{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Subject 2: Purchasing power of English workers from the 16th to the 19th century" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "William Playfair was one of the pioneers of the graphical presentation of data, being credited in particular with the invention of the histogram. One of his famous graphs, taken from his book \"A Letter on Our Agricultural Distresses, Their Causes and Remedies\", shows the evolution of the wheat price and average salaries from 1565 to 1821. First, we will replicate his famous graph and then present alternative versions of the graph to improve the readability." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plotting the original graph" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data used by Playfair are available on [github](https://vincentarelbundock.github.io/Rdatasets/doc/HistData/Wheat.html) in a csv format using the url:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = 'https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We load the data are remove the first column that is unecessary. The array is made of three columns : the year, the wheat price (in Shilling/quarter) and the wages (in Shilling/week)." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
YearWheatWages
0156541.05.00
1157045.05.05
2157542.05.08
3158049.05.12
4158541.55.15
5159047.05.25
6159564.05.54
7160027.05.61
8160533.05.69
9161032.05.78
10161533.05.94
11162035.06.01
12162533.06.12
13163045.06.22
14163533.06.30
15164039.06.37
16164553.06.45
17165042.06.50
18165540.56.60
19166046.56.75
20166532.06.80
21167037.06.90
22167543.07.00
23168035.07.30
24168527.07.60
25169040.08.00
26169550.08.50
27170030.09.00
28170532.010.00
29171044.011.00
30171533.011.75
31172029.012.50
32172539.013.00
33173026.013.30
34173532.013.60
35174027.014.00
36174527.514.50
37175031.015.00
38175535.515.70
39176031.016.50
40176543.017.60
41177047.018.50
42177544.019.50
43178046.021.00
44178542.023.00
45179047.525.50
46179576.027.50
47180079.028.50
48180581.029.50
49181099.030.00
50181578.0NaN
51182054.0NaN
52182154.0NaN
\n", "
" ], "text/plain": [ " Year Wheat Wages\n", "0 1565 41.0 5.00\n", "1 1570 45.0 5.05\n", "2 1575 42.0 5.08\n", "3 1580 49.0 5.12\n", "4 1585 41.5 5.15\n", "5 1590 47.0 5.25\n", "6 1595 64.0 5.54\n", "7 1600 27.0 5.61\n", "8 1605 33.0 5.69\n", "9 1610 32.0 5.78\n", "10 1615 33.0 5.94\n", "11 1620 35.0 6.01\n", "12 1625 33.0 6.12\n", "13 1630 45.0 6.22\n", "14 1635 33.0 6.30\n", "15 1640 39.0 6.37\n", "16 1645 53.0 6.45\n", "17 1650 42.0 