exercice

April 17, 2020

1 Subject 2: Purchasing power of English workers from the 16th to the 19th century

```
In [1]: %matplotlib inline
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    import isoweek
```

William Playfair was one of the pioneers of the graphical presentation of data, being credited in particular with the invention of the histogram. One of his famous graphs, taken from his book "A Letter on Our Agricultural Distresses, Their Causes and Remedies", shows the evolution of the wheat price and average salaries from 1565 to 1821. First, we will replicate his famous graph and then present alternative versions of the graph to improve the readability.

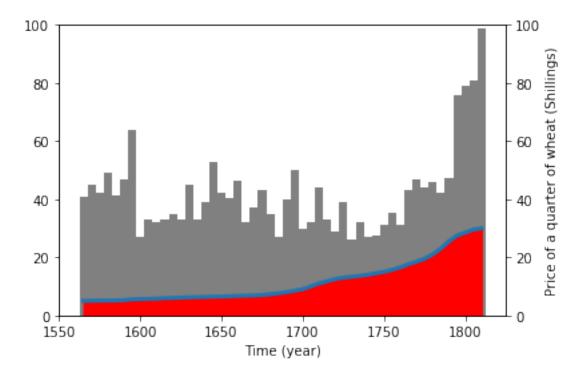
1.1 Plotting the original graph

The data used by Playfair are available on github in a csv format using the url:

```
In [2]: data_url = 'https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/
```

We load the data. The first column and empty row are deleted. The array is made of three columns: the year, the wheat price (in Shilling/quarter) and the wages (in Shilling/week).

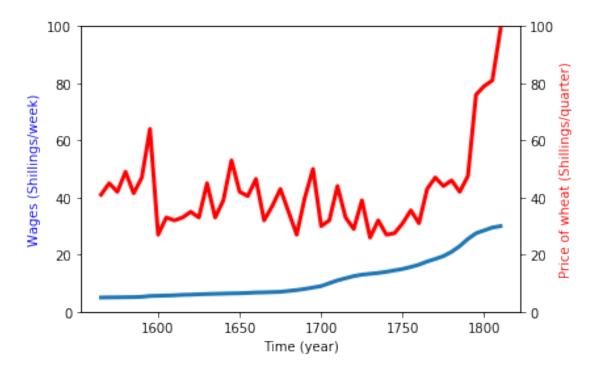
```
In [3]: raw_data = pd.read_csv(data_url)
        data = raw_data.dropna().copy()
        data.pop('Unnamed: 0')
Out[3]:
           Year Wheat Wages
        0
           1565
                  41.0
                        5.00
           1570
                  45.0
                        5.05
        1
           1575
                  42.0
                        5.08
        3
           1580
                  49.0
                        5.12
        4
           1585
                  41.5
                        5.15
        5
           1590
                  47.0
                        5.25
        6
           1595
                  64.0
                         5.54
        7
           1600
                  27.0
                        5.61
```


```
8
    1605
           33.0
                  5.69
9
    1610
           32.0
                  5.78
   1615
10
           33.0
                  5.94
11
   1620
           35.0
                  6.01
   1625
           33.0
                  6.12
12
13
   1630
           45.0
                  6.22
14
   1635
           33.0
                  6.30
15
   1640
           39.0
                  6.37
16
   1645
           53.0
                  6.45
   1650
                  6.50
17
           42.0
18
   1655
           40.5
                  6.60
19
   1660
           46.5
                  6.75
20
   1665
           32.0
                  6.80
21
   1670
           37.0
                  6.90
22
   1675
           43.0
                  7.00
23
   1680
           35.0
                  7.30
24
   1685
           27.0
                  7.60
25
                  8.00
   1690
           40.0
26
   1695
           50.0
                  8.50
27
   1700
           30.0
                  9.00
                 10.00
28
   1705
           32.0
29
   1710
           44.0
                 11.00
30
   1715
           33.0
                 11.75
31
   1720
           29.0
                12.50
32 1725
           39.0 13.00
33
   1730
           26.0 13.30
   1735
34
           32.0
                 13.60
35
   1740
                 14.00
           27.0
           27.5
36
   1745
                 14.50
37
   1750
           31.0
                 15.00
38
   1755
           35.5
                 15.70
   1760
           31.0 16.50
39
40
   1765
           43.0 17.60
   1770
41
           47.0
                 18.50
42
   1775
           44.0
                 19.50
43
           46.0
   1780
                 21.00
44
   1785
           42.0 23.00
45
   1790
           47.5 25.50
46
   1795
           76.0 27.50
47
   1800
           79.0 28.50
48
   1805
           81.0 29.50
49
   1810
           99.0 30.00
```

We can replace the index by the column year and sort by increasing years. We verify that the gap between two points is not more than 5 years:

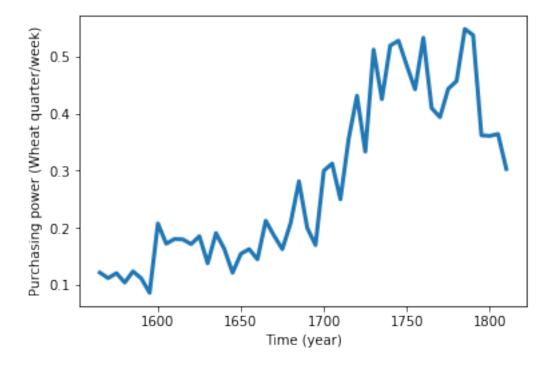
```
for p1, p2 in zip(periods[:-1], periods[1:]):
    assert (p2-p1)<=5</pre>
```

Eventually plotting Playfair's graph:


Out[5]: Text(0,0.5,'Price of a quarter of wheat (Shillings)')

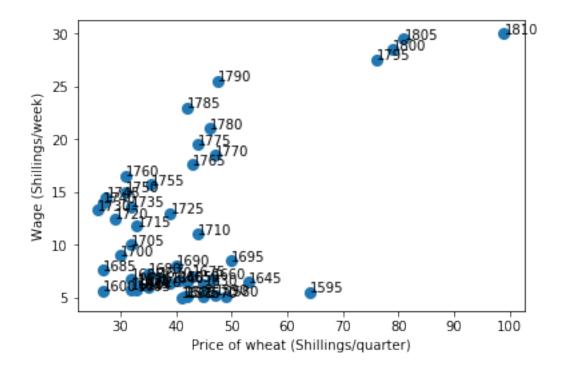
1.2 Re-labeling the axis

The left and right axis can be labeled with the proper units 'Shillings/week' and 'Shillings/quarter', resp.


Out[6]: [<matplotlib.lines.Line2D at 0x7f148be28f28>]

1.3 Plot the purchasing power of workers

The purchasing power can be calculated as the ratio of the wages over the prices of wheat. We plot it as a function of time.


Out[7]: [<matplotlib.lines.Line2D at 0x7f148be17d68>]

This graph seems to be the best way to represent the relative evolution of the price of wheat compared to the worker wages.

1.4 Scatter plot

Another way to present the data is to plot directly the wage versus the price of wheat, and write the year close to the data points:

The graph contains the same information but is not as readable as the purchasing power graph.