxJuAf6jqsOAkcAs4GpgkqoOBiZ516VBY6Flc1qGUfgUvnkwO+O0yBBExiPyEiKv7jxCEmYTyBpgqyoRoA3wBc5k2KxZRRHpCByB80JEVXcAO0TkVJxWBy4W1X+BnzfnHgXF5s1NXdxN0zKMwqeAzYNZHqefAO7AaXFp+0qEmad6Azen1QUnWacAZ6pyTro38xiA88u/T0RGAlNxu1j2UtXlAKq6XER6xqssIhcAFwBUVoYOV5W/zJrVNG3dOmhogPLy1u+PYRiZIb/NgxUiElgcynhVHR+4btE4nYJ6VEMHyG1MmMXFosoW4BvA31T5Os7G2VwqgP2Bf6jqfsBm0lAxVXW8qo5S1VEVFUXgG9LYNAjO/f3L0pjOM4yiJb/Ng/XRcdQ7xjfKb9E4nYJnEbkYkT6IdN15hCSU0BLhEGAc8LyX1hIV4AvgC1V9z7t+EvfmrBSRPt4N+1Aq8Q3jCS0wE6FhFDoFbB4ku+P0ubhYg2/jNLipOAteKMIIrcuAa4D/U+UTEQYArzWjowCo6gpgiYgM9ZKOBj4FJuIeBu91QnPvUVAkElrmjGEYhcvmzbBxozuvrISuoRWJvCCr47TqHnGOAWGrp7SvqfI68HrgegFwSdodjeWnwEMiUgksAM7HCdDHReT7wGLgjBbeozAICq3+/WHRIndumpZhFC7FEQ0js+O0yFGovorIN+Lmqz4dppkw3oPP4nz0g2zAqXN3qrItzI1i+6YfAaPiZJVWIN5Nm+BzbxPoigo45BATWoZRDBS2aRDIyjg9FngVODne7YDMCC2chO0BPOJdfwu3p9YQ4C7cjsZGc/j0U/988ODYL7cJLcMoXPLbczA3qP7Gez2/Jc2EEVr7qXJE4PpZEd5Q5QgREkzIGKEImgaHD4fu3f1rm9MyjMIlvz0Hc4PIFUnzVW8K00wYodVDhH7RsE0i9AOio+uOMDcxEpBMaJmmZRiFSxGYB7NAh0w0EkZo/Qx4y9ueRIA9gIu9SBn3Z6ITJUtjodWmjX9tQsswChczDzZF9XeZaCaM9+ALIgwGhuGE1uyA88XNmehEydJYaAVNgia0DKNwMfNgU0RuTZqvGsorPWxIiQNwUX0rgBEioMq/QtY14rFxIyxZ4s7btHGOGEG3WJvTMozCxcyD8ZiaiUbCuLw/AAwEPsIPbqhgQqtFBD0HhwxxgsvmtAyjODDzYFNUMzKdFEbTGgXspdpkrZbREhqbBgG6dHHaVjT2YH29W79lGEbhsGkT1Na68wKMhpE1RG5G9TJE4q39BdVTwjQTZkScCfQGlqcqaKRBPKFVUQGdOzuBFRVcPXrkpn+txcKFcOaZ7rmffho6ZMTByDByR+P5rMKMhpENHvBeb2xJI2GEVnfgU2/Tx+3RRFVCSUUjAfGEFjgTYTTC+9q1xS+0brwRpnixMu+4A666Krf9MYyWYqbB+KhO9V5fT1EyKWGE1m9bcgMjAcmE1ty57rwU5rXefdc/nzTJhJZR+JjnYHJExuDkyu44GSSAhg2aGzZgrpFJ1q+HpUvdeWUlDBrk55WSM8a2bTBjhn/95puwY4d7TwyjUDHPwVTcA1yO8yZMe+fihFuTiPCW91orwsbAUSvCxmZ314j1HBw6NNbZols3/7zYhdaMGVBX519v2QLvvZe4vGEUAmYeTMUGVP+N6ipU1+48QpJQ01LlMO/VZsYzTSLTIJRW/MEpcfZ9mzQJDj+89ftiGJnCzIPxEdnfO3sNkT/jorrv9JNA9cMwzSQUWiIk9dNUZV2YGxhxCCu0il3Tiie0Xn0VfvvbVu9KTnj7bWciPfJI8zArJkzTSsRfGl0Htz1R4KgwjSSb05rqNRTv16RA6J0mjUYEhdbee8fmlZLQ+uCDpmnvvut2fa2paf3+tCaTJsExx7jzxx+HM0pjz9OSwOa04qN6ZCaaSTinpcoeqgzwXhsfJrCirF8P8+alVyeZplUqc1pbtvjvgwgM8L5SdXXw1lu561drcd99/vm//527fhiZx8yD8RE5GZHdA9e/RmQ6IhMR6R+2mWSOGPsnO1rU+WJh8WIYONDFDbzrrnB1vvzS/1JXV/uDdZRSmdP66COIRNz5sGFwcmAz00mTctOn1iISgRdf9K+jSxyMwqe21o+GUVXlotwYUX4PrAZA5GvAOcD3gInAnWEbSWYebGx/DBLa/ljU3HorrPOm9q6/Hr7/fShL+D/AEdSyhg2D8vLY/FIxDwbnsw48EI46Cm65xV2/+mpu+tRaTJkS+9mmq6kb+UtQy+rTx+YqY1FUt3jn3wDu8RYcT0Xk4rCNJPMezIj9sWjZti3WxLNoEbz+uptUT0Yy0yCUjtAKzmeNGgVjxzqBH4nAhx+6PwPFGrOtsTlwxQr379xCWBU+ZhpMhiDSHtgCHA3cHsirDttIMvPgUd7rN+Idze110fDEE76WFeXee1PXSyW0okFzwQ+aW4wENa1Ro6BTJ/cKLu7i60W8pj3eHNb8+a3fDyPzmOdgMm7G7RYyBZiFqhsERPYjjdi2yWxZY73Xk+McX0u/v0XGHXc0TXvySdiwIXm9VEKrvDzWDt5YMBYDGzfCnDnuvLwcRo5050cf7Zcp1nmt1avh/febptu8VvbZtg3OO8+Zo7P1pyg4V7nrrtm5R6Giei9OrnwfODGQswI4P2wzybwHf+O9nh/n+F4zu10cfPyxW2MDbh+saBimbdvgsccS11u1KjbWXjyhBcXvjDFtmtOmwLn8t2vnzo8KTJM2Z17rhRfg2GPhX3m81dtLL/nPHsTmtbLP1VfD/fc7Lf/EE2Hy5My2P2sWPPCAf3366Zltv9AR6Y/qUlSnoRrZma66HNXFiAgiKSV9Cq8BEKFKhG+L8AsRfh09Wtb7AieoZX3jG/CTn/jXyUyEN9zgXL0BRoxo6jkYpdjntRrPZ0UZM8aPOzhrVuz8QCq+/BLOOgteeQUuuCC1xpsrgqbB3Xbzz03Tyi7/+Y/v6APud3jiiTA1xWa6r70GP/gB/N//pb7Hb37je8Qedxwcdljz+1uc/BmRpxD5LiLDEemJSD9EjkLkWmAysGeqRlIKLWACcCpQD2wOHKVJbW3sv6kLL4Rx45zGBS52XjC2YJQvvoB//MO/vvbaxJ5Fxb5Wq/F8VpS2beHQQ/3rdLSt227zXY23b3faXL7R2NX94oDDlAmt7LFqlTMLNmbjRvjqV2HmzKZ5W7fCZZc57f+ee9yf0xdeSHyPadPcPHeU665rcbeLDtUzgF8BQ4G/A2/i5MsPgDnAUai+HKIdTXqAzkxVJldHu3btNKNs3Kj6pz+pvvhi4jJ33KHqDDyqw4apRiIu/Zvf9NOvvLJpvQsu8PMPOsivF4/zz/fLjh/fsmfKFm++qXrjjaqrV6dfd+BA//k++CA279pr/bzvfS9ce5s2qXbr5tcD17d84733/P716qU6b55/3bt3rntXnEQiql/7Wuz7PmmSapcuse/9Z5/5daZNU91rr9jvE6j27Km6YkX8+5x0kl/u619vnWdrAcBmzYMxvDlHGKE1HnSfXHc03pFRoVVfr3rEEf4X7847m5aJRFRHjvTL3Hyzn/f887E/jB07/Lx581QrKvz8l19O3perrvLL3nBDZp4vkyxZolpd7fp31lnp1V23zn+2ykrVbdti8ydP9vN33z25cI/y1782HWC+/e30+tUa/Pa3fv/OPVe1rk61TRs/bePGXPew+LjtttjvxX/+49Lff1+1Qwc/fbfdVBcsUP3DH2I/E4j97Z54YtPv5Ntv+/kiqjNntv5zpklRCi3QGaAfg34KWgc6x7ueAfpxrjuumRZa110X+0UVUX3wwdgy77zj57dt6wbgKHV1qn36+PkTJvh555zjp3/lK6kH4j/+0S//s59l7hkzxT33+P1r3949e1heesmvO2pU0/wdO1yb0TLz5ydvb9s21V12aSq0hg1L75lag4MO8vv36KMubcgQP23atOa1u22b6r//rbp0aeb6WgzMnOn/uQLVyy6LzX/jDfc7Dv6JCn6H2rVzlpUXX4xNv/XW2HaOPNLPGzeu9Z6vBRSr0No92ZHrjmsmhda776qWlzcd+MrLVZ9+2i937rl+3vnnN23n6qv9/NNOc2kzZzoBGE2fPDl1f+6+2y9/7rmZeMLMct55se/TlCnh615/vV/vwgvjlznxRL9MKvPoXXf5ZXv1Ui0r051/OvJJc1m1yv8elJWprl3r0oNmpccfb17bUdNznz6qGzZkrs+FzNatqiNG+O/tiBEurTEvvthUWIHqgQeqzpnjl7viCj+vqkr1449d+iuvxI4Xc+e2zvO1kGIVWu1A2wSuh4JeDvqNXHc6emREaG3cqDpggP/FGz1adZ99/Os2bdy/2LVrY/+1vf9+07bmzPHzKypUV65U/cY3/LQTTwzXp2ee8eucdFLLnzHTBOekwJnnwhJ8P+6+O36Zv/zFL5PM/FhXF9uXP/9Zdfhw//rNN9N7riCbNvmCJRM8+KDfrzFj/PTLLvPTr78+/Xbr62PNXE8+mbk+FzLB97W6OrnJ7pln/D+tZWWqv/51rHlf1Wmz++7rt7n33qpbtrjxIpr2wx9m95kySE6FFkwKldYMofUG6GDvfBDoOtC/gU4CvSFnD5xpoRXUnjp2VF240E22Bs021dWqZ5/tX++/f2IT35gxfrlx42IH9w8/DNent97y64we3fJnzCTLlsU+EzhBFJZ+/fx606fHLzNtml+mZ8/E7/Ujj/jlunRxf0C++10/LTjnmA7Ll6sOGuTaiJrxWkrwu3DddX56cM4lnvaeiqlTYz+Liy/OTH8LmTffjH1PbrstdZ3Jk1V//vOmjkFBPv009o/rIYf455WVqp9/nrlnyDI5EVpQrdBVYbpCF++8q0J/hVlh20kmtGYEzq8F/bt3XhnMy+XRYqH16KOxX+6HHvLzFi92jgCNB2hwJqlEBE17weP008P3a/Zsv96gQc1+vKzw2GNNn61Hj3AOEytX+nWqqxPPhTU0xHoDzpjRtEwkEmv++c1vXPrNN/tp3/1u854x+C994MBwz5aMhgbV7t39NqdO9fOC8yWHHZZ+28HnBdWhQ1vW12Lgwgv99+Okk1r++QW5/fb4v+9LLsncPVqBHAmtSxUWKmxXWOCdL/SE2E/CtpNMaH0cOJ8MelrgenqrP3CmhdaiRaqdOvlfunPOaVpm7txY54qoNrZpU+J2N250E7jBOmVl7l9aWFav9ut27pz+s2WTn/wk/o929uzUdYMelocckrzs6af7Zc89V3X9+tj8557z82tqVNescenBf9nDh6f/fKtWNf383n03/XaCNHZ1b2jw8+bP9/Oa4/YeXGoRPb74omX9LXSCJuJJkzLbdiSiesopse93u3aJXeHzlBybB3/akvrJFhd/LMKNIlwODAJeAhChc9i1ZHlLQwN85zt+1IQ99oC//71puUGDXISF4GLf7343+a66HTo03YX2nHNgz5QLvX2CQXPXr8+voLlvvumfB6OwB9MTkWhRcTyiu/qCC70zYAD8+c9u0acq/P73fv6PfuR/Rvvu6793s2b5EUjCcuutTes8+GB6bTQmGAXj+ONjt6/p189fmB6N9h4W1fjv+2uvNa+fxcDatX58z4oKOPjgzLYvAnffDb17+2mXXAK9emX2PsWM6t8Q2RuRM73oGO4IXz+hptUW9GrQW0BHBtIPBf1OzqR0JjSt4ALW8nK3ziIZH37oJmFHjw73j+r11/32KypSu23HI2geW7ky/frZ4MsvYz3gfvUrv49hTHEnn+yX/9e/kpddv171gAOaahF9+8Z6clVWNtUshg3z8995J/zzbdgQq30HzZ+NJ+bTIZ6re5Dmur0HHX+Cx3nnNb+vhc6ECf77cNBB2bvP2287U+xxxxWkxya51bR+o/CawkqF+xRWKDwZtn7OBA5QDkwDnvOuuwIvA3O91y6p2miW0Grs3v6736XfRioiETepXlOj+re/Na+NoUP9Pn7ySWb711yC5r39949dt7bHHsnrRiLO/BUtH8ZcWl+v+sADru14gzM4d+/GfPvbfn6YSfgof/iDX2/w4Nj1X88/H76dIIlc3YM01+09OH8a7Gu/fpmdxykkrrzSfx/ycY1jnhBWaGVinG5ywAyFMoXp3nUvhWfD1k+2n9azIpwsQps4eQNE+F+RFkV7vxSYFbi+Guf2OBiY5F1nnl12gSOOcOdjxsAvfpH5e4i4wLmbNsUG002HfIw/GDRFHX447L+/ixcIsHAhLF2auO6yZc78BdC+PQwZkvp+5eXOtDp7Ntx+e9P9icrK4H/+p2mNbAc8AAAgAElEQVS9/ff3zz/8MPV9wJkdb7rJv776ajj7bP/6oYfCtdOYYFT30aPjb2w5eLB/nk609+DncfHF/iaSixeX7v5cjb+jRkvJxji9FRflvR6RjsAqIEH08KYkm9P6IXA4MFuED0R4QYRXRVgA3AlMVSXErodNERd+/iTg7kDyqcD93vn9wGnNaTslu+4KL7/s5kcefNDZvfORfIz03nhAqKx0A3G8/MYE57P2398JpLBUVsJFF7kB/Y9/9Pcbu/hiGDiwafkDDvDPU0XxjnLvvS6wKrjvyDnnuCPKM8+4PyHp8tJL/vmJJ8YvE93aBtILnBt8v4880v8zBs3b2qXQ2bw59vO2KOstIovj9BREOgN3AVOBD4E4m8wlIJyKqP1BDwHdF7Rd2upgU5XzSeAA4Cv4auf6RmW+TFD3AtzOl1MqKytbpCLnNd/7nm/myIeguVu3xkYOiM7t/frXflqyNUK//KVf7oorWtaXTZuceTGRCWz9ev9eFRXxIyEE2bEjdv3YLbe49Egk1hPtgQfS72t0vVey+bXmuL0vXerXadtWdft21Ztu8tPOPDP9vqq6+dt//CM2RFmhMGmS//x77ZXr3uQ1wPboOOodF2gGx+nQh1ujNSKdOmG2JkGVRaq8o8pHqqTpjhWLiHwNWKWqIf8CN+6LjlfVUao6qiJftaRMkG+a1vvvw44d7nzIEN9bKmiCSaZpBfMOPLBlfampcd6YibZ26dTJ117q62HGjOTtPfKIM6mBe99/8AN3LhKrbaVrIly92jf3VVbCfvvFLxfUtMKaB4Pv58EHu/aDm2i+9pq/t1NYVqxw2tpFF8Vum1IomGkwHeqj46h3jA9mtnScTorb7PEcRH6N6iJgPSIHha0eSmhlmDHAKSKyCHgUOEpEHgRWikgfAO91VQ76lj/k25xWogFh9Gjf1DdzptuMsTHTpvnbm4u4ucRsE3ZeKxJxm3NGufxyfydliJ3XeuklWLkyfB/eey+2P1VV8cs1x+093uexzz7+n53Vq+PvE5WMiRN9E+hzz7mlIYWECa1Mks1x+nbgECD646rF7a8VilYXWqp6jaruqqr9gbOAV1X1HGAicK5X7Fzc5mClS75pWm+95Z8HB4T27X0BoRp/C/OgUDjjjNgde7NF2HmtZ55xjh4AHTs21TB2391/3kgEHnssfB/efdc/D879Naaiwq0VjBLGiSI4QEfnbsrK3NxWlHTntYLryTZtir+Zab5SVxf7fpvQahFZHqcPRvXHwDbvZl8ClWErpyW0ROgiwoi0uheePwDHishc4FjvunQJCq21a3PXD3D/uN9+279uPCAkMxHOmQNPPulfX3NN5vsXjzCalipcf71/ffHF0DnO2vmgiTCdhcbBQfSQQ5KXDXoQpnLGWL/eN3mWlcW2ffTR/vmkSeH6Cc70+8orsWnvvBO+fq756CPniAFOc+3XL7f9KV4yMU7XIVIOOLdakR5AaFt2SqElwn9F6ChCV2A6cJ8IN6WqFwZV/a+qfs07X6uqR6vqYO91XSbuUbDkk6b18cdua3KAvn1jtQJILrT++Eff5fuEE1zEitYgKLRmzPDn44K8+KKvhVVXu+3V43H66b757oMPwnn4NTTEmgeTaVqQntv75Mn+e7rffr6rO8TOa73+evhoKpMnN/WODArdfMdMg1kjC+P0rcD/AT0R+T3wFnB98io+YTStTqpsBL4B3KfKAcAxKeoYLSWfhFbjAaGxA0TQtXjKFLfmCZxzwwMP+HnZWBOXiK5doX9/d75jhx/aJ0p9fewarx/8IHEonq5d4aST/OswDhmffuoLgT59UptE03F7TzZADxrk36u2NnapQTKCpsEoJrSMbKD6EPA/wA3AcuA0VJ8IWz2M0KoQoQ9wJvBcszpppE8+OWKkGhC6d/djK9bV+RrGjTf6//QPP7z1180kMxHec49vYqupSW22HDfOP3/wQV/TSUTj+axEno5R0jEPJppfBHefoLYVdl4rntCaNcuZIvMd1eTviZGPzMVpWxOBzYiEtueGEVr/C7wIzFflAxEGeDc0sknnzn5g1Q0bnDDIBarh/sU2NhGuWgV33eWntaaWFSWRM8aGDfDLX/rX11zjzJ7J+NrXnKMGOEeJ91OshUxnPgvCu71v2+ZMlFHi/RFId15ryRLf07CyMja4c9DEmSsef9yZQf/0p/j5s2f7f+y6dUsvOLXR+oj8FFiJCwP1HPA8aShEKYWWKk+oMkKVi7zrBap8s5ndNcJSXh4b8mddFqf4pk6Fr38dLrzQjwoRZd483827c2fYe+/4bQSF1ltvwS23uAEW3IBz3HGZ73cqEmla113nD3L9+sEVV6Ruq7razW1FSeWQEXRiSDWfFe1HGLf34Hq5oUOhZ8+mZYKa1uTJ/ueQiKCWNXZsbP1cmwhnzXI7Mnz0Efz85/DCC03LNPakTKXVGrnmUmAoqsNRHYHqPqiGdvAL44gxRIRJIsz0rkeI8MtU9YwMkO15rYYGt8XH6NHO9fvOO91an+cCf3qCA8KYMbHbagQJCq3Jk+G22/zrX/wiNwNJUGhNn+5MlXPnOoEa5U9/8uMnpiJoInzsscTa7/r1brAF9+cjqPEloqLCbb8SJZHbexitd5ddnEAD2L491vMzHkGhdcIJsUI2l0IrEoELLoh1ornooqYOIzafVWgsATY0t3IY8+BdwDVAHYAqH+P89o1sk815rQULXPSDX/4y1sNs1So4+WSndW3eHH5A2H133wFg82bf23DoUKfF5YKePV0cQXDaxqxZcNVVvrAZMwbOPDN8e2PHOoEAbvFuYxfxKEHT4ciRsYuVkxHGGSPs5xF2Xquxq3tjofXee+lH1sgUd90VO1cFzrnnV7+KTTOhVRiIXIHIFcAC4L+IXLMzzaWHIozQaqfaJJhhHu1KWMRkQ9NShfvuc4Np8B/4QQfFRlG/805n1nvxRT8t1YAQL//qq9MLjptpglrOn/8MEwJrIW++OT0NsLw8NkJGIhNh0DQYZj4rSiq391Tr5YKEndcKurr37+/+ZAwc6H/3vvwSPvssZdczzrJlsd6dQUF6663+vN6SJfD55+68XbvEobKMfKCDdyzGzWdVBtI6JKkXQxihtUaEgXgLwUQ4HeemaGSbVAuMp0+Hhx92P9wwzJvn5mW+9z1/oCovh2uvdYPXjBmx8zZz58Jy76Ourk6923DjQXS33eDb3w7Xt2wRNBEG3e/PPTf188QjTOT3sJEwGpNK05o+3Z/r6tvXd+mPx1e+4