6.50\n", "18 1655 40.5 6.60\n", "19 1660 46.5 6.75\n", "20 1665 32.0 6.80\n", "21 1670 37.0 6.90\n", "22 1675 43.0 7.00\n", "23 1680 35.0 7.30\n", "24 1685 27.0 7.60\n", "25 1690 40.0 8.00\n", "26 1695 50.0 8.50\n", "27 1700 30.0 9.00\n", "28 1705 32.0 10.00\n", "29 1710 44.0 11.00\n", "30 1715 33.0 11.75\n", "31 1720 29.0 12.50\n", "32 1725 39.0 13.00\n", "33 1730 26.0 13.30\n", "34 1735 32.0 13.60\n", "35 1740 27.0 14.00\n", "36 1745 27.5 14.50\n", "37 1750 31.0 15.00\n", "38 1755 35.5 15.70\n", "39 1760 31.0 16.50\n", "40 1765 43.0 17.60\n", "41 1770 47.0 18.50\n", "42 1775 44.0 19.50\n", "43 1780 46.0 21.00\n", "44 1785 42.0 23.00\n", "45 1790 47.5 25.50\n", "46 1795 76.0 27.50\n", "47 1800 79.0 28.50\n", "48 1805 81.0 29.50\n", "49 1810 99.0 30.00\n", "50 1815 78.0 NaN\n", "51 1820 54.0 NaN\n", "52 1821 54.0 NaN" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_url)\n", "data = raw_data.copy()\n", "data.pop('Unnamed: 0')\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can replace the index by the column year and sort by increasing years. We verify that the gap between two points is not more than 5 years:" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "hidePrompt": true }, "outputs": [], "source": [ "sorted_data = data.set_index('Year').sort_index()\n", "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " assert (p2-p1)<=5 " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Eventually plotting Playfair's graph:**" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEKCAYAAABDkxEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcXFWZ//HPtzvpdOgkkIQtspiwiaggEJFNVh3BQcENYXBExGFQBNTREWYx4ow/GRUGZEQMiKCjIipKUAQcNKDsCUsSwpaNrJCEJGTv7qp6fn/c251Kp7r6Vne6u7rr+3696lV1t3PPTUE9fc499zmKCMzMzKpVXX9XwMzMrBwHKjMzq2oOVGZmVtUcqMzMrKo5UJmZWVVzoDIzs6rmQGVmZluRdLOk5ZJmdbJdkr4raY6kGZIO6836OFCZmVlHtwCnlNl+KrB/+roA+H5vVsaByszMthIRDwKryuxyOvDjSDwK7CRpXG/VZ0hvFdwX6urqYvjw4f1dDTOzAWXjxo0BPFm0anJETK6giD2ARUXLi9N1y7ZD9bYxoAPV8OHD2bBhQ39Xw8xsQJG0KSIm9qSIEut6LR+fu/7MzKxSi4G9ipb3BJb21skcqMzMrFJTgE+ko/+OBF6PiF7p9oMB3vVnZmbbn6SfAycAO0taDEwChgJExA3A3cD7gDnARuC8Xq1Pb03zIelm4DRgeUS8NV03BvgFMB5YAJwZEavTbZcD5wN54JKIuLerczQ1NYXvUZmZVUbSxoho6u96ZNWbXX+3sO04/MuA+yNif+D+dBlJBwFnAW9Jj7leUn0v1s3MzAaIXgtUnYzDPx24Nf18K3BG0frbIqI5IuaTNCeP6K26mZnZwNHXgyl2a7vhlr7vmq7vbEy+mZnVuGoZTJF5TL6kC0hSdtDQ0NCbdTIzsyrQ1y2qV9vSbKTvy9P1mcfkR8TkiJgYEROHDKmWOGtmZr2lr3/ppwDnAlem73cWrf+ZpKuBN5AkOny8j+tmZtarrrjiipLrJ02a1Mc1GVh6LVB1Mg7/SuB2SecDC4GPAkTEs5JuB2YDOeCiiMj3Vt3MzGzg6LVAFRFnd7Lp5E72/wbwjd6qj5mZDUxOoWRmZlXNgcrMzKqaA5WZmVU1ByozM6tqDlRmZlbVHKjMzKyqOVCZmVlVc6AyM7Oq5kBlZmZVzYHKzMyqmgOVmZlVNQcqMzOrag5UZmZW1RyozMysqjlQmZlZVfNc7mZm1msk7QmcBbyLZAb3TcAs4PfAHyKi0FUZDlRmZtYrJP0I2AP4HfBfwHKgETgAOAX4V0mXRcSD5cpxoDIzs95yVUTMKrF+FnCHpAZg764K8T0qMzPrFRExS1K9pP/tZHtLRMzpqhwHKjMz6zURkQd2SVtP3eKuPzMz620LgIckTQE2tK2MiKuzHOxAZWZmvW1p+qoDRlZ6sAOVmZn1qoi4AkBSU0Rs6Gr/jnyPyszMepWkoyTNBp5Llw+RdH3W4x2ozMyst10DvBd4DSAingGOy3qwA5WZmfW6iFjUYVU+67G+R2VmZr1tkaSjgUiHqV9C2g2YhVtUZma2DUmnSHpB0hxJl5XYvqOkuyQ9I+lZSeeVKe5C4CKSdEqLgbcDn81aF7eozMxsK5Lqge8B7yEJLE9ImhIRs4t2uwiYHRHvl7QL8IKkn0ZES4ki3xQR53Q4xzHAQ1nq4xaVmZl1dAQwJyLmpYHnNuD0DvsEMFKSgBHAKiDXSXnXZVxXkltUZma1Z4ikaUXLkyNictHyHkDx4IfFwDs7lPE/wBSSB3lHAh/rOGWHpKOAo0lSKH2xaNMooD5zZbPuaGZmg0YuIiaW2a4S66LD8nuBp4GTgH2BP0r6S0SsLdqngaS1NYStM1KsBT6StbIOVGZm1tFiYK+i5T1JWk7FzgOujIgA5kiaDxwIPN62Q0Q8IOmvwNvaslN0R7/co5L0hXSUyCxJP5fUKGmMpD9Keil9H90fdTMzM54A9pc0IR1OfhZJN1+xhcDJAJJ2A94EzOtYUJo9fUxPKtPnLSpJe5CMoT8oIjZJup3kH+Eg4P6IuDIdCnkZ8JW+rp+ZWU9dcUW3Gw9VISJykj4H3EtyL+nmiHhW0oXp9huA/wBukTSTpKvwKxGxspMin0ozp/+SrbOn35GlPv3V9TcEGC6pFdiBpEl5OXBCuv1WYCoOVGZm/SIi7gbu7rDuhqLPS4G/yVjcGJL0SScVFwdUZ6CKiCWSvkPSbNwE3BcR90naLSKWpfssk7RrqeMlXQBcANDQ0O15uMzMrI9ERLmHgbvUH11/o0nG408A1gC/lPTxrMenQygnAzQ1NXUchWJmZlVGUiNwPvAWoLFtfUR8Ksvx/TGY4t3A/IhYERGtJE2/o4FXJY0DSN+X90PdzMxs+/sJsDvJkPYHSEYRrst6cJctqrQL7hjgDSRddbOAaR0f7KrAQuBISTuk5Z0MTCO5wXYucGX6fmc3yzcz6zMDfeBEH9kvIj4q6fSIuFXSz0gGamTSaaCSdCLJyLsxwFMkLZxG4AxgX0m/Aq7q8HBXlyLisfTYJ0nSbTxF0pU3Arhd0vkkweyjlZRrZmZVqzV9XyPprcArwPisByt5VqvEBunbwHURsbDEtiHAaUB9RPy60hpvL01NTbFhQ8WzGpuZbTe92aKaNGlSr5QraWNENPVK4aXP92ng18DBwI9IGiZfLR5FWE6nLaqI+HJ6gmER0dxh86iI+G33qmxmZrUkIm5KPz4A7FPp8VlG/d0h6Yx04EPbQIffAYdXejIzM6s9kr5aan1EfD3L8VlG/f2WZAh5vaTxJDfALs9aQTMzq3kbil554FQquEfVZYsqIm5Mcz39Ni34HyPi4e7U1MxsoPLovu6LiKuKl9OkDx1zB3aq3Ki/4rlDRJJJ92mSoeVHRsTVFdbVzMwMktR5me9VlWtRjeyw/JtO1puZmXUqTVzbNsS8HtgFyHR/CsqP+tuqnSupKSI8FtzMzCp1WtHnHPBqRHQ2bf02uhxMIekoSbOB59LlQyRdX3E1zcysVq0rem0CRqVzEI6R1OVcVVmGp19Dkp9pCkBEPCPpuB5U2MzMasuTJOMcVpOMediJJAMRJF2CZe9XZUpKGxGLOqzKV1ZHMzOrYfcA74+InSNiLElX4B0RMSEiuhxUkSVQLZJ0NBCSGiR9ibQb0MzMLIN3pBMxAhARfwCOz3pwlkB1IXARsAewGHh7umxmZpbFSkn/Jmm8pDdK+leSGX8zyfLA70rgnJ7U0MzMatrZwCSSx5wCeDBdl0mW+agOAL4P7BYRb5V0MPCBiPjP7tXXzMxqgaTLgXsi4ing0u6Wk6Xr70aS3H6tABExAziruyc0M7OaMR+4VNJTkm6R9DFJoystJMvw9B0i4nFJxesyP6hlZma1KSJuA24DkHQocArJjBz1wP+RtLYe76qcLIFqpaR9SdNfSPoIsKy7FTczs9qTdv89BXxT0ijgPcCngS4DVZauv4uAHwAHSloCfJ5kJKCZmVmXJH1U0sj0878BtwDzI+KCLMd3GagiYl5EvJskieCBEXFsRLzcgzqbmVlt+feIWCfpWJJMR7eSDNLLJEuuv7mSfgr8PUkKDDMzs0q0ZTP6W+D7EXEn0JD14CxdfweRdP2NBb4jaZ6k33RxjJmZWZslkn4AnAncLWkYGVP4kXHHPMnQ9DxQAF4FlnejomZmVpvOBO4FTomINcAY4MtZD84y6m8tMBO4GrgxIjKnvTAzMwMagakA6bQezcCfsx6cpUV1Nkm6i88Ct0m6QtLJldfTzMxq1JPACuBF4KX083xJT0o6vKuDs4z6uzMivgz8I3A38Engdz2psZmZ1ZR7gPcVTfNxKnA7SQOoy4l4s4z6+7WkucC1QBPwCaDiFBhmZlazJkbEvW0LEXEfcFxEPAoM6+rgTu9RSRoXEcuAK4EnI8KTJZqZWXeskvQV0nRKwMeA1WkqpUJXB5drUd0s6VHgw8C7JGUZeGFmZtbR3wF7Ar8F7gT2TtfVk4wILKvT4BMRp0pqBE4APkjyDNVCkr7GeyJiYWfHWuWuuOKKbdZNmjSpH2piZgaSTiG55VMP3BQRV5bY5wTgGmAosDIiSs7am85reHEnp5rTVV3KtpIiYjNpYEorNYHkJtj/SNo9Io7o6gRmZjawpF1y3yNJHLsYeELSlIiYXbTPTiQDIU6JiIWSdi1T3gHAl4DxFMWdiDgpS32yTJzYBGyKiAJJ1FxM0h2osgeamdlAdQQwJyLmAUi6DTgdmF20z98Bd7T1rkVEuUQQvwRuAG5iSzqlzLLcd3qQ5B7VaOB+YBpwZkR8vNKTmZlZVRgiaVrR8uSImFy0vAewqGh5MfDODmUcAAyVNBUYCVwbET/u5Hy5iMichHabymbYRxGxUdL5wHUR8S1JT3f3hGZm1u9yETGxzPZSPWbRYXkIcDhwMjAceETSoxHxYolj75L0WeA3JFkpkgIjVmWpbKZAJeko4Bzg/HRdfZbCyxS4E0kT8K0kF/8p4AXgFyR9mAtIWm2re3IeMzPrlsVsPVvGnsDSEvusjIgNwAZJDwKHkGSf6Ojc9L04v18A+2SpTJYUSp8HLgd+ExHPStqHCnI0deJakpGDB5Jc2HPAZcD9EbE/SRfjZT08h5mZdc8TwP6SJkhqAM4CpnTY507SR5ck7UDSNfhcqcIiYkKJV6YgBRlaVBHxAPBA0fI84JKsJ+gonYL4OJJUTEREC9Ai6XSSofCQTKo1FfhKd89jZmbdExE5SZ8jyXheD9ycNlQuTLffEBHPSboHmEHy0O5NETGruBxJJ0XEnyR9qJPz3JGlPllG/d3Ftn2Tr5MMqvhBOoS9EvuQJCT8kaRDgOnApcBuaSYMImJZZ0MdJV0AXADQ0JB53i0zM6tARNxNkt+1eN0NHZa/DXy7TDHHA38C3l/qFMD2CVTAPJJp6H+eLn+MZE6qA4AbSWb+rcQQ4DDg4oh4TNK1VNDNl45MmQzQ1NTUMYCamVmViIhJ6ft5PSknS6A6NCKOK1q+S9KDEXGcpGe7cc7FwOKIeCxd/hVJoHq1Lb+gpHF4ckYzswFN0hfLbY+Iq7OUk2UwxS6S9i468d7AzuliS5aTdKjYK8AiSW9KV51M8hDZFLaMDDmX5EadmZkNXCO7eGWSpUX1T8Bf06k+BEwAPptmrLi1wkq3uRj4aTqaZB5wHknQvD19Xmsh8NFulm1mZlUgIrZNYtoNWUb93S1pf+BAkkD1fNEAimu6c9KIeBoo9bCZZw42MxskJH233PaIyDSCPOvUHYezJZngwZIokyrDzMwMklHdPZZlePpPgH2Bp9mSTDAAByozM+tURHT39tBWsrSoJgIHRYSHgpuZWWaSromIz3fyPC4R8YEs5WQJVLOA3YFllVXRzMxq3E/S9+/0pJAsgWpnYLakx9k6622mSGhmZrUpIqan7w90tW85WQLV13pyAjMzq22SjiGJJW8kiTsCImti2qxJac3MzLrrh8AXSEYBbr8ZfiX9NSKOlbSOrW+CtUXCUZWezMzMsrviis6fl500aVIf1qTHXo+IP3T34E4DVUQcm75nTnNhZmbWRtJh6cc/S/o2Sbb04rEOT2Ypp1yLaky5A7NOIWxWrLO/EAfYX4dmls1VHZaLMxIFcFKWQsrdo5qeFqQS2zJPIWxmZrUpIk7cHuWU6/qbsD1OYGZmtUnS+4EZEfFyuvxV4MPAy8AlEbEgSznluv4O62wbZO9bNDOzmvUN4EgASacBHwfOBg4FfgC8N0sh5br+OvYtFsvct2hmZjUrImJj+vlDwA/Th4CnS/ps1kLKdf1tl75FMzOrWZI0AthIMo3T9UXbGrMWUq7r76SI+JOkD5XaHhF3ZD2JWa3x6EYzIJmz8GlgLfBcREwDkHQoFeSPLdf1dzzwJ+D9JbYFyXh4MzOzkiLiZkn3ArsCzxRteoVkZvdMynX9TUrfMxdWi/yXs5lZaZLGpyP7lhSvj4hl6XYBe0TE4nLlZJk4cRjJcMLxxftHxNcrrrWZmdWSb0uqA+4keTZ3Bcm9qf2AE0nuW00Cehao0hO8np6kuYt9zczMAIiIj0o6CDgH+BQwjmRgxXPA3cA3ImJzV+VkCVR7RsQpPamsmdlAUS4RrFUuImYD/9qTMrIEqoclvS0iZvbkRJbw/wRmPVfq/yPfFx68yg1Pn0kyum8IcJ6keSRdf23TfBzcN1U0M7NaVq5FdVqf1cKsAh5paVZbygWqFUBrRLQCSHoT8D7gZT/sa2YDhf+w6X+S7o+Ik7ta15m6MtvuIRmSjqT9gEdIpva4SNI3u1ddMzOrFZIa07kNd5Y0WtKY9DUeeEPWcsq1qEZHxEvp53OBn0fExZIaSIaqX97Nulc1//VVmv9dzKwb/hH4PElQms6W+Q3XAt/LWki5QBVFn08Cvg0QES2SChVV1czMak5EXAtcK+niiLiuu+WUC1QzJH2HJPXFfsB9AJJ26u7JzKwyHoadnR/9qF4RcZ2ktwIHUZQ1PSJ+nOX4cveo/gFYSXKf6m+K5hQ5CPhOt2prZmY1R9Ik4Lr0dSLwLeADWY8vl5R2E3BlifUPAw9XXFOzKuP7btXPraT+I+kU4FqgHrgpIraJB+l+7wAeBT4WEb/qpLiPAIcAT0XEeZJ2A27KWpdOW1SS7pL0fklDS2zbR9LXJX0q64nMzGxgkFRPMtjhVJJetLPTnH2l9vsv4N4uitwUEQUgJ2kUsJxkFHkm5e5R/QPwReAaSavYkvV2PDAX+J+IuDPriQY6/2XXu3wvxvqa/58u6whgTkTMA5B0G3A6MLvDfhcDvwbe0UV509LxDTeSjP5bDzyetTLluv5eAf4Z+Od0zPs4YBPwYtH9qm5LI/E0YElEnJaOtf8FSSBcAJwZEat7ep7+4v8JzKyKDZE0rWh5ckRMLlreA1hUtLwYeGdxAZL2AD5IMiq8bKCKiM+mH2+QdA8wKiJmZK5slp3Sia8WZC00o0tJUr2PSpcvA+6PiCslXZYuf2U7n3MrDiZmVqNyETGxzHaVWBcdlq8BvhIR+WT+wzKFJTucA+wTEV+XtLekIyIiU6sqU6Da3iTtCfwt8A2S7kVImpUnpJ9vBabSy4HKqpv/kDDrN4uBvYqW9wSWdthnInBbGqR2Bt4nKRcRvy1R3vVAgaT19XVgHdm6DIF+ClQkkfifgZFF63Zrm544IpZJ2rXUgZIuAC4AaGho6O16mpXlYGqD1BPA/pImkDxLexbwd8U7RMSEts+SbgF+10mQAnhnRBwm6an02NVplqNMyj1HtY00V1OPpveQdBqwPCKmd+f4iJgcERMjYuKQIf0VZ83MBq+IyAGfIxnN9xxwe0Q8K+lCSRd2o8jWdFxCAEjahaSFlUmXv/SSppI8mDUEeBpYIemBiPhi2QM7dwzwAUnvIxlFOErS/wKvShqXtqbGkQxftAHKLY3q4efFrDsi4m6S6eKL193Qyb6f7KK47wK/AXaV9A2S56r+LWtdsrSodoyItcCHgB9FxOHAu7OeoKOIuDwi9oyI8STNyT9FxMeBKSTJb0nfa2bou5nZYBYRPyW53fNNYBlwRkT8MuvxWfrOhqQtnDPp4bz3XbgSuF3S+cBC4KO9eC4zM+tbL5FkTR8CIGnviFiY5cAsgerrJP2UD0XEE5L2SU/YYxExlWR0HxHxGpBpEi0zMxs4JF0MTAJeBfIkw98DyDTmoctAlTbPflm0PA/4cHcqa9YffL/MrN9dCrwpbZBUrMt7VJIOkHS/pFnp8sGSMt8EMzOzmrcIeL27B2fp+rsR+DLwA4CImCHpZ8B/dvekZmY2+ElqGx0+D5gq6fdAc9v2iLg6SzlZAtUOEfF4hxQZuawVNTOzmtWW1GFh+mpIXxXJEqhWStqXLQ9qfYRkeKGZWUX8TFdtiYgrIJkaqi0Te3dkCVQXAZOBAyUtAeYDH+/uCa16+EejNE85Yrbd3ZJmW38CeBD4S0TMzHpwllF/84B3S2oC6iJiXberamZmNScijktz+72DJPn47yWNiIgxWY7PkkLpix2WIRm9MT0inq64xmZmVlMkHQu8K33tBPwO+EvW47N0/U1MX3ely39L0ny7UNIvI+JbFdXYzMxqzQMkE+V+E7g7IloqOThLoBoLHBYR6wEkTQJ+BRxHMqWwA1Ufq/TeUqUPvFayvx+m7Xu+t2gD0FiShOTHAZdIKgCPRMS/Zzk4S6DaGyiOfq3AGyNik6TmTo4xMzMDICLWSJpHMhnjnsDRwNCsx2cJVD8DHpXUls38/cDP08EVsyusr/WiWm/dDOTrr6a6u8Vm25ukucALJPelbgDOq6T7L8uov/+Q9AeSZpuACyNiWrr5nMqrbGZmNWb/iMg8UWJHmabIjYhpkhaSTHRYUXp2M6s9vXlfdCDLh3g9GlldGM6q2IHd69axV323U+ANGD0JUpBtePoHgKuAN5DMurs38Dzwlp6c2MxsMIuA12IHluVHsSqGs7ownDXRSBTlAm+tr6uJQNVTWVpU/wEcCfxfRBwq6UTg7N6tltngVCsth1q2rtDA3PxY5ubHsjYay+67trWhG5nvBg5Jl0bEtZKOiYiHultOlkDVGhGvSaqTVBcRf5b0X909oZnZYLM56lmQH8Pc/FiWF0aU3XevNa9w4PL5HLBqEUsP3gea+qiS/eM84FrgOuCw7haSJVCtkTSCJD/TTyUtx9nTzaqOW2t9KxdiUX4n5ubHsrgwaqsuvTZNLZv4mxcf4fAlz/HmFfM5YMXLjGzZBMDmhgZ++JZPs5Jd+7rqfek5SQuAXSTNKFovICJi+8zwC5wObAa+QDLKb0eS6enNzGpKBCwrjGRefiwL8qNppX6bfYbkcxw//0lOnz2V97z0GMNztfu4aUScLWl34F7gA90tp9NAJenzwEPAUxGRT1ff2t0TmZkNZBtjKH9pGc/Swo4ltx+65HnOmD2V0557kLGb1vZx7apXRLwCHJImpT0gXf1CRLRmLaNci2pPkr7FA9Mm28MkgeuRiFjVzTqb2SBSK92NC/M78teW8TR3SKYwftUSzpg9lTOencr4NZ6mrzOSjgd+DCwg6fbbS9K5EfFgluM7DVQR8aX0BA0kSWmPBj4F3ChpTUQc1MO6Wxdq5UdgIPB3UZv/BrkQT7TuxfP5LfeRFAXOeuZePjbjjxyy7EVU5nhrdzXwNxHxAoCkA4CfA4dnOTjLParhwCiSe1M7AkuBzBNemZkNRKsKw3mgZR/WxPD2dbutW8l//+4qjl7on8AKDW0LUgAR8aKknuf6kzSZ5KHedcBjJF1/V0fE6h5U1syqRC22kLKamxvDQ63jyReN5HvvCw9z5T3XMXqz547thmmSfgj8JF0+h2T2jUzKtaj2BoYBLwFLgMXAmm5W0sys6kXArNxuTMvt1b6usbWZr94/mbOfudfdfN33GeAi4BKSe1QPAtdnPbjcPapTlEzn+xaS+1P/BLxV0iqSARVOpWxmg0YEPN66F7Pzu7Wv23/Fy3z/t99kv1WL+7FmA19ENJPcp7q6O8eXvUcVEQHMkrSGZPr514HTgCMAByozGxTyIR5sncCC/Jj2dUcsnMmNd/wnOzZv6MeaGZS/R3UJSUvqGJLJEh8CHgFuxoMpzGyQaIl67m/Zl1cKo9rXve/5v3L1766iMZ/5UR/rReVaVONJppz/QkT4AQEzG3TWFRr4U8t+rIod2tedO/0uvnr/jdT3bGYKK0FSU0RU3EQtd4/qiz2rkplZ9ZqbG8MjrW/cKg3SP0+9hc889isPmtjOJB0N3ASMAPaWdAjwjxHx2SzHZ5o40cxssGiJeh5p3Zt5+bHt64bkc1x5z3f5yKw/9WPNBrX/Bt4LTAGIiGckHZf14G3T/ZqZDVLL803c2XzQVkFq/Kol3PG/X3KQ6kDSKZJekDRH0mUltp8jaUb6ejhtJXUqIhZ1WJUvuWMJblGZ2aCXizpm5nbnmdw4oqhj78wZ9zHp/ybT1Lq5H2tXfSTVA98D3kPyDO0TkqZExOyi3eYDx0fEakmnApOBd3ZS5KK0+y/StHyXAM9lrU+fBypJe5EkJ9wdKACT0xkgxwC/IBnEsQA401kwzKwnCgFz8jvzVOsb2Fg0le7IzRv45r3Xcdrzf+3H2lW1I4A5ETEPQNJtJFM+tQeqiHi4aP9HSRKZd+ZCkiTne5AEvvtIHgDOpD9aVDngnyLiSUkjgemS/gh8Erg/Iq5Mm5mXAV/ph/qZ2QAXAQsLOzG9dQ9eL8rVB/CORbO45q6r2GPdin6qXVUYImla0fLkiJhctLwHUNxVt5jOW0sA5wN/6GxjRKwkSZvULX0eqNKh7svSz+skPUfyj3I6cEK6263AVByozKwChYAlhR15pnUcK2LrKeF3Wb+KSx/6OWc/c6+HnkMuIiaW2V5q4GOU3FE6kSRQHdtpYdKtwKURsSZdHg1cFRGfylLZfr1HJWk8cChJ0tvd2p7XiohlkkrOzyzpAuACgIaGhlK7mFkNiYDXYgfm5sYyLz+GzR3mjBrRvIHPPPorzps+hR1aa3e23QotBvYqWt6TZOaMrUg6mGTY+akR8VqZ8g5uC1IA6X2tQ7NWpt8ClaQRwK+Bz0fE2iStYNfS5ulkgKamppIR3swGv9cLw5ifH8O8/JhtuvcAhuZa+cRTv+eiR25njGfcrdQTwP6SJpAkJT8L+LviHSTtDdwB/H1EvNhFeXWSRreNO0jHJGSOP/0SqNJ5SH4N/DQi7khXvyppXNqaGgcs74+6mVl1ioDVMZyX86NZkN+JNUXZJIrtuv41PjD7Qc6dfhd7rfXPSHdERE7S54B7gXrg5oh4VtKF6fYbgK8CY4Hr04ZGue7Eq4CHJf0qXf4o8I2s9emPUX8Cfgg8FxHFmXSnAOcCV6bvd/Z13cys+qwpNPJSfiwv50ezLhpL7tPUsolTXniIDz77Z45aONP3oLaDiLgbuLvDuhuKPn8a+HTGsn6cDt44ieT+14c6DHUvqz9aVMcAfw/MlPR0uu5fSALU7ZLOBxaSRFwzq0G5qGN+fjQv5ndheWFEyX2GtTZz/PwnOe35v/Celx5jeM73n6qNpFHprZ0xwCvAz4q2jYmIVVnK6Y9Rf3+l9IgSgJPeugm8AAAOUklEQVT7si5mVj3aBkW8lNuZufkxtJb4eWpq2cRJcx7n1Bcf5vh50/2gbvX7GcnUUNPZetSg0uV9shTizBRm1m9ao46lhVEszu/I4sKObIxtR/IOyed4z5zH+PDM+zl2wVOeemMAiYjT0ts9x0fEwu6W40BlZn2mkLaaXsmPYklhFK8WRlDoJOXo+FVLOOuZ+/jwrPvZZeOakvtY9YuIkPQb4PDuluFAZWa9phCwKnZgWX4krxRG8mphRMkuvTajNq/n5DmPc+aMP3LkopmebmPweFTSOyLiie4c7EBlZtvF5hjCqsJwVscOyXthOGtiOPkuJml4yytzOGHedE6cN423L32BIR6xNxidCFwoaQGwgfQeVUQcnOVgByozq0g+xOvRuE1Q2kS2TDHj1q7gqIUzOXLhDE6YN51dNzj3dA04tScHO1CZ2TZyITZGA2tjGGujkbWF9D2GsT6GbTVVRlfGrV3BOxfN4siFMzlq4Qz2XvOKu/RqhKRGkszp+wEzgR9GRK7SchyozGpIBLRQz8YYysZoYEP7ewMbY2j7e3OHfHlZNLY286YVCziw7bU8eR+9eV0vXIkNELcCrcBfSFpVBwGXVlqIA5XZIBQBGxnK6sJwVhV2YHUk3XPrYhg56ntc/t6rl6UBaT5vTgPS3mtecUYI6+igiHgbgKQfAo93pxAHKrNBoC0P3tL8KJYWRrGy0ERzD/73HpLPseuGVey15lXGr17K+NVLmbB6KW9cvYw3rlnmLOSWVftDb2n+wG4V4kBlNkBtjKHtgWlpfmTmwQyNrZsZt+41dl+3kt3XvZa81ifL49J1Yze+7taRbQ+HSGpLXS9geLrcNupvVJZCHKjMBojWqOOVwsj24LSmxNQWxUY0b9jqXtGbV8xn39cWs+Pm9R7MYH0iInrez4wDlVlV2xRDmJ8fw8v50SwvNHWaxQFgx03rOOblZzh2wVMc8/IzHl1ng4YDlVmVaY06FuZ3Ym5+LEsLozodCj4018rhS57jXQue4tgFT/PWV+e6u84GJQcqsypQCFhWGMXc/Fhezu/U6ci8A5fP59gFT3Psgqc4YvGzHtRgNcGByqyftE1rMTc3lvn5MWzq5NmlIxbN4vRnp/KeOY+y6wYnZ7Xa40Bl1kciYH00sDqGs7LQxIL8aF7vZEDEfisX8sFn/8wHZj/g6dSt5jlQmfWClqhjdZoLb3VhOKvSB27LZQ7fZf0qTp/9AGfMnspbXp3rgRBmKQcqsx5ojnrWxTDWFhpZE41pUNqB9TEs0/FNLZt47wsP88HZf+bol2d4MIRZCQ5UZp2IgGaGbJMPb300tCdqrTQn3k6b1vLm5fM5cMUCDlvyPCfPfdwDIsy64EBlg1ohIE8dOerIRV3753zUkUft6zexbZLWTTG0y7mUOjMkn2O/1xZx4IoFvGnFAt68fD5vXrGAXdevcpeeWYUcqKzXRECQBIo8okAd+VDRsiiEiLbP6SsfaTBJX7lIAkpr1NNKfft7S9SRo54CImCr8tqCUHQz0GQ1rLWZN655pT0X3oFpa2nf1xbTUKh4NgMzK8GBqgZE0P7DnqcuCQbUUQi1f25rZeSKWh+59kDR1hLZEkQ6Bp228toDULqeAd5+GLV5fZoPb2V7Przd173G+NXLGL96Kbuve406or+raTaoOVBVgULAZoayMYayKYamrYotP/ZtrYy2oJJPl9taKbn25S3bWqmnpaj1UavqCnkacy3pq5nG1haGpcvDW5uTdbkWxm5c056gddy6ley2Pvnc1Lq5vy/BrObVdKAqBKxLZytt63aKtPuorTsp2Ppz+3uIQvu6jvuIQgDpui0tFrW3Ulqjjk3p/ZBNDK1oxtSBpK6QpyHfyrBcKw351vRzCw35HEPzOYYU8gwt5Kgv5JPP+RzD8q00FgWRxtYWhueaaWrZyMjmTYxo2ciI5o00tWxih9bN7eUMKeQYWshTn5YzvLWZoYXcIP2XNasdNR2octRzR/Pb+rsafaKpeSMjWjalP96tNORaGVrI0ZBrpaGQo7G1meGtzQzPpe+tm9uDRGMuWd/WGhmWb3vfEoCG5VoYms/RkG9tDzZD8zkPtzazHqvpQKUqurcweuPr7LZ+FbtsWE1ja3Pa+tjywz+0kEtbIklwGJZPgs2wfBJMkuDRyrBcM8NyrezQupmRzRsYmQYoBwwzG6hqOlDVEYzUZkauX8+oDevau5/aXvWFAvWRpy4K1BcK7e/1UWjfty4KHd5jq/0UBRryre3dV0krJXnfecMadl//GrusX0VjvrXrCpuZ1aCaDlT1Cj7SOIv3/vkPHPnYY/1dHTMzK6F3HzIxMzPrIQcqMzOrag5UZmZW1RyozMysqjlQmZlZVau6QCXpFEkvSJoj6bL+ro+ZWS3q6rdYie+m22dIOqy36lJVgUpSPfA94FTgIOBsSQf1b63MzGpLxt/iU4H909cFwPd7qz5VFaiAI4A5ETEvIlqA24DT+7lOZmbbXV1UT2acErL8Fp8O/DgSjwI7SRrXG5Wptgd+9wAWFS0vBt5ZvIOkC0iiN0BIagV6NPHPf8CQoVQ4VWsfy0PN5ECvlWv1dQ4+FV1ra2tsvv76ZuheLrevfe1r3TmszXBJ04qWJ0fE5KLlLn+LO9lnD2BZTypWSrUFqlKJrrf6EtN/zPZ/UEnTImJib1esv0ma1lID1wm1c62+zsFnEF1rl7/FGffZLqqt628xsFfR8p7A0n6qi5lZrcryW9xnv9fVFqieAPaXNEFSA3AWMKWf62RmVmuy/BZPAT6Rjv47Eng9IrZ7tx9UWddfROQkfQ64l6Sr9+aIeLaLwyZ3sX2wqJXrhNq5Vl/n4DMorrWz32JJF6bbbwDuBt4HzAE2Auf1Vn0U1T3yxMzMaly1df2ZmZltxYHKzMyqWtUFKkk3S1ouaVbRuq9JWiLp6fT1vnT9eEmbitbfUHTM4ZJmpuk9viup1FDKflXqWtP1F6epS56V9K2i9Zen1/OCpPcWra/qa63kOgfyd9rJf7u/KLqWBZKeLto2IL9PqOxaB+F3+nZJj6bXMk3SEUXbBux3WtUioqpewHHAYcCsonVfA75UYt/xxft12PY4cBTJWP8/AKf297VlvNYTgf8DhqXLu6bvBwHPAMOACcBcoH4gXGuF1zlgv9NS19lh+1XAVwf699mNax1U3ylwX1s9SQYTTB0M32k1v6quRRURDwKrelKGkjQeoyLikUj+K/kxcMb2qN/21Mm1fga4MiKa032Wp+tPB26LiOaImE8y0uaIgXCtFV5nSQP4OoEkgSdwJvDzdNWA/T6h4mstaSBcayfXGcCo9POObHl2aEB/p9Ws6gJVGZ9TkqH3Zkmji9ZPkPSUpAckvStdtwfJw2ht2lJ7DAQHAO+S9Fh6Te9I13eWrmSgXmtn1wmD7zsFeBfwakS8lC4Ptu+zWMdrhcH1nX4e+LakRcB3gMvT9YP5O+1XAyVQfR/YF3g7SR6pq9L1y4C9I+JQ4IvAzySNog9Te/SCIcBo4Ejgy8Dt6V+onV3TQL3Wzq5zMH6nAGezdQtjsH2fxTpe62D7Tj8DfCEi9gK+APwwXT+Yv9N+VVUP/HYmIl5t+yzpRuB36fpmoK3raLqkuSR/qS8mSefRZiClYloM3JF2ETwuqQDsTOfpSgbqtZa8zohYwSD7TiUNAT4EHF60erB9n0Dpax2E/5+eC1yafv4lcFP6eVB+p9VgQLSotHXq+A8Cs9L1uyiZNwVJ+5DMizIvkjQe6yQdmf6V/gngzj6udnf9FjgJQNIBQAOwkiRdyVmShkmaQHKtjw/gay15nYP0O3038HxEFHf/DLbvs8021zoIv9OlwPHp55OAti7Owfqd9r/+Hs3R8UXSZbAMaCX5S+R84CfATGAGyX8M49J9Pww8SzLS5kng/UXlTCQJaHOB/yHNwlFNr06utQH437TuTwInFe3/r+n1vEDRqKFqv9ZKrnMgf6elrjNdfwtwYYn9B+T3Wem1DrbvFDgWmJ5ez2PA4YPhO63ml1MomZlZVRsQXX9mZla7HKjMzKyqOVCZmVlVc6AyM7Oq5kBlZmZVzYHKaoKksUXZu1/R1tn4H+6lcx4q6aau9+zROXaRdE9vnsOsvw2IzBRmPRURr5Gk4ELS14D1EfGdXj7tvwD/2VuFSxoSESskLZN0TEQ81FvnMutPblFZzZO0Pn0/IU2aerukFyVdKekcSY+ncwntm+63i6RfS3oifR1TosyRwMER8YykOkkvSdol3VanZF6inTsrS9IRkh5OE7k+LOlN6fpPSvqlpLtIppuAJMvHOb3/L2XWPxyozLZ2CEket7cBfw8cEBFHkORzuzjd51rgvyPiHSRZF0p177VlIiAiCiRZONqCybuBZyJiZZmyngeOiySR61eB/1dU9lHAuRFxUro8jSRjudmg5K4/s609EUluNtLkqW2tlpkkkz1CEmgO0pZJWkdJGhkR64rKGQesKFq+mSS/2zXAp4AflSuLZJ6jWyXtT5Jpe2hRWX+MiOI5kpYDb+jGtZoNCA5UZltrLvpcKFousOX/lzrgqIjYVKacTUBj20JELJL0qqSTgHeypXVVsixJ1wF/jogPShoPTC3avKHDuRrT85kNSu76M6vcfcDn2hYkvb3EPs8B+3VYdxNJF+DtEZHvoqwdgSXp5092UZ8DSLsZzQYjByqzyl0CTFQy4/Rs4MKOO0TE88COaTdemynACLZ0+5Ur61vANyU9BNR3UZ8Tgd9371LMqp+zp5v1EklfANZFxE3p8kSSgRPbdeCDpAeB0yNi9fYs16xauEVl1nu+T3qPS9JlwK+By7fnCdIh71c7SNlg5haVmZlVNbeozMysqjlQmZlZVXOgMjOzquZAZWZmVc2ByszMqtr/BzENEJ1FhnkMAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "ax1 = plt.gca()\n", "ax1.set_xlabel('Time (year)')\n", "ax1.set_ylabel('Wages (Shillings/week)')\n", "ax1.plot(sorted_data['Wages'], linewidth=3)\n", "ax1.fill_between(sorted_data.index, 0, sorted_data['Wages'],\n", " color='red')\n", "ax2 = ax1.twinx()\n", "ax2.set_ylabel('Price of wheat (Shillings/quarter)')\n", "ax1.bar(sorted_data.index, sorted_data['Wheat'], width=5,\n", " color='grey', zorder=0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }