diff --git a/module4/MOOC_challenger.ipynb b/module4/MOOC_challenger.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c5ef22fcc55d3c316f5ed3280545d1423eb48723 --- /dev/null +++ b/module4/MOOC_challenger.ipynb @@ -0,0 +1,754 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "613c606b-78ea-4262-9700-057e46b188cd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.9.15 | packaged by conda-forge | (main, Nov 22 2022, 08:41:22) [MSC v.1929 64 bit (AMD64)]\n", + "uname_result(system='Windows', node='mobilis', release='10', version='10.0.14393', machine='AMD64')\n", + "IPython 8.18.1\n", + "IPython.core.release 8.18.1\n", + "PIL 10.3.0\n", + "PIL.Image 10.3.0\n", + "PIL._deprecate 10.3.0\n", + "PIL._version 10.3.0\n", + "_csv 1.0\n", + "_ctypes 1.1.0\n", + "decimal 1.70\n", + "_pydev_bundle.fsnotify 0.1.5\n", + "_pydevd_frame_eval.vendored.bytecode 0.13.0.dev\n", + "argparse 1.1\n", + "bottleneck 1.3.7\n", + "cffi 1.16.0\n", + "colorama 0.4.6\n", + "comm 0.1.4\n", + "csv 1.0\n", + "ctypes 1.1.0\n", + "cycler 0.12.1\n", + "dateutil 2.8.2\n", + "debugpy 1.8.0\n", + "debugpy.public_api 1.8.0\n", + "decimal 1.70\n", + "decorator 5.1.1\n", + "defusedxml 0.7.1\n", + "exceptiongroup 1.2.0\n", + "exceptiongroup._version 1.2.0\n", + "executing 2.0.1\n", + "executing.version 2.0.1\n", + "http.server 0.6\n", + "ipykernel 6.26.0\n", + "ipykernel._version 6.26.0\n", + "ipywidgets 8.1.1\n", + "ipywidgets._version 8.1.1\n", + "jedi 0.19.1\n", + "joblib 1.3.2\n", + "joblib.externals.cloudpickle 2.2.0\n", + "joblib.externals.loky 3.4.1\n", + "json 2.0.9\n", + "jupyter_client 8.6.0\n", + "jupyter_client._version 8.6.0\n", + "jupyter_core 5.5.0\n", + "jupyter_core.version 5.5.0\n", + "kiwisolver 1.4.5\n", + "kiwisolver._cext 1.4.5\n", + "logging 0.5.1.2\n", + "matplotlib 3.8.2\n", + "matplotlib._version 3.8.2\n", + "mkl 2.4.1\n", + "numexpr 2.9.0\n", + "numpy 1.26.4\n", + "numpy.core 1.26.4\n", + "numpy.core._multiarray_umath 3.1\n", + "numpy.linalg._umath_linalg 0.1.5\n", + "numpy.version 1.26.4\n", + "packaging 23.2\n", + "pandas 2.1.3\n", + "pandas._version_meson 2.1.3\n", + "parso 0.8.3\n", + "patsy 0.5.3\n", + "patsy.version 0.5.3\n", + "pickleshare 0.7.5\n", + "platform 1.0.8\n", + "platformdirs 4.0.0\n", + "platformdirs.version 4.0.0\n", + "prompt_toolkit 3.0.41\n", + "psutil 5.9.5\n", + "pure_eval 0.2.2\n", + "pure_eval.version 0.2.2\n", + "pydevd 2.9.5\n", + "pygments 2.17.2\n", + "pyparsing 3.1.1\n", + "pytz 2023.3.post1\n", + "re 2.2.1\n", + "scipy 1.11.4\n", + "scipy._lib._uarray 0.8.8.dev0+aa94c5a4.scipy\n", + "scipy._lib.decorator 4.0.5\n", + "scipy.integrate._dop 1.22.4\n", + "scipy.integrate._lsoda 1.22.4\n", + "scipy.integrate._vode 1.22.4\n", + "scipy.interpolate.dfitpack 1.22.4\n", + "scipy.linalg._fblas 1.22.4\n", + "scipy.linalg._flapack 1.22.4\n", + "scipy.linalg._flinalg 1.22.4\n", + "scipy.linalg._interpolative 1.22.4\n", + "scipy.optimize.__nnls 1.22.4\n", + "scipy.optimize._cobyla 1.22.4\n", + "scipy.optimize._lbfgsb 1.22.4\n", + "scipy.optimize._minpack2 1.22.4\n", + "scipy.optimize._slsqp 1.22.4\n", + "scipy.sparse.linalg._eigen.arpack._arpack 1.22.4\n", + "scipy.sparse.linalg._isolve._iterative 1.22.4\n", + "scipy.special._specfun 1.22.4\n", + "scipy.stats._mvn 1.22.4\n", + "scipy.stats._statlib 1.22.4\n", + "seaborn 0.13.0\n", + "seaborn.external.appdirs 1.4.4\n", + "seaborn.external.husl 2.1.0\n", + "six 1.16.0\n", + "socketserver 0.4\n", + "stack_data 0.6.2\n", + "stack_data.version 0.6.2\n", + "statsmodels 0.14.0\n", + "statsmodels.__init__ 0.14.0\n", + "statsmodels._version 0.14.0\n", + "statsmodels.api 0.14.0\n", + "statsmodels.tools.web 0.14.0\n", + "traitlets 5.14.0\n", + "traitlets._version 5.14.0\n", + "urllib.request 3.9\n", + "wcwidth 0.2.12\n", + "xmlrpc.client 3.9\n", + "zlib 1.0\n", + "zmq 25.1.1\n", + "zmq.sugar 25.1.1\n", + "zmq.sugar.version 25.1.1\n" + ] + } + ], + "source": [ + " def print_imported_modules():\n", + " import sys\n", + " for name, val in sorted(sys.modules.items()):\n", + " if(hasattr(val, '__version__')): \n", + " print(val.__name__, val.__version__)\n", + "# else:\n", + "# print(val.__name__, \"(unknown version)\")\n", + "def print_sys_info():\n", + " import sys\n", + " import platform\n", + " print(sys.version)\n", + " print(platform.uname())\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import statsmodels.api as sm\n", + "import seaborn as sns\n", + "\n", + "print_sys_info()\n", + "print_imported_modules()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ec5f8965-490f-4db3-b033-12abac36703e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateCountTemperaturePressureMalfunction
04/12/81666500
111/12/81670501
23/22/82669500
311/11/82668500
44/04/83667500
56/18/82672500
68/30/836731000
711/28/836701000
82/03/846572001
94/06/846632001
108/30/846702001
1110/05/846782000
1211/08/846672000
131/24/856532002
144/12/856672000
154/29/856752000
166/17/856702000
177/29/856812000
188/27/856762000
1910/03/856792000
2010/30/856752002
2111/26/856762000
221/12/866582001
\n", + "
" + ], + "text/plain": [ + " Date Count Temperature Pressure Malfunction\n", + "0 4/12/81 6 66 50 0\n", + "1 11/12/81 6 70 50 1\n", + "2 3/22/82 6 69 50 0\n", + "3 11/11/82 6 68 50 0\n", + "4 4/04/83 6 67 50 0\n", + "5 6/18/82 6 72 50 0\n", + "6 8/30/83 6 73 100 0\n", + "7 11/28/83 6 70 100 0\n", + "8 2/03/84 6 57 200 1\n", + "9 4/06/84 6 63 200 1\n", + "10 8/30/84 6 70 200 1\n", + "11 10/05/84 6 78 200 0\n", + "12 11/08/84 6 67 200 0\n", + "13 1/24/85 6 53 200 2\n", + "14 4/12/85 6 67 200 0\n", + "15 4/29/85 6 75 200 0\n", + "16 6/17/85 6 70 200 0\n", + "17 7/29/85 6 81 200 0\n", + "18 8/27/85 6 76 200 0\n", + "19 10/03/85 6 79 200 0\n", + "20 10/30/85 6 75 200 2\n", + "21 11/26/85 6 76 200 0\n", + "22 1/12/86 6 58 200 1" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = pd.read_csv(\"module2_exo5_shuttle.csv\")\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e092983b-fa43-485c-bcd2-870f8f4cc5b2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG2CAYAAACDLKdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwQ0lEQVR4nO3de1yUdf7//+fIUVyhREVMRExNS7cSt8JTWiuu2sHcLdM1PGAbN01UtNJ1Nw9ZdlhZO3moVDLLjx2sj/WjlMrU0G3TxE7+zDxhCkuiBcpHGOH6/uE6t0ZQYK6RGd497rcbt7re1/uaeV0vLsen13XNjMOyLEsAAACGaODrAgAAALyJcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjOLTcLNp0ybdeuutatmypRwOh955551qt9m4caPi4+MVGhqqtm3bavHixRe/UAAAUG/4NNycPHlSV199tZ577rkazd+/f78GDhyoXr16aceOHfrrX/+q1NRUvfXWWxe5UgAAUF84/OWLMx0Oh95++20NHjz4vHMeeughrV27Vrt27XKNpaSkaOfOndq6dWsdVAkAAPxdoK8LqI2tW7cqMTHRbax///5aunSpnE6ngoKCKm1TWlqq0tJS13JFRYWOHTumyMhIORyOi14zAACwz7IsFRcXq2XLlmrQ4MIXnupVuMnPz1dUVJTbWFRUlE6fPq2jR48qOjq60jbz5s3T7Nmz66pEAABwER06dEitWrW64Jx6FW4kVTrbcvaq2vnOwkyfPl1paWmu5Z9//lmtW7fW/v371bhx44tXqA84nU5t2LBBffv2rfIsFqpHD+2hf/bRQ3von33+2sPi4mLFxcXV6O/uehVuWrRoofz8fLexgoICBQYGKjIyssptQkJCFBISUmm8SZMmCg8Pvyh1+orT6VRYWJgiIyP96oCsT+ihPfTPPnpoD/2zz197eLaWmtxSUq8+5yYhIUFZWVluY+vXr1e3bt386hcAAAB8x6fh5sSJE8rJyVFOTo6kM2/1zsnJUW5urqQzl5SSkpJc81NSUnTw4EGlpaVp165dWrZsmZYuXaqpU6f6onwAAOCHfHpZatu2berbt69r+ey9MSNHjlRGRoby8vJcQUeS4uLilJmZqcmTJ+v5559Xy5Yt9cwzz+iPf/xjndcOAAD8k0/DTZ8+fXShj9nJyMioNHbjjTfqiy++uIhVAQCA+qxe3XMDAABQHcINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFF8Hm4WLlyouLg4hYaGKj4+Xps3b77g/FdffVVXX321wsLCFB0drdGjR6uwsLCOqgUAAP7Op+Fm9erVmjRpkmbMmKEdO3aoV69eGjBggHJzc6uc/+mnnyopKUnJycn65ptv9MYbb+jzzz/X2LFj67hyAADgr3wabtLT05WcnKyxY8eqU6dOWrBggWJiYrRo0aIq5//rX/9SmzZtlJqaqri4OPXs2VP33Xeftm3bVseVAwAAfxXoqycuKyvT9u3bNW3aNLfxxMREbdmypcptunfvrhkzZigzM1MDBgxQQUGB3nzzTQ0aNOi8z1NaWqrS0lLXclFRkSTJ6XTK6XR6YU/8x9n9MW2/6hI9tIf+2UcP7aF/9vlrD2tTj8OyLOsi1nJeR44c0WWXXabs7Gx1797dNf7YY4/p5Zdf1u7du6vc7s0339To0aN16tQpnT59WrfddpvefPNNBQUFVTl/1qxZmj17dqXx1157TWFhYd7ZGQAAcFGVlJRo+PDh+vnnnxUeHn7BuT47c3OWw+FwW7Ysq9LYWd9++61SU1P18MMPq3///srLy9MDDzyglJQULV26tMptpk+frrS0NNdyUVGRYmJilJiYWG1z6hun06msrCz169fvvGEPF0YP7aF/9tFDe+ifff7aw7NXXmrCZ+GmadOmCggIUH5+vtt4QUGBoqKiqtxm3rx56tGjhx544AFJ0m9/+1s1atRIvXr10ty5cxUdHV1pm5CQEIWEhFQaDwoK8qtfmjeZvG91hR7aQ//so4f20D/7/K2HtanFZzcUBwcHKz4+XllZWW7jWVlZbpepfqmkpEQNGriXHBAQIOnMGR8AAACfvlsqLS1NL730kpYtW6Zdu3Zp8uTJys3NVUpKiqQzl5SSkpJc82+99VatWbNGixYt0r59+5Sdna3U1FRdd911atmypa92AwAA+BGf3nMzdOhQFRYWas6cOcrLy1Pnzp2VmZmp2NhYSVJeXp7bZ96MGjVKxcXFeu655zRlyhRdcskluummm/TEE0/4ahcAAICf8fkNxePGjdO4ceOqXJeRkVFpbMKECZowYcJFrgoAANRXPv/6BQAAAG8i3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYxefhZuHChYqLi1NoaKji4+O1efPmC84vLS3VjBkzFBsbq5CQEF1++eVatmxZHVULAAD8XaAvn3z16tWaNGmSFi5cqB49emjJkiUaMGCAvv32W7Vu3brKbe666y795z//0dKlS9WuXTsVFBTo9OnTdVw5AADwVz4NN+np6UpOTtbYsWMlSQsWLNC6deu0aNEizZs3r9L8Dz74QBs3btS+ffvUpEkTSVKbNm3qsmQAAODnfBZuysrKtH37dk2bNs1tPDExUVu2bKlym7Vr16pbt2568skn9corr6hRo0a67bbb9Mgjj6hhw4ZVblNaWqrS0lLXclFRkSTJ6XTK6XR6aW/8w9n9MW2/6hI9tIf+2UcP7aF/9vlrD2tTj8/CzdGjR1VeXq6oqCi38aioKOXn51e5zb59+/Tpp58qNDRUb7/9to4ePapx48bp2LFj573vZt68eZo9e3al8fXr1yssLMz+jvihrKwsX5dQ79FDe+ifffTQHvpnn7/1sKSkpMZzfXpZSpIcDofbsmVZlcbOqqiokMPh0KuvvqqIiAhJZy5t/elPf9Lzzz9f5dmb6dOnKy0tzbVcVFSkmJgYJSYmKjw83It74ntOp1NZWVnq16+fgoKCfF1OvUQP7aF/9tFDe+ifff7aw7NXXmrCZ+GmadOmCggIqHSWpqCgoNLZnLOio6N12WWXuYKNJHXq1EmWZemHH35Q+/btK20TEhKikJCQSuNBQUF+9UvzJpP3ra7QQ3von3300B76Z5+/9bA2tfjsreDBwcGKj4+vdNorKytL3bt3r3KbHj166MiRIzpx4oRr7LvvvlODBg3UqlWri1ovAACoHzwKN/v37/fKk6elpemll17SsmXLtGvXLk2ePFm5ublKSUmRdOaSUlJSkmv+8OHDFRkZqdGjR+vbb7/Vpk2b9MADD2jMmDHnvaEYAAD8unh0Wapdu3bq3bu3kpOT9ac//UmhoaEePfnQoUNVWFioOXPmKC8vT507d1ZmZqZiY2MlSXl5ecrNzXXN/81vfqOsrCxNmDBB3bp1U2RkpO666y7NnTvXo+cHAADm8Sjc7Ny5U8uWLdOUKVN0//33a+jQoUpOTtZ1111X68caN26cxo0bV+W6jIyMSmMdO3b0uzu4AQCA//DoslTnzp2Vnp6uw4cPa/ny5crPz1fPnj111VVXKT09XT/++KO36wQAAKgRWzcUBwYG6o477tDrr7+uJ554Qnv37tXUqVPVqlUrJSUlKS8vz1t1AgAA1IitcLNt2zaNGzdO0dHRSk9P19SpU7V37159/PHHOnz4sG6//XZv1QkAAFAjHt1zk56eruXLl2v37t0aOHCgVqxYoYEDB6pBgzNZKS4uTkuWLFHHjh29WiwAAEB1PAo3ixYt0pgxYzR69Gi1aNGiyjmtW7fW0qVLbRUHAABQWx6Fmz179lQ7Jzg4WCNHjvTk4QEAADzm0T03y5cv1xtvvFFp/I033tDLL79suygAAABPeRRuHn/8cTVt2rTSePPmzfXYY4/ZLgoAAMBTHoWbgwcPKi4urtJ4bGys2ycKAwAA1DWPwk3z5s315ZdfVhrfuXOnIiMjbRcFAADgKY/Czd13363U1FRt2LBB5eXlKi8v18cff6yJEyfq7rvv9naNAAAANebRu6Xmzp2rgwcP6uabb1Zg4JmHqKioUFJSEvfcAAAAn/Io3AQHB2v16tV65JFHtHPnTjVs2FBdunRxfZs3AACAr3gUbs7q0KGDOnTo4K1aAAAAbPMo3JSXlysjI0MfffSRCgoKVFFR4bb+448/9kpxAAAAteVRuJk4caIyMjI0aNAgde7cWQ6Hw9t1AQAAeMSjcPM///M/ev311zVw4EBv1wMAAGCLR28FDw4OVrt27bxdCwAAgG0ehZspU6bo6aeflmVZ3q4HAADAFo8uS3366afasGGD3n//fV111VUKCgpyW79mzRqvFAcAAFBbHoWbSy65RHfccYe3awEAALDNo3CzfPlyb9cBAADgFR7dcyNJp0+f1ocffqglS5aouLhYknTkyBGdOHHCa8UBAADUlkdnbg4ePKg//OEPys3NVWlpqfr166fGjRvrySef1KlTp7R48WJv1wkAAFAjHp25mThxorp166bjx4+rYcOGrvE77rhDH330kdeKAwAAqC2P3y2VnZ2t4OBgt/HY2FgdPnzYK4UBAAB4wqMzNxUVFSovL680/sMPP6hx48a2iwIAAPCUR+GmX79+WrBggWvZ4XDoxIkTmjlzJl/JAAAAfMqjy1L//Oc/1bdvX1155ZU6deqUhg8frj179qhp06ZatWqVt2sEAACoMY/CTcuWLZWTk6NVq1bpiy++UEVFhZKTk/XnP//Z7QZjAACAuuZRuJGkhg0basyYMRozZow36wEAALDFo3CzYsWKC65PSkryqBgAAAC7PAo3EydOdFt2Op0qKSlRcHCwwsLCCDcAAMBnPHq31PHjx91+Tpw4od27d6tnz57cUAwAAHzK4++WOlf79u31+OOPVzqrAwAAUJe8Fm4kKSAgQEeOHPHmQwIAANSKR/fcrF271m3Zsizl5eXpueeeU48ePbxSGAAAgCc8CjeDBw92W3Y4HGrWrJluuukmzZ8/3xt1AQAAeMSjcFNRUeHtOgAAALzCq/fcAAAA+JpHZ27S0tJqPDc9Pd2TpwAAAPCIR+Fmx44d+uKLL3T69GldccUVkqTvvvtOAQEB6tq1q2uew+HwTpUAAAA15FG4ufXWW9W4cWO9/PLLuvTSSyWd+WC/0aNHq1evXpoyZYpXiwQAAKgpj+65mT9/vubNm+cKNpJ06aWXau7cubxbCgAA+JRH4aaoqEj/+c9/Ko0XFBSouLjYdlEAAACe8ijc3HHHHRo9erTefPNN/fDDD/rhhx/05ptvKjk5WUOGDPF2jQAAADXm0T03ixcv1tSpUzVixAg5nc4zDxQYqOTkZD311FNeLRAAAKA2PAo3YWFhWrhwoZ566int3btXlmWpXbt2atSokbfrAwAAqBVbH+KXl5envLw8dejQQY0aNZJlWd6qCwAAwCMehZvCwkLdfPPN6tChgwYOHKi8vDxJ0tixY3kbOAAA8CmPws3kyZMVFBSk3NxchYWFucaHDh2qDz74wGvFAQAA1JZH99ysX79e69atU6tWrdzG27dvr4MHD3qlMAAAAE94dObm5MmTbmdszjp69KhCQkJsFwUAAOApj8JN7969tWLFCteyw+FQRUWFnnrqKfXt29drxQEAANSWR5elnnrqKfXp00fbtm1TWVmZHnzwQX3zzTc6duyYsrOzvV0jAABAjXl05ubKK6/Ul19+qeuuu079+vXTyZMnNWTIEO3YsUOXX365t2sEAACosVqfuXE6nUpMTNSSJUs0e/bsi1ETAACAx2p95iYoKEhff/21HA7HxagHAADAFo8uSyUlJWnp0qXergUAAMA2j24oLisr00svvaSsrCx169at0ndKpaene6U4AACA2qpVuNm3b5/atGmjr7/+Wl27dpUkfffdd25zuFwFAAB8qVbhpn379srLy9OGDRsknfm6hWeeeUZRUVEXpTgAAIDaqtU9N+d+6/f777+vkydPerUgAAAAOzy6ofisc8OOJxYuXKi4uDiFhoYqPj5emzdvrtF22dnZCgwM1DXXXGO7BgAAYI5ahRuHw1Hpnho799isXr1akyZN0owZM7Rjxw716tVLAwYMUG5u7gW3+/nnn5WUlKSbb77Z4+cGAABmqtU9N5ZladSoUa4vxzx16pRSUlIqvVtqzZo1NXq89PR0JScna+zYsZKkBQsWaN26dVq0aJHmzZt33u3uu+8+DR8+XAEBAXrnnXdqswsAAMBwtQo3I0eOdFseMWKEx09cVlam7du3a9q0aW7jiYmJ2rJly3m3W758ufbu3auVK1dq7ty51T5PaWmpSktLXctFRUWSznzSstPp9LB6/3R2f0zbr7pED+2hf/bRQ3von33+2sPa1FOrcLN8+fJaF3M+R48eVXl5eaV3WkVFRSk/P7/Kbfbs2aNp06Zp8+bNCgysWenz5s2r8msi1q9fr7CwsNoXXg9kZWX5uoR6jx7aQ//so4f20D/7/K2HJSUlNZ7r0Yf4edO59+xYllXlfTzl5eUaPny4Zs+erQ4dOtT48adPn660tDTXclFRkWJiYpSYmKjw8HDPC/dDTqdTWVlZ6tevn4KCgnxdTr1ED+2hf/bRQ3von33+2sOzV15qwmfhpmnTpgoICKh0lqagoKDKz80pLi7Wtm3btGPHDt1///2SpIqKClmWpcDAQK1fv1433XRTpe1CQkJc9wj9UlBQkF/90rzJ5H2rK/TQHvpnHz20h/7Z5289rE0ttt4KbkdwcLDi4+MrnfbKyspS9+7dK80PDw/XV199pZycHNdPSkqKrrjiCuXk5Oj666+vq9IBAIAf8+llqbS0NN1zzz3q1q2bEhIS9MILLyg3N1cpKSmSzlxSOnz4sFasWKEGDRqoc+fObts3b95coaGhlcYBAMCvl0/DzdChQ1VYWKg5c+YoLy9PnTt3VmZmpmJjYyVJeXl51X7mDQAAwC/5/IbicePGady4cVWuy8jIuOC2s2bN0qxZs7xfFAAAqLd8ds8NAADAxUC4