gvkDz7wNd/GNDYNirgj1ybCSy7x+zxokNMWjz3WXUci8MMfOo05qGUdcog/L2jkH6q/Q/V3wAM7z4NHSMIIrR/jtiIZJsJS4DJwThlGlkmmaX3yifuRjhvnJvHHjnXaUWPhtmwZ/PWvLkjt4MHw9NN+3pAhTiv45S/dnEq3bs5T6/77Yxesgh+UNRmNhdZVV6Wuk23izSfV1MRGwkiHESNg+HB3vmVLrOYGbkBNZ1FxkFRu76nWywXp1s1fyN3QAE89Fb9cY6EVJZdCa8KE2P7eeaebd7zjDn/+cfp0t/+ZmQYLkX8iMh+RRxG5GJF90qodNhw8aA1ohxaFoc/w0aydiwuJP/3J32rh8stj84K78waPigq3E+4f/6h65JH+rrmNj4suclt8JGLhQrdNRrT8TTel7m9Dg+rAgbpzJ93Nm1v0+Blh2bKmz37ddS1r8/rr/baOPz42b/ZsP69bt/R2EJ4/36/bu3fT/G9+088PsyNzcDuYTp1UFy2KzV+82M+vrIz9Przyip83cmTie0QiqjNnxt+RuTls2BC7C/P558fmB38T1dWxZV95JTN9KAEIuXNx1g6oVBij8P8UFiusC1s3jLC6Is7xfdB9c/rQpSC07r3X/0F+5zt++rx5buv2aF7wPNnRpo3qqaeqvvxyuPvX16s+/LDqHXe4/ZrC8Nlnbtv6OXPSf95s0bu3/x7066e6ZUvL2lu0yG+vvNzfW0xV9b77/LyTTkqv3bo69xlF62/c6Oe99ppqx45+3vTpqdvbsEF1jz38Oocf7j7TKOPH+3nHHBNbd+NG/w9PWVlsX4L89reuzG67uT8ILeUnP/H71KOH6po1sfl1dar77tv0u11RkfxPmBFDToUWHKZwjcILCm8r3K5wdtj6YYTWw6Cfgf7FO2aDPgD6Aej/5OzBS0FoTZzo/yhPPNFPv+ACP/3YY1WXL1e99VbV0aOb/phFVI86SvXuuwtzY79McOaZ/vvx6KOZafPww/02o5tGqqr+6Ed+enM0uqFD/frTpqlu26Z65ZWxGnPfvk6rDcPbbzvBGq177bV+3te/7qf/5S9N6+6zj5//6qtN85ctU62q8ss01orS5e23Y5/z4Yfjl/vgg6Z/1A46qGX3LjFyLLQaFN5TOE2hMt36YYTWi6DtA9ftQf8D2hb005w9eCkIrbffbvqj/OKL2B2EX3stts78+W6wPOccZ9JburTVu513LFzodoK+5Zb0zHXJuPPO+APmyJF+enPMVSed5Nf/zW9UR4yIHZy7do0vQJLxu9/59cvL3Q7K27erdujgp8+a1bTeD3/o519/fdP8q66K7ZuI6pQp6T+zqjMlB3eJPv745J/V5ZfH3vtnP2vefUuUHAutzgonKfxR4VWFVxSuDVs/jNCaBVoZuK4CneWdT8vZg5eC0Jozx/9RDhjg0q64wk875JDMDcJGeqxdG2vK++wz1dpaXwMQcea5dLnsstjBOHgcd1zz/oTU1amOGRP7XZowwb/u3z/+9+iee/wyp5zS9Pnbt2/ax8MOS/87GYmofutbfhvt2rk/GsmorVXdfXe/znPPpXfPImD9lh26vS6kxt2IPJjT2lPhQoWHFBYqvB62bpj96h8G3hXZudnXycAjItQABbRLXAHS2Htw7VrnSRUlV5EmDBdi68QTfe/Bhx5yHpzRhbjDh/uxCtMh6PYepbrarTH78Y+b93lXVLg1ZSNHOjfyBQtiXfejru6NCa4xe+cdJx6i5W67LXZ919KlzgX9rbfc/mlnnBG+fzfcELu55l//mtydH9zmo88841zjR450n0WRsr2+gXmrNjFnRa07VrrX5Ru28dgFozl4QLfUjeQTIvOBOcCbwB3A+ajG2TsoPimFlirXivBv3PbLAlyoSnS/g3GJaxotJho0NxJxg81NN/kb3e2zT+x2GUbrc845sUIr6N6fzqLiINHwS1H2288JnL32al57Ufr3dy7j0XVzwdiGQVf3xn3p1MkFGF69GhYudKGmNm2KDYV13XUutuNN3jZ7V13lAgyHCY/17LOxwYsvusiFbgrDvvvCG2+EK1tgfLaylgkfLeXlT1cyf/VmGiIat9yclbWFJ7RgMKrNDrMSaudiT0g9AjwNrBLBtgVtDcrKYkM53RTYe/Oaa0zLyjXByO/z5sVGtU9nfVaQr3zFHR06uM/43XdbLrCinH22Cz4bpLIyNuRTkLIytz4vSnS91l13+QGc99gDvvUtF1opahn4/HOnLaXi00/dOkP1BuSxY2OFYYmxZN0Wbv/vPI6/+Q2++tc3+Ptr8/ls5aaEAquyvIz1W3K0+0NLaIHAAhDV+G/IzgLCKcBfgL7AKqAfMFuV4S25cSaoqanRzVHNo1jZc0+39UKQgQNdWkUY666RVb7/fbj33qbpn3zSMmHT0JCd8FcbNzoNZeFCd33MMfDyy4nL//a38DsvWMFPf+rMlAMGuEXr4LS3H/3IP7/IiztQU+MWSAdDgwVZt86FDosGBt59dxe5o0ePFj1eobFm03ZemLGcCR8tY+rnXyYs169rO4b27sCw3h12vvbvVkNFeSi9owkiskVVa5rb71wSZtS7FhgNvKLKfiIcCZydoo6RKYLzWlF+/nMTWPnCuHFNhVanTjBsWMvazVa8xo4d4ZFHnEnwyy/hZz9LXj6oMb7zDvzrX77A6t3bhcOK8oMfwN//7vbm2rzZzbned1/TNuvrnXYWFVjt2jkza4kIrNptdbz0yUomTF/G5Hlr4mpSVRVlHLNnL07Zty+HDepOTVUR/N5FLkX1FkTGoDq52c2E0LSmqDJKhOnAfqpERHhflYOae9NMURKa1te/7iaco/Tt6ybSq6py1yfDp6HBhdGKDuQAX/1qbKDhfGTtWic8evVKXm7dOt9EXVHh4klGtbQ//xmuvDK2/Cuv+DECAaZM8UNpbdjg4lvecw/8859+mSeeiI15WaS8PX8ND727mFdmrWR7fVMLWXmZcPjg7pwysi9fHd6b9lkUVDnRtEQ+QnVfRD5Edf/UFeIT5l1ZL0J74A3gIRFWYVHeW4/GmtaVV5rAyifKy51zw403+mnNnc9qTbqFnLzv2tU5ZMyZ44RcVGB16eKbBYMccwyccgpMnOiuv/MdN+81Y0b8wM6/+lXRC6wtO+q57vlZPPze4rj5B/bvwikj+3LiPn3o1r6of9uzEFkE9EDk40C6AErIjSDDCK1TgW3A5ThvwU7A/6bXV6PZBAeXbt1cdGsjvxg3rvCEVjoccogTWkEuuaRpUOUoN97oAvHW1bk9zKIbYjbmtNPcnFkR89GS9Vz+2EcsXBNrEdqzT0dO3bcvXxvRh127hNxvrdBRPRuR3sCLwCnNbSah0BLhMmAyME2VBi/5/ubeyGgm0Ujd4OYf2rfPXV+M+Iwc6bY5mTLFzRk11909Xxk9OtacV1PjnDISMXgwXHpprCAHt23Innu65Rpjx8J55yXeCbvAqW+I8PfX5nPrq3Nj5qyOH96bn311CIN7hd4+qrhQXQGMRKQSGOKlzkE1tBtkMk1rV+AW3JYkHwNv44TYO6qsa2aXjXQ5/XS3fXtDg++ZZeQXIm5e5t574fjj3fq6YqKx5njhhanNizfc4HZ5XrvWLbTeZx+3FU4J7Hf1+drNXPbYR0xbvH5nWk1lOb89ZTinH7ArUupLVUTGAv8CFuFMg7shci6qoRbdhXHEqARGAYcCh3jHelUytHik+ZSEI4Zh5JqGBuewsXatW9e1cKFzCDKa8Orslfz04Wls3tGwM23U7l246cx96dctf8yAOXV5F5kKfBvVOd71EOARVONsfteUMHNabYGOuLmsTsAyYEazOmsYRuFRXu4ifvzjH3D++SawEvDgu5/z6wkziVoDK8qEy48dwoVjB1JeVuLaVSxtdgosANXPEAmtgifUtEQYDwwHaoH3gHeBd1VJvAKulTFNyzCMXBOJKH96cQ53vD5/Z9quXdryj3EHsM+unXLYs8TkWNO6F1DgAS9lHFCB6vlhqifTtPoBVcBcYCnwBbA+SXnDMIySYnt9A1c+8THPTvfX6Y3YtRP3nHsgPToUtft6S7gI+DFwCW5O6w3g9rCVk85piSA4betQ79gbWIdzxvhN8/ucGUzTMgwjV2zYUscPH5jC+wt9v7Sjh/Xkb9/ej3aV+R3BomjDOLltT5gpwnpgg3d8DTgIci+0DMMwcsGC1Zu44IGpzFu1aWfaOaP78duThzc7HqARjmTrtC7BaVdjgDo8d3fgXswRwzCMEkRVefj9xVz33Cy21vkeglefMIwfHTHA3NlbgWSaVn/gSeByVZa3TncMwzDyk9W127n6qY+ZNHvVzrTK8jJuPHMkp4w0j8q0EalBNe35nZTrtPIZm9MyDKM1eOXTlfz8qY9Zu9nfYHdQz/bc/K192XuX/PQQTEaOvQcPBe4G2qPaD5GRwI9QvThM9fyeLTQMw8ghm7bX8/vnZ/HI+7HBbs87tD9XnzCM6jZZ2kKmuPkrcBzgoiqrTkfkiLCVW11oichuuBAevYEIMF5VbxGRrsBjOLPkIuBMVc2bNWGGYZQO2+oaeOi9xdz+2rwY7apXxypuPGMkhw8u7r2/sj5Oqy5ptPN6Q6KijcmFplUP/ExVPxSRDsBUEXkZOA+YpKp/EJGrgauBn+egf4ZhlCj1DRGe+vALbnllLss2bIvJO3Gf3vz+tH3oUlOZo961Ktkcp5d4JkL1AudeAiTYCqApOZ/TEpEJwG3e8RVVXS4ifYD/qurQZHVtTsswjEwQiSgvzFzOTS99xoJG24js0rkt/3P8UE4Z2bdovAPTndNqyTgdp7HuuGDsx+AWF78EXIrq2lDVcym0RKQ/bjX03sBiVe0cyPtSVbvEqXMBcAFAZWXlAdu3b2+dzhqGUXR8trKWCR8tZeL0ZSxZtzUmr3v7Sn5y5CDOPrgfVRXFNXclIjuIXbo0XlXHJyjbnzTH6WySM0cMEWkPPAVcpqobw/6D8d7Y8eA0rez10DCMYmTJui08+/EyJn60jNkrapvkd6iu4MKxAznv0P7UZHHL+xxTr6qjUhVq7jidotH7cZrVeu+6C/AXVL8XpnpOPhFxEX2fAh5S1ae95JUi0iegdq5K3IJhGEZ4FqzexIufrOTFT1bw0ZL4IVQ7VFcw7uDduXDsADq3K4l5q6RkcZwesVNgAah+ich+YSvnwntQgHuAWap6UyBrInAu8AfvdUJr980wjOJAVZmxdAMvfrKClz5ZydxAuKUgVRVlHLNXL04Z2ZevDO1RdGbA5pLlcboMkS5EvQ6dR2JoWdTqc1oichjwJs6eGvGSf4Hb/uRxXHT5xcAZqpp0h2RzxDAMI8iSdVt4cuoXPDn1C5au3xq3THmZcPjg7py6b1+O3as37YvXBJiQVI4YmRyn4zT+XeAaXMQlgDOA36P6QOJKgeq59h5sCSa0DMPYVtfAi5+s4IkpXzB5/hriDWnVbco4YnAPjhvem6OG9SwVt/WE5DzKu8hewFE478FJqH4auqoJLcMwCo1tdQ28t3Adr3y6kgkfLWXjtvomZTq1bcPRe/bkq3v1ZuyQHrStNNNflJwILZGOqG70zIFNCamxlZ5ebBhGwaGqzF+9mdc/W83rn63mvQVr2V4faVJOBI4Y3INvHbgbR+/Z0+ao8ouHcVtbTcXtXBxFvOsBYRoxTcswjLxDVVmybivvLVzLewvX8c78tQnnqAB269qWMw/YjW8esCt9O7dtxZ4WJjkzDzoHj91QXZyybAJM0zIMI+dsq2tg3qpNzFi6gfcWOEG1vFEYpcYM7FHD2CE9OWavnozeoxtlZcURraKoUVVE/g84oLlNmNAyDKPViESUxeu2MHtFLXNW1PLZylpmr9jIorVbaIgkt/q0r6pgzKBujB3SkyOGdGfXLu1aqddGhnkXkQNR/aA5lU1oGYaRcVSV1bXb+WzlJmav2MicFbXMWVnL3JWbYnb8TUZNZTmj+nfl4AFdOXiProzYtTNtbCv7YuBI4EJEFgGbic5pqY4IU9mElmEYzWLT9npWbNjGyo3b+HztFj5fu5nP125hkfcaVjiBc6Do17Udw3p3YNTuTlDt1acjFSakipETWlLZhJZhGDE0RJQ1m7azYsM2Vmx0Qqnx+cqN29m0vambeRi6t69kaO8ODO3VkWG9OzC0dwcG92pPu0objooakWrgQmAQbtHyPaim/SWyb4lhlCgNEWXR2s3OdBc9VtayeF3q+aUwdKiuYECP9gzr5QTTsN4dGNK7A93bV2Wg90YBcj9Qh4u0cQKwF3Bpuo2Y0DKMEmF7fQMffr6eyfPW8Pb8NXyybGPctU5hqawoo1fHKnp3rGbXLu3YvVs7+ner2fnauV2botl/ysgIe6G6DwAi9wDvN6cRE1qGUaQ0RJRPl23kLU9IfbBoHdvqwgmprjWV9OpYTe+OVfTuVO2dV9Ork3vt3bHahJKRLnU7z1TraeZ3x4SWYRQJqsqCNZt5e94aJs9byzsL1rJha13SOr06VjGkVwdvbsnNMQ3s0d5CHhnZYCQiG71zAdp611HvwY5hGjGhZRgFzI76CG98tpp/z1zB5HlrWLEx+YLcPbrXcOjAbowZ1J2D9+hKN5tfMloL1Yz8EzKhZRgFRiSivLdwHROnL+OFGcuTalM9OlTtFFJjBnVnFwtxZBQ4JrQMowBQVWYu3cjE6Ut5dvryhBpVh6oKDh7QjTGDnKAa3LO9zTsZRYUJLcPIY+av3sTEj5bx7PRlLFgTPzj0Lp3bcvLIvnx1eC9G7NLJFuQaRY0JLcPII+oaIixas5n/zlnNxOnLmLF0Q9xyXWsqOWmfPpy6b1/279fFgsUaJYMJLcPIAarK8g3bmLOi1gseu5HZK2pZsHozOxriu6XXVJZz3PDenLJvX8YM6m5x+IySxISWYWSZ9Vt28NnKTTsFUzTyRG2c3XYbU1lexpHDenDKyF04es+eVLcxV3SjtDGhZRgtZEd9hFW1LibfzsCx67awyDtfvyX5WqnG9O1UzV59O/LV4b05bnhvOrVtk6WeG0bhYULLMBKgqmzYWseKnUFit7Fiw3ZWbNzGqo1+ANk1m3Y0q/0O1RU7A8ZGF/YO6dXBhJRhJMGEllFQqCo7GiJs2xFh0456Nm+vp3abe928vZ5N2+upjyj1DRHvVXdeb6+PsK2ugW31DWyr887rImyvb9h5Hsyv3VYXOuxRMqrblLFH9/YBAeUiUPTuWG3u6IaRJia0jKTsFBJ1EbbHDPIRttU3sKM+wo56JxC2R68bItTVR6hrcHV31Eeo816j1zvqI2wPnNdHXPn6hggNEaWuQWmIRO8dECr1DWjLA5BnlDKB7u1djL7dGgeO7V5Dzw5VJpwMI0OY0CpAooIkVmA4obG9zp1vrWtg07Z6Nm2vo3ab00Y2ba9n07Z6v26DEyZRgbK9PsLWHQ1s9YRE9DwDu1QULO0qy12g2I7VgcCxgSCynarp0b7K1kYZRithQquVaIjoTo1hy44GVm/azqqNbjO9ld7rqtptbN3REKOd1DVoEw0lkUt0qVBRJlS3Kad9VQXtqyuoqaqgQ1UFNVXl1FRWUFlRRkW5UFFWRkWZUF4uVJQJVRXlVLcpo7pNOdUV5VS1KYtNa+OdV7jzmip3D9OSDCN/KEmh9fvnP3VCIaI0ROc8IpGdc51neEEAAAf3SURBVB8NEYioElFnotr5GoEGdeUjkeBrhIgSKKc0qNIQwZnU6huoayhcdSUqJKrjDPKV5WVUVrijynvdmVZeRpuKMtqUl1FZLrQpj5Ypj1unvExoUy6Ue8KmwqvjhEwZVd6raTWGUbqUpNC6/53P2dGCze/ygTblslM4VLcpp6rCCRSnPbjzDtUVO7WRDtVtPG2kguo2rp4TJu61TbkTTG0ry2kb1DralNsiVsMw8oaSFFptyoTmOSm3jKgQaNumnG7tK+nVoZqeHavp1bGKXh2r6dmhig7VbZxAqvAFSlTAVLXxtJjyMgvbYxhGSVKSQuvnJwwjElHKyz0zlGeKqihzJqryMqFc3KsIO6/LvLI7X8XVi+aVSfTcr1PlaSyV5WU2N2IYhtFCRPPNfzgNampqdPPm+JGvDcMwjPiIyBZVrcl1P5qDTVYYhmEYBYMJLcMwDKNgMKFlGIZhFAwmtAzDMIyCwYSWYRiGUTDkndASkeNFZI6IzBORq3PdH8MwjFIkX8fivBJaIlIO/B04AdgLOFtE9sptrwzDMEqLfB6L80poAQcB81R1garuAB4FTs1xnwzDMEqNvB2L8y0ixi7AksD1F8DBwQIicgFwgXepIrK1lfqWayqA+lx3IgfYc5cW9tytQ1sRmRK4Hq+q4wPXKcfiXJFvQitenKOYkB3eGzs+TrmiRkSmqOqoXPejtbHnLi3sufOGlGNxrsg38+AXwG6B612BZTnqi2EYRqmSt2NxvgmtD4DBIrKHiFQCZwETc9wnwzCMUiNvx+K8Mg+qar2I/AR4ESgH7lXVT3LcrXyh5EyiHvbcpYU9dx6Qz2NxQUd5NwzDMEqLfDMPGoZhGEZCTGgZhmEYBYMJrRwhIveKyCoRmdko/ade6JRPRORPgfRrvHAqc0TkuED6ASIyw8u7VQpge+R0nl1E+ovIVhH5yDvuCJQvqGeP99wi8ljg2RaJyEeBvKL4zNN57hL4vPcVkXe9Z5siIgcF8ori8846qmpHDg7gCGB/YGYg7UjgFaDKu+7pve4FTAeqgD2A+UC5l/c+cAhuXcW/gRNy/WwZfvb+wXKN2imoZ4/33I3y/wL8utg+8zSfu6g/b+ClaL+BE4H/Ftvnne3DNK0coapvAOsaJV8E/EFVt3tlVnnppwKPqup2VV0IzAMOEpE+QEdVfUfdt/tfwGmt8wTNJ81nj0shPnuC5wbA+/d8JvCIl1Q0n3mazx2XInpuBTp6553w1z4VzeedbUxo5RdDgMNF5D0ReV1EDvTS44VU2cU7voiTXogkenaAPURkmpd+uJdWTM8OcDiwUlXnetel8JlD0+eG4v68LwP+LCJLgBuBa7z0Uvm8W0xerdMyqAC6AKOBA4HHRWQAiUOq5G2olWaQ6NmXA/1Uda2IHAA8IyLDKa5nBzibWG2jFD5zaPrcxf55XwRcrqpPiciZwD3AMZTO591iTGjlF18AT3tmgPdFJAJ0J3FIlS+888bphUjcZ1fV1UDUZDhVRObjtLKieXYRqQC+ARwQSC76zzzec3vm4WL+vM8FLvXOnwDu9s6L/vPOFGYezC+eAY4CEJEhQCWwBhc+5SwRqRKRPYDBwPuquhyoFZHR3tzAd4EJuel6i4n77CLSQ9zePnia12BgQZE9+zHAbFUNmoFK4TNv8twl8HkvA8Z650cBUbNoKXzemSHXniCleuBMIsuBOty/qe/jBuoHgZnAh8BRgfL/D+dRNIeA9xAwyis/H7gNL8pJPh/pPDvwTeATnGfVh8DJhfrs8Z7bS/8ncGGc8kXxmafz3MX+eQOHAVO953sPOKDYPu9sHxbGyTAMwygYzDxoGIZhFAwmtAzDMIyCwYSWYRiGUTCY0DIMwzAKBhNahmEYRsFgQssoCUSkWyBy+AoRWRq4fjtL99xPRO5OXbJF9+ghIv/J5j0MI5+wiBhGSaCqa4F9AUTkt8AmVb0xy7f9BXBdthoXkQpVXS0iy0VkjKpOzta9DCNfME3LKHlEZJP3+hUvSOvjIvKZiPxBRMaJyPvefkYDvXI9ROQpEfnAO8bEabMDMEJVp4tImYjMFZEeXl6ZtzdS90RtichBIvK2Fzj2bREZ6qWfJyJPiMizuG0uwEUTGZf9d8owco8JLcOIZSQuNtw+wHeAIap6EC5G3E+9MrcAf1XVA3ERHOKZAKNRDFDVCC7aR1SwHANMV9U1SdqaDRyhqvsBvwauD7R9CHCuqh7lXU/BRUs3jKLHzIOGEcsH6uK94QVrjWozM3AbVYITOnsFNpDtKCIdVLU20E4fYHXg+l5czLibge8B9yVrC7fX0v0iMhgX1btNoK2XVTW4T9MqoG8zntUwCg4TWoYRy/bAeSRwHcH/vZQBh6jq1iTtbAWqoxequkREVorIUcDB+FpX3LZE5G/Aa6r6dRHpD/w3kL250b2qvfsZRtFj5kHDSJ+XgJ9EL0Rk3zhlZgGDGqXdjTMTPq6qDSna6gQs9c7PS9GfIXimSMModkxoGUb6XAKMEpGPReRT4MLGBVR1NtDJM/VFmQi0xzcNJmvrT8ANIjIZKE/RnyOB55v3KIZRWFiUd8PIEiJyOVCrqnd716NwThcZdZoQkTeAU1X1y0y2axj5iGlahpE9/oE3JyYiVwNPAddk8gaeG/1NJrCMUsE0LcMwDKNgME3LMAzDKBhMaBmGYRgFgwktwzAMo2AwoWUYhmEUDCa0DMMwjILh/wP+X+9eTexrMwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure()\n",
+ "ax1 = plt.gca()\n",
+ "ax1.set_xlabel('Time (year)')\n",
+ "ax1.set_ylabel('Wages (Shillings/week)', color='blue')\n",
+ "ax1.plot(sorted_data['Wages'], linewidth=3)\n",
+ "ax2 = ax1.twinx()\n",
+ "ax1.set_ylim([0, 100])\n",
+ "ax2.set_ylim([0, 100])\n",
+ "ax2.set_ylabel('Price of wheat (Shillings/quarter)', \n",
+ " color='red')\n",
+ "ax2.plot(sorted_data.index, sorted_data['Wheat'],\n",
+ " color='red', zorder=0, linewidth=3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot the purchasing power of workers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The purchasing power can be calculated as the ratio of the wages over the prices of wheat. We plot it as a function of time."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnWd4HAe1sN+jZhVbrnKTe4/t2HHsOL13UiGBLw1ICOSGC4HQLj1AbuMSeg0hECAJJZAAIYUUIB3HJcU1jm25Si6SJUu2urTn+zGzo9nVlpG8K+1K532efTx9z3jtOXO6qCqGYRiGAZDT3wIYhmEYmYMpBcMwDMPDlIJhGIbhYUrBMAzD8DClYBiGYXiYUjAMwzA8TCkYhmEYHqYUDMMwDA9TCoZhGIZHXn8L0FPGjBmj06ZN628xDMMwsoo1a9bUqGpZsuOyTilMmzaN1atX97cYhmEYWYWI7AxynLmPDMMwDA9TCoZhGIaHKQXDMAzDw5SCYRiG4WFKwTAMw/AwpWAYhmF4mFIwDMMIyLbqIzS3dfa3GGklaZ2CiOQAi4GJQDOwQVX3p1swwzCMTOLHz23lG3/bzPCifL5x9SIuXDC+v0VKC3GVgojMBD4LnAdsAaqBQmCOiDQBPwV+paqhvhDUMAyjP3l4zR4A6pvb+bf713DTqdP43MXzGJKX28+SpZZElsJ/AT8B/k1V1b9DRMYC1wHvBX6VPvEMwzD6n/bOEDsPNkVsu+/lHazeUccPr1vC1NEl/SRZ6okbU1DVa1X1hWiF4FKvqt9VVVMIhmEMeHYebKIj1P1RuK6ynku//xKPr93bD1Klh6SBZhH5RdT6UOCJtElkGIaRYWw9cMRbPn32GO64dD75uQLA4dYOPvKb1/jyn9fTGUNxZBtBso8qReQnACIyEngaeCCtUhmGYWQQ26q7lMLMsqF84LTp/PHWU5g8qsjbfv+KnTy+LvsthqRKQVW/DDSIyN04CuFbqnpf2iUzDMOIYntNI199dAPPbOzbBMhtPkth1tihACyePILHP3Y6p8wc3SVfdWOfypUO4ioFEXlX+AOsBE4CXgfU3WYYhtGnfPnP6/nlKzv4yIOvUXOktc++d2t1d6UAUFqYz7nHjPPWaxv7TqZ0kSj76LKo9deBfHe7Ao+kSyjDMAYObR0h/vpmFR2hEO9eOpmcHOnVdUIhZc3OOueanSHe3n+YMUOHpFLUmKhqhKUws2xoxP7RJQXe8sHGtrTLk27iKgVVvakvBTEMY+DxytYavvyX9Wxz3SptHSHee/K0Xl2r8lAzze1d1cRVh1pSIWJS9ta30OhWMQ8vymfM0IKI/aP8SuFI9iuFINlHc0Tk7yKy3l1fJCJfSr9ohmFkK/vqW7jtt69z3b2vegoB4A9uAVhv8LtwACrrmnt9rZ6wLcp1JBJp6fiVQu0AsBSCZB/9DPg80A6gqmuBa9IplGEY2Ul7Z4h7X6zg3G89x1/frOq2f+2eenbXNsU4Mzl+Fw5A1aG+UQpbI1xH3YvU/C6sgeA+CqIUilV1ZdS2jnQIYxhG9rKjppFLv/8S//X4Js/dAnDFcRNZPn2Ut97btM2t0Uqhvu+Vgj/IHGZkSb63XNfURijLaxWCKIUatw+SAojI1UD2J+MahpFSvvf3LWzef9hbnz12KL/90El875olvGfZZG/7E71UCluilEJlH1kK0e6jaIbk5TJsiBOe7QwpDS3tfSJXukjaJRX4CHAPME9EKoHtwA1plcowjKxj094Gb/lj587mtnNmkZ/rvHeeP38c+blCe6eydk89uw42MWV0ceBrq2p3S+FQM6razcefarYe6IqJzCobFvOYUUMLONzqOFBqjrQxorgg5nHZQJDitQpVPQ8oA+ap6mmquiPtkhmG0a/86fU9fPBXq1m5vTbpsZ0hZXtN18Pz5tOmewoBnKyd02eXeetPrO+ZtVBzpI365sg38Jb2EHVN6X0rr29q9+ohCvJyKB9ZFPO4gRRsDpJ9NE5Efg78UVUPi8h8Ebm5D2QzDKOfaGhp57MPr+PZTfv5/CNrkx5fdaiZ1g6ni/6YoUMYXpTf7Zh3HDvBW+5pA7loKyFMujOQtlZ3ucNmjCkhN06NxeiSrmBzthewBYkp/BJ4CmfIDsDbwO3pEsgwjP6n6lAzbe5Dflt1I4eT+Mm3VifO0IEuFxI43UV3HQyehRSdjhom3XGFbX7XUYx4QpiBVMAWRCmMUdWHgBCAqnYAgebRichFIrJZRLaKyOdi7D9LROpF5A33c0ePpDcMIy3URhVhRQd5o6nw1SLMKIv98DwaF9JWXwDb/7Ke7rTUrdXxK5n9jPIVtEX/3WUbQZRCo4iMpiv76CSgPtlJIpIL/Ai4GJgPXCsi82Mc+qKqHud+7gwuumEY6aK2KUop+B7KsdgWwFKA3ruQ/A/nxZNHeMtpVwpJ0lHDDDZL4VPAo8BMEXkZ+DVwW4DzlgNb3UB1G/A74IpeS2oYRp8RHSx9e39iSyGiN1CCh2dvXUj+h/MZPmsj3bUKydJRw4waTEpBVdcAZwKnAP8GLHCrmpNRDuz2re9xt0Vzsoi8KSJPisiCANc1DCPNRPfweTuJpVDhyzyaOSb+wzPahRSkkK2hpZ39DW4GUG4OJ83oalVdmcb+Ry3tnV71tQhMHxPfAho9dBAFmkXkReBrwGRgp6oGzQGLFaaPLvV7DZiqqouBHwB/jiPDLSKyWkRWV1dXB/x6wzB6S7SlEC/7B5xB9tWHk6dthrnE50IKUsjm/+7pY0oi6hvSmX20vaaRcHHy5JHFFObnxj129ABqihfEffR+YDNwFfCK+3D+ToDz9uAokjCTgIhmKKraoKpH3OUngHwRGRN9IVW9R1WXqeqysrKy6N2GYaSYaKWwt74lbqVuhc/FkihtM8x5PXQhRfv1xw0b4gWba4600tIeKO+lxwR1HcEgq1NQ1QrgGeDvwAtAMXBMgGuvAmaLyHQRKcBpoveo/wARGS9uOaKILHflOdijOzAMI+UcjOEC2RInrhCZeRTfxRJmeFF+RFwgmQspOl6Rl5vD+NJCb9u++vS4kIIGmaG7UlDN3v5HQdxH23DcOuOAnwMLVfWiZOe5qasfxalx2AQ8pKobRORWEbnVPexqYL2IvAl8H7hGs/lv0zAGCHWN3a2CeBlI0fOLgxCRhbSuezdVP7Eezn4XVboykJJ1R/VTmJ9LSYHjXuoIKQ3N2dszNEjvo+8DpwHXAkuA50XkBVXdluxE1yX0RNS2u33LPwR+2COJDcNIO7EyaOJlIPVGKZw3fxwFuTm0dYZYX9mQsBeSPx11tqsUJo4oApwpbOkqYOuJpQBOsLnRDUwfbGxleHH3qu5sIIj76Huq+m7gPGAN8FWcqmbDMAYgoZBS19RdKWw5EM9S6Jn7CMJZSF3hw3gupJb2Tna5D9ocXwaQoxQc0jGBLbqXUxBlN1DiCkHcR98SkVeBV4HFwB3A7HQLZhhG/9DQ0k5njJkAsWIKHZ0hdh5MXs0cC78LKdZAHnDiFWGH8uRRXRlAfqVQeah3Q3sSUVnn7+VUEKjr6UApYIurFEQk7FpaAVyuqgtU9YOq+is3+GwYxgDE/0ArH1FEgdvtdF9DS7dOpbvrmmnvdJ7a40sLGTokiEfa4fwF4yjIc669cW9DzLRXv+tolk/hlI/oCjSnw1LwN8IL6hIbDJbCChH5MzAaSJx4bBjGgKHO90ArGzYkwiW0NcqF5M8MCuo6ClNamM85c8d664/GsBbi+fUj3UepjykEbYTnx9//6OCR7C1gi6sUVHUZ8HF39bsiskpEviMiF4jIkHjnGYaR3fgthdElBcwe1zVYJjrYXFHT8yCzn8uPm+gt//XNqm6pnH4lFE8pVLrDdlJJZOZRsPsaUzIwZjUnjCmo6k5VvVtVr8Rpc/FXnIDziyLyeF8IaBhG3+J3fYwsKWCO72Ec3e7C/0adLG0zFufMG+u5nLbXNLK+siFifzxLobQwn2GFznmtHaGUu2u29qBwLcxgcB8hIrki8gCAqrar6j9U9T9UdTlwS59IaBhGn1KbwFKIDjb701F7EmQOU5ifywXzx3nrj75Z6S13dIYiM4CiHs7lacpAih792Rv30YBVCqraCZS5FcnR+ypjnGIYRpbj790zqqSAOeO6HorRaakVCR7aQbnM50J6bO1eQm7m067aJi+IPa50CKWFkXn/6cpAOtjYNfqzuCCXCcMLk5zhMFD6HwVJFdgBvCwijwLevwBV/Xa6hDIMo//wd/kcVVLA1NElFOTl0NYRYn9DK/XN7Qwvyqe2sc17Iy7Kz2VCabCHZzSnzRrDyOJ86pra2VvfwqodtZw4Y3TSt/WJvgykVHZLjY4nuJ14khLZPnsABpp9VAGPuccO830MwxiA1DZ1pZ2OHlpAbo5EBFvD7S78jfCmjykhJ0kjvHjk5+ZE1CyEs5D8095mj+3+yElXBlJvXEcQPac5e/sfBalo/pqqfg34ZnjZXTcMYwASaSk4D7rZEcFm56Hpb4TXW9dRmMsXd7mQnli3l/bOUNLBPeVpUgo96Y7qp6ggl2K3/1F7p3K4NTv7HwWpaD5ZRDbiNLVDRBaLyI/TLplhGP2Cf8bwKLeS1x9XCGcgBR3BGYQTpo3yfPd1Te28tLUmbuFamL6wFHp6XxEZSFkaVwjiPvoucCFuS2tVfRM4I51CGYbRP6hqRI59OKMmIgPpQHel0JvMIz85OcJlPmvhL69XJnXjlEcEmlMTU6hvamfT3q602J5YCjAwWl0EUQqo6u6oTemZamEYRr/S1Nbp9fwpyMvx2kHPiZGWGuE+OkpLASJdSI+v20tTm/OYGV6Uz5ih3XsPjR02xBvok4phO/sbWnjPT/9FjfuGP2xIHlNG9d5SyNaq5iBKYbeInAKoiBSIyKdxXUmGYQwsomsUwpk3U0YVM8TtU3TgcCvVh1vZWduVBjojwVzmoCyYWMoMtwtqOBUVnHhGrAyg6GE7e49i2M6OmkauvvsVNvuK87586XyvN1NQImc1D1xL4VbgI0A5zojN44B/T6dQhmH0D/4Hmf+tNzoD6e+b9nudVMtHFFFUEH9+cVBEIl1IYRK5cCZGNMbrXVxhQ1U9V9/9L3bXOufn5Qjf/X/H8Z4TJic5szuDxX00V1WvV9VxqjpWVW8g2DhOwzCyjHhKASKDzU+u3+ct97QRXiL8vZDCJFYKkT2QesqrFQe55qcrqHFdPYX5Ofzsfcu4ckl5j68FA6PVRRCl8IOA2wzDyHIOJlAK/mDzK9tqvOXeNMKLx8yyoSyYWBq5LaBS6Kml8PdN+3nfL1Z6qaOlhXk8cPOJnD1vbJIz4zMQlELcimYRORmnCV6ZiHzSt6sUOHpb0TCMjCO6mtmPv1bB7/NPRZDZz+WLJ7KhypcBlEDpRGQg1QVXCgcaWvjob173guplw4bw6w8s55gJpUnOTMzooQPbfVQADMVRHP5K5gbg6vSLZhhGX1Pb6Ktm7uY+it3IIJWWAsBliycSjisPK8yLePBHE1HAVh9cKTyzaT/NbrbSpJFFPHzrKUetEKCr2A+yN/sorqWgqs+LyEvAsVbBbBiDg1jVzGEmuxlI4bfrMEdbzRzNxBFFfPEdx/D7Vbu59cyZCdtn9HZW8z/fOuAtf+DU6UwZXdw7YaMYPZDdR+B0SRWRUX0ljGEY/UuiQHNujjBr7NAI105JQS5jh6V+5tYHT5/BB0+fkfS4yKZ4zrCdZA3sWto7eXnrQW/9nKOIIUQT7T4KIk+mESTQ/LqIPCoi7xWRd4U/aZfMMIyUsre+mf0Nid+mEwWaobsLaWacGoK+Yphv2E5bRyiQH39FxUHPdTRjTAnTxqQuJlJckEdhfo4nT2Nb9tX5BlEKo3BaXJwDXOZ+Lk2nUIZhpJaV22s55ev/4JSv/4P1lfVxj0tkKUD39NBUxxN6Q08b4/ldR0eTaRSPiG6pWdj/KOk8BVW9qS8EMQwjfTzy2h5UoVOVx9buZWH58JjH+R9i0YFm6G4pzEjhW3ZvmTiiiLf2OZXIlXXNLJo0Iu6xqso/NncphVS6jsKMKinwaiZqGltTFq/oK5IqBREpBG4GFgCeA09VP5BGuQzDSCHrq7qsgx2+aWl+2jpCXs5+bo4wvCi/2zH+AjZIfZC5N5T3oIBtW3WjV7lcUpDLCdNSHzL1xxWy0VII4j66HxiP0yn1eWAScDjhGYZhZAxtHSHe3tfVcXR7HKVQ19T1ABtZnB8z62fyyGLPZw6Z4T7qSQaS33V02uwxPe5tFIRsL2AL8jcyS1W/DDSq6q+AS4Bj0yuWYRipYsuBw7R1dqWRbj/Y6M1B9hM9mzkWOTnCpYucVhRzxw3rcWvpdNCT/kf/eCu9riPI/v5HQWY0h6tZDonIQmAfMC1tEhmGkVL8KaTgWA5V9c1MGhnp6/a/1Y4sjq0UAL7+rmO5dvkU5k8o9VpX9ydBC9gaWtpZtaPWWz97bnqUwqiIsZzZV8AWxFK4R0RGAl8GHgU2At9Iq1SGYaSMDTGyjWK5kPzD5kfHmF8QJi83h6VTR6akM2oqCNr/6KUtNXS4FtLC8lLG+tpup5IISyELYwpBso/udRefB5JXkxiGkVFEWwrgKIXTZ5dFbKtLko6aqYSH7XSGlJojbbS0d1KY311hRbiO0mQlQPb3PwqSfXRHrO2qemfqxTEMI5V0hpSNe7srBf/UtDCRNQqpr1JOF+FhO+HMo6pDzd3Gg4ZCynO+VNSz0hRPgMERaG70fTqBi7GYgmFkBTsONnpjLf3Edh8lrlHIZPxxhT0xuqWur6r3xmyOKilgcYJahqMlongtC5VCEPfRt/zrIvJNnNiCYRgZjr96uXxEkfc2HUspRASas0wpTBpVxModzvL/PLGJxZNHRNRZ+F1HZ80pS2uAfFSE+6g16/of9SZJt5iAsQURuUhENovIVhH5XILjThCRThGxltyGkUI2+uIJ7zh2vNeSek9dE60dkRZENlsK1584xXvQv7XvMDf/chXNPgsp3a0t/JQU5Hr1Dy3toZiWWiaTVCmIyDoRWet+NgCbge8FOC8X+BGOu2k+cK2IzI9z3P8BT/VUeMMwEuOvZD5+ykjPzRJS2F3bFHFssr5HmczSqaP4xlWLvPXVO+v49wfX0N4ZovpwK2/ucf4ecnOEM+aUxbtMShARxmRxXCFInYK/+V0HsF9VOwKctxzYqqoVACLyO+AKnJRWP7cBDwMnBLimYRgBUdWIzKOF5cOZPqbE87lXVDcya2xXL6O6LLYUAK5aOolDze3852POI+afm6v59B/e5NSZY7xjlk4dGbN9R6oZNbSAqnqnuvpgYxuTR2VP/6Mg7qPDvk8zUCoio8KfBOeVA7t963vcbR4iUg68E7i7R1IbhpGUykPNHGpyak9LC/OYNLIoooGdP64QCmlkm4ssVAoAN582ndvOmeWt/+WNKu58rOs9NF0Fa9FkcwFbEEvhNWAyUAcIMALY5e5T4scXYkVWomvrvwt81h3mE1cAEbkFuAVgypQpAUQ2DMNvJSyYOBwRYXocpXCouZ1w54vSwjzyc1PfE6iv+OT5c6htbOPBV53H1JHWLsdGulpbRJPNBWxBfvm/AZep6hhVHY3jTnpEVaeraqKA8x4cZRJmElAVdcwy4HcisgNn7vOPReTK6Aup6j2qukxVl5WVpdcfaBgDBX8l84KJzvzh6b78/QqfUogcw5mdVkIYEeHOKxZy6aIJEdvLRxR16/KaLkZlcf+jIErhBFV9Iryiqk8CZwY4bxUwW0Smi0gBcA1RqayuYpmmqtOAPwL/rqp/Diy9YRhxiY4nAHHdR0Ga4WUTuTnCt99zHKfP7oonnD9/XJ+lhka0z84ypRDEfVQjIl8CHsBx/9yAM4ktIaraISIfxckqygV+oaobRORWd7/FEQwjjfgzj8KWwsQRRRTk5tDmZuUcbmlnWGF+RDwhm6qZE1GQl8NP37uU7zzzNoea2vnE+XP67Luz2X0URClcC3wF+BOOUnjB3ZYU18J4ImpbTGWgqjcGuaZhGMmpPtzK/gbHJVSYn+O1fcjNEaaOLmbLAWe+wo6aJo6dNDyraxQSUVyQxxcv6ZYJn3YGdKBZVWuBj/eBLIZhpIgNPivhmKgW19PHlHhKoaLmCMdOGh4xIWxUgg6pRjCyuf9R9qYYGIYRl8jMo9KIfdPLuuIKO2qcAja/pTAqwSwFIxh+a6smy9xHphQMYwDitxQWThwesS8y2OxYDNlczZyJZHOgOUibi1ODbDMMI3OIrlHwM31MV1pmOAMpQimY++ioGTokjwK31qO5vTOiD1OmE8RS+EHAbYZhZAANLe3sPOi4hfJyhDnjI3Pz/QVsFTWNqGqEUhhIgeb+QkSiahWyJ9gcN9AsIicDpwBlIvJJ365SnBRTwzAyEH9n1NnjhjEkL/K/65ihBQwdkseR1g4Ot3RwsLHN3EdpYFRJAfsanP5HtY1t3WZiZyqJLIUCYCiO4hjm+zTgVB8bhpGB+GcoLIwKMgPd2l1UVDdGWQoDo06hv8nWsZxxLQVVfR54XkR+qao7+1AmwzCOgo0JMo/CTB9TwjpXeayrrKetMwQ4NQ1FBeYISAXZWsAWpHitSUTuAhYAheGNqnpO2qQyDKPX+CuZw+0tovFbCmt21nrLZiWkjp4UsIVCytbqI6zcXkvVoWYuWDCe4yanb2RoIoIohQeB3+M0wrsVeD9QnU6hDMPoHc1tnWx1C9NEnMK1WMzw1Sqs3lHnLVs8IXX43UfPbjpAbk4OI4vzGVlcwIjifDpDypqddazaUcvqnXVem3OA36/azYufPZvigiCP6NQS5BtHq+rPReTjPpfS8+kWzDCMnvPWvgavBfb0MSWUDIn9X9xvKRw4PHA6pGYS/r/LldtrWbm9NsHRkRxsbOONXYc4ZdaY5AenmCApqWH1tVdELhGRJThtsA3DyDAS1Sf4meZTCn4sHTV1nDJzNDk9aMo6uqTAG5cKsHJHcCWSSoJYCv8lIsOBT+HUJ5QCn0irVIZh9IrISubYriOA0sJ8xgwdQs2RSF+3WQqpY+roEp755Jm8+HY1dU3tHGpqo66pnbqmNg41tdPWEWJBeSnLp43ihOmjmDGmhL+8UcXtv38DiHTr9SVBGuI95i7WA2enVxzDMI6GzfsOe8vzEygFcNpdRCuFbB3DmanMLBvKzLLgg31OmN414fi1XXV0dIbI6+MpeEHaXMwRkb+LyHp3fZE7X8EwjAxjV22Ttzw9joso0X5zH/Uv5SOKmDjcSfJsauuMcAf2FUFU0M+Az+PGFlR1Lc4UNcMwMogjrR1eR878XGHC8KKEx/u7pYYx91H/47cWVvVDXCGIUihW1ZVR2zpiHmkYRr+x62CXlTB5ZHHEDIVYxLQUrBlev3PCtMxXCjUiMhNn6hoicjWwN61SGYbRY3bVds1cnjI6eZ+dGTGUwkAZxZnN+JXC6h11qGqffn8QpfAR4KfAPBGpBG4HPpxWqQzD6DE7fZbC1FHJlcKU0cVEz7G3ATv9z+yxQxlelA849QoVNY1JzkgtSZWCqlao6nlAGTBPVU9T1R1pl8wwjB6x0xdknjI6cZAZYEheLpNGdsUd8nKE0qK+r6A1IsnJEU6YNtJbX9WDoreUfH+yA0RkiIhchzOn+RMicoeI3JF+0QzD6Am7emgpQOTAnZElBUi06WD0C8si4gp9W68QxH30F+AKnOByo+9jGEYGsdMXU5gaIKYAkXEFS0fNHPoz2BzEVpykqhelXRLDMHpNe2eIqkMt3vrkwJZCl1KwdNTM4djy4QzJy6G1I8Su2ib2N7QwrrQw+YkpIIil8IqIHJt2SQzD6DVVh5rpdDvhjSsdQmF+sJkIy3y+63izF4y+pyAvJ6J1dl9aC4nGca7DSUPNA24SkQqgFRBAVXVR34hoGEYyIjOPkgeZwyyYOJwfXXc8FdVHeN/J09IgmdFblk8fxatukHnV9louXTSxT743kfvo0j6RwDCMoyYy86hns4AvWTQh1eIYKaC/gs2JlMIngJeBV1S1so/kMQyjF+w66AsyB4wnGJnN8VNGkCMQUti0r4GGlnZKC/PT/r2JYgpbgXcCL4vIDhH5jYh8RESWiEjftu0zDCMhfvdRTy0FIzMZVpjvdbpVhdd29o21EPfhrqo/VNXrVHUacDLwCDAT+ANwqE+kMwwjEP7uqFMDFK4Z2cGyqX2fmprwjV8cFuHUKVwBnIljQXyrD2QzDCMAqhqpFMx9NGBY7u+Yur1vLIVE2UfP4ExZewNYAfyPqm7qE6kMwwBgR00jb+w+xLnHjGVYHH9y9ZFWmto6ARhWmMeI4vT7nY2+wZ8y/MaeQ7R2dDIkL1i6cW9JZClU4KSkznY/s0Sk76dIG8Yg5c+vV3LBd17g9t+/wRf/tD7ucRHtLUYXW6uKAcTYYYVMc2NEbR0h1u2pT3LG0ZMopvBvqnoScCXwHLAUeEBE1ojIr9IumWEMUlSVH/x9C7f//g3aOkMAPLVhH20doZjH97ZGwcgO/C0vVvZBXCFIFlEr0AQ0u8uTgOPTKZRhDFbaOkJ85o9r+dYzb0dsb+0IsaEq9lvi0dQoGJmPfxLb6j6oV4irFETkOyLyKs5AnTuBYThzFeaqaqC2FyJykYhsFpGtIvK5GPuvEJG1IvKGiKwWkdN6eR+GkfXUN7dz430r+eOaPd62/NwuV9CaOCmJVqMwsIkculNLKJTeoTuJLIXtOAN2ylT1HFX9kqo+oaqB0lFFJBf4EXAxMB+4VkTmRx32d2Cxqh4HfAC4t8d3YBgDgN21TVz1k1d4ZdtBb9u7l07iS5d0/ZeJl5JolsLAZtroYsYMdSbiNbR08PaBw2n9vkRK4VFVXa2qnbF2uumqkxKcvxzY6g7paQN+h5PW6qGqR7Rr1lwJ7shPwxhMHG5p56qfvMLWA0e8bZ++YA7fuHoRJ88c7W1bszP2aMbIQLPFFAYaIn07dCdRm4u73MrlvwBrgGqgEJgFnA2cC3wF2BPn/HJgt299D3Bi9EEi8k7gf4GxwCWxLiQitwC3AEyZMiWByIaRfTy5bh8HDrcCUJCbw13vXsQVx5UDMKtsKKWFeTS0dFBzpI2iKp2KAAAgAElEQVQdB5si2l0fae3gYGObd+74PmqvbPQtZ84po6mtkxOmjeTEGaOTn3AUxFUKqvpu191zPY5rZwJOwHkT8ATw36raEu98nG6q3S4b43v+BPxJRM4A/hM4L8Yx9wD3ACxbtsysCWNAsaeu603/A6dN9xQCOKMZl04dyT83VwOOT9mvFHb64gmTRhWRm2PpqAORa5ZP4ZrlffNCnHDIjqpuBL7Yy2vvASb71icBVQm+6wURmSkiY1S1ppffaRhZx976rncr/8zkMMumjfKUwpqddbx7Wdd/q96M4DSMRKSzsd0qYLaITBeRAuAa4FH/ASIyS9xKGxE5HigADna7kmEMYPxKYeKI7u6fZVN9/uSoYPNO63lkpJgg4zh7hap2iMhHgaeAXOAXqrpBRG51998NXAW8T0Taceog/p/GiqQZxgBmb32ztzxheHdLYfHkEeTnCu2dyrbqRuoa2xjpjs6M6I5qloKRAhIqBfctfpKq7k50XDxU9Qmc+IN/292+5f8D/q831zaMgYCqRlgKE4Z3txQK83NZWD6c13c52eBrdtZx3vxxgJPKGmaqpaMaKSCh+8h9a/9zH8liGFlHfVP7UZ3f0NLhNbMrys9leFHsZnYRLqSdXS6knbW+wjVTCkYKCBJTWCEiJ6RdEsPIMj77x7UsvvNpvvCndb2+RqTrqDBuM7ulvr76a9xWB+2dIaoO+YPUphSMoyeIUjgbRzFsc1tSrBORtekWzDAymUNNbfx+teNV/c2ruzjS2tGr60S4jmIEmcP4Wyiv3VNPS3snlXXNdLotD8aXFlKYn96WysbgIEig+eK0S2EYWcb6yoaI9c37DrPU5+IJyl7fm/740u5B5jBjhg5h+pgSttc00tYZYn1lPY1tXc0GrL2FkSqSWgqquhOn3uAcd7kpyHmGMZBZVxnZsfStfQ1xjkzMPp/7KFY6qh+/0lm9s84a4RlpIenDXUS+AnwW+Ly7KR94IJ1CGUamsz5KKWze17smZVU+99H4GJlHfvzB5tU7aiPnKJilYKSIIO6jdwJLgNcAVLVKRIalVSrDyHC6WQp7e6cU9vkL12LUKPhZ5muh7LTR7gpKT7HCNSNFBHEDtbmpqQogIvavzxjU1De1s8tXHwCO+6g3dZdVPvdRMkthZlkJI935y3VN7ayo6Cr+N/eRkSqCKIWHROSnwAgR+RDwLPCz9IplGJnL+hgT0BpaOiIyiYKgqj2yFEQkIq7gz3gy95GRKoIEmr8J/BF4GJgL3KGqP0i3YIaRqUS7jsL0NK7Q0NxVuFZckEtpUXJvrt+FFKa0MI8RxQU9+m7DiEfSf4Ui8gHgRVX9TB/IYxgZj18pDB2S572xb9rXwNnzxga+zt6GSNdRvMI1P8tipL1aIzwjlQRxH00DfuoWrz0kIreJyHFplsswMpYNPqVwybETvOWeWgr+GoVkrqMwC8uHU5Ab+d/WahSMVBLEfXSHqp4DLAReAj6DM4nNMAYdDS3t7HBTQfNyhCuWTPT29TQDaW8P0lHDFObnsmjS8IhtFmQ2UkmQOoUviciTwNM4ozg/jTMwxzAGHf76hDnjhnFsedcDelv1Edo6QoGv5e97NDGgUgBYOi3ShWRBZiOVBHEfvQsYjZN19AjwqKruTatUhpGh+JXCseXDGVaY701L6wgp26qPBL6Wv5nd+IDuI4BlUyODzVNGWUzBSB1B3EfHA+cCK4HzgXUi8lK6BTOMTGSdr+fRQteNM298qbetJ3GFfb5Ac6JmeNFE91gyS8FIJUHcRwuBG4D3A/8PZ/byP9Isl2FkJNGWAsC88V0F/m/1QCn4A82xhuvEY1RJAee6WU7Hlg/v0bmGkYwgbS7+D3gB+D6wSlWPbqqIYWQpDS3tbK9xmtDl5oinDOZN8CuFYI3xuk9cC+4+AvjR9cfz2q46jps8IlAqq2EEJalSUNVLRKQAmAPMFZHNphiMwcjGqq4H/uyxQ735BX5LIaj7qL65neZ2X+FaYc/GpRfm53LKzDE9OscwghDEfXQmsAX4EfBj4G0ROSPdghlGphHLdQQwbXQJBXnOf6W99S2BRnRGz2W2t30jUwiSffRt4AJVPVNVzwAuBL6TXrEMI/PwVzIf66sVyMvNYfbYod56EBdS5BjOnrmODCOdBFEK+aq6Obyiqm/jzFQwjEGFXyksLI8sIPNnIAUJNkdbCoaRKQRxZK4WkZ8D97vr12MVzcYg40hrR0SQef6E0oj9Pc1Aisg8GmGWgpE5BFEKHwY+AnwMZ6rHCzixBcMYNGyorCc8LsEfZA7T0wwksxSMTCVI9lGriPwQ+DsQAjaralvaJTOMDCKR6wgi3Udv7ztMKKTk5MQPHkfGFEwpGJlDkOyjS4BtwPeAHwJbReTidAtmGJlEvMyjMGXDhjC6xJlp0NjWyZ665m7H+Nl3FDUKhpFOggSavwWcrapnqeqZwNlY9pExyFjvq1GIZSlAcBeSqkaM4exJiwvDSDdBlMIBVd3qW68ADqRJHsPIOBpbO7xGdzlCtyBzmLnjgmUg1Te309LudFMtKchl2JCeFa4ZRjoJ8q9xg4g8ATwEKPBuYJWIvAtAVR9Jo3yG0e9s3NvgBZlnjR1KUUFuzOP8lkKiyuaqqMwjK1wzMokgSqEQ2A+c6a5XA6OAy3CUhCkFY0Czbk/iIHMYf1rqpgTuo4juqBZkNjKMINlHN/WFIIaRSvbWN/P7Vbs5ddYYTogx7L4nJAsyh5k9dhg5AiGFHTWNtLR3dktdhShLwZSCkWEEiSkYRtbx6T+8yXef3cL1P3u1R4NvYrEuoFIoKshl2mhn4E1IYcv+2N+7r753w3UMoy8wpZCBtLR3cv+KnTy5zgbc9YaW9k5eragFoK0zxP89+Vavr9XUFhVknhg7yBwmSAZSVS/HcBpGX2BKIQP59b928OU/r+fDD77GMxv397c4WceGqno6QuqtP71xPysqDvbqWq/vOkT4UjPLhlJckNjjGiQDKdJSMKVgZBZBitc+GeNzs4gcF+Dci0Rks4hsFZHPxdh/vYisdT+viMji3t7IQGLNzjpv+ecvVfSjJNnJ67sOddv2349vIuRTFEF5asM+b/nUWcnnFwTJQPK3uJhofY+MDCOIpbAMuBUodz+3AGcBPxOR/4h3kojk4sxguBiYD1wrIvOjDtsOnKmqi4D/BO7p6Q0MRCoPdbkXVlTUsvVA8BGPBryxu7tSWFdZz6NvVvXoOqGQ8vSGLkvtggXjkp4T2Rivu/vImbhm2UdG5hJEKYwGjlfVT6nqp3CURBlwBnBjgvOWA1tVtcLtlfQ74Ar/Aar6iqqGX4tXAJN6KP+AxJ+dAvDgq7v6SZLsxG8pnDW3zFv+xt/eosWddhaEtZX17GtwfouRxfksD5DFNHlkMcVuHUPNkTYOHI78LQ81dRWuDR2Sx7BC60JvZBZBlMIUwN8Arx2YqqrNQGuC88qB3b71Pe62eNwMPBlrh4jcIiKrRWR1dXV1AJGzl6a2DmobI/sNPrxmD81twR9mg5nqw62epTUkL4fvvOc4xgx1ehJV1bfwi5e3B76W33V07jHjyMtN/t8lJ6qt9h9W74nYX2VWgpHhBFEKvwFWiMhXROQrwMvAb0WkBNiY4LxYZZoxnboicjaOUvhsrP2qeo+qLlPVZWVlZbEOGTBUHereSK2hpYO/9tD1MVjxu44Wlg9nZEkBt583x9v2439uo+ZIoneZLvxK4cIF4wPL8P9OmOwt//yl7TS1dXjrFmQ2Mp2kSkFV/xMnjnAIqAduVdU7VbVRVa9PcOoeYLJvfRLQ7ckmIouAe4ErVLV3KSIDiMoo11GYB17d2ceSBKehpZ0VFQdp6wj1tyi8sbsrSL9k8ggArjlhMrPccZlHWjv47rNvJ73O1gOHqah2huoUF+Ry+uzkQeYwVy4pp9wNINc2tvEbn/uvyh9kthoFIwMJmpL6OvAHnJYWB0RkSoBzVgGzRWS6iBQA1wCP+g9wr/MI8F53zOegp9LXcvnceWO9gfBr99Szdk/3AGp/09rRyeU/eIlr7lnBJ37/Rn+LE2EpHDfFUQp5uTl84R3zvO2/Xbk7afD+KV+A+cw5ZTErk+ORn5vDh8+a6a3/7MUKL5axz+c+MkvByESCpKTehtP76BngMeBx98+EqGoH8FHgKWAT8JCqbhCRW0XkVvewO3AC2T8WkTdEZHXvbmPg4HcfLZhYyqWLJnjrD6zIPGth1fY6dhxsAuDxdXt5tZf1AKkgFFLW7u6qPj7OtRQAzp47llNmjgagM6T87xOJC9p66zoKc/XSSYwdNgSA/Q2t/HGNE1vwj+GcaC2zjQwkiKXwcWCuqi5Q1UWqeqybQpoUVX1CVeeo6kxV/W93292qere7/EFVHamqx7mfZb2/lYGBPx21fGQRN5w01Vt/9M0q6pva0/r9r+2q46LvvsCVP3q5W8A7Fi9siQz83/XUZlR7Xg+QCrZVH+Fwq+O/HzN0iOfCARARvvCOYwg3JP37Wwd4cUvspIWqQ82sdZvg5eUIZ88b22NZCvNzueWMGd76T57bRntnKKJGwVpcGJlIEKWwGyeWYPQBfvdR+Yhilkwe4WWztLSHePi1PfFOPWpe2VrDDfe+ylv7DvPG7kOBCudeeDvywbp6Zx3/3Nw/4zZe97uOJo/o1pJ6Yflw3rWkK+v5jr9soLWje1bX0z4r4eSZoxle1Lu00etOnMIodxpb5aFm/vx6ZUSNgrW4MDKRIK2zK4DnRORxfCmoqvrttEk1iPFbChNHFCIiXH/SFL74p/UAPPjqTm46dVrEA2/nwUa+/czbrNxeS16uUFKQR1FBLsUFuRTl51FalMdFC8Zz/vxxcXv3/+Ot/dz6wGsRweJnNx7gMxfOi3k8wIGGlpitHO566m3OmjM24YzidOCPJyyZMiLmMZ+9eC5Pb9jH4dYOttc08tPnK/jYubMjjvHHE3rjOgpTXJDHzadN566nNgOOtbDXso+MDCeIpbALJ55QAAzzfYwU09EZ8oqloKsFwpXHlTPUnc61rbqRf7l++4aWdv7niU2c/+0X+MsbVeytb2F3bTNv7TvM67sO8fLWgzy7aT+PvFbJLfev4dqfrWBDVXej77G1Vdzy6zXdsoc27z/MLjdeEIsXt9R4y8dMKKXIDcZu2tvAY/3QzO+NXZGWQizGDivk0xfO9dZ/+M+t7DzY6K3XNbaxcofTTE8ELpifvIo5Ee89eSrDCp3frqKmkVb373iYFa4ZGUqQlNSvxfr0hXCDjQOHW+l0+/OMGVrgZbyUDMnjnUu66v5+/cpO7l+xk7Pueo57XqigrTNYKuiKilou/cFLfO7htVQfdoy+h1bt5mO/fd1rIDdlVHHEW/bTG/fFvBYQ4ZO/bPEEbjp1mrf+7ac30x5QrlTQ3NbJ5v2O1SICiybFb3F9w0lTvRbYbR0hvvLoBi8O8uym/d5vsGTyCMaWHt3bfGlhPjeeMq3bdpvLbGQqcd1HIvJdVb1dRP5KjKIzVb08rZINQiKCzFGN0m44aSr3u9lHf9uwj79tiHxYHz9lBJ+9aB7jSgtpauukub2DprZOmto6+de2g9y/YiedIUUVfrdqN4+t3cv588fxp9crvWvMHjuUBz54Iv9464DXKuLZTfv54OkziCYU0ghL4YzZZUweWcwDK3bS0NLBjoNN/HHNHq5dHiR7+ehZV1nvPcxnlQ1N+BaemyP815ULufLHL6MKz22u5qkN+7ho4YSUuY783HTqdLeIrSt+YUFmI1NJFFO43/3zm30hiBEVZB4Z+dCYO34YJ0wbyaoddRHby0cU8bmL53Hpoglx4wUXLhjPDSdN4b8f38Q/Nztv90daOyIUwsLyUn79gRMZVVLAub5sm1U76jjU1MaI4oKIa27c28BBNztpdEkB8yeUkpMj/NuZMz0f+vee3cI7l5T3KMe/t7y+q+vvJZ7ryM/iySO4/sQpPLDCKSz72l83snTqqAjrJ1VKYVRJAdefOIWfvdjVYsOCzEamEtd9pKpr3D+fD3+AtUCdu2ykmIggc4w3yRtPme4tlxTk8pkL5/L3T53JZYsnJh3+PmvsMO67aTm/vOkEZpaVROxbNnUkv/nQSV6mzNjSQu/B2hnSmNlE/lTU02aP8YLKN506jTFDnfz8fQ0tfVZbEatoLRmfuXCe1xdpb30L7//FSs/nP3fcMKaNKUl0eo/40OkzvEJEsCCzkbkEKV57TkRKRWQU8CZwn4hY5lEaiK5RiOYdx47n6+86lk+eP4d/fuYsPnL2rB6/hZ81dyx/u/0MvnrZfI6ZUMq7l07i1zcvpzTK3XK+L8Aaa9DPi29Huo7CFBfkcds5s7z1H/1zK4db0ltbAVGZR5NHBjpneFE+X7zkGG99496uVtcXBmiT3RPGlhZync+VtnBi/JiHYfQnQVJSh6tqg4h8ELhPVb8iImvTLdhgpCoiHbW7UhARrkmBjz4/N4cbT53OjadOj3vM+fPHeW6g5zdX09rRyZA8RwE1tXWwemetd2x0X6Brl0/hZy9WsKeumbqmdn7+0vaIpnS9ofJQM/sbWlgSo/5gf0OLl+pZlJ/LnHFDA1/3yuPK+f2q3ayoqI3YfkGKXEd+PnfxPEYU5zOsML9XBXGG0RcESUnNE5EJwHsI0N7C6D2RhWv9G4icPXYoU0YVA9DoBqvDrKg4SHunE9SdN35YtwydgrycCCVw74vbaWztoDfUHGnlC39ax+n/9w/e9eNX+MKf1nWrmPbPTzh20vBALa7DiDhB5zxfTUX5iCIWJJnF3BsK83O5/bw53HzadHL7uIbDMIIS5H/PnTj9i7aq6ioRmQFsSa9Ygw9VjbAUJsVwH/UlIhLhQnp2U5cL6QW/62hO7Fbm71xSzgzXJ3+ktSPi/CC0dnRy9/PbOPuu5/jNq7u8Ocm/Xbmb+17eEXFspOsoWDzBz6yxw/iQryXFpYvjB+0NY6ATpE7hD27Po3931ytU9ar0iza4qG9up9FNWSwuyO11a4VUEqEUNh7w3tD9QeZ4LaVzc4R3Hd9VW/HoG8HmQagqT6zby3nffp6vP/mW18vIz38/sYmXfOmw/nbZQTKPYvHJ8+fwsXNnc9Op07j93KNzdRlGNpM0piAihTgDcBYAnp9AVT+QRrkGHXuiXEeZ8Ka6bOpIRhTnc6ipnX0NLayvbGBkSb43Z2BIXg4nJBhRedniiXzzaacj+gtbqmOmtvo50trBLb9ezSvbIjutzigr4bMXzePu57fx+q5DdIaUj/zmNR796KlMGlnMuj2+zqgBM4+iyc/N4ZPnmzIwjCDuo/uB8cCFwPM4w3JsknyKSRZk7g/ycnM4Z25XQPSZjfsi3tBPnDE6YfbT1NElLHbf3Ns7lSfXx6+OBvjes29HKIQRxfl89bL5PHX7GVy4YDw/vWEp40qddNf65nY+9OvVvLG7zrOwxpUOYYIVhRnGURFEKcxS1S8Djar6K+AS4Nj0ijX4SJaO2l+c53MhPb1xf4Tr6IwA08guXzzRW07kQjrS2sHvVnaN9H7vSVN5/tNnc+Op08l3A8djSwv56XuXefn+b+8/wr/dv8Y7p7euI8MwugiiFMJJ5odEZCEwHJiWNokGKVUJWlz0J2fMKaPAfSi/te8w/3yrOmJfMi5bNMGbYbBi+0H2N8QeN/rH1bu9+MGMMSV87fIFDC/uHlc5bvII/vedXe8kNUfafPuC1ScYhhGfIErhHhEZCXwZZ5zmRuAbaZVqEJKo71F/MnRIHie7E8sAmtu7XDWzxyavBxhbWsjJM5zzVeGvb3a3FkIh5b5XdnjrN506LWHb7auWTuKDp3WvsTBLwTCOniDZR/eqap3b6mKGqo4NT04zUkeivkf9zfkx2kefPrsscDDc70KKpRT+8dYBdrotuksL87hq6aRux0TzuYvnRWQ+5STpjGoYRjCCtLkYIiLXicgXROSO8KcvhBtMVB7qPkchUzjvmO5KIYjrKMzFCyeQn+sokDf31LOjpjFi/y9e7moUd+2JUyguSF5on5ebww+vPZ6545zRHpcvnkjJkCAF+oZhJCKI++gvwBVAB9Do+xgpoqW9k5ojznyD3BxhnDvwPVMYP7ww4i1cBE6blTzIHGZ4cT5n+pSI31rYWNXgZRzl5gjvO3laj67719tO47HbTuOudy8OfJ5hGPEJ8mo1SVUvSrskg5iIEY2lhT1q09BXnH/MOG+Y/bHlw72OqkG5bPFEnt3kdFt99M0qPnrOLESE+3xWwkULx/c4nlKQl8PCcnMbGUaqCPL0eUVELAU1jWRSz6N4XLV0kjdW8oYTp/b4/PPnj/PGdW45cIS39h2m5kgrf/GlqX4gQYM+wzD6hkST19bhTFzLA24SkQqgFRBAVXVR34g48Kk81DUHOdOCzGEmjijixf84m9rGNmaUBe9CGqa4II/z5o/zXEePvllFYV6uN0r0uMkjWDrVUkoNo79J5D66tM+kGOREBpkzd/jKiOKChG0qknH54oldSuGNKm+gDcAHYqSYGobR9ySavLZTVXcCE4Ba33otTtsLI0VEuo+K+1GS9HLmnDKv0V/loWYvuD6+tJCLF9o/KcPIBILEFH4CHPGtN7rbsormtk6qD7em9TseWrWbL/5pHRXVR5If7KMqQ1tcpJqCvJyYD//3nTLVa2VhGEb/EuR/oqhvqomqhgiWtZRRfPPpzVzwned5bG2wFs6hkLJuTz1765uTHww88toe/uPhtTz46i6u+NHLvLK1JvlJLpHVzJnrPkoF/kI2gML8HK494einyRmGkRqCKIUKEfmYiOS7n48DFekWLJWs3F7LL17eTl1TOx/9zet85MHXOHgkvtWwoaqeq+9+hct++BJn3fUcL7xdHfdYgG3VR/jSn9d764dbOnjfL1by0KrdCc5yCIU0QvFkWuFaqjlxxmjG+uow3nX8JEb2ML3VMIz0EUQp3AqcAlQCe4ATgVvSKVSqUVUm+EZGPr5uLxd85wWeXLc34rj65na++ugGLvvBS7zmjnhs7Qjx7w++xsaqBmLR0t7JRx58jSa3fXOYjpDyHw+v5Rt/e4tQSGOeC1B9pNUbbTmqpCBQNW82k5sjvP+UaQCUFOTyodNnJD7BMIw+JaFSEJFc4HpVvcbteTROVa9T1QN9JF9KOHHGaJ76xBlcc8Jkb9vBxjY+/OBrfOy3r1Pb2MYjr+3h3G89zy9f2UH0M/xIawc3/XJlhO8/zH8/vom39jnjJQrycvjFjcs4ZkLXfN8fP7eN2377Oi3tnd3OhcjhOpmceZRKbj1zJr+75ST+dvsZTHdHdhqGkRkkVAqq2onT4iLrGVaYz9evWsQvbzqB8T6r4dE3qzjpf/7OJx9608uGAaeNwz3vXeoVbO1vaOXG+1ZS39zuHfPkur3cv2Knt/7lS+dzzrxx/OHWkzlnXtdwmsfX7eWae1bEDHRnasvsdJKbI5w0YzSTRw3cTCvDyFaCuI9eFpEfisjpInJ8+JN2ydLEWXPH8tQnzuBqXyfOcAEVOOmRP7rueO6/eTkXLBjPT9+71Gvm5gx1WU1rRye7a5v4j4fXeuddvHA8N5zoBEyHDsnjZ+9bxo2umwSc4fI33reSDt93QWSQeaDHEwzDyHyCOLBPcf+807dNgXNSL07fMLwon2++ezEXLxzP5x9Zx4HDreTlCDefPp2PnTM7otvmKTPHcNfVi7n9928AsKKils/8YS27aps43OIMhZk0soivX7UoopV0bo7w1csXMG10MXc+tpGQwoaqBn67ajfvPamrTUQ2tLgwDGPwkFQpqOrZvb24iFwEfA/IBe5V1a9H7Z8H3AccD3xRVb/Z2+/qDeceM45nPjmKF7dUc2z5cKaOju3fvnJJOZWHmrnrqc2A43IKk5cj/ODaJV5RVjQ3njqdxrZO79xvP72ZyxZN8CqD/e6jSQO4RsEwjOwgqVKINztBVe+Mtd13Xi7wI+B8nKylVSLyqKpu9B1WC3wMuDKwxClmeFE+ly6amPS4fz9rJpWHmvnNq7sitn/mwrksmZK4Z8/Np03nd6t2sbu2mbqmdr777Ba+evkCwNxHhmFkFkFiCv4ZCp3AxQSb0bwc2KqqFaraBvyOqKC1qh5Q1VV0zYHOWESEOy9fwLm+APJZc8sCpVQW5ufyxXcc463fv2InW/Y7GUuZOobTMIzBSRD30bf86yLyTZxZzckoB/zVW+Eah6wlLzeHH1y3hO8+u4WW9k4+dcHchLOE/Vy4YDwnzRjFiopaOkPKnY9t5EfXH+/FJQrzc3o8o8AwDCPV9KZSqhgIUnEU62kZv4or0YVEbsEtmJsypX9bIhQX5PEF31t/UESEOy5dwKU/eJGQwotbarj/X13prBNHFAWeeWwYhpEugsxoXicia93PBmAzTvA4GXuAyb71SUCwxkNRqOo9qrpMVZeVlQWfDZxpzJ9YyjXLu5Tad55521s215FhGJlAEEvBP1ehA9ivqh0BzlsFzBaR6TgtMq4Bruu5iAOLT50/h7++WcXhlg46fKXTphQMw8gE4loKIlIoIrcDnwEuAipVtTKgQsA97qPAU8Am4CFV3SAit4rIre53jBeRPcAngS+JyB4RKY1/1exn9NAh3H7enG7bTSkYhpEJJLIUfoWTFfQiTsbRfODjPbm4qj4BPBG17W7f8j4ct9Kg4n0nT+XBV3dSUd3obbN0VMMwMoFEMYX5qnqDqv4UuBo4vY9kGvDk5+bw5UvnR2wbyMN1DMPIHhIpBa92IKjLyAjO2XPHcuGCcQCUFuaxsHx4P0tkGIaR2H20WETCQwQEKHLXBVBVHdC+/77g+9cu4dmNB1g0aThDhwzsOQqGYWQHcZ9Eqprbl4IMRobk5XLJogn9LYZhGIaHTUs3DMMwPEwpGIZhGB6mFAzDMAwPUwqGYRiGhykFwzAMw8OUgmEYhuFhSsEwDMPwENVejTjoN0SkGnHLUdwAAAXdSURBVNiZ9MCBwRigpr+F6AfsvgcXdt99w1RVTTp7IOuUwmBCRFar6rL+lqOvsfseXNh9ZxbmPjIMwzA8TCkYhmEYHqYUMpt7+luAfsLue3Bh951BWEzBMAzD8DBLwTAMw/AwpdCHiMgvROSAiKyP2n6biGwWkQ0i8g3f9s+LyFZ334W+7UtFZJ277/siIn15Hz2lJ/ctItNEpFlE3nA/d/uOz6r7htj3LiK/993fDhF5w7dvwP7m8e57IP3mce77OBFZ4d7bahFZ7tuXeb+3qtqnjz7AGcDxwHrftrOBZ4Eh7vpY98/5wJvAEGA6sA3IdfetBE7GGXj0JHBxf99bCu97mv+4qOtk1X3Hu/eo/d8C7hgMv3mC+x4wv3mcf+tPh+UG3gE8l8m/t1kKfYiqvgDURm3+MPB1VW11jzngbr8C+J2qtqrqdmArsFxEJgClqvovdf71/Bq4sm/uoHf08L5jko33DXHvHQD37e89wG/dTQP9Nwdi3ndMBtB9KxCeVDkcqHKXM/L3NqXQ/8wBTheRV0XkeRE5wd1eDuz2HbfH3VbuLkdvzzbi3TfAdBF53d1+urttoNy3n9OB/aq6xV0f6L95mOj7hoH9m98O3CUiu4FvAp93t2fk722DgfufPGAkcBJwAvCQiMzAMRuj0QTbs414970XmKKqB0VkKfBnEVnAwLlvP9cS+bY80H/zMNH3PdB/8w8Dn1DVh0XkPcDPgfPI0N/blEL/swd4xDUTV4pICKcnyh5gsu+4SThm5x53OXp7thHzvlW1Ggi7lNaIyDYcq2Kg3DcAIpIHvAtY6ts80H/zmPftuhAH8m/+fuDj7vIfgHvd5Yz8vc191P/8GTgHQETmAAU4TbIeBa4RkSEiMh2YDaxU1b3AYRE5yfXNvg/4S/+IflTEvG8RKRORXHf7DJz7rhhA9x3mPOAtVfW7CQb6bw4x7nsQ/OZVwJnu8jlA2G2Wmb93f0frB9MHx2TeC7TjvA3cjPMwfABYD7wGnOM7/os4GQmb8WUfAMvc47cBP8QtQszUT0/uG7gK2ICTlfEacFm23ne8e3e3/xK4NcbxA/Y3j3ffA+k3j/Nv/TRgjXt/rwJLM/n3topmwzAMw8PcR4ZhGIaHKQXDMAzDw5SCYRiG4WFKwTAMw/AwpWAYhmF4mFIwBiwiMtrXeXOfiFT61l9J03cuEZF7kx95VN9RJiJ/S+d3GIMXq2g2BiyqehA4DkBEvgocUdVvpvlrvwD8V7ouLiJ5qlotIntF5FRVfTld32UMTsxSMAYlInLE/fMstwnbQyLytoh8XUSuF5GVbj/7me5xZSLysIiscj+nxrjmMGCRqr4pIjkiskVEytx9OW5v/DHxriUiy0XkFbcx3CsiMtfdfqOI/EFE/orThhmcivDr0/83ZQw2TCkYBizG6U1zLPBeYI6qLsfpUXObe8z3gO+o6gk4FbixXEThKlRUNYRTsR1+cJ8HvKmqNQmu9RZwhqouAe4A/sd37ZOB96vqOe76apxuo4aRUsx9ZBiwSp1+M7jN2MJv4+twhgGB81Cf7xuAVSoiw1T1sO86E4Bq3/ovcHrWfBf4AHBfomvh9Nr/lYjMxumKme+71jOq6u/TfwCY2It7NYyEmFIwDLdDp0vItx6i6/9IDnCyqjYnuE4zUBheUdXdIrJfRM4BTqTLaoh5LRH5AfBPVX2niEwDnvPtboz6rkL3+wwjpZj7yDCC8TTw0fCKiBwX45hNwKyobffiuJEeUtXOJNcaDlS6yzcmkWcOrqvKMFKJKQXDCMbHgGUislZENgK3Rh+gqm8Bw11XUJhHgaF0uY4SXesbwP+KyMtAbhJ5zgYe792tGEZ8rEuqYaQQEfkEcFhV73XXl+EElVMaFBaRF4ArVLUuldc1DLMUDCO1/AQ3JiEinwMepmsmb0pw01y/bQrBSAdmKRiGYRgeZikYhmEYHqYUDMMwDA9TCoZhGIaHKQXDMAzDw5SCYRiG4WFKwTAMw/D4/0iV2YbeEXt9AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure()\n",
+ "ax1 = plt.gca()\n",
+ "ax1.set_xlabel('Time (year)')\n",
+ "ax1.set_ylabel('Purchasing power (Wheat quarter/week)')\n",
+ "ax1.plot(sorted_data['Wages']/sorted_data['Wheat'], linewidth=3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**This graph seems to be the best way to represent the relative evolution of the price of wheat compared to the worker wages.**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Scatter plot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Another way to present the data is to plot directly the wage versus the price of wheat, and write the year close to the data points:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEKCAYAAADn+anLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XtYlNXa+PHvmhmOclIRQ0ZFxExFoSIPWWZFG7WDJakdFTEty9p22Obe9evku9N2vmlpafpaqZvUrLaWtc3MTK08USiiKaaoIIqoiHIeWL8/BkbQAQZhEPT+XBeXzDMzz6zRmjXPutd930prjRBCCGGP4VIPQAghROMlk4QQQogqySQhhBCiSjJJCCGEqJJMEkIIIaokk4QQQogqySQhhBCiSjJJCCGEqJJMEkIIIapkutQDcIS/v78ODg6+1MMQQogmJSEhIUtr3aou52gSk0RwcDDbtm271MMQQogmRSl1sK7nkOUmIYQQVZJJQgghGrm4uDgCAgIICwuzHUtMTKR3795EREQQGRnJli1bADhx4gS33norXl5eAO0qnkcpdb1SKkkptU8p9Z5SStX02jJJCCFEIxcbG8uqVasqHZs4cSKvvvoqiYmJvPHGG0ycOBEAd3d3Jk+ezLRp0+ydajYwFuhU9jOgpteWSUIIIRq5fv360aJFi0rHlFLk5OQAcPr0adq0aQNAs2bNuOmmm3B3dz//8YGAj9b6V23tEbEQuLem124SgWshhLhS5BVZmLt+P8u2pZFxOp9AXw+GRpqJblf5O/2MGTOIjo7mhRdeoLS0lF9++aWmUwcBaRVup5Udq5bTriSUUu5KqS1Kqe1KqWSl1Otlx1sopb5XSqWU/dncWWMQQjRetVlnB5gyZQqhoaF07tyZ7777zna8f//+dO7cmYiICCIiIsjMzGzQ91Gf8oosPDh3EzPWpJCenU+phvTsfGasSeGZxb9TWqFH3OzZs5k+fTqHDx9m+vTpjB49uqbT24s/1Nh1zpnLTYXAbVrrcCACGKCU6g1MAn7QWncCfii7LYS4wtRmnX3Xrl0sWbKE5ORkVq1axZNPPklJSYntefHx8SQmJpKYmEhAQECDvo/6NHf9frannbZ73+6jZziVV2S7vWDBAoYMGQLA0KFDK02oVUgDzBVum4EjNT3JaZOEtjpbdtOl7EcDg4EFZccX4MCamBDi8lObdfYVK1bwwAMP4ObmRocOHQgNDXXkQ7HJWbYtrdr7T+cX235v06YNP/30EwBr166lU6dO1T5Xa50BnFFK9S7b1TQCWFHTmJwak1BKGYEEIBR4X2u9WSnVumywaK0zlFJ2p32l1FisUXjatWtn7yFCiCairuvs6enp9O7d2/Y4s9lMenq67faoUaMwGo3ExMTw8ssv48DOzkYp43S+3ePHv/oXhYeSKMnPwWw28/rrrzNv3jz++te/YrFYcHd3Z+7cubbHBwcHl0+2LZVSacBftNa7gHHAJ4AH8N+yn2o5dZLQWpcAEUopP+A/Sqmwmp5T4blzgbkAkZGRNa6bCSEap/J19orLKOXr7N945NldZ4+JieGzzz5j9OjRrFmzButmnMrKJ4L4+HiCgoI4c+YMMTExLFq0iBEjRjj9fTlDoK8H6dkXThSt7rEuuwX5efDzpNtsxxMSEuyeJzU1FQCl1O9a68jy41rrbYDDn8PQQFtgtdbZwDqse3KPlW3FKt+S1XSjTEKIGtXHOrvZbObw4cO2x6WlpdmWooKCrBt0vL29eeihh5r0MtTQSHOd7ncGZ+5ualV2BYFSygOIAv4AvgJGlj1sJA6siQkhmq76WGe/5557WLJkCYWFhRw4cICUlBR69uyJxWIhKysLgOLiYlauXFlpt1RTM7ZfCOFmX7v3hbf1Y2y/kAYekXOXmwKBBWVxCQPwmdZ6pVLqV+AzpdRo4BAw1IljEEJcYvWxzt6tWzeGDRtG165dMZlMvP/++xiNRnJzc4mOjqa4uJiSkhKioqIYM2ZMQ769euXpamLx2N524zdj+4Xg6drwqW3K3lpfYxMZGamlCqwQTUdcXBwrV64kICAA30feIz07n6Jj+znx3fvokiKUwUiLO8bh1qYzQX4e3KU3M3/+fIxGI++99x7R0dGAdc09NjaW/Px8Bg0axLvvvttkg9KXglIqoWJM4mJIWQ4hRL2rmANRvo5+at3H+PV9kDajZuJ308OcWvcxADe3KqgyB2LcuHHMnTuXlJQUUlJSLsirEM4nk4QQot5VzIGouM5eWpRn/bMwD6NXS8Lb+uGR8bvdHIiMjAxycnLo06cPSilGjBjB8uXLL9l7ulJJ7SYhRJ3Zy4O43Qyl+tw6+2SPf/LO87Gc+vEjjErz4gfLmDS0FxOfW2w3B8LFxQWz2XzBcdGw5EpCCFEnVdUb+ujnVNJO5ZFXZMHT1UTu9v/y6fwPsOQcZ9G8D/jl43/i6WqqMgeiutwI0XBkkhBC1El1eRAFxSXMXb8fqH0OhNlsJi0t7YLjomHJJCGEqJOa8iDK769tDkRgYCDe3t5s2rQJrTULFy5k8ODBzn0z4gISkxBC1KjiltadO3cCMHz4cPbs2cPujBxKCnIxuDejzaiZ6JJi0uc9QUlOFugSNr1xH/NbvcO8efMYOHAgRUVFmEwmgoKCyMzMrDIHAqxlOsq3wA4cOJCBAwdeyr+GK5LkSQgharR+/Xq8vLwYMWKEbZIo13fqWpK+nInBrRl+fR/kzG8rKczYh/+dEyjJzebUl6+Tc/gPDAYD/fv3Z9q0aURG1mnrvnCQ5EkIIRqEvbLe5e6/Poi8PzbSrEs/AIqyDuMeHA6AsZkfbQJaIl/ymi6ZJIQQddLNcAQvv5a4tLAW2nMN6EB+yiZ0aQmhHnlkHthdKTA9atQoIiIimDx5st0dTKJxkZiEEOIC1eU9nO8/n3/Gi0+NxuP6TizblsaR8DtwO5uB5YsXce/aiRtvvBGTyfpRczmV9b5SyCQhhKikqv4PHx08Rk6FvAcAi8XCl19+SUJCAmazmQlRV5c94x7bc2+88UbbTiZ7Zb1lkmjcZLlJCFGJo3kPAGvWrOGaa66plBmdl5dHbm4uAN9//z0mk4muXbtedmW9rxRyJSGEqMRe3kPFst4vxvTF+52pjB49miVLlvDggw9WemxmZibR0dEYDAaCgoJYtGgRAIWFhZdVWe8rhWyBFUJUEvL3b+zGHsoZFOyfcmfDDUhcNNkCK4Sod4G+HnW6X1xeZJIQQlTSGPssi0tHJgkhRCWNsc+yuHRkkhBCVFLe/2FCVCeC/DwwKAjy82BCVCcWj+l1Sfosi0tHAtdCCHGZksC1EEIIp5JJQgghRJVkkhD1Ji4ujoCAgEpZtMOHDyciIoKIiAiCg4OJiIgAoKioiFGjRtG9e3fCw8NZt26d7TkJCQl0796d0NBQnnnmGSkCJ8QlJJOEqDexsbGsWrWq0rGlS5eSmJhIYmIiMTExtvaV8+bNAyApKYnvv/+e559/ntLSUgDGjRvH3LlzSUlJISUl5YJzCiEajkwSot5U13NAa81nn31mK+Gwa9cubr/9dgACAgLw8/Nj27ZtZGRkkJOTQ58+fVBKMWLECJYvX95g70EIUZlMEqJBbNiwgdatW9uqgYaHh7NixQosFgsHDhwgISGBw4cPk56eXqlYnNlsJj09/VINW4grnmx4FhetNj0HFi9eXKkQXFxcHLt37yYyMpL27dvbeg7Yiz8opZz5NoQQ1ZBJQlyUi+05UM5kMjF9+nTb7fKeA82bNyct7VwV0rS0NNq0adMA70gIYY8sN4mL4qyeA4GBgXh7e7Np0ya01ixcuJDBgwc7980IIaokVxLiojir5wDA7NmziY2NJT8/n4EDBzJw4ECnvx8hhH1OK8uhlGoLLASuAkqBuVrrd5VSrwFjgONlD/2H1vrb6s4lZTkaH+k5IETjVx9lOZx5JWEBntda/6aU8gYSlFLfl903XWs9zYmvLZws0NeD9Oz8au8XQjR9TotJaK0ztNa/lf1+BtgNBDnr9UTDkp4DQlwZGiRwrZQKBq4FNpcdGq+U2qGU+kgp1bwhxiDql/QcEOLK4PRJQinlBXwBTNBa5wCzgY5ABJAB/G8VzxurlNqmlNp2/Phxew8Rl5D0HBDiyuDUfhJKKRdgJfCd1vodO/cHAyu11mHn31eRBK6FEKL2GnU/CWVNk50P7K44QSilAis87D5gp7PGIIQQom6cuSbQF3gUSFJKJZYd+wfwoFIqAtBAKvC4E8cghBCiDpw2SWitNwL2iu5UmxMhhBCi8XBokijbgdQGyAdStdalTh2VEEKIRqHKSUIp5Qs8BTwIuGLNkHYHWiulNgEfaK1/bJBRCiGEuCSqu5L4HGtZjZu11tkV71BKXQ88qpQK0VrPd+YAhRBCXDpVThJa6zuquS8BSKjqftF4xcXFsXLlSgICAti507qxbPjw4ezZsweA7Oxs/Pz8SExMpLi4mMcee4zffvsNi8XCiBEj+Pvf/w5A//79ycjIwMPDWn5j9erVBAQEXJo3JYRwmhpjEkqpN7TWr1S4bQQWaq0fdurIhFPExsYyfvx4RowYYTu2dOlS2+/PP/88vr7WTOply5ZRWFhIUlISeXl5dO3alQcffJDg4GAA4uPjiYys0xZsIUQj50ieRDul1N8BlFJuwH+AFKeOSjhNbfpQK6XIzc3FYrGQn5+Pq6srPj4+DTlcIcQl5sgkMQroXjZRfA38qLV+zamjEpfE+X2o77//fpo1a0ZgYCDt2rXjhRdeqDTBjBo1ioiICCZPnmy37agQoumrbnfTdRVuvgt8CPwM/KSUuq68wqto3OrSh3rLli0YjUaOHDnCqVOnuPnmm4mKiiIkJIT4+HiCgoI4c+YMMTExLFq0qNISlhDi8lBdTOL8wnungK5lxzVwm7MGJepHXftQf/rppwwYMAAXFxcCAgLo27cv27ZtIyQkhKAga9V3b29vHnroIbZs2SKThBCXoSqXm7TWt1bzIxNEE1DXPtTt2rVj7dq1aK3Jzc1l06ZNXHPNNVgsFrKysgAoLi5m5cqVhIVVW6NRCNFE1RiTUEq1VkrNV0r9t+x2V6XUaOcPTdRVVX2ojy56geKT6bwY05f5861pLvb6UD/11FOcPXuWsLAwbrjhBkaNGkWPHj0oLCwkOjqaHj16EBERQVBQEGPGjGmQ9ySEaFg1lgovmxw+Bl7SWocrpUzA71rr7g0xQJBS4RdL+lALcWVrqFLh/lrrz4BSAK21BSipy4uKhlFTn2npQy2EqIkjk0SuUqol1mA1SqnegP2FbtGoSB9qIURdOTJJPAd8BXRUSv2MtZ7T004dlagX0odaCFFXNZbl0Fr/ppS6BeiMtT/EHq11sdNHJuqsvA/1+XkSQyPNjO0XIn2ohRA1ciRw7Yn1aqK91nqMUqoT0FlrvbIhBggSuBZCiIvRUIHrj4EioE/Z7TTgf+ryokIIIZoGRyaJjlrrfwHFAFrrfOy3JRVCCHGZcWSSKFJKeXBud1NHoNCpoxKNWlxcHAEBAZWyrIcPH05ERAQREREEBwcTEREBWDOyR44cSffu3enSpQtTpkyxPSchIYHu3bsTGhrKM888I0UChWiEHJkkXgNWAW2VUvHAD8BEZw5KNG6xsbGsWrWq0rGlS5eSmJhIYmIiMTExDBkyBKjckyIhIYEPP/yQ1NRUAMaNG8fcuXNJSUkhJSXlgnMKIS69GicJrfVqYAgQCywGIrXW65w7LNGY1UdPioyMDHJycujTpw9KKUaMGMHy5csb8m0IIRzgSGe6RcB6YIPW+g/nD0k0NrUpN26vJ8WKFSsIDAwkLy+P6dOn06JFC7Zt21apmKDZbCY9Pb2h3pIQwkGObJT/GLgJmKmUCgESgfVa63edOjLRKNSm3Dg43pPCXvxBKdkPIURj48hy01rgn8D/A/4PiATGOXlcopGoTbnx8p4Uw4cPtx2rqieF2WwmLe1cldq0tDTatGnjvDcihLgojpQK/wFrR7rhwB7gBq31Nc4emGgc7JUbr+r+2vSkCAwMxNvbm02bNqG1ZuHChQwePNhp70MIcXEc2d20A2syXRjQAwgr2xIrrgAZp/MvOFaxJ8XmN4ddVE8KgNmzZ/PYY48RGhpKx44dGThwoPPfkBCiVmosy2F7oFJewCjgBeAqrbWbMwdWkZTluHT6Tl1LevaFE0W5ID8Pfp4kjQqFaIwapCyHUmq8Umop1oD1vcBHgHzlu0JIuXEhrmyO7G7yAN4BEsoaDokryNh+Ifz4R6bd4LWUGxfi8lfllYRSaptS6l0gCdguE8SVqbzc+ISoTgT5eWBQ1iWmCVGdWDyml5QbF+IyV93/4b2x5kcMAF5XSp0AvgP+q7XeW9OJlVJtsTYougpr69O5Wut3lVItgKVAMJAKDNNan6rLmxD1Jy4ujpUrVxIQEMDOnTsBGPXow+zZsweA0uxscv38mDApkfj4eN5++23bc3fs2MFvv/1GREQE/fv3JyMjAw8P6x6H1atXExAQ0PBvSAhRJ7UJXAdijUUMADoBv2qtn6zh8YFlTYu8gQSsMY1Y4KTWeqpSahLQXGv9YnWvLYHrhrN+/Xq8vLwYMWKEbZKo6Pnnn8fX15dXXnml0vGkpCQGDx7M/v3WvIn+/fszbdo0IiPrFDMTQtRBfQSuHV4r0FpnKKU+AT4HznKuv0SVjwcyyn4/o5TaDQQBg4H+ZQ9bAKwDqp0kRMPp16+frQDf+crrMq1du/aC+87PtBZCXB4cqd30KfAEUIL1asAXeEdr/Xa1T6x8jmDgWmAz0LpsAimfeOyuQSilxgJjwZqQJZyjLnWZKlq6dCkrVqyodGzUqFEYjUZiYmJ4+eWXpeyGEE2QI8l0XbXWOViXir4F2gGPOvoCZfkVXwATys7jEK31XK11pNY6slWrVo4+TdRCeV2mGWtSSM/Op1SX1WX6OZW0srpMFVV1tbB582Y8PT0r9ZeIj48nKSmJDRs2sGHDBhYtWuT09yOEqH+OTBIuSikXrJPECq11MWUNiGpS9rwvgHit9Zdlh4+VxSvK4xaZtR+2qA91rctUzl6mdVBQEADe3t489NBDbNmypR5HLoRoKI5MEh9i3YXUDFivlGoP1HhFoKxrC/OB3Vrrdyrc9RUwsuz3kcCK858rGkZd6zIBlJaWsmzZMh544AHbMYvFQlZWFmDtTLdy5cpKVxlCiKajxpiE1vo94L0Khw4qpW514Nx9sS5LJSmlEsuO/QOYCnymlBoNHAKG1m7Ior5UVZep8FASJfk51rpMrd5i9OjRdq8WwLobymw2ExJyLqmusLCQ6OhoiouLKSkpISoqijFjxjj1vQghnKPGLbBKqefsHD6NNQM70c599U62wDpHfdVlspdbMXz4cFtuRXZ2Nn5+fiQmVp9bkZCQQGxsLPn5+QwaNIh3331Xgt1C1EGD1G7C2j/iCazbV4Ow7jjqD8xTSkmv6yasvuoy1abn9cMPP2w7vmjRIoKDg4mIiACk57UQjZEjk0RL4Dqt9fNa6+exThqtgH5YE+NEEzW2XwjhZl+799WmLlNtel5XVHG3lPS8FqJxciSZrh3WfhLlioH2Wut8pVShc4YlGkJ5Xabz8ySGRpoZ2y+kyrpMzsitSE9Pl57XQjRCjkwSnwKblFLlu5DuBhYrpZoBu5w2MtEgPF1NTIi6mglRVzv0+Lr2vC53fm6F9LwWonFypMf1ZKxxiGysAesntNZvaK1ztdYPO3uAonFxVm6F9LwWonFyJCYB8DuwDPgSyFRKSZ2MK5Szciuk57UQjZMjtZueBl4FjmGt36SwZlz3cO7QREOozfZVgIMpuzi+aha6MB+UInDkdLK+nUHenl+g1MIvL/2Ftu8HkpCQUKvcCrD2vC7fAjtw4EDpeS1EI+BInsQ+oJfW+kTDDOlCkifhPLUpDW6xWPBtezW+A5/FNSCEkvwcDG7NUAYjRz+dRPNbRxPSpYf0vBaikWioUuGHscYixGWoNqXBV69eTZduYWQFWK8AjB4+FzxHel4LcXlxZJLYD6xTSn0D2La8nlePSTQRddm+unfvXjq19ubQitc5feoknl1uxrfX/bbH534/k48SP+bM/fdLaXAhLhOOBK4PAd8DroB3hR/RxNS1NLjFYmHTL7+w7YevmPx/X2D5czOFBxMJ8vNg0r8+4GjqHn7euFFKgwtxGXGkwN/rDTEQ4XyObF8tz5co376akJBge4zZbOaWW26hXZurmNjmKgp/fxB3d1f+9rcKMQjXc6XBR4wY4dT3I4RwviqvJJRSM8r+/Fop9dX5Pw03RFFf6rp9NTo6mh07dpCXl4fFYuGnn36ia9euUhpciMtYdVcS5esF0xpiIML56loavHnz5jz33HPccMMNKKUYNGgQd955J7m5uVIaXIjLVI1bYBuDxrgFtrb5BTt27ODxxx8nJycHg8HA1q1bcXd3b9Dy2PVVGlwI0TQ4tVS4UipJKbWjqp+6vOjloDblsS0WC4888ghz5swhOTmZdevW4eLiAjRseez6Kg0uhLhyVLfcdFeDjaIJqm1+QY8ePQgPDwegZcuWQOXy2ICtPLazMo3H9gvhxz8y7Qava1MaXAhx5ahyktBaH2zIgVxO7OUXKKWIjo7m+PHjPPDAA0ycOLHBy2NfbGlwIcSVq8pPBaXUGaw1mi64C9Ba6wvTbS9jtUlCs5dfsHHjRrZu3Yqnpye33347119/PT4+F/4VOjsBrbalwYUQV7bqriQkYa5MbXooVJdf4O/vD8CgQYP47bffeOSRR6Q8thCiUasucO1T9mcLez8NN8RLrzY9FGqTXyDlsYUQjV11i9CfYg1eJ2Bddqq4DqKBKybKaS8JrWJ+wYsxffF+Z2qt8wvAWh77jjvuICcnBz8/P1vQuqrttKmpqXTp0oXOnTsD0Lt3b+bMmQNA//79ycjIwMPDA7AGzAMCApzzlyKEuCJInoQDQv7+jd3YQzmDgv1T7rzo89emXHdqaip33XWX3cf179+fadOmERlZp23RQojLREOVCkcpFQS0r/h4rfX6urxwUxLo61FtElqgr0edzl+b7bRCCNGQHOlM9xYwHNiFtTMdWJebrphJYmikmRlrUqq9vzbqUq4b4MCBA1x77bX4+PjwP//zP9x88822+0aNGoXRaCQmJkbKdQsh6syRK4l7gc5a68IaH3mZqs8ktNrslIILt9MGBgZy6NAhWrZsSUJCAvfeey/Jycn4+PgQHx9PUFAQZ86cISYmhkWLFkklViFEnTjST2I/4OLsgTRm5UloE6I6EeTngUFB/ppZnPhwBCkfPG77UB8+fDgRERFEREQQHBxMREQEAKmpqXh4eBAREUGnLt1ZO/+ftnMXHt3HkflPcTR+Ermnsvjwpz9t95Vvpx0+fLjtmJubmy1j+/rrr6djx47s3bsXgKCgIAC8vc+V6xZCiLqoLpluJtZlpTwgUSn1A5U70z3j/OE1Hucnoa0f6G0LNpdbunSp7ffyYHO5jh07kpiYeEGRvZOr36flgPEYmjUn46PxzPv0S5694++A/e20x48fp0WLFhiNRvbv309KSgohISFYLBays7Px9/e3leuOiopy2t+HEOLKUN1yU/l2ogRA+kec52KDzRXLdVvOnqS0MJ+chK8pPJSEthTxR/zrzL8poMrttOvXr+eVV17BZDJhNBqZM2cOLVq0kHLdQginqC7jekHF20opFyAMSNdaZzp7YE1ZdcHmE6dL8ejzEO5twyg5cwKTd0ta3TMRgILDOylK+A+jR48G4JNPPrng3DExMcTExFxwvFmzZpWyvIUQoj5Ul3E9RynVrex3X2A7sBD4XSn1YFXPq/D8j5RSmUqpnRWOvaaUSldKJZb9DKqH91AncXFxBAQEVOqkZi+2kFdkYcaavfSdupZ2T36M0c2DMf+YatuR1L9/fzp37kxERARDhgzh7rvvtp2vPNj8+++/89gLr5L19TRKC/OwVxorsLmns9+yEEI4rLrA9c1a6+Sy30cBe7XW3YHrgYkOnPsTYICd49O11hFlP9/WarRO4EhfiLsH38uDczcxY00K6dn5nPjh/3DvcD2b958krWxHEkB8fDzbtm3DaDTargagcrB58mP34NfaTPHJdIze/ljOnLA9Lsg1n97dOjbAuxZCCMdUN0kUVfj9DmA5gNb6qCMnLku2O3nxQ2sY/fr1o0UL+6WoymMLpR1utG1Zzdv7Kya/q3Dxbwc4Vrvp+PHjlJRYU0yOph3CNS+T8YNvpL05CIOrBz45B/jr7aG0PLKJmCH3OeutCiFErVU3SWQrpe5SSl0L9AVWASilTEBdUozHl3W3+0gp1bwO53G68tjCuqPW0E1pUQGnN3+Ob98HydvzM2d/X0nxyXRejOlLRkYGo0aN4qGHHsLX15eK5U7Wr19vazp0//338+GcObw0pCc/T7qNn7/+lNL1c5j1xCCu7hTqtIZDQghxMaqs3aSUuhp4D7gKmKG1/qTseDTwF6318zWeXKlgYKXWOqzsdmsgC+ti/GQgUGsdV8VzxwJjAdq1a3f9wYN174FUnuk8ZdJfydr9K27ezXnz398R3c5A7xuup0OHDsC5gnp9+vQhNDSU97Ouoeh0JukfjsHzmptpdfcLZG+Mp7Qgl4KD29GWIh69bwDz58/n7NmzxMTE8Mgjj0gimxDikqqP2k1OLfB3/iTh6H3nq48CfxUznQsO70S5uHPim3doM/oDOnnkkf7Z6+xKtsbYn3/+eby8vJgzZw4JCQkM//deEj/+fxQc3okuLcXg5klpYS66KB/vyHsIu288vuun8cwzzzBw4EA++eQTtm3bxqxZs+o0ZiGEqIv6mCSq2930cnXLQUqp25RSteqDrZQKrHDzPuDCUqZOUrEnhHvbMIwe53oq7T56hlN51hBMeRyiXbt2ttjCNYV/YPK7Cu/r7sS3zzDM4z7Cq8cdGNy9aXHbY8RcF8i9997L8uXLbYlsFXdLCSFEU1VdMl0SsFIpVQD8BhwH3IFOQASwBnizqicrpRYD/QF/pVQa8CrQXykVgXW5KRV4vO5vwTH2ekLAub4Qpfk5mM1mHn74YVq3bs2GDRt48MEHyc3NZedp9fBwAAAgAElEQVR/F3LTsDf4+T+f2J5XWpiPwc2T8LZ+jOgZROiwiZw5c4YFCxbw+OOPM2bMmCp7QmzZsoWxY8cC1knptdde4777rAFr6QkhhGhMalxuUkp1whq4DgTygd3Aeq111bWz61ldl5vyiix0e+W7SlkJltPHyPz8ddqM/gA41xNi3LhxhIaG8vzz1pDLCy+8QM+ePbnr3iEMeexZ/sgqxhB+N145Byn49d8kblqPp6uJmTNnsmzZMk6ePFljT4i8vDxcXV0xmUxkZGQQHh7OkSNHMJlM0hNCCFFvGqSfhNY6Bai6TnYjVx6LqCnyEujrYbc/9ebNm/n888+ZOHEi2dnZGAwG3hgURswzMdx663u24n7+/v6YzWZOnrxw1+/5ZTo8Pc8lzBUUFEg5byFEo+VQ06GmbO76/fww93Xy/9yK0dPXduVwYvUcik9lcOTjpyktyKXYvwVrIqYTFBTEXXdZQy3nLwWNHTuWr7/+mhkzZrB3715bf+pevXqxcOFChg0bxo4dOy4Yg70yHZs3byYuLo6DBw+yaNEiTKZz/xTSE0II0Vg4Uiq8SVu2LQ2v7lEEDH3dduz4V/+i+Ng+0KWU5uXQvE174h4ZzpIlS4iNjWXbtm0kJiayatUqHn/8cSwWa0b1N998w/33309KSgp/7NlL2xv+wm33PohrizYkZrux39TObuOg83tCAPTq1Yvk5GS2bt3KlClTKCgoAKxZ20lJSWzYsIENGzawaNEi5/3lCCFEDS77K4mM0/m4tw3DcvqY7Vh5QT0AtMby6ThGPPJwpW/6UHkpKCMjA29vb2bOnElekYUTgb359ZfNBMSe2+b68S8HL2gcZG8Jq6IuXbrQrFkzdu7cSWRkpN2eENXlW8TFxbFy5UoCAgJssZCqAubff/89kyZNoqioCFdXV95++21uu+02QALmQgj7arySUEpdrZT6obxQn1Kqh1LqZecP7eJVLMZn75t9RV7Z+7jKzlJQt27d6N69O3PmzMFkMpGenm4rtTF3/X7Siz0oOXvigvM5UqbjwIEDtquTgwcPsmfPHoKDg7FYLGRlZQE4vJXWkdpTQ4YMAaxxk6+//pqkpCQWLFjAo48+Wul58fHxtufJBCGEAMeuJOYBfwM+BNBa71BKfQr8jzMHdrHstQetju+RzQypYilo9+7djBw5koEDB1Yqs2FvO235VtqS/BxejOmL9ztTq+wJsXHjRqZOnYqLiwsGg4EPPvgAf3//i+oJUZu+Ftdee63tvm7dulFQUEBhYSFubm7VvoYQ4srlyCThqbXecl7w1OKk8dRZxaS5mnRv48Xmj9cyfPbbdu+vuBRkNptJS7NODhmn8yk5cwKjV0vbYysuYRkUjB59J2C/J8Sjjz56wbd4qP+eEPYC5uW++OILrr322koThATMhRDnc2SSyFJKdaSs+YFS6n4gw6mjqoOqkuYqCvLzYGikmeD8FHLsLAW1bduWsWPHsmLFCnJycggODsbf35/MzEw6derE0bOl5B9Pw+hlTUjPP/A72T99gi6xoIwmOt09DrBOEgkJCcTGxpKfn8+gQYN49913L/rDt7z21LJtaWSczifQ1/o+otvZXzW0FzAHSE5O5sUXX2T16tW2Y/Hx8QQFBXHmzBliYmJYtGiR1J4SQji0u+kprEtN1yil0oEJwDinjqoOKrYHLXf8q39xdNELFJ9MJ+2DkcS1OsCEqKtZ/sUyu0tB4eHhbNiwgVatWhEYGIi/vz9gDea6ubnhqYpxaRlEs7DbATB6+tAq5hXajH6flnc+S9p//mU737hx45g7dy4pKSmkpKRcED9wVPkyWnlPi1IN6dn5zFiTwjOLf78g9lIeMB8+fHil42lpadx3330sXLiQjh3P9a6wFzAXQghHkun2A1FKqWaAQWt9xvnDuniBvh6kZ1eeKCouBQX5eTB6tHVHT01LQampqbacCYDIyEh27txJbmEx/leZ8ep6CwCurc992EZeG87Pyy0UFhZy8uRJcnJy6NOnDwAjRoxg+fLlF1UOvLpltN1Hz1CSV1TpmL2AeXZ2NnfeeSdTpkyhb9++tuMWi4Xs7Gz8/f1tAfOoqKhaj1EIcflxZHfTc0qp57DWWRpTdnt0WQ2mRmdopLlO9zsiYfOvdAkx87dh/Qny88CgrJPPhKhODPdPt631V9wRBWA2m0lPT7+o16yu9tTRRS9w7NB+zGYz8+fPB7AbMJ81axb79u1j8uTJtvasmZmZFBYWEh0dTY8ePYiIiCAoKKjGgLkQ4srgSEwisuzn67LbdwJbgSeUUsu01v+q8pmXwNh+Ifz4R6bdb93hbf0Y2y/E7vPsrfffbqbK5LiHH3qICVFXMyHqatvx5ORk7nn8H7a1fnt1sS42HmFvGQ3OXSWV154qZ+8q6eWXX+bll+3vXq7PgLkQ4vLhyCTRErhOa30WQCn1KvA50A9IABrVJOHpamLx2N52A7xj+4XYktwqsrdtNj07n48OHnM4Oc7eWn/FHVHlj2nTps1FvS97y2jn3y+EEPXNkUmiHZX7XRcD7bXW+UqpQucMq248XU0XfMuvTnXr/eXJceXnqs1a/0svvcSff/5JSEgIf/75JwsXLiQ3N5eIiAjb88qzoU+cOMH999/P1q1biY2NrdSwqH///qT8eZDsIutVSOthkzE286s0zvpYRhNCiPM5Mkl8CmxSSq0ou303sLgskL3LaSNrQHVNjqu41j958mTAuhMqNjaW2267jccee4zQUGv/6pkzZ9qWnMrLhwO4u7szefJkdu7cabfU+JefLebtBEutl9GEEKIuHGpfqpSKxNpTQgEbtdZ16yVaS/XRvrQ6IX//ptryHeev99dG+Q6p8z/4tda0a9eOtWvXVkp2s9f6tLzHRNceEbVaRhNCXNkapJ8EgNZ6m1LqENbOdCil2mmtD9XlhRuT+ljvr22iW3XZ0PZUzIbeKNnQQogG4sgW2HuUUinAAeCnsj//6+yBNaS6bputbaIbVJ0NbY+UDxdCXCqOZFxPBnoDe7XWHYAo4GenjqqBje0XQrjZ1+59jqz315Toduq8RLeqsqGrItnQQohLxZFJolhrfQIwKKUMWusfgUaZSHexyrfNTojqdEFy3OIxvWpc76+pXtTp/OJKt+3tkKrKxZQPr4u4uDgCAgIqvcbw4cNtyXfBwcG23VknTpzg1ltvxcvLi/Hjx1c6T0JCAt27dyc0NJRnnnnGbs6IEKLxcyQmka2U8gLWA/FKqUwacRXYi1XbbbMVVZXoVnGHlNls5vXXX69yhxRAcHAwOTk5FBUVsXz5clavXk379u1rXT68LmJjYxk/fnyl4n5Lly61/e7ojqzymlW9e/dm0KBBrFq16qLKkQghLi1HJonBQAHwLPAw4Au84cxBNTVVBb7Ls6GD/Dz4edJttuP2sqGBKvtCNGQ2dG36UzRr1oybbrqJffv2VXpcRkZGvdWsEkJcWlVOEkqpCVhjD79rrUvKDi9okFE1MUMjzcxYk1Lt/Y1VbcqROLojqz5rVgkhLq3qriTMwLtYS4TvAH7BOmn8qrU+2RCDayoutl7UpVabciTg+I6s+qxZJYS4tKoMXGutX9Ba3whcBfwDOAnEATuVUpdFpnV9qWvg+1JxpBxJudrsyKrPmlVCiEvLkU8vD8AHayzCFzgCJDlzUE1RXQLfl0pNu7KWbUurtmZVVQIDA/H29mbTpk306tWLhQsX8vTTT9fLmIUQDau6mMRcoBtwBtiMdbnpHa31qQYam3Cyqrr4le/I2vzmMOa3eqvWO7K6du3K7NmzbW1bBw4cKEFrIZqoKms3KaVWAf7ATqwTxK/ATn0JNrw7u3ZTfYiLi2PlypUEBATYtoMOHz6cPXv2AJUrvgJMmTKF+fPnYzQaee+994iOjgasdZoyMjLw8LCWAlm9ejUBAQFOGXPfqWurLUdy/q4sIUTT4tTaTVrrAcoabewG3Ag8D4QppU5iDV6/WpcXvtzUJr9g165dLFmyhOTkZI4cOUJUVBR79+7FaDQC1jIckZF1+nd1SFPelSWEaBjVZlxrq53At1jrNf0MdAT+2gBja1L69etHixYt7N5Xnl9QvlyzYsUKHnjgAdzc3OjQoQOhoaGXpNRGXcuRCCEuf9XFJJ7BegXRF2ujoZ+xLjl9hASu65RfkJ6eTu/evW33n59HULHi68tOrPh6MV38hBBXluo+BYKxtil9VmudUdsTK6U+Au4CMrXWYWXHWgBLy86dCgxrioHwuuYXVJdHEB8fT1BQEGfOnCEmJoZFixZVWsKqb01xV5YQouFUlyfxnNb684uZIMp8Agw479gk4AetdSfgh7LbTU5d8wvMZjOHDx+23a6YRyAVX4UQjYkjVWAvitZ6PdYEvIoGc660xwLgXme9vjM5kl9Qzl5+wT333MOSJUsoLCzkwIEDpKSk0LNnzwav+CqEEDVp6EXn1uVXJlrrDKVUlXs7lVJjgbEA7dq1a6DhOaau+QXdunVj2LBhdO3aFZPJxPvvv4/RaCQ3N7dBK74KIURNGm1kUms9F5gL1jyJSzycSnkQgY+8R3p2PsdXvEXxSetVQ2lBLoZmfpjHLyLIz4PMzM2EhoZiNBorTRIJCQm2JLM777yTd9991xaPaNasWYNWfBVCiJo4bbmpCseUUoEAZX9mNvDrX7TY2FhWrVoFnMsfaDX4RdqMmkmbUTPx7HwjnlffCMDNrQpseRCrVq3iySefpKTEWki3vM9CSkoKKSkptnMKIURj1NCTxFfAyLLfRwIrGvj1L1rFPIjz8wu01uT9sZFmXfoR3tYPj4zf7eZBVOyzoJSy9VkQQojGymnLTUqpxUB/wF8plQa8CkwFPlNKjQYOAUOd9fp1VV0exPn5BfuTtuLu04K/DevP2H4hTHxusd08CBcXF+mzIIRoUpy5u+lBrXWg1tpFa23WWs/XWp/QWt+ute5U9mej7EtRngcxY00K6dn5lOqyPIifU0mrkAcxIepqfp50G/f6pPL6s2OZEHU1nq6mKvMgpM+Clb0+2gAzZ86kc+fOdOvWjYkTrV39ioqKGDVqFN27dyc8PJx169bZHt+/f386d+5s67+dmdlkVi+FaDIabeD6UnIkD6I8+aw8D6JiwLmqPAjps2Blr87Vjz/+yIoVK9ixYwdubm62D/x58+YBkJSURGZmJgMHDmTr1q0YDNbvNw1V50qIK1VDxySaBGflQVTss6C1ZuHChQwePNhp76Oxslfnavbs2UyaNAk3NzcAW+XbXbt2cfvtt9uO+fn50dgrAgtxOZFJwo6q8iCOLnqB4pPp1jyI+fMBasyDGDBggC0PAqwfho899hihoaF07Nix3vss1NdSTkJCAt27dyc0NJRnnnnG7lKZo/KKLMxYs5e+U9cS8vdv6Dt1LR9t3F+pztXevXvZsGEDvXr14pZbbmHr1q0AhIeHs2LFCiwWCwcOHCAhIaHSVdqoUaOIiIhg8uTJdRqjEMI+WW6yI9DX44I+C63umWj7PcjPg9GjrX0WPvnkE7vneOmll3jppZcuOB4ZGWnrN+EM9bWUU75Vt3fv3gwaNIhVq1Zd1ITmaJ0ri8XCqVOn2LRpE1u3bmXYsGHs37+fuLg4du/eTWRkJO3bt+fGG2/EZLL+Z9vQda6EuBLJlYQdNfVRaMx9FupjKac+t+o6WufKbDYzZMgQlFL07NkTg8FAVlYWJpOJ6dOnk5iYyIoVK8jOzrZV05U6V0I4n0wSdlxufRZqu5STnp5eb1t1HY3v3Hvvvaxdu9Y23qKiIvz9/cnLyyM3NxeA77//HpPJRNeuXaXOlRAN5IpcbrLXahSs6/azZs3CZDLxlwEDuXXgWJZuTmXnkrcoPX4AL1fFdWPj8HTtCzRsq9GqONLXorZLOfW5VdfROldxcXHExcURFhaGq6srCxYsQClFZmYm0dHRGAwGgoKCWLRoEQCFhYVS50qIBnBFThKOrtsHBAQQkLmNr7q1YsmSH8jLy6Nr166MfORhgoODgUu7BdPR9f6qlnJatWrF9OnTbc+98cYb6dSpE82bN6+3rbq1ie/8+9//vuD5wcHBtj7hFUmdKyEaxhW53FSbdXulFLm5uVgsFvLz83F1dcXHx6dexlGbnUjFxcWMHDmS7t2706VLF6ZMmWJb7y88uo8j858i/cMxnFzzIVrrSuv9tV3Kqc+tuk05viOEuEKuJBxZkilft3/ppZdwd3dn2rRp3HDDDdx///2sWLGCwMBA8vLymD59eqUJpi6tRmuzE2nZsmUUFhaSlJRku6Jpmd0elC8nV79PywHjcW1zDWnvjyA3+UdKi/J5MaYv3u9MrfVSDlgnzfJqtQMHDrzorbpj+4Xw4x+ZdoPXTTG+I8SV5rKfJOq6BXPLli0YjUaOHDnCqVOnuPnmm4mKiiIkJKTOWzD79etHampqpWO1uaLJKjRQYjlJaWE+bkFdAGhx22MUHEqi5YDxGBSMHn0nUPVSTt++fVm5ciVGo5H27dvb7vv1118pLi7G3d0dT09PlFLEx8fz9ttv2x6zY8cOfvvtNyIiIqqMz0gfbSGatsv+/1BHS2xUtW7/6aefMmDAAFxcXAgICKBv375s27aNkJAQu1sw67pPv+IVzcGDByksLCQoKIjff//ddkWTk5ODn58fZxZPwuAfgsm7JWeTfyRny5eUFhVQmpfN2e3fEf70HKByD4tBgwZV6mFRm6uZhx9+mIcffhiw5lYMHjyYiIgI2/Oqis9IH20hmq7LPiZR1y2Y7dq1Y+3atWityc3NZdOmTVxzzTUXbMF87bXXWLBgQbXxhWeff8GWeWwePQvvdl254ab+7Nu3j4KCAgBSUlJ47733KCgowGQy4e7ujtbadkXz6aef0qtXL3x9fXlu2nyadesPgFe3W2kzaib+g/6Ka+uOmHwDiL3Hel91PSxqE5+paPHixXh7ezscUwHrlUefPn3o1q0b3bt3t73n+szuFkLUr8t+knC0xEZcXBz79+8nLCyMBx54wLZu/9RTT3H27FnCwsK44YYbGDVqFD169LBtwezRowcRERFERkbaJplyFb+Rb/19O7v9b2HGmhTSTp4l8+v/xTtqHG53v4KLX2uKtfWbvZubG1OnTmX79u2kpaXh6upKSUmJ7Ypm3rx5vPLKK9x00010NmYSEd4Dy5kTttcsOXOC0sI8OvT6C2P7hVxUYlxVeRUVLV26lGeffbbShDNq1ChCQ0OZMWMG27dvJzk5mRdeeAGwbsN95JFHmDNnDsnJyaxbtw4XFxdAGjEJ0Zhd9stNdd2C6eXlxbJlyy44bm8LZnXxhRlr9vLHaeucXHDgN1xbBeMaEILl9DEKS2D+zweZEHU1/v7+bN26lccff5y9e/dSXFyMl5eX7Ypmz549/PDDDyxevJjt27czY+Ysdi/0wyfnAGd8grHsWYd7cQ6d3U8TbG6Dt7c3HTp0sI3pjcmT+WP3bubN/xifyLvpdu9TXO92lOTkZNzd3QFr/OPUqVMsWbKEkJAQevbsiZubG15eXuzatYsDBw6glOJ///d/ycnJ4ezZs6xatQqz2cx9993HoUOH+OyzzxgxYoTtKmT16tX06NGD8PBwAFq2bAlQaRIDbJNYfde0EkJcnMv+SuJSbsGs+I381bFDKczYC0DxySOgFIdnPUL63LEUnzjMizF9mf3hXErcfPkkfgkGkythkX24beRzaM5d0ezZs4cPP/yQ119/ndmzZzMo+i/kHDvM3o9ewLDsr0T1aE+7Nq0JCQ7Gw8ODw4cPk5KSAsB/V6/h8IkzuFwVii6xoI1upGfn8++VPwGKDiEhmM1mWrZsyX333YdSCk9PT4KCgjh8+DBZWVkEBASwZMkSCgoKmDt3LuvWraOoqIikpCQADhw4gNls5m9/+1ulq5C9e/eilCI6OprrrruOf/3rXwAOZ3fXZrtwuUOHDuHl5cW0adNsx6QHhRC1c9lPEs4qseFIZdODBw/y9ttvc/bsWbxuHsnxFW9ZcxgOJ5G7ez0G12Z4X3snroFX490rhkmT3+ZQxjEM3q1oMfAZjC3b883m3ezd9yfXXXc9KSkpuLq6Mn/+fCZOnEjPnj3x8fHhiy++IDQ0lD///BOz2Uzv3r1JTk5m9erVdOjQAVdXVwD+/s//xRjSh9LcbJSrBwZX606k3JRfAU30E6+SkpKCr6+vrfhfaWkpxcXF1ryKIgvvrP6D9+cv5NjZEl74KZ+Pfz6Aj48PS5YsAazxmeTkZF577TXefvtthg0bhtYai8XCxo0biY+PZ+PGjfznP//hhx9+cDi7u2KP8XIVl/MqLm2Ve/bZZ+1ekcTHx5OYmEhiYmKDZ8gL0dRc9pNE+RbMCVGdCPLzwKCsS0wTojqxeEyvi9qC6UjnOgCTyYTBYODPP/8kuEsESiny9/5K4ZE9KJMrymBEl1rwCImkJHM/+cWlKGUArTn5/Rw8u9xMceYBSooLOX76DAA+Pj5s3LgRsH47NxgMhISEUKrhndV/8MFH/+bTH7eTERxN/NZ0jCYX/Pz82LRpE3v37uVs0hpKi/LQlkIsOcc5/tW/KEpLBuDdvz5As2bN6NmzJ1u3biU6OpqCggKysrIwGAz4+jXnrY//A27emPxas/uHz3hz/EMcOXqMJUuW0KNHDw4cOEBWVhZz5sxhzJgx5Ofnk5WVhdlsJiwsjFtvvZUePXqgtSYhIcHhRky1DbAvX76ckJAQunXrVut/XyHEOZf9JAFUajW6f8qd/DzpNlur0YvhaGXTESNGcNdddwFwy1XF6BILp7etwODhg8kvEJerOnJ293pyNn+Oe2BHWg15mdYPvombuRu6MJeTq94n948NoDU52dmcOnUKX19fPv74Yzp06GALsCckJrJn717+NqQvlhILlrMnSN/9O1Ofe4y9KX8ScksMt937IPmZByktzCXgwbdQLu7k7foR/7v/htGnFQavFgS/+DWzZ89m4cKFdOjQgR07dpCUlMSPP/7IsGcnY8k/i+VkOi0H/ZXSgrPkp2yi9dA3MHr7Exx2Azt27GDq1KmMHz+e7du38/7773P8+HH8/PyIjo5m7dq1vPfee+zevZt9+/aRn59fZXZ3XXpQ5Obm8tZbb/Hqq6/a/TeSHhRCOO6KmCTqm71ttRV3TL0Y05f58+eTlZXFl19+SWFhId++O4meI1+m+HgqyuRK8fGD5CX/iCqxYHJ1x+XqfmR+OZm0mQ9zNvFbQOEVMYCgxz8CZaC0uJBjx45xOCOTwJiXOZyVg8ewaewoNfPM83/H0KwF5qcW4BrQkdKCs5QWnqXVkJdQnn588X8zaDVyJkavlvj0jMHk7okymgBFaX4OxmZ+GJs1p42fJyNHjsRkMnH69Gnc3NwICwujX79+7HMJAYOJgoPbMXr7U3zqCFqXcmzxJEpyjrMvKYH58+fzxBNPkJqaSlhYGE888QQ+Pj4opSgoKMDHx4fx48dz7bXX0qdPH44cOQJc2IjpltvvcOhKrWICZMWlrVdffZVnn30WLy+vC/6d4uPjSUpKYsOGDWzYsKFSlrkQ4kIySVwEe9tqlckVrUtxaRFE4LhP+Oh4B3zC/8Lg++4DoLioiF6uhzGUFFFyMg1M1u2fRqXp2C6INi19aHnHE5hamMHgUnZWjdGrObi44tb8KlxbBJGvTRxNP4y2FJOWlcO05Zs5fvI0ysUNpRReYbeB1nhebd3yqlxcUco6GSiDgTPbVpDx74mU5p2mtOAsZ3f9hHv7aynOPsbQSDPf/Pc7iouL2V/sQ7unF3HDS58zY81e0g+lQqkF1zZXY/JqAaUlmHyvwuDtj3LzxK/fI4wePRpXV1eefvpptNakpqby0UcfYTKZSE9Pp1u3biQnJ7Nz504mTpxoC1CXN2L6888/mTVrFvM2HKhTD4rNmzczceJEgoODmTFjBm+++SazZs0CpAeFELV1RU4Std0pM2XKFEJDQ+ncuTPfffcdgb7WgG/FwnqlhXkE3P+a7Tnp2fn836x3+Pwz6/bZ5ORk/v7iRNCltGvTGnNrf1q0aIGlqJDSEgsP3NiJwsPJWE6mQWkxGE2cTf6RM9u+AsBICfnFJVjOZJGz+QtcW4egTC6UnDmBwau57XWN3i0xuDXj5PdzrFc2J9KwnM4kL2UTbR6bjcHdi9LcU9YHm1wxuLjj2qodFOUxcVAY9wwejMH3Kgwd+5KXup1tbz3EswPCyFz2GsrFHZ9Ia6E/Q7Pm5KdsQhecwaN9OGcTvrYt3fTq1Yvk5GS2bt3KlClTKCgoqFX58bomQG7YsIHU1FRSU1OZMGEC//jHPxg/frz0oBDiIlz2eRL21KYUxa5du1iyZAnJyckcOXKEqKgonvpgJe/9uL9SYb3MZa9RfDy10uvokmI8u0eRl/Q9AF5+LdBKcSj9KKaWbUEXA9ZCgyFF+yhMXgNYP4BL807jdf3dnNqwCINSlGAEpTC4NsNy+igB978CQPb6hRQdTQGtSXt/JM269cfo44/R3ZuizP0YvVrgd2scHu2t+QnmcR9Zn7cxHuXiwTW3DGZopJnISfcx9KERZGWfwSPkOtxDIq1XJt1uBcBy+hiZn7+OMlh7dbu0CMK39/24t+sBwNmF42zlx8t16dKFZs2asXPnTocD1FD3HhRVuRQ9KOz1LnnttdeYN2+e7e/qzTffZNCgQRQVFfH444+zbds2DAYD7777Lv379wcaR+8ScWW6IieJ2hTWW7FiBQ888ABubm506NCB0NBQrvXIorN3MekVCut5hd1G3r7Nlc5ZdGw/Ov0PwJpJ3f7WBygtBWVSaEshJQXWD8OjZ4qYO+dDirKPAQplKcK1VXsCAtuS/3spLkYjFq2huIDS/NO4BV+LS/NAAFre+SzHFv+DoDHWOk25u36itCCXlgPGV/t34HfTwwT5efDzpNtsx0Ien4Nb9oUf0OUU5z6APTv1puDgDtzb9SEPjNIAABeRSURBVKCjaw57jBp/f38OHDhA27ZtMZlMHDx4kD179hAcHIy/v78tQN2rVy8WLlzI008/bfd16poAWdFrr71m+/1S9KCw94UErNtzz9+yW13Pcbi0vUvEleuKXG6yp6qdMunp6bRt29b2OLPZzInMY/zt5la0DLgKY9k3V6N3S0pysyuftMISi6unF/vWLweDEYOHD5bso5QW5VuDwUUWklJSMRgMmExGXA2leFlOc1urXEwGhclopCQnC0v2MQyefpj8Am3nNXm1wODqQcnRPWitObtzLZ6dejn0ns9PJLT3DR7OBeWLTqaRPX80ppQf8Qm/A5e84xQufZbE98dz9swZunfvzsaNGwkPD+eqq66iU6dOuLm5ERUVxbfffsvs2bMZPXo0vr6+bNmyhUmTJrFu3Trb65TXcNo7c5StL4Yj427M7G3drUpVPceFuJSuiEnCke2UVe2UsfdBVVRSyhtf7+J0fjEl1WyhdAu6hub9R4HRhR4vLsPo5onB1QOjpw9tn/sCo7c/lFqwZGeQtn8vQ4cOpWXLlrRt25bS0lJWrFjB7bffzi+//MKAR59EmVwpzc8h/4/1HPn4aduk1OIvT1K8bja5i57Er7UZz46RBPl58NStHQlrY22QlPXtDA7PfJgj858ErImEx3/6N0FBQbbsY/eMHQDoEgtZ37xjjbfMewLXVsGYxy/ixn+uJqLbNRh3fo3v6tcI0lls32xNjCuPDTz66KMkJyfzxBNP8Oabb3LgwAGuu+46YmNjiY2N5cknnyQmJoann36azMxMBg0aRHh4ON9++y3jxo3jgw8+4I5bbyZv5xrSPojl9K+f2f4+C4/u4+TCZ5j5+KAmXwhw1qxZ9OjRg7i4OE6dssaIquo5Xk627opL4bJfbqpri0+z2Vzpf9S0tDS2HNPsz3e/oLCesZkfpXnnriZK83PI/mkB/P/2zjy+yuLc499fzgkk7BK2IAkRQS1oQQS8FQhqqQWvay1q6wZVWrzgingLVVFbL2pbsHqBCwpuLdq6IyqCFgW5vWjEsCggyiJLANkMhBCyPPePeQ8c4jkhQCAnMN/PJ5/znjkz7/s7c968M/PMzPOUFjPvD1dQVlJCcouTSULkTR4MZSUQrk2rmydTsPBd3n57Kjt27CA/P5+ysjIyMzO58cYb6d+/P0V79lCvSTrFKY0In9CStAv+Y+91unXrygtPLom572PRCw+z5Y03KVYtWlz5ABtfvIe8x/qxrrSYeWlpJCUl0aFDB9ejn/Mcm7bvoKxoF1ZcRFKtVJRSl+2zn2f77OdYDaSmprrR1JYt5OXl7Y1B8fDDDwPsjTmxYcMGkpKSuPvuu3nyyScZMmQI/fr147777iMcDpOVlcXQoUOZPn06o0aNIiMjg/z8fNasWUNZSQlPPTmR8X97nQXz3qVe+15kts5i7euTmPLiM5zbswcXXngh06dPTzgfT5UJcHXzzTdz7733Iol7772XoUOHMnny5Lgxx4HDjl3i8Rwqx/xIorIb3+KtlLnkkkt48cUXKSoqYuXKlSxfvpyPdzbea+YpWrcUM2PrP59i98r5FG9dx9qxN7BjwQxaXPtHUk46E0LJpDRsQtPLh1Pv1O7UPvE0F/ehqABKish7+laaZ7YjMzOT2bNnk5GRQWlpKT169ODiiy/m3XffZfGiRaz56gtOyWhOs9anVHrn+E2/+hUfvj+Tdi3TmDvyUjLTm9L/hutIS0tj0KBB3HnnnbRr14477riDJYs+IzWlNg26XEJKRgda9H+M5lc/RKh+GnWbtiIcDtOtWzemTJlCKBRi8ODBFBYWUlhYuDe86TXXXENubi6DBg1CEuFwmLlz5xIKhcjLy+Omm24iOzubzZs3k5OTs7e3HPHhFAmulJXRioZl+WQ2bcCChy7j5Rt+QCp7OC+7Z6W92R5tKrsTv3nz5oRCIZKSkhg4cODeZbjhcJgxY8aQm5vLG2+8wfbt22nXrh3gl+56qo9jfiQRb+NbZKXMgUJ8dujQgSuvvJL27dsTDocZO3Ysg2fvAZyZZ8vbY7CSPdQ99RxO6D1ov9U13059lD3rl4GVEd6zg5LtG6n3w5+w5e2/kFQrhVBq/b0rj37Tux0F88R1111HOBxm6tSp9O3bl4KCgu+tyBk9+k+EQqFKff/yk/R16tTZu0IGnNmjsLCQ1q1bk5GRwYW9zqbr9cMY9Z9DyJs0GEr2cMXgEXz09/EUBpvTbujfn7Xr1jH5tZlMTZ1Gy0Z1YvaWd+/eTVJSEpK45557KC0t5aGHHmLYsGHMnDmTV155hdTUVMaNG8eIESMA9oaLveyyy9ixYwfjx4+ncePG5OTkVMoRYHVS2QBXeXl5pKe7eaXXXntt7zLcXbt2YWbUrVt3v5jjJSUlbN++nSZNmuxdutu7d++j9r08xzeqCbbNLl262KFO4LUZ/tZ+D6/yJAlWjPr3gzpn94f/+b3VNxWR3jCF94f2+p7ZK0LHjEaH7EcqHhGzxz9y1vDN6tVsevlBmv38Pra++nu6ds/mX9Ne4OSTT+bss8+mWbNmTJgwgeLiYlqkp7MnKZUN61ZTv+vPaNvzElY/exffbVqPmXFy27ZYm3NYPvsNynZsBoVIbtqaxhfezq53x7BhlfN0O3H2Cn571bk0ufx3NE87gRXP3MWegnwKdu4E3KqxiRMnsm3bNk4//XTy8/PJzc1l0qRJjBs3jj59+jBz5kzmzZvHO++8w5YtWxg+fDjvveeWCc+ZM4dHH32UN998s8rq7HCJdV9Ed0hq1TuBcaMf5oMPPiA3NxdJZGVlMWHCBNLT01m1atV+MccnTZpE69atKSgoIDs7u1xHYXSlOwqe4xdJn5rZYS2Jq5aRhKRVwA6gFCg53C9REbGWU5b//GDp16UVj723vNL5r+qacdRiPe/aU8LYWV8xcfYKikujW0d3XFJWxpf1O5GSNptPPlvAqN8/wIoVK5g/fz7nnNOdNes3QmpDGvYawM6FM/gm/RR21m4Ktb6jbWZLrh/1HA/cdhP1O/6UUP00itYtZffqBWyd/jiUlDJ21ld8tHwz//rgPcqSahFuksXKT15nV60TKN2+jc3b80lNDtG4cWO2bNlCrVq1GDFiBBdddBH169dn9OjRXHrppUyZMoVbbrmFcDhMTk4OPXv2rPQ+i+oi1uqw6KW7kZjjN954Y8zyWVlZLFu27Hvp1bF01+OJUJ1zEueZWacj2UDAkYknUZH78fJEuyOvakeD5YnYxMfO+rpcA7E/oToN2V1Sxp/f+JiBAweyaNEipk6dSmpaOsmZHSkr2kXR2iWknHQWReuXUrRuCclZndlaUMSrn6ymbvtelBZsZffXOdRu0Zak2nUo3vA1xVvXMaJfTz566yW2zZpE6a7vWD95CLu/WUiDs/tRWlrC49Ny6Ny5M/369WPt2rU8//zze00u48ePZ+7cuQwZMoQ2bdqQnZ29N1xsPEeAicSBOhyH0iHxeKqbajE3BSOJLma2uTL5D8fcFGt1U4TDMfOUX8XSomEKmY3rsHrLLjbm7z4io4QD8dh7X8Yc4ZR8t5H1k28hKbk2pYX5JKXUQ0khGrftTGjDYgoKCjj33HNZ0/ZyFj05jOT0tkghdq/8lKSU+pQV7SLtojvZ+dFzlClM8bYNKBSmbvteNOrVnw3PD4WkMC37PwaAWRnrxg2g+TWPkNyoxT6TS8E2wnUbMf6xPzJy5EiSk5Np0KDBfiaXnTt3MmDAAL744gvMjAEDBjBs2DAAcnJy6N+/P4WFhfTt25cnnniiwh3WR5t49R/h9t7tuL33KUdRked4pyrMTdXVSKwEtuFsIBPMbGJF+Q+nkYDYyxKP9gP8aHAgm3ioTiNC9dIo3rwKK9kDSSE6nnE6bdu2ZdmyZSzbuBOSkrA9RSgUIrVNF1JP7sK3r/2X2/hXVgpJIWqd+AOKv12FFRcBEKrXmOa/fITkBk0A2P3NQrZ98Czp1/95Py1FecvZ8vYYMhqEE/Ihf7gcqQ6Jx3Oo1ORGoqWZrZfUDJgJ3GJms8vl+TXwa4DMzMyzVq9efdR11jQONElfnvJuOQ40IX9io9QDzsfUTwmzY3dJpa95rHG8dEg8NYMaO3FtZuuD102SXgO6AbPL5ZkITAQ3kjjqImsgB5qkL0/5+ZgDNQCRh92spZvi9pZ7tE1j7KyvK33NY43IvJM3K3mOFY76xLWkupLqR46BC4DFR1vHscjBPIBjxfeuTDzwA4WDHXxe2yMSU9zj8VQPR93cJKkN8FrwNgxMMbOHKipzuHMSxwsV2cQBBLRomMJVXTPimj+qwlziTS4eT2JQY+ckDhbfSFQe/4D2eDwRfCPh8Xg8nrhURSNxzDv483g8Hs+h4xsJj8fj8cTFNxIej8fjiYtvJDwej8cTlxoxcS3pW6A6t1w3ASrlZ6qaqQk6a4JG8DqrkpqgEY5Nna3NrOnhXKxGNBLVjaScI+2ttiqoCTprgkbwOquSmqARvM54eHOTx+PxeOLiGwmPx+PxxMU3EpWjQlfmCURN0FkTNILXWZXUBI3gdcbEz0l4PB6PJy5+JOHxeDyeuPhGIgpJKZI+lrRA0ueSHgjSG0uaKWl58HpCdWsFkBSS9JmkacH7hNMpaZWkRZJyJeUkok5JjSS9LGmppCWSfpSAGk8N6jDyly/p9kTTGWi9I/j/WSzpheD/KqF0Srot0Pe5pNuDtGrXKGmypE2SFkelxdUlabikryQtk/TTI6HJNxL7UwScb2YdgU5AH0n/BvwWeN/M2gHvB+8TgduAJVHvE1XneWbWKWrZXqLp/Asw3cxOAzri6jShNJrZsqAOOwFnAbtwLvcTSqekE4FbcTHsTwdCwNUkkE5JpwMDccHOOgIXSWqXIBqfAfqUS4upS1J7XN12CMqMkxSqckVm5v9i/AF1gPnA2cAyID1ITweWJYC+VsENcz4wLUhLRJ2rgCbl0hJGJ9AAWEkwP5eIGmNovgCYm4g6gROBNUBjXLyYaYHehNEJ9AOeinp/L3B3omgEsoDFUe9j6gKGA8Oj8r0L/Kiq9fiRRDkCE04usAmYaWbzgOZmlgcQvDarTo0Bj+Fu7LKotETUacAMSZ8GccshsXS2Ab4Fng5Md08FERMTSWN5rgZeCI4TSqeZrQP+BHwD5AHfmdkMEkvnYiBbUpqkOsCFQEaCaYwmnq5IgxxhbZBWpfhGohxmVmpuSN8K6BYMTRMKSRcBm8zs0+rWUgm6m1lnoC8wWFJ2dQsqRxjoDIw3szOBAqrf/BUXSbWAS4CXqltLLAJ7+aXASUBLoK6ka6tX1f6Y2RLgEWAmMB1YAJRUq6hDQzHSqny5qm8k4mBm24EPcLa+jZLSAYLXTdUoDaA7cImkVcCLwPmS/kri6cTM1gevm3A29G4kls61wNpgxAjwMq7RSCSN0fQF5pvZxuB9ounsDaw0s2/NrBh4FTiHBNNpZpPMrLOZZQNbgeWJpjGKeLrW4kZAEVoB66v64r6RiEJSU0mNguNU3A2/FJgK3BBkuwF4o3oUOsxsuJm1MrMsnOnhn2Z2LQmmU1JdSfUjxzjb9GISSKeZbQDWSDo1SPox8AUJpLEcv2CfqQkST+c3wL9JqiNJuPpcQoLplNQseM0Efoar04TSGEU8XVOBqyXVlnQS0A74uMqvXh0TM4n6B/wQ+AxYiHuY3Rekp+EmiZcHr42rW2uU5nPZN3GdUDpx9v4Fwd/nwO8SVGcnICf43V8HTkg0jYHOOsAWoGFUWiLqfADXuVoMPA/UTjSdwBxcZ2AB8ONEqUtcY5UHFONGCjdWpAv4HfA1bnK775HQ5Hdcezwejycu3tzk8Xg8nrj4RsLj8Xg8cfGNhMfj8Xji4hsJj8fj8cTFNxIej8fjiYtvJI5jJJUGHkUXS3opcFEQK9/bkf0jR0jHC5IWSrrjIMvdL+muKtJwe7zvH3z+sqQ2wfGv5DzbLgzq7tIg/QNJ34s9LKmLpMeD4/6S/ru8fkkPSupdFd+l3LV/Iel3VX3ectc4V9I5h1DuDEnPHAFJniokXN0CPNVKoTkXJEj6GzAIGB35MNgMJTO78EgJkNQCOMfMWh+pa1SS24G/4ryr7oekDkDIzFZIaoVbm97ZzL6TVA9oWtGJzSwHtw+jojz3HbLyiukDPH6Ezo2kMG6vzk7gfw+mnJktktRKUqaZfXOkNHoODz+S8ESYA7SVlCUXU2EczgtuhlxMiCYAkq4PetALJD0fpDWV9IqkT4K/7uVPLhdT4OmgB/6ZpPOCj2YAzYIRTc+o/CFJK+RoJKks4vdJ0hxJbYOs7YMe/ApJt0aVv1YuNkiupAkKXChLGi8pR/vHC7kV52dolqRZMermGvbtcm0G7MA9FDGznWa2Mipvv+C6X0a+T9DTnlZR5Ut6RtLPg+NVkh6QND+or9Oi6nlmkD5B0mpJTYKd7W8Fv8liSVcF+YXbKDhfzpndjKDuo8tmaf/YBXdJuj84Hhj8nguC37dOlNbRQV39Hde5uCPyG8a7H4KR00RJM4Dngku+ifMa4ElQfCPhifQG+wKLgqRTgefM7EwzWx2VrwOuFx2JuXFb8NFfgDFm1hW4AngqxmUGA5jZGTjXEs9KSsE5q/vaXKyEOZHMZlYKfAm0B3oAnwI9JdUGWpnZV0HW04Cf4nxCjZSULOkHwFU454KdgFLcgx7cru8uuN31vST90Mwex/m8Oc/MIo1XNN2D64PbobsRWBk0eheXyxs2s264kcnIGOeqLJvNOUYcD0RMaiNxLlg64/xgZQbpfYD1ZtbRXAyH6UH6mcACcztmRwIfmXNiODWqbEW8amZdg996CW73b4RTgN5mdgXwP7jfP/IbVnQ/nAVcama/DN7nAD3xJCze3HR8kyrnFh3cSGISrke92sz+L0b+84GXzWwzgJltDdJ743r0kXwNJNU3sx1RZXsATwTllkpajXvQ5Fegbw6QjfMoOgoXKOZD4JOoPG+ZWRFQJGkT0BznL+gs4JNAUyr7nKJdKeeyPIzzzd8e546jItJx7sQxs1JJfYCuwXXGSDrLzO4P8r4avH6KiwtwqESf52fBcQ/g8kDHdEnbgvRFwJ8kPYJz0RJpbPsA7wTH2ZHzmNlbUWUr4nRJfwAaAfVw8QoivBQ05LGIeT8Ex1PNrDAq7ybcPedJUHwjcXyzd04iQvCPXRAnv4jtijgJF+ykMMZn0WUPljk4U0ZL4D5gGM7+PTsqT1HUcSnunhbwrJkN30+Ac4J2F9DVzLbJTZqmVEJHYXS+oGf+MfCxpJnA08D95fREtBwqsc4Tsw7N7EtJZ+HiIoySNMPMHsQ5VLwiOmuM4iXsb1GIro9ngMvMbIGk/ri6jxDvHoE490OceysFV7+eBMWbmzwHw/u4nngauNi7QfoMYEgkk6ROMcrOJjD5SDoFZ+5YdoDrzcO5mS4zs91ALvAbXONxIJ0/1z5Pn40ltcZFoSsAvpPUHGdii7ADqP+9MzmWAG2Dc7WU1Dnqs07A6pilqp6PgCsDHRfgHBEiqSWwy8z+igv401lSQ5zpa0tQNrr++0bK4kxnzYI5i9rARVHXqw/kSUpmn7kuFuXrrjL3Q4RTcI4APQmKbyQ8lcbMPgceAj6UtIB9K6FuBbrITWh/gev9l2ccEJK0CDfZ2T8wE1V0vSJc5K2I6WsO7mG0KG4hV+4L4B5cRLyFuOAy6Wa2AOfl93NgMjA3qthE4J04E9dvsa8XnYwz7SwNTHVXsW9u5kjzAHCBpPm4Bi4P94A+AzeqycXNGf0B+AnwXrmy2UHZC3AuvTEX8+FBXIM8Dee9NcK9QfrMcunleRO4XPsWH1TmfohwHq5+PQmK9wLr8RwAudgis3AT4fHs8EdDR22g1MxKJP0IF00vZi9d0lO4OM6x5paQC1jVJTK/VB0E3+dDoIeZ1cTIcMcFfk7C4zkAZlYoaSQufnB1rufPBP4hKQnYg5vIj4mZ3XTUVB06mcBvfQOR2PiRhMfj8Xji4uckPB6PxxMX30h4PB6PJy6+kfB4PB5PXHwj4fF4PJ64+EbC4/F4PHHxjYTH4/F44vL/SVGIfNThkt4AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure()\n",
+ "ax1 = plt.gca()\n",
+ "ax1.set_xlabel('Price of wheat (Shillings/quarter)')\n",
+ "ax1.set_ylabel('Wage (Shillings/week)')\n",
+ "\n",
+ "x = sorted_data['Wheat']\n",
+ "y = sorted_data['Wages']\n",
+ "ax1.scatter(x, y, linewidth=3)\n",
+ "for year in sorted_data.index:\n",
+ " ax1.annotate(str(year),xy=(x[year], y[year]))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**The graph contains the same information but is not as readable as the purchasing power graph.**"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb
index ec705e1ed27e4a8aa4f999af5fb82d9e9a5be30a..51b5de6ed477cd41abf0913146baecc971064080 100644
--- a/module3/exo3/exercice.ipynb
+++ b/module3/exo3/exercice.ipynb
@@ -533,6 +533,14 @@
"ax2.set_ylabel('Price of a quarter of wheat (Shillings)')\n"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**And comparing with the [original graph](https://upload.wikimedia.org/wikipedia/commons/3/3a/Chart_Showing_at_One_View_the_Price_of_the_Quarter_of_Wheat%2C_and_Wages_of_Labour_by_the_Week%2C_from_1565_to_1821.png):**\n",
+ ""
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},