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwo0X7fvxhDbsLtD+oyd9XQoA/Cod+O/r78HCEh9XAl8K9HUBJvippEypq3K0ac+PrrHe7Zvp2WHXKiIsyIeVAcCvw9nX4c/2FejJ66RBz27W9W2b8zr8K8WZGy9IXZWj7O+Puo1lf39UE1bt8FFFAPDrwuswfolwY9O+H09o054fVW5ZbuPllqVNe37kEhUAXGS8DuNchBubDh678HXdA4X8oQKAi4nXYZyLcGNTbJOwC65vE9mojioBgF8nXodxLsKNTW2b/Ua92zdTgMPhNh7gcKh3+2aKa8ofKgC4mHgdxrkIN17w7LBr1aNdU7exHu2a6tlh1/qoIgD4deF1GL/EW8G9ICIsSCuSr9P+oyd1oPCk2kQ24l8KAFCHzr4Of5//s7757BP9fxN6qV2LCF+XBR8h3HhRXFNCDQD4UmxkmL7573/x68VlKQAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRfB5uFi5cqLi4OIWGhio+Pl6bN28+79w1a9aoX79+atasmcLDw5WQkKB169bVYbUAAMDf+TTcrF69WpMmTdKMGTO0Y8cO9erVSwMGDFBubm6V8zdt2qR+/fopMzNT27dvV9++fXXrrbdqx44ddVw5AADwVz4NN+np6UpOTtbYsWPVqVMnLViwQDExMVq0aFGV8xcsWKAHH3xQv/vd79S+fXs99thjat++vd599906rhwAAPirQF89cVlZmbZv365p06a5jScmJmrLli01eoyKigoVFxerSZMm551TWlqq0tJS13JRUZEkyel0yul0elC5/zq7P6btV12ih/bQP/vooT30zz5/7WFt6vFZuDl69KjKy8sVFRXlNh4VFaX8/PwaPcb8+fN18uRJ3XXXXeedM2/ePM2ePbvS+Pr16xUWFla7ouuJrKwsX5dQ79FDe+ifffTQHvpnn7/1sKSkpMZzfRZuznI4HG7LlmVVGqvKqlWrNGvWLP3v//6vmjdvft5506dPV1pammu5qKhIMTExSkxMVHh4uOeF+yGn06msrCz169dPQUFBvi6nXqKH9tA/++ihPfTPPn/t4dkrLzXhs3DTtGlTBQQEVDpLU1BQUOlszrlWr16t5ORkvfHGG/r9739/wbkhISEKCQmpNB4UFORXvzRvMnnf6go9tIf+2UcP7aF/9vlbD2tTi89uKA4ODlZ8fHyl015ZWVnq3r37ebdbtWqVRo0apddee02DBg262GUCAIB6xqeXpdLS0nTPPfeoW7duSkhI0AsvvKDc3FylpKRIOnNJ6fDhw1qxYoWkM8EmKSlJTz/9tG644QbXWZ+GDRsqIiLCZ/sBAAD8h0/DzdChQ1VYWKg5c+YoLy9PnTt3VmZmpmJjYyVJeXl5bp95s2TJEp0+fVrjx4/X+PHjXeMjR45URkZGXZcPAAD8kM9vKB43bpzGjRtX5bpzA8snn3xy8QsCAAD1ms+/fgEAAMCbCDfwmn0/ntCG3QXaf/SkT7YHPTRB9p4fJUlb9x71cSVA/eXzy1Ko/34qKVPqqhxt+u+LsiT1bt9Mzw67VhFh1b91z+72oIcmOFh4UoOfz1ZJaZmevE6695XtCgsJ1trxPRUTaeYHjgIXC2duYFvqqhxlf+/+r8zs749qwqqafaGp3e1BD00w+PlsHS9x/3j54yVO3fb8pz6qCKi/CDewZd+PJ7Rpz48qtyy38XLL0qY9P1Z7ecTu9qCHJti4u6BSsDnreIlTm39xRg5A9Qg3sOXgsQt/18eBwgv/xWp3e9BDE+T88NMF13+Re7xuCgEMQbiBLbFNLnwvQJvIRhd1e9BDE1zT6pILru/a+tK6KQQwBOEGtrRt9hv1bt9MAed82WmAw6He7ZsprumF/2K1uz3ooQluvKK5Lj3Pjd+XhgWpV/tmdVwRUL8RbmDbs8OuVY92Td3GerRrqmeHXVsn24MemmDt+J6VAs6lYUFaO76njyoC6i/eCg7bIsKCtCL5Ou0/elIHCk+qTWSjWp0tsLs96KEJYiLDtOPhRG36//N0fPe/9eI98erdMdrXZQH1EuEGXhPX1N5fqHa3Bz00QcLlTZW5+8x/AXiGy1IAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABjF5+Fm4cKFiouLU2hoqOLj47V58+YLzt+4caPi4+MVGhqqtm3bavHixXVUKYCLbd+PJ7Rhd4H2Hz3p0far/52rSat36I1th3xWg93ts/f8KEnauveoR9vb5ev9t+vAf5/3YGGJR9tv3F2gpz/6Tpv/+3vwhfr+O/D180tSoM+eWdLq1as1adIkLVy4UD169NCSJUs0YMAAffvtt2rdunWl+fv379fAgQN17733auXKlcrOzta4cePUrFkz/fGPf/TBHgDwhp9KypS6KkebfvEXSu/2zfTssGsVERZU7fZf/fCT7li4RacrLEnSOzuOaPqar7R2fA9deVlEndRgd/uDhSc1+PlslZSW6cnrpHtf2a6wkGCtHd9TMZFhNdoHO3y9/3adff7P9hXoyeukQc9u1vVtm9e6/8dLnK6xS8OC6qz/kjm/A189/y/59MxNenq6kpOTNXbsWHXq1EkLFixQTEyMFi1aVOX8xYsXq3Xr1lqwYIE6deqksWPHasyYMfrHP/5Rx5UD8KbUVTnK/t79TEX290c1YdWOGm3/y2Bz1ukKS7c9n11nNdjd/ty/WCXpeIlTtz3/aY22t8vX+29Xfe+/xO/Am3x25qasrEzbt2/XtGnT3MYTExO1ZcuWKrfZunWrEhMT3cb69++vpUuXyul0KiiocjIsLS1VaWmpa/nnn3+WJB07dkxOp7PS/PrM6XSqpKREhYWFVfYC1aOH9njSv9zCk9qy64AcqvyCtGXXCe3YE63WTc7/L+e1OYelshPnfTF7+eOvdMvVLS9qDXa3/9feoyou+kmBkgIrLJWUVCjQ2UDlFQ4VF0nvb/tO18VFXnAf7PD1/tvl9vwN3PtX2/6fqy76L/nX78AXf45rori4WJJkWVY1M89M8onDhw9bkqzs7Gy38UcffdTq0KFDldu0b9/eevTRR93GsrOzLUnWkSNHqtxm5syZliR++OGHH3744ceAn0OHDlWbMXx6z40kORwOt2XLsiqNVTe/qvGzpk+frrS0NNdyRUWFjh07psjIyAs+T31UVFSkmJgYHTp0SOHh4b4up16ih/bQP/vooT30zz5/7aFlWSouLlbLlhc+Eyv58LJU06ZNFRAQoPz8fLfxgoICRUVFVblNixYtqpwfGBioyMiqTxmGhIQoJCTEbeySSy7xvPB6IDw83K8OyPqIHtpD/+yjh/bQP/v8sYcRERE1muezG4qDg4MVHx+vrKwst/GsrCx17969ym0SEhIqzV+/fr26devG/REAAECSj98tlZaWppdeeknLli3Trl27NHnyZOXm5iolJUXSmUtKSUlJrvkpKSk6ePCg0tLStGvXLi1btkxLly7V1KlTfbULAADAz/j0npuhQ4eqsLBQc+bMUV5enjp37qzMzEzFxsZKkvLy8pSbm+uaHxcXp8zMTE2ePFnPP/+8WrZsqWeeeYbPuPmvkJAQzZw5s9JlONQcPbSH/tlHD+2hf/aZ0EOHZdXkPVUAAAD1g8+/fgEAAMCbCDcAAMAohBsAAGAUwg0AADAK4aaemTVrlhwOh9tPixYtXOtHjRpVaf0NN9zgw4r90+HDhzVixAhFRkYqLCxM11xzjbZv3+5ab1mWZs2apZYtW6phw4bq06ePvvnmGx9W7F+q6x/H4YW1adOmUn8cDofGjx8vieOvOtX1j+OveqdPn9bf/vY3xcXFqWHDhmrbtq3mzJmjiooK15z6fBz6/OsXUHtXXXWVPvzwQ9dyQECA2/o//OEPWr58uWs5ODi4zmqrD44fP64ePXqob9++ev/999W8eXPt3bvX7ZOrn3zySaWnpysjI0MdOnTQ3Llz1a9fP+3evVuNGzf2XfF+oCb9kzgOL+Tzzz9XeXm5a/nrr79Wv379dOedd0ri+KtOdf2TOP6q88QTT2jx4sV6+eWXddVVV2nbtm0aPXq0IiIiNHHiREn1/Dis9tun4FdmzpxpXX311eddP3LkSOv222+vs3rqo4ceesjq2bPneddXVFRYLVq0sB5//HHX2KlTp6yIiAhr8eLFdVGiX6uuf5bFcVhbEydOtC6//HKroqKC488Dv+yfZXH81cSgQYOsMWPGuI0NGTLEGjFihGVZ9f91kMtS9dCePXvUsmVLxcXF6e6779a+ffvc1n/yySdq3ry5OnTooHvvvVcFBQU+qtQ/rV27Vt26ddOdd96p5s2b69prr9WLL77oWr9//37l5+crMTHRNRYSEqIbb7xRW7Zs8UXJfqW6/p3FcVgzZWVlWrlypcaMGSOHw8HxV0vn9u8sjr8L69mzpz766CN99913kqSdO3fq008/1cCBAyXV/9dBwk09c/3112vFihVat26dXnzxReXn56t79+4qLCyUJA0YMECvvvqqPv74Y82fP1+ff/65brrpJpWWlvq4cv+xb98+LVq0SO3bt9e6deuUkpKi1NRUrVixQpJcX8567he4RkVFVfri1l+j6voncRzWxjvvvKOffvpJo0aNksTxV1vn9k/i+KuJhx56SMOGDVPHjh0VFBSka6+9VpMmTdKwYcMkGXAc+vrUEew5ceKEFRUVZc2fP7/K9UeOHLGCgoKst956q44r819BQUFWQkKC29iECROsG264wbIsy8rOzrYkWUeOHHGbM3bsWKt///51Vqe/qq5/VeE4PL/ExETrlltucS1z/NXOuf2rCsdfZatWrbJatWplrVq1yvryyy+tFStWWE2aNLEyMjIsy6r/xyFnbuq5Ro0aqUuXLtqzZ0+V66OjoxUbG3ve9b9G0dHRuvLKK93GOnXq5Poes7PvPjv3XycFBQWV/hXza1Rd/863DcdhZQcPHtSHH36osWPHusY4/mquqv5VheOvsgceeEDTpk3T3XffrS5duuiee+7R5MmTNW/ePEn1/zgk3NRzpaWl2rVrl6Kjo6tcX1hYqEOHDp13/a9Rjx49tHv3brex7777zvWFrXFxcWrRooWysrJc68vKyrRx40Z17969Tmv1R9X1ryoch1Vbvny5mjdvrkGDBrnGOP5qrqr+VYXjr7KSkhI1aOAeAQICAlxvBa/3x6GvTx2hdqZMmWJ98skn1r59+6x//etf1i233GI1btzYOnDggFVcXGxNmTLF2rJli7V//35rw4YNVkJCgnXZZZdZRUVFvi7db/z73/+2AgMDrUcffdTas2eP9eqrr1phYWHWypUrXXMef/xxKyIiwlqzZo311VdfWcOGDbOio6Ppo1V9/zgOa6a8vNxq3bq19dBDD1Vax/FXvfP1j+OvZkaOHGlddtll1nvvvWft37/fWrNmjdW0aVPrwQcfdM2pz8ch4aaeGTp0qBUdHW0FBQVZLVu2tIYMGWJ98803lmVZVklJiZWYmGg1a9bMCgoKslq3bm2NHDnSys3N9XHV/ufdd9+1OnfubIWEhFgdO3a0XnjhBbf1FRUV1syZM60WLVpYISEhVu/eva2vvvrKR9X6nwv1j+OwZtatW2dJsnbv3l1pHcdf9c7XP46/mikqKrImTpxotW7d2goNDbXatm1rzZgxwyotLXXNqc/HocOyLMvXZ48AAAC8hXtuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AXJDD4bjgz6hRo3xdotf16dNHkyZN8nUZADwU6OsCAPi3vLw81/+vXr1aDz/8sNsXZzZs2NAXZXnE6XQqKCjI2OcDcAZnbgBcUIsWLVw/ERERcjgcbmObNm1SfHy8QkND1bZtW82ePVunT592be9wOLRkyRLdcsstCgsLU6dOnbR161Z9//336tOnjxo1aqSEhATt3bvXtc2sWbN0zTXXaMmSJYqJiVFYWJjuvPNO/fTTT261LV++XJ06dVJoaKg6duyohQsXutYdOHBADodDr7/+uvr06aPQ0FCtXLlShYWFGjZsmFq1aqWwsDB16dJFq1atcm03atQobdy4UU8//bTr7NSBAweUkZGhSy65xO3533nnHTkcjkp1L1u2TG3btlVISIgsy9LPP/+sv/zlL2revLnCw8N10003aefOnV76DQE4F+EGgMfWrVunESNGKDU1Vd9++62WLFmijIwMPfroo27zHnnkESUlJSknJ0cdO3bU8OHDdd9992n69Onatm2bJOn+++932+b777/X66+/rnfffVcffPCBcnJyNH78eNf6F198UTNmzNCjjz6qXbt26bHHHtPf//53vfzyy26P89BDDyk1NVW7du1S//79derUKcXHx+u9997T119/rb/85S+655579Nlnn0mSnn76aSUkJOjee+9VXl6e8vLyFBMTU+OenK37rbfeUk5OjiRp0KBBys/PV2ZmprZv366uXbvq5ptv1rFjx2r8uABqwcdf3AmgHlm+fLkVERHhWu7Vq5f12GOPuc155ZVXrOjoaNeyJOtvf/uba3nr1q2WJGvp0qWusVWrVlmhoaGu5ZkzZ1oBAQHWoUOHXGPvv/++1aBBAysvL8+yLMuKiYmxXnvtNbfnfuSRR6yEhATLsixr//79liRrwYIF1e7XwIEDrSlTpriWb7zxRmvixIkX3HfLsqy3337b+uXL6MyZM62goCCroKDANfbRRx9Z4eHh1qlTp9y2vfzyy60lS5ZUWxuA2uOeGwAe2759uz7//HO3MzXl5eU6deqUSkpKFBYWJkn67W9/61ofFRUlSerSpYvb2KlTp1RUVKTw8HBJUuvWrdWqVSvXnISEBFVUVGj37t0KCAjQoUOHlJycrHvvvdc15/Tp04qIiHCrsVu3bm7L5eXlevzxx7V69WodPnxYpaWlKi0tVaNGjey2Q5IUGxurZs2auZa3b9+uEydOKDIy0m3e//3f/7ldigPgPYQbAB6rqKjQ7NmzNWTIkErrQkNDXf//y5tqz96jUtVYRUXFeZ/r7ByHw+Ga9+KLL+r66693mxcQEOC2fG5omT9/vv75z39qwYIF6tKlixo1aqRJkyaprKzs/DsqqUGDBrIsy23M6XRWmnfu81VUVCg6OlqffPJJpbnn3sMDwDsINwA81rVrV+3evVvt2rXz+mPn5ubqyJEjatmypSRp69atatCggTp06KCoqChddtll2rdvn/785z/X6nE3b96s22+/XSNGjJB0Jnzs2bNHnTp1cs0JDg5WeXm523bNmjVTcXGxTp486QowZ++puZCuXbsqPz9fgYGBatOmTa1qBeAZwg0Ajz388MO65ZZbFBMTozvvvFMNGjTQl19+qa+++kpz58619dihoaEaOXKk/vGPf6ioqEipqam666671KJFC0ln3pmUmpqq8PBwDRgwQKWlpdq2bZuOHz+utLS08z5uu3bt9NZbb2nLli269NJLlZ6ervz8fLdw06ZNG3322Wc6cOCAfvOb36hJkya6/vrrFRYWpr/+9a+aMGGC/v3vfysjI6Pa/fj973+vhIQEDR48WE888YSuuOIKHTlyRJmZmRo8eHCly2YA7OPdUgA81r9/f7333nvKysrS7373O91www1KT09XbGys7cdu166dhgwZooEDByoxMVGdO3d2e6v32LFj9dJLLykjI0NdunTRjTfeqIyMDMXFxV3wcf/+97+ra9eu6t+/v/r06aMWLVpo8ODBbnOmTp2qgIAAXXnllWrWrJlyc3PVpEkTrVy5UpmZma63j8+aNava/XA4HMrMzFTv3r01ZswYdejQQXfffbcOHDjguv8IgHc5rHMvIgOAj82aNUvvvPNOjS77AMC5OHMDAACMQrgBAABG4bIUAAAwCmduAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBR/h9DigUvvZMUYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n", + "import matplotlib.pyplot as plt\n", + "\n", + "data[\"Frequency\"]=data.Malfunction/data.Count\n", + "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5ae87d39-9f53-493e-a64a-ce5d0420ab9e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 23
Model: GLM Df Residuals: 21
Model Family: Binomial Df Model: 1
Link Function: Logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3.9210
Date: Mon, 16 Sep 2024 Deviance: 3.0144
Time: 11:15:44 Pearson chi2: 5.00
No. Iterations: 6 Pseudo R-squ. (CS): 0.04355
Covariance Type: nonrobust
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
coef std err z P>|z| [0.025 0.975]
Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740
Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110
" + ], + "text/latex": [ + "\\begin{center}\n", + "\\begin{tabular}{lclc}\n", + "\\toprule\n", + "\\textbf{Dep. Variable:} & Frequency & \\textbf{ No. Observations: } & 23 \\\\\n", + "\\textbf{Model:} & GLM & \\textbf{ Df Residuals: } & 21 \\\\\n", + "\\textbf{Model Family:} & Binomial & \\textbf{ Df Model: } & 1 \\\\\n", + "\\textbf{Link Function:} & Logit & \\textbf{ Scale: } & 1.0000 \\\\\n", + "\\textbf{Method:} & IRLS & \\textbf{ Log-Likelihood: } & -3.9210 \\\\\n", + "\\textbf{Date:} & Mon, 16 Sep 2024 & \\textbf{ Deviance: } & 3.0144 \\\\\n", + "\\textbf{Time:} & 11:15:44 & \\textbf{ Pearson chi2: } & 5.00 \\\\\n", + "\\textbf{No. Iterations:} & 6 & \\textbf{ Pseudo R-squ. (CS):} & 0.04355 \\\\\n", + "\\textbf{Covariance Type:} & nonrobust & \\textbf{ } & \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lcccccc}\n", + " & \\textbf{coef} & \\textbf{std err} & \\textbf{z} & \\textbf{P$> |$z$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", + "\\midrule\n", + "\\textbf{Intercept} & 5.0850 & 7.477 & 0.680 & 0.496 & -9.570 & 19.740 \\\\\n", + "\\textbf{Temperature} & -0.1156 & 0.115 & -1.004 & 0.316 & -0.341 & 0.110 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "%\\caption{Generalized Linear Model Regression Results}\n", + "\\end{center}" + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " Generalized Linear Model Regression Results \n", + "==============================================================================\n", + "Dep. Variable: Frequency No. Observations: 23\n", + "Model: GLM Df Residuals: 21\n", + "Model Family: Binomial Df Model: 1\n", + "Link Function: Logit Scale: 1.0000\n", + "Method: IRLS Log-Likelihood: -3.9210\n", + "Date: Mon, 16 Sep 2024 Deviance: 3.0144\n", + "Time: 11:15:44 Pearson chi2: 5.00\n", + "No. Iterations: 6 Pseudo R-squ. (CS): 0.04355\n", + "Covariance Type: nonrobust \n", + "===============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "-------------------------------------------------------------------------------\n", + "Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n", + "Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n", + "===============================================================================\n", + "\"\"\"" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + " import statsmodels.api as sm\n", + "\n", + "data[\"Success\"]=data.Count-data.Malfunction\n", + "data[\"Intercept\"]=1\n", + "\n", + "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n", + " family=sm.families.Binomial()).fit()\n", + "\n", + "logmodel.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "29bfd3cd-ffcd-4411-841c-f89c69e167e1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 23
Model: GLM Df Residuals: 21
Model Family: Binomial Df Model: 1
Link Function: Logit Scale: 1.0000
Method: IRLS Log-Likelihood: -23.526
Date: Mon, 16 Sep 2024 Deviance: 18.086
Time: 11:16:03 Pearson chi2: 30.0
No. Iterations: 6 Pseudo R-squ. (CS): 0.2344
Covariance Type: nonrobust
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
coef std err z P>|z| [0.025 0.975]
Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068
Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023
" + ], + "text/latex": [ + "\\begin{center}\n", + "\\begin{tabular}{lclc}\n", + "\\toprule\n", + "\\textbf{Dep. Variable:} & Frequency & \\textbf{ No. Observations: } & 23 \\\\\n", + "\\textbf{Model:} & GLM & \\textbf{ Df Residuals: } & 21 \\\\\n", + "\\textbf{Model Family:} & Binomial & \\textbf{ Df Model: } & 1 \\\\\n", + "\\textbf{Link Function:} & Logit & \\textbf{ Scale: } & 1.0000 \\\\\n", + "\\textbf{Method:} & IRLS & \\textbf{ Log-Likelihood: } & -23.526 \\\\\n", + "\\textbf{Date:} & Mon, 16 Sep 2024 & \\textbf{ Deviance: } & 18.086 \\\\\n", + "\\textbf{Time:} & 11:16:03 & \\textbf{ Pearson chi2: } & 30.0 \\\\\n", + "\\textbf{No. Iterations:} & 6 & \\textbf{ Pseudo R-squ. (CS):} & 0.2344 \\\\\n", + "\\textbf{Covariance Type:} & nonrobust & \\textbf{ } & \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lcccccc}\n", + " & \\textbf{coef} & \\textbf{std err} & \\textbf{z} & \\textbf{P$> |$z$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", + "\\midrule\n", + "\\textbf{Intercept} & 5.0850 & 3.052 & 1.666 & 0.096 & -0.898 & 11.068 \\\\\n", + "\\textbf{Temperature} & -0.1156 & 0.047 & -2.458 & 0.014 & -0.208 & -0.023 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "%\\caption{Generalized Linear Model Regression Results}\n", + "\\end{center}" + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " Generalized Linear Model Regression Results \n", + "==============================================================================\n", + "Dep. Variable: Frequency No. Observations: 23\n", + "Model: GLM Df Residuals: 21\n", + "Model Family: Binomial Df Model: 1\n", + "Link Function: Logit Scale: 1.0000\n", + "Method: IRLS Log-Likelihood: -23.526\n", + "Date: Mon, 16 Sep 2024 Deviance: 18.086\n", + "Time: 11:16:03 Pearson chi2: 30.0\n", + "No. Iterations: 6 Pseudo R-squ. (CS): 0.2344\n", + "Covariance Type: nonrobust \n", + "===============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "-------------------------------------------------------------------------------\n", + "Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068\n", + "Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023\n", + "===============================================================================\n", + "\"\"\"" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n", + " family=sm.families.Binomial(),\n", + " var_weights=data['Count']).fit()\n", + "\n", + "logmodel.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "776aaeb4-e1dd-4dd5-85ef-7db52cd93912", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAG6CAYAAAA8go3jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA17klEQVR4nO3dfVxUdd7/8fcMOIACCpbher/eIYp3iTepaabpla1trd1omleWtltqaWW1WrhlWalRJKa2mu2mqWnZVmRptb8rr0xJ28y8NzU0hOJGFImBmfP7w8vJEcUZbpyv+Ho+Hj6C7/mecz7z8di8OefMwWZZliUAAAAD2ANdAAAAwCkEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGBUKJnPnztXIkSPLnJObm6uHHnpICQkJSkhI0BNPPKETJ05UZLcAAKCaKncwWbx4sZKTk887b8KECUpPT/fM/9///V/97W9/K+9uAQBANRbs7wqZmZmaMmWKNm/erGbNmpU595tvvtGmTZuUmpqq5s2bS5Keeuop3XPPPZo0aZKuuOKK8lUNAACqJb/PmHz//feqXbu2/vWvf6lDhw5lzv366691+eWXe0KJJHXt2lU2m02bN2/2v1oAAFCt+X3GpF+/furXr59PczMzM1W/fn2vMYfDoTp16igjI8PfXQMAgGrO72Dij8LCQjkcjlLjISEhKioqKtc2LcuSzWaraGmltpmT/6uKS9yVul0AAC42NYLtio4MrfT3Wl9VaTAJDQ2V0+ksNV5UVKSaNWuWa5tut6X8/Mr/VE+w3aZa4SHKP1Yot8uq9O1XJ/YgmyIjwuiVD+iV7+iVf+iX7+iV7+xBNkVH1tSxY7/K5aq8H9YjI8MUFOTb3SNVGkxiYmK0bt06rzGn06m8vLwK3fhaUgVnNoKD7QoNCVbhCbtKLM6clCU4iF75il75jl75h375jl75LjjILpvNJpfLXSXvtb6o0gesJSQk6MiRIzp48KBnbOPGjZKkzp07V+WuAQDARahSg4nL5dLPP/+sX3/9VZLUoUMHde7cWRMnTtTWrVv11VdfKTExUX/84x/5qDAAACilUoNJRkaGevXqpdTUVEmSzWbTnDlz1LBhQ40aNUoPPvigrr76ak2bNq0ydwsAAKoJm2VZF9WdQC6XWzk5BZW+3eBgu6Kiaik3tyBg19UuFvTKd/TKd/TKPxdDv9xut1yukkCXoaAgm2rXrqmjR0/Ixc2vZSpvr4KCgmW3n/tcR3R0LTNufgUAXHosy1J+fo4KC48HuhSPX36xy+02M8CZpry9CgsLV2RkdIU/ZkwwAQBUqlOhJDw8Sg5HSMCeh3G6oCAbZ0t85G+vLMuS01mk48dzJUm1a9et0P4JJgCASuN2uzyhJDw8MtDleAQH24295GWa8vTK4QiRJB0/nquIiKgyL+ucT5V+XBgAcGlxuVySfnujwqXj1N95Re8rIpgAACqdCZdvcGFV1t85wQQAABiDYAIAAIzBza8AAJzFuHFj9Z//bDnrsltuGaYHHnjoAld0aSCYAABwDv36DThrAAkLCwtANZcGggkAAOcQEhKiunUvC3QZlxTuMQEAVDnLslTkdAXkT1X95pVx48ZqxoynNGbMKA0a1Fdr1nwoSfrww3/pjjuGql+/nrrjjqFaseItryep7t//gx544D71799Lt99+k9av/3/q06ebtmz5WpL0zDPTNG7cWK99LVw4X0OH/sHz/fHjx/X888/ohhv6a+DAPpow4c/auXO71/xx48ZqyZI3dNNN16tfv6s0YcKf9eOPBzxzCgsL9dJLs3TjjYM0YEBv3X//GG3fvk0lJcW64YYBev3117xqWL16pf7wh+tUUlK1v2aAMyYAgCplWZZmvLlFew8fDcj+WzSsrSdGdamSbaemvq8nnnhaLVq0VN26dfXee+9o3rw5mjRpsuLi2mnPnl1KSnpBv/ySpfvue0D5+fl64IG/qE2bOC1YsFhZWVl68cXn/XoEvGVZeuSRCQoOrqHnn39J4eHhWrPmQ/3lL3dr/vzX1apVrCTp+++/U1hYmF544SUVFp7Q9OmJmj37eb388quSpMTEx7V//349/viTatiwkZYseUOTJo3XypWrNXDgf+njj1N1111jPPtdsyZV1133XwoOrtroQDABAFS9i/SxJp988pH+/e9PvcbatWuvpKQUSVLLlq103XWDPMveeGOhRo68SwMGnBxr0KChCgoKNHv287r77j9r3bqPVVh4QlOnPqWIiAj9/vctNG7cRP31rw/7XNPmzWn67rutev/9tYqKipIk3Xvv/fruu2/19tvLNGXKNElSSUmJnnjiKUVG1pYkDR16u159NVmS9OOPB/Xll+s1e/Yr6tathyRp4sTJqlmzpo4eParBg2/U8uVLtW3bVrVr117p6T9q27ateuSRv5aji/4hmAAAqpTNZtPjd3SWszgwj4R31LD/38O//L+k06vX1frLXyZ4jYWE/PZU24YNG3u+zs3NVVZWpv7+93l6/fUFnnG32y2ns0gZGT9p//4f1KhRY0VERHiWd+7s39mc3bt3SpJuvXWI17jT6VRRUZHn++joaE8okaTw8HAVFxdLkvbt2yNJats23rPc4XBo/PhJnkfSt2kTpzVrPlS7du310UcfKDY2Ts2bt/Cr1vIgmAAAqpzNZlOIIyjQZfitZs1aatiw0TmXnx5SLOtk8JowYaK6dOlWau4VV8T83zzvgFSjxvnfik+/r8PtdqtWrVpauPDNUvNq1Khx2teOc27v1OWYsh7WOnjwEM2fP1cPPPCw1q5do2HDRp63zsrAza8AAFSCqKhoRUVF6/Dhw2rYsJHnz65dO/Taa3NlWZZat26tH388qLy8PM9627d/77Wd4OAaOn78uNfY4cOHPF///vctVFBQIKfT6bWfJUve0Pr1/8+nWps0aSZJ2rHjtxtmS0pKdPPNg7V27ceSpP79B8npLNKyZUuUnf2L+vcf6Fc/yotgAgBAJbDZbBo+/E6tXLlMK1cu0+HDh/TFF//W7NnPq0YNhxwOh669dqDq1r1M06b9VXv27NK3336jWbNmeG2nffsO2rdvj1JT31dGxk9atWq5Nmz4X8/ybt16qGXLVnryyce1eXOaDh1KV0rKy/rww395Asf5NG7cRH36XKMXX3xemzen6ccfD2rmzGdVXFysLl26Sjp56adPn35avPg19e7dR5GRF+a3RXMpBwCASjJs2AiFhIRo5cplmjPnJUVH19XgwUM0ZsxfJJ18MFty8nwlJT2vP/95tOrUidLtt4/Qyy/P8mxjwIBB2rNnl1JSXpLT6VT37j01ZsyftWLFW5KkoKAgJSXN1dy5Lysx8XEVFhaqSZNmeuaZFzyhwhd//WuiUlJObqOoqEhxcfFKSkpRVFSUSkpOXpb6r/+6QZ988pGuv37IebZWeWxWVX3Au4q4XG7l5BRU+naDg+2Kiqql3NwCz18Izo5e+Y5e+Y5e+cfUfhUXO5WdnaG6deuXeY/DhXbqhk4TZWT8pFtuGaLk5Hl+3whbFU7v1UcffaDXXntVK1e+L7u97IssZf3dR0fXUlCQbxdpOGMCAAC87Nq1UwcPHtBrr72qoUNvO28oqUzcYwIAALxs27ZVzz//tNq2jdettw6/oPvmjAkAAAFUv/7vtH7914Euw8uf/nSr/vSnWwOyb86YAAAAYxBMAACV7iL7XAUqQWX9nRNMAACVJijo5NNdnc6i88xEdXPq7zwoqGJ3iXCPCQCg0tjtQQoLC9fx47mSJIcj5P9+T01gud02uVycxfGFv72yLEtOZ5GOH89VWFh4hT/BQzABAFSqyMhoSfKEExPY7Xa53WY+x8Q05e1VWFi45+++IggmAIBKZbPZVLt2XUVERMnlKjn/ClUsKMim2rVr6ujRE5w1OY/y9iooKLjSnnVCMAEAVAm73S67PfBPfw0Otis0NFSFhS5jn/5qChN6xc2vAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYfgcTt9ut5ORk9e7dWx06dNDo0aN18ODBc87/+eefNWnSJHXr1k3dunXTAw88oCNHjlSoaAAAUD35HUzmzp2rZcuWafr06Vq+fLlsNpvGjBkjp9N51vkTJ05URkaGXn/9db3++us6cuSI7rvvvgoXDgAAqh+/gonT6dSiRYs0fvx49enTR7GxsUpKSlJmZqbWrl1ban5+fr7S0tI0ZswYxcXFKS4uTmPHjtX333+v3NzcSnsRAACgegj2Z/LOnTtVUFCg7t27e8YiIyMVFxentLQ0DR482Gt+SEiIatasqdWrV6tr166SpPfee09NmzZV7dq1y190cOXfGhMUZPf6L86NXvmOXvmOXvmHfvmOXvnOhF75FUxO3RtSv359r/F69eopIyOj1PyQkBA988wzeuqpp9SlSxfZbDZdfvnlevPNN2W3l+9F2+02RUXVKte6voiMDKuybVc39Mp39Mp39Mo/9Mt39Mp3geyVX8GksLBQkuRwOLzGQ0JCdPTo0VLzLcvSrl271KlTJ91zzz1yuVxKSkrS/fffr7feekvh4eF+F+x2W8rPP+H3eucTFGRXZGSY8vML5XK5K3371Qm98h298h298g/98h298l1V9SoyMsznszB+BZPQ0FBJJ+81OfW1JBUVFSksrHS6+vDDD7V06VJ9/vnnnhAyb948XXPNNVq1apVGjRrlz+49Skqq7sByudxVuv3qhF75jl75jl75h375jl75LpC98ut6yqlLOFlZWV7jWVlZiomJKTV/8+bNatasmdeZkdq1a6tZs2Y6cOBAOcoFAADVmV/BJDY2VuHh4dq4caNnLD8/X9u3b1eXLl1Kza9fv74OHjyooqIiz1hhYaEOHTqkJk2aVKBsAABQHfkVTBwOh0aMGKFZs2bp008/1c6dOzVx4kTFxMRowIABcrlc+vnnn/Xrr79Kkv74xz9Kkh588EHt3LnTM9/hcOjmm2+u9BcDAAAubn5/NGbChAkaOnSopk6dqmHDhikoKEgLFy6Uw+FQRkaGevXqpdTUVEknP62zdOlSWZalUaNG6a677lKNGjX01ltvKTIystJfDAAAuLjZLMuyAl2EP1wut3JyCip9u8HBdkVF1VJubgE3R50HvfIdvfIdvfIP/fIdvfJdVfUqOrqWz5/K4WkzAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMbwO5i43W4lJyerd+/e6tChg0aPHq2DBw+ec35xcbFmz56t3r17q2PHjhoxYoR27NhRoaIBAED15HcwmTt3rpYtW6bp06dr+fLlstlsGjNmjJxO51nnT5s2TStXrtTTTz+tVatWqU6dOhozZoyOHTtW4eIBAED14lcwcTqdWrRokcaPH68+ffooNjZWSUlJyszM1Nq1a0vNT09P18qVKzVjxgz17dtXzZs317PPPiuHw6Ft27ZV2osAAADVQ7A/k3fu3KmCggJ1797dMxYZGam4uDilpaVp8ODBXvPXr1+vyMhIXX311V7zP/vss4oVHVz5t8YEBdm9/otzo1e+o1e+o1f+oV++o1e+M6FXfgWTI0eOSJLq16/vNV6vXj1lZGSUmn/gwAE1atRIn3zyiRYsWKDMzEzFxcXpscceU/PmzctVsN1uU1RUrXKt64vIyLAq23Z1Q698R698R6/8Q798R698F8he+RVMCgsLJUkOh8NrPCQkREePHi01//jx4/rxxx81d+5cTZ48WZGRkXr11Vc1fPhwpaamqm7dun4X7HZbys8/4fd65xMUZFdkZJjy8wvlcrkrffvVCb3yHb3yHb3yD/3yHb3yXVX1KjIyzOezMH4Fk9DQUEkn7zU59bUkFRUVKSysdLqqUaOGjh07pqSkJM8ZkqSkJPXp00fvvvuu7rnnHn9271FSUnUHlsvlrtLtVyf0ynf0ynf0yj/0y3f0yneB7JVfF5FOXcLJysryGs/KylJMTEyp+TExMQoODva6bBMaGqpGjRrp0KFD5akXAABUY34Fk9jYWIWHh2vjxo2esfz8fG3fvl1dunQpNb9Lly4qKSnRd9995xn79ddflZ6eriZNmlSgbAAAUB35dSnH4XBoxIgRmjVrlqKjo9WgQQPNnDlTMTExGjBggFwul3JychQREaHQ0FB16dJFV111lR599FE99dRTqlOnjpKTkxUUFKQbb7yxql4TAAC4SPn9eaAJEyZo6NChmjp1qoYNG6agoCAtXLhQDodDGRkZ6tWrl1JTUz3zX3nlFXXt2lXjxo3T0KFDdfz4cf3jH/9QdHR0pb4QAABw8bNZlmUFugh/uFxu5eQUVPp2g4PtioqqpdzcAm6OOg965Tt65Tt65R/65Tt65buq6lV0dC2fP5XD02YAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjOF3MHG73UpOTlbv3r3VoUMHjR49WgcPHvRp3ffff1+tW7fWoUOH/C4UAABUf34Hk7lz52rZsmWaPn26li9fLpvNpjFjxsjpdJa53uHDh/W3v/2t3IUCAIDqz69g4nQ6tWjRIo0fP159+vRRbGyskpKSlJmZqbVr155zPbfbrUceeURt27atcMEAAKD6CvZn8s6dO1VQUKDu3bt7xiIjIxUXF6e0tDQNHjz4rOvNmzdPxcXFGjdunL766quKVSwpOLjyb40JCrJ7/RfnRq98R698R6/8Q798R698Z0Kv/AomR44ckSTVr1/fa7xevXrKyMg46zpbt27VokWLtHLlSmVmZpazzN/Y7TZFRdWq8HbOJTIyrMq2Xd3QK9/RK9/RK//QL9/RK98Fsld+BZPCwkJJksPh8BoPCQnR0aNHS80/ceKEHn74YT388MNq2rRppQQTt9tSfv6JCm/nTEFBdkVGhik/v1Aul7vSt1+d0Cvf0Svf0Sv/0C/f0SvfVVWvIiPDfD4L41cwCQ0NlXTyXpNTX0tSUVGRwsJKp6vp06eradOmuv322/3ZzXmVlFTdgeVyuat0+9UJvfIdvfIdvfIP/fIdvfJdIHvlVzA5dQknKytLjRs39oxnZWUpNja21PxVq1bJ4XCoU6dOkiSXyyVJuuGGGzRkyBA99dRT5S4cAABUP34Fk9jYWIWHh2vjxo2eYJKfn6/t27drxIgRpeZ/8sknXt9/++23euSRR7RgwQI1b968AmUDAIDqyK9g4nA4NGLECM2aNUvR0dFq0KCBZs6cqZiYGA0YMEAul0s5OTmKiIhQaGiomjRp4rX+qZtnf/e736lu3bqV9yoAAEC14PfngSZMmKChQ4dq6tSpGjZsmIKCgrRw4UI5HA5lZGSoV69eSk1NrYpaAQBANWezLMsKdBH+cLncyskpqPTtBgfbFRVVS7m5BdwcdR70ynf0ynf0yj/0y3f0yndV1avo6Fo+fyqHp80AAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYIzgQBcAwH9ut6Xd6XnKKyhSnVohatWojux2W6DLwiWMYxKVhWACXGQ278rS0nV7lHusyDMWFRGi4f1b6srW9QJYGS5VHJOoTFzKAS4im3dlKeXdbV5vAJKUe6xIKe9u0+ZdWQGqDJcqjklUNoIJcJFwuy0tXbenzDlvrdsjt9u6QBXhUscxiapAMAEuErvT80r9VHqmnGNF2p2ed2EKwiWPYxJVgWACXCTyCsp+A/B3HlBRHJOoCgQT4CJRp1ZIpc4DKopjElWBYAJcJFo1qqOoiLL/Bx8dcfJjmsCFwDGJqkAwAS4SdrtNw/u3LHPOsP4teXYELhiOSVQFgglwEbmydT3df1O7Uj+lRkeE6P6b2vHMCFxwHJOobDxgDbjIXNm6njq1vJynbMIYHJOoTAQT4CJkt9sU2yQq0GUAHhyTqCxcygEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwht/BxO12Kzk5Wb1791aHDh00evRoHTx48Jzz9+zZo7Fjx6pbt27q0aOHJkyYoJ9++qlCRQMAgOrJ72Ayd+5cLVu2TNOnT9fy5ctls9k0ZswYOZ3OUnNzc3N11113qVatWnrzzTf12muvKTc3V/fcc4+Kiooq5QUAAIDqw69g4nQ6tWjRIo0fP159+vRRbGyskpKSlJmZqbVr15aav27dOhUWFuq5555Ty5Yt1a5dO82cOVP79u3Tli1bKu1FAACA6iHYn8k7d+5UQUGBunfv7hmLjIxUXFyc0tLSNHjwYK/5PXr0UEpKikJCQkpt6+jRo+UsWQoOrvxbY4KC7F7/xbnRK9/RK9/RK//QL9/RK9+Z0Cu/gsmRI0ckSfXr1/car1evnjIyMkrNb9iwoRo2bOg1Nn/+fIWEhCghIcHfWiVJdrtNUVG1yrWuLyIjw6ps29UNvfIdvfIdvfIP/fIdvfJdIHvlVzApLCyUJDkcDq/xkJAQn86A/OMf/9DSpUv1+OOPq27duv7s2sPttpSff6Jc65YlKMiuyMgw5ecXyuVyV/r2qxN65Tt65Tt65R/65Tt65buq6lVkZJjPZ2H8CiahoaGSTt5rcuprSSoqKlJY2LnTlWVZevnll/Xqq6/q3nvv1X//93/7s9tSSkqq7sByudxVuv3qhF75jl75jl75h375jl75LpC98usi0qlLOFlZWV7jWVlZiomJOes6xcXFeuSRRzRv3jxNnjxZkyZNKmepAACguvMrmMTGxio8PFwbN270jOXn52v79u3q0qXLWdeZPHmy1qxZo9mzZ+vuu++uWLUAAKBa8+tSjsPh0IgRIzRr1ixFR0erQYMGmjlzpmJiYjRgwAC5XC7l5OQoIiJCoaGheuedd5SamqrJkyera9eu+vnnnz3bOjUHAADgFL8/DzRhwgQNHTpUU6dO1bBhwxQUFKSFCxfK4XAoIyNDvXr1UmpqqiTpgw8+kCS98MIL6tWrl9efU3MAAABOsVmWZQW6CH+4XG7l5BRU+naDg+2Kiqql3NwCbo46D3rlO3rlO3rlH/rlO3rlu6rqVXR0rar5VA6AS5vbbWl3ep7yCopUp1aIWjWqI7vddt5lgWRqXRVRUuLWuq/TdbSwRLXDgtW3Y4MqefAkEAgEEwA+2bwrS0vX7VHusd9+z1VURIiG928pSedcdmXrehe81lPKqjmQdVXEis/26OO0dJ1+rvutT/doYEIj3dqvZeAKAyoJERvAeW3elaWUd7d5vcFLUu6xIqW8u63MZZt3eT9e4EI5X82BqqsiVny2R2s2eYcSSbIsac2mdK34bE9gCgMqEcEEQJncbktL15X/De+tdXvkdl/YW9l8qTkQdVVESYlbH6ellznn47R07qHARY9gAqBMu9PzSp118EfOsSLtTs+rvIJ84EvNgairIj7bcqjUmZIzWdbJecDFjGACoEx5BeUPJZW5jarY34WuqyKy8gordR5gKoIJgDLVqRVixDaqYn8Xuq6KqFfHt9/26us8wFQEEwBlatWojqIiyv8GHh1x8iO6F5IvNQeiroro17mhbOf5lLPNdnIecDEjmAAok91u83wkuDyG9W95wZ8b4kvNgairIoKD7RqY0KjMOQMTGvE8E1z0OIIBnNeVrevp/pvalToLER0RovtvalfmskA9L+R8NV+MzzG5tV9LDeraqNSZE5tNGtSV55igeuCR9P+HRxb7jl75rrr1qiqf/FpVvaquT379938O8+RXH1W3f4dViUfSA7io2O02xTaJ8ntZIJlaV0UEB9s1qHsT3mxRLRGxAQCAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJAAAwBsEEAAAYg2ACAACMQTABAADGIJgAAABjEEwAAIAxCCYAAMAYBBMAAGAMggkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYAyCCQAAMAbBBAAAGINgAgAAjEEwAQAAxiCYAAAAYxBMAACAMYIDXQAAXKzcbku70/OUV1CkOrVC1KpRHdntNkmS0+nS8s/3KDO3UFdEhem2a1rK4Qjyad2ylklSSYlb675O19HCEtUOC1bfjg0UHOzbz5kV2W95t3uq5s+2HFJWXqHq1QlTv84Nja8ZgeF3MHG73ZozZ47efvtt5efn68orr1RiYqKaNGly1vm5ubmaPn26/ud//keSNGjQID3++OOqWbNmxSoHgADavCtLS9ftUe6xIs9YVESIhvdvqf/9LkP/2ZvtGd9+IFeff/OTOraoqwlDO5S5rqRzLruydT2t+GyPPk5Ll2X9Vstbn+7RwIRGurVfy3LXfL79lne756p5+ed7ja4ZgWOzrNMPlfObM2eOli5dqhkzZuiKK67QzJkzlZ6erg8++EAOh6PU/JEjR6qoqEiJiYnKz8/XlClTlJCQoOeff75cBbtcbuXkFJRr3bIEB9sVFVVLubkFKilxV/r2qxN65Tt65buLqVebd2Up5d1t5Vq3aUy4Dhw5Xq51O7ao6xV4zjSo67nf6CtS8/03tTvnm/X5tmtCzWceW+fbblmvt7qrqn+H0dG1FBTk2xkyv+4xcTqdWrRokcaPH68+ffooNjZWSUlJyszM1Nq1a0vN/+abb7Rp0ybNmDFDbdu2VY8ePfTUU0/pvffeU2Zmpj+7BgAjuN2Wlq7bU+71yxtKJJX5Bi9JH6eln/XNpKI1v7Vuj9zu0j/D+rLdi7Hmc62LC8OvMyZbt27VLbfcojVr1qhZs2ae8WHDhql169aaNm2a1/zXXntNb7zxhtavX+8Zczqd6tChg2bPnq3rr7/e74Ity6qSA8Zmk+x2u9xut/w7h3TpoVe+o1e+u1h6VVziVt7xovNPDJDwsBoKC/G+Sl8ZNdcJD1GNM+4JqaxeVHXNpx9bzmLftnu213spqKp/h3a7TTabb/fv+HWPyZEjRyRJ9evX9xqvV6+eMjIySs3PzMwsNdfhcKhOnTpnne8Lm82moKCquznJbr/0DsTyole+o1e+M71XTsMvM7ktq9Qp88qo2ZKqZLvShavZbrfLkm/bPdvrvZQE8t+hX8GksLBQkkrdSxISEqKjR4+edf7Z7jsJCQlRUZG5P3EAwLmEhQSX+unedFVVc1X24mKsGZXDr0gUGhoq6eTlmNMVFRUpLCzsrPPPnHtqPp/KAQAAZ/IrmJy6LJOVleU1npWVpZiYmFLzY2JiSs11Op3Ky8vTFVdc4W+tAACgmvMrmMTGxio8PFwbN270jOXn52v79u3q0qVLqfkJCQk6cuSIDh486Bk7tW7nzp3LWzMAAKim/LrQ5nA4NGLECM2aNUvR0dFq0KCBZs6cqZiYGA0YMEAul0s5OTmKiIhQaGioOnTooM6dO2vixImaNm2aTpw4ocTERP3xj3/kjAkAACjF7wesuVwuvfjii3rnnXf066+/KiEhQU8++aQaNmyoQ4cO6dprr9WMGTN08803S5Kys7P1t7/9TV988YVCQkI8T34NCQmpkhcEAAAuXn4HEwAAgKpy6X5IGwAAGIdgAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGJdcMMnOztYjjzyi7t27q1OnTho7dqz27t3rWb5jxw6NGDFCHTt2VN++fbVw4cIAVmuO/fv3q1OnTnrnnXc8Y/TqN4cPH1br1q1L/Xn77bcl0auzWb16ta6//nrFx8dr8ODB+uijjzzL6NdJGzduPOtx1bp1a1177bWS6NXpiouLlZSUpL59+6pTp04aPny4tmzZ4llOr35TUFCgp59+Wn369NGVV16p++67Tz/++KNneUB7ZV1ibrnlFuu2226ztm7dau3du9caP3681bNnT+vEiRNWTk6O1a1bN2vKlCnW3r17rZUrV1rx8fHWypUrA112QDmdTuvmm2+2WrVqZa1atcqyLIteneHTTz+14uPjrczMTCsrK8vzp7CwkF6dxerVq602bdpYixcvtg4cOGDNmTPHio2NtbZs2UK/TlNUVOR1PGVlZVnr16+34uLirBUrVtCrM7z88stWz549rS+++MI6cOCANWXKFKtz587WkSNH6NUZ7rnnHqt3797WZ599Zu3du9eaOnWqddVVV1k5OTkB79UlFUxycnKsiRMnWrt37/aM7dixw2rVqpX17bffWvPmzbN69+5tFRcXe5bPnj3bGjhwYCDKNcbs2bOtkSNHegUTeuXt1VdftYYMGXLWZfTKm9vttq655hrrueee8xofPXq0NW/ePPpVBqfTaQ0ePNh68MEHLcvi2DrTkCFDrBkzZni+P3bsmNWqVStrzZo19Oo0p973/v3vf3vGXC6Xdd1111lz5swJeK8uqUs5UVFRevHFF9WyZUtJ0i+//KKFCxcqJiZGLVq00Ndff62EhAQFB//2K4S6d++u/fv3Kzs7O1BlB1RaWpqWL1+u559/3mucXnnbtWuXWrRocdZl9MrbDz/8oMOHD+sPf/iD1/jChQt177330q8yLFmyRBkZGXr88cclcWydqU6dOvr888916NAhuVwuLV++XA6HQ23atKFXp9m/f78kef3yXbvdrtjYWKWlpQW8V5dUMDndE088oZ49e2rNmjV65plnVLNmTR05ckQxMTFe8+rVqydJ+umnnwJRZkDl5+dr8uTJmjp1qurXr++1jF552717t7KzszV8+HBdddVVGjZsmL744gtJ9OpMBw4ckCSdOHFCd999t3r06KFbbrlFn332mST6dS5FRUWaN2+eRo0a5ekHvfI2ZcoUBQcH69prr1V8fLySkpL00ksvqXHjxvTqNJdffrmkk8fP6Q4fPqzs7OyA9+qSDSajRo3SqlWrNGTIEN1///36/vvv9euvv8rhcHjNO/XLBouKigJRZkBNmzZNHTt2LPWTrSR6dRqn06kDBw7o+PHjevDBB7VgwQLFx8drzJgx2rBhA706w/HjxyVJjz76qG644QYtWrRIPXv21H333Ue/yvDee++pqKhII0eO9IzRK2/79u1TZGSkUlJStHz5ct1888169NFHtXPnTnp1mg4dOqh58+ZKTExURkaGnE6nFi9erB07dsjpdAa8V8Hnn1I9nTrt/vTTT+s///mP3nzzTYWGhsrpdHrNO/WXULNmzQteYyCtXr1aX3/9td5///2zLqdXv3E4HEpLS1NwcLDnH3O7du20b98+LVy4kF6doUaNGpKku+++WzfddJMkqU2bNtq+fbtef/11+nUOq1ev1nXXXaeoqCjPGL36zeHDh/XII49o8eLFnksU8fHx2rt3r1555RV6dZoaNWooJSVFjz32mPr27avg4GD17dtXQ4cO1bZt2+R0OgPaq0vqjEl2drY++OADuVwuz5jdblfz5s2VlZWlmJgYZWVlea1z6vsrrrjigtYaaKtWrVJ2drbnY3edOnWSJCUmJmrw4MH06gw1a9Ys9RNGq1atlJmZSa/OcOoUcatWrbzGW7RooUOHDtGvs8jJydE333yj66+/3mucXv1m69atKi4uVnx8vNd4hw4ddODAAXp1hmbNmmn58uXatGmTNmzYoJSUFOXl5alp06YB79UlFUyysrL00EMPadOmTZ6x4uJibd++Xc2bN1dCQoI2b97sFVw2bNigZs2aqW7duoEoOWBmzZql1NRUrV692vNHkiZMmKAFCxbQq9Ps3LlTnTp10tdff+01vm3bNrVo0YJenSEuLk61atXSt99+6zW+e/duNW7cmH6dxZYtW2Sz2dS1a1evcXr1m1P3we3atctrfPfu3WrSpAm9Os3x48c1YsQIbdu2TbVr11ZkZKSOHTumL7/8Ur179w58ry7IZ38M4Xa7rdGjR1sDBw600tLSrF27dlkTJ060EhISrMOHD1u//PKLlZCQYD366KPWnj17rFWrVlnx8fHWO++8E+jSjXD6x4Xp1W9cLpd1yy23WDfccIOVlpZm7d2713r22Wetdu3aWTt37qRXZ5GSkmJ16tTJev/9962DBw9ac+fOtWJjY62vvvqKfp3FK6+8Yl133XWlxunVb1wulzV8+HBr0KBB1oYNG6z9+/dbSUlJVps2baxvvvmGXp1hxIgR1rBhw6ydO3daO3bssIYPH24NGTLEKi4uDnivLqlgYlmWlZ+fbyUmJlo9e/a02rdvb40ePdrruSbffvutdeutt1rt2rWzrrnmGuuf//xnAKs1y+nBxLLo1emys7Otxx9/3OrZs6cVHx9v3XbbbVZaWppnOb0qbdGiRVa/fv2stm3bWkOGDLHWrl3rWUa/vCUmJlq33nrrWZfRq9/k5eVZ06ZNs/r27Wt16tTJuu2226yNGzd6ltOr32RmZlrjx4+3unTpYnXt2tV69NFHrezsbM/yQPbKZlmWVfXnZQAAAM7vkrrHBAAAmI1gAgAAjEEwAQAAxiCYAAAAYxBMAACAMQgmAADAGAQTAABgDIIJgGqLxzQBF59L9rcLA9XZY489pnfffbfMOQ0aNNBnn312gSq68D799FN9/PHHeuGFFwJdCgA/8ORXoBr68ccflZOT4/l+7ty52r59u+bMmeMZczgciouLC0R5F8TIkSMlSf/85z8DXAkAf3DGBKiGGjdurMaNG3u+j46OlsPhUMeOHQNXFAD4gHtMgEvU7t27de+996pz587q3Lmz7r//fqWnp3uWb9y4Ua1bt9aGDRs0cuRItW/fXn379tXbb7+trKwsjRs3Tp06dVKfPn20ePHiUuutX79ed9xxh9q3b68BAwbozTff9Nq/2+3WggULNGDAALVr104DBw4sdXZj5MiRevjhhzVhwgR17txZY8eOlSQdOnRIkydPVq9evdS2bVv16NFDkydPVm5urme9TZs2adOmTWrdurU2btzoqWvjxo2l9nHq7Iok9evXT88++6xGjRqlzp0768knn5Qk5eXl6cknn9RVV12l+Ph43XrrrdqwYUPF/yIAeCGYAJeg/fv36/bbb1d2draee+45PfPMM0pPT9ewYcOUnZ3tNXfSpEnq16+f5s2bp6ZNmyoxMVF33nmnWrVqpeTkZLVt21YzZszQ1q1bvdabOHGi4uLilJKSop49e+rpp5/2Ch7Tpk1TcnKyhgwZonnz5mnQoEF69tlnlZKS4rWdjz76SDVq1FBKSoruvPNOFRYW6s4779S+ffuUmJiohQsXasSIEfrggw/04osvSpISExMVFxenuLg4LV++XG3btvWrP0uWLFHr1q31yiuv6MYbb1RRUZFGjRqlTz/9VBMnTtScOXMUExOje+65h3ACVDIu5QCXoDlz5ig0NFSLFy9WeHi4JKlHjx7q37+//v73v+vRRx/1zP3Tn/6ku+66S5JUs2ZN3XbbbWrfvr0mTJggSWrXrp0+/fRTbdmyRe3bt/es179/f02ZMkWS1Lt3b2VlZenVV1/VHXfcoYMHD2rFihWaNGmS5yxIr169ZLPZNH/+fA0fPlxRUVGSJLvdrqefflo1a9aUJO3YsUMxMTF67rnnPJerunfvru+++06bNm2SJLVo0cLzuspz+apevXp67LHHZLef/NltxYoV2rlzp1asWKEOHTpIkq6++mqNHDlSs2bN0qpVq/zeB4Cz44wJcAn66quv1K1bN4WGhqqkpEQlJSUKDw9Xly5d9OWXX3rN7dSpk+fryy67TJI8b86SPAHi2LFjXuvdeOONXt9fd911ys7O1v79+/XVV1/Jsiz169fPs/+SkhL169dPRUVF2rx5s2e9hg0bekKJJLVp00ZLly5Vw4YNlZ6eri+++EKLFi3SDz/8oOLi4gp25qTmzZt7QokkbdiwQZdffrnatm3rqdXlcumaa67Rtm3bdPTo0UrZLwDOmACXpLy8PKWmpio1NbXUsujoaK/vT515OF1YWNh591GvXj2v7+vWrStJys/PV15eniRp8ODBZ103MzPT8/WpMHS6119/XfPnz1dubq4uu+wytW3bVmFhYaXCUXmduc+8vDz9/PPP57wk9PPPP6t27dqVsm/gUkcwAS5BERERuuqqqzyXaE4XHFw5/1s4FT5OOXXvSt26dRUZGSlJeuONN1SrVq1S6/7ud78753bff/99Pffcc3rooYc0dOhQT5B64IEH9N13351zPZvNJunkTbenKygoOGsNp4uIiFDTpk01a9assy5v2LBhmesD8B2XcoBLUNeuXbV37161adNG8fHxio+PV7t27bR48WKtXbu2UvZx5sPb1qxZowYNGqhx48ZKSEiQJOXm5nr2Hx8fr7y8PL300kulQs3pNm/erIiICI0dO9YTSgoKCrR582av0HH6pRjptzM/GRkZnrGjR49q3759530tXbt2VUZGhurWretV74YNG/T3v/9dQUFB590GAN9wxgS4BN133326/fbbde+992rYsGEKCQnR8uXLtW7dOiUnJ1fKPhYvXqzQ0FB17NhRn3zyiT7//HPNnj1bktSqVSsNGTJETzzxhA4fPqx27dpp//79SkpKUsOGDdW0adNzbrd9+/Z666239Nxzz+maa65RVlaWFi5cqF9++cXrckpkZKS++eYbbdiwQXFxcWrdurXq16+vOXPmKCIiQna7XQsWLPDpstTNN9+sN998U3fddZf+/Oc/q379+vryyy/12muvacSIEapRo0aF+wXgJIIJcAmKjY3VkiVLlJSUpMmTJ8uyLLVq1UopKSm69tprK2Uff/3rX/Xuu+9q/vz5+v3vf6/k5GQNHDjQs3zGjBmaP3++li1bpiNHjqhu3bq6/vrr9eCDD5Z5BuKmm27SoUOHtGrVKi1dulRXXHGF+vTpo+HDh+uJJ57Q3r171aJFC91xxx3atm2bxowZoxkzZugPf/iDkpOT9eyzz2rSpEm67LLLNGrUKP3www/av39/ma+lZs2aWrJkiWbPnq2ZM2fq2LFjatCggR566CGNHj26UvoF4CQeSQ+gUm3cuFF33nmn/vGPf6hbt26BLgfARYZ7TAAAgDEIJgAAwBhcygEAAMbgjAkAADAGwQQAABiDYAIAAIxBMAEAAMYgmAAAAGMQTAAAgDEIJgAAwBgEEwAAYIz/Dymp/tE1Urd5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n", + "data_pred['Frequency'] = logmodel.predict(data_pred)\n", + "data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n", + "plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7ddbe776-9979-4891-b615-8e5baaec5f90", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAG6CAYAAAALTELXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABURklEQVR4nO3deXxU1f0//te9s2aSTDbIAmEThBAIAQQEAUEU9QcWlQ+2YkGqFW1dKNKK9usCVSu2grQIiAuIdamouFRFLGqtSyEsKogQEISwZd+T2e89vz8mGTImQDJzk0lyX8/HIw+Se+/MPfPOkLxyzrnnSkIIASIiIiKdkiPdACIiIqJIYhgiIiIiXWMYIiIiIl1jGCIiIiJdYxgiIiIiXWMYIiIiIl1jGCIiIiJdYxgiIiIiXWMYIiIiIl1rV2Fo9erVmD179lmPKS8vx+9//3uMHDkSI0eOxIMPPgiHw9FGLSQiIqLOpt2EofXr12PFihXnPG7evHk4fvx44PivvvoKf/rTn9qghURERNQZGSPdgMLCQtx///3YtWsX+vTpc9Zjv/nmG2zfvh2bNm1C3759AQAPP/wwbrnlFixYsAApKSlt0WQiIiLqRCLeM/T9998jLi4O//rXv5CdnX3WY3fu3ImuXbsGghAAjBo1CpIkYdeuXa3dVCIiIuqEIt4zNGnSJEyaNKlZxxYWFiItLS1om9lsRnx8PPLz81ujeURERNTJRbxnqCWcTifMZnOj7RaLBW63O+TnFUKE0ywiIiLqwCLeM9QSVqsVHo+n0Xa32w2bzRby80qShKoqJxRFDad5umcwyLDbo1jLMLGO2mEttcNaaoN11E5cXBRkWZs+nQ4VhlJTU/Hxxx8HbfN4PKioqAh78rSiqPD5+MbUAmupDdZRO6yldlhLbbCO4dNyUKdDDZONHDkSBQUFyMvLC2zLyckBAAwfPjxSzSIiIqIOrF2HIUVRUFxcDJfLBQDIzs7G8OHDcffdd2PPnj3Ytm0bFi1ahGuuuYaX1RMREVFI2nUYys/Px7hx47Bp0yYA/rk9K1euRHp6OubMmYP58+fj4osvxuLFiyPbUCIiIuqwJMFLqQAA5eW1HL8Nk9EoIyEhmrUME+uoHdZSO6ylNlhH7SQmRsNg0KZPp133DBERERG1NoYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0jWGISIiItI1hiEiIiLSNYYhIiIi0rWIhyFVVbFixQqMHz8e2dnZuPnmm5GXl3fG44uLi7FgwQJceOGFuPDCC/G73/0OBQUFbdhiIiIi6kwiHoZWr16N1157DY8++ig2bNgASZIwd+5ceDyeJo+/++67kZ+fjxdeeAEvvPACCgoKcPvtt7dxq4mIiKiziGgY8ng8WLduHe666y5MmDABGRkZWL58OQoLC7Fly5ZGx1dVVWHHjh2YO3cuMjMzkZmZiVtvvRXff/89ysvLI/AKiIiIqKMzRvLkubm5qK2txejRowPb7HY7MjMzsWPHDkydOjXoeIvFApvNhnfeeQejRo0CALz77rvo3bs34uLiwmqLwRDxTrIOr76GrGV4WEftsJbaYS21wTpqR5K0e66IhqH6uT5paWlB25OTk5Gfn9/oeIvFgj//+c94+OGHMWLECEiShK5du+Lll1+GLIf3xrLbo8J6PJ3GWmqDddQOa6kd1lIbrGP7EtEw5HQ6AQBmszlou8ViQWVlZaPjhRA4cOAAhg0bhltuuQWKomD58uW444478M9//hMxMTEht6WqyglFUUN+PPn/0rHbo1jLMLGO2mEttcNaaoN11E5cXFTYHSH1IhqGrFYrAP/cofrPAcDtdiMqqnFq/uCDD/Dqq6/iP//5TyD4rFmzBpdccgk2btyIOXPmhNwWRVHh8/GNqQXWUhuso3ZYS+2wltpgHcMnhHbPFdFBy/rhsaKioqDtRUVFSE1NbXT8rl270KdPn6AeoLi4OPTp0wdHjx5t1bYSERFR5xTRMJSRkYGYmBjk5OQEtlVVVWHfvn0YMWJEo+PT0tKQl5cHt9sd2OZ0OnHixAn06tWrTdpMREREnUtEw5DZbMasWbOwdOlSfPLJJ8jNzcXdd9+N1NRUTJ48GYqioLi4GC6XCwBwzTXXAADmz5+P3NzcwPFmsxnTp0+P4CshIiKijiri1/bNmzcPM2bMwAMPPICZM2fCYDBg7dq1MJvNyM/Px7hx47Bp0yYA/qvMXn31VQghMGfOHNx0000wmUz45z//CbvdHuFXQkRERB2RJISWU5A6rvLyWk5mC5PRKCMhIZq1DBPrqB3WUjuspTZYR+0kJkZrtl5TxHuGiIiIiCKJYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0LeJhSFVVrFixAuPHj0d2djZuvvlm5OXlnfF4r9eLZcuWYfz48Rg6dChmzZqF/fv3t2GLiYiIqDOJeBhavXo1XnvtNTz66KPYsGEDJEnC3Llz4fF4mjx+8eLFePPNN/HII49g48aNiI+Px9y5c1FdXd3GLSciIqLOIKJhyOPxYN26dbjrrrswYcIEZGRkYPny5SgsLMSWLVsaHX/8+HG8+eabWLJkCSZOnIi+ffviscceg9lsxt69eyPwCoiIiKijM0by5Lm5uaitrcXo0aMD2+x2OzIzM7Fjxw5MnTo16Pgvv/wSdrsdF198cdDxn376adhtMRgi3knW4dXXkLUMD+uoHdZSO6ylNlhH7UiSds8V0TBUUFAAAEhLSwvanpycjPz8/EbHHz16FD169MC///1vPPvssygsLERmZibuu+8+9O3bN6y22O1RYT2eTmMttcE6aoe11A5rqQ3WsX2JaBhyOp0AALPZHLTdYrGgsrKy0fE1NTU4duwYVq9ejYULF8Jut+Ppp5/GDTfcgE2bNiEpKSnktlRVOaEoasiPJ/9fOnZ7FGsZJtZRO6yldlhLbbCO2omLi4Isa9PDFlIYWrVqFaZPn96oR6elrFYrAP/cofrPAcDtdiMqqnFqNplMqK6uxvLlywM9QcuXL8eECRPw9ttv45Zbbgm5LYqiwufjG1MLrKU2WEftsJbaYS21wTqGTwjtniukSPXiiy/i0ksvxU033YT33nsPbrc7pJPXh6mioqKg7UVFRUhNTW10fGpqKoxGY9CQmNVqRY8ePXDixImQ2kBERET6FlIY+vLLL7F06VKYTCbcd999GDt2LB566CF88803LXqejIwMxMTEICcnJ7CtqqoK+/btw4gRIxodP2LECPh8Pnz33XeBbS6XC8ePH0evXr1CeSlERESkcyENk5nNZkyZMgVTpkxBUVER/vWvf+HDDz/EG2+8gd69e2P69OmYPn36OefwmM1mzJo1C0uXLkViYiK6d++OJ554AqmpqZg8eTIURUFZWRliY2NhtVoxYsQIXHTRRbj33nvx8MMPIz4+HitWrIDBYMDVV18dUgGIiIhI38KeeZScnIwbb7wRv/nNbzBixAgcOXIETz75JCZMmIAHH3wQNTU1Z338vHnzMGPGDDzwwAOYOXMmDAYD1q5dC7PZjPz8fIwbNw6bNm0KHP/UU09h1KhRuPPOOzFjxgzU1NTgH//4BxITE8N9KURERKRDkhChT0Havn073n33XXz00UdwOBwYPXo0ZsyYgQkTJuC///0vHn74YWRlZeG5557Tss2tory8lpPZwmQ0ykhIiGYtw8Q6aoe11A5rqQ3WUTuJidGardcU0jDZ8uXL8d577yE/Px9paWn41a9+henTp6Nbt26BY6ZMmYIDBw7gH//4hyYNJSIiImoNIYWhF154AZdddhkeeeQRXHTRRZDOsAxkVlYW5s+fH077iIiIiFpVSGHoiy++QFxcHIqLiwNBqLKyEvn5+cjIyAgcd9lll2nTSiIiIqJWEtJgmyzLuOmmmzB79uzAtt27d+Oaa67B7bffHlhZmoiIiKi9CykMPfHEE/jhhx+wYMGCwLbRo0dj9erV2Lt3L1asWKFZA4mIiIhaU0hh6NNPP8W9996Lyy+/PLDNbDZj0qRJWLBgAT788EPNGkhERETUmkIKQ7W1tbDb7U3uS0pKQnl5eViNIiIiImorIYWhQYMGYePGjU3ue+uttzBgwICwGkVERETUVkK6muy3v/0t5s6di+nTp2Py5MlISkpCWVkZPvnkE3z//fdYs2aN1u0kIiIiahUhhaGxY8fi6aefxooVK7BixQoIISBJEgYOHIjVq1fj4osv1rqdRERERK0ipDAEABMmTMCECRPgdrtRUVGB2NhY2Gw2LdtGRERE1OpCDkOAf6FFp9MJVVVRUVGBioqKwL6Gt+YgIiIiaq9CCkNHjx7Ffffdh927d5/xmP3794fcKCIiIqK2ElIYeuSRR3D06FHceeedSE1NhSxrc9dYIiIiorYWUhjauXMn/vznP+Oqq67Suj1EREREbSqkLp2YmBjExcVp3RYiIiKiNhdSGLr66qvxyiuvQAihdXuIiIiI2lRIw2RRUVHYtWsXJk+ejKysLFit1qD9kiThscce06SBRERERK0ppDD09ttvIzY2FqqqNnlFmSRJYTeMiIiIqC2EFIY+/fRTrdtBREREFBFhXROvqipyc3Px+eefo6amJmjRRSIiIqKOIOQVqN99910sW7YMRUVFkCQJb775Jp566imYTCYsW7YMZrNZy3YSERERtYqQeoY2bdqEe++9F6NHj8by5csDV5Vdfvnl+Pzzz7F69WpNG0lERETUWkLqGVqzZg2uv/56LF68GIqiBLZPnz4dpaWleP311zF//nyt2khERETUakLqGTpy5AgmT57c5L7s7GwUFhaG1SgiIiKithJSGEpKSsLhw4eb3Hf48GEkJSWF1SgiIiKithJSGJoyZQpWrFiBzZs3w+PxAPCvLbR3716sXr0aV155paaNJCIiImotIc0Zmj9/Pg4ePIj58+cH7lg/e/ZsOBwOjBgxAr/73e80bSQRERFRawkpDJnNZjz//PP46quvsHXrVlRWViI2NhajRo3ChAkTuAI1ERERdRghrzMEAGPHjsXYsWO1agsRERFRmwspDK1cufKcx9x5552hPDURERFRm9I8DMXExCA5OZlhiIiIiDqEkMJQbm5uo20OhwO7du3C4sWL8eCDD4bdMCIiIqK2ENaNWhuy2WwYP3487rjjDvz1r3/V6mmJiIiIWpVmYaheWlraGRdkJCIiImpvwrqarCEhBPLz8/Hcc8+he/fuWj0tERERUasKKQxlZGSccS0hIQSHyYiIiKjDCCkM3XHHHU2GoZiYGEycOBG9e/cOt11EREREbSKkMHTXXXdp3Q4iIiKiiAgpDJ06dapFx3fr1i2U0xARERG1upDC0KRJk1p0/7H9+/eHchoiIiKiVhdSGPrb3/6GRYsWYdCgQZg2bRpSUlJQXl6OTz/9FB9++CF++9vf8ooyIiIi6hBCCkPvvPMOJk2ahCVLlgRtnzJlCpKSkvD111/zdhxERETUIYS06OK2bdtw1VVXNbnv4osvxq5du8JqFBEREVFbCSkMJSQk4Ntvv21y31dffYWUlJRw2kRERETUZkIaJpsxYwaefvppOJ1OTJo0CYmJiSgpKcGmTZvw2muv4aGHHtK6nUREREStIqQwdPvtt6O6uhrr16/H2rVrAfhXno6KisKCBQtw/fXXa9pIIiIiotYSUhiSJAn33Xcfbr/9dnz77beorKxEQkIChg4dipiYGK3bSERERNRqwrpRa0xMDJKTkwEAQ4cOhc/n06RRRERERG0l5DD07rvvYtmyZSguLoYkSXjjjTfw1FNPwWQyYdmyZTCbzVq2k4iIiKhVhHQ12aZNm3Dvvfdi9OjRePLJJ6GqKgDg8ssvx+eff47Vq1dr2kgiIiKi1hJSz9CaNWtw/fXXY/HixVAUJbB9+vTpKC0txeuvv4758+dr1UYiIiKiVhNSz9CRI0cwefLkJvdlZ2ejsLAwrEYRERERtZWQwlBSUhIOHz7c5L7Dhw8jKSkprEYRERERtZWQwtCUKVOwYsUKbN68GR6PB4D/cvu9e/di9erVuPLKKzVtJBEREVFrCWnO0Pz583Hw4EHMnz8fsuzPU7Nnz4bD4cCIESPwu9/9TtNGEhEREbWWkMKQ2WzG888/j6+++grbtm1DRUUFYmNjMWrUKEyYMAGSJGndTiIiIqJWEVIY+s1vfoMbb7wRY8eOxdixY7VuExEREVGbCWnO0I4dO2AwGLRuCxEREVGbCykMjR07Fm+88QbcbrfW7SGiNsLhbCIiv5CGySwWCz788ENs2bIF6enpjS6llyQJL774oiYNJKLWoQoBWQKEiHRLiIgiK6QwVFBQgGHDhgW+Fj/5afrTr4mo/fEpKkzGkDqHiYg6lWaHoffeew/jx49HfHw8XnrpJc0aoKoqVq5ciTfeeANVVVW44IILsGjRIvTq1atZbfrDH/6ATz75BOnp6Zq1iUgvfIoKo8xARET61uyfggsXLsSxY8eCtq1ZswYlJSVhNWD16tV47bXX8Oijj2LDhg2QJAlz584NLOZ4JidPnsSf/vSnsM5NpHderxrpJhARRVyzw9BPh74URcHf//73sO5D5vF4sG7dOtx1112YMGECMjIysHz5chQWFmLLli1nfJyqqrjnnnswaNCgkM9NRIDXp3IiNRHpXkhzhuqFOzcoNzcXtbW1GD16dGCb3W5HZmYmduzYgalTpzb5uDVr1sDr9eLOO+/Etm3bwmpDPYOBQwXhqq8haxmetqqjWvchyYBB6pzfM74ntcNaaoN11I6Wf8eFFYbCVVBQAABIS0sL2p6cnIz8/PwmH7Nnzx6sW7cOb775Zli9Uj9lt0dp9lx6x1pqo7Xr6HR7ocoyomxm2KymVj1XpPE9qR3WUhusY/sS0TDkdDoB+G/v0ZDFYkFlZWWj4x0OB/7whz/gD3/4A3r37q1pGKqqckJROH8iHAaDDLs9irUMU1vV0eNTUVntgs/thTuqc4Yhvie1w1pqg3XUTlxcVOD+qOEKOwyFM9/AarUC8M8dqv8cANxuN6KiGqfmRx99FL1798b1118f8jnPRFFU+Hx8Y2qBtdRGa9dRUVQoPgGnywubxQhV7bxLYvA9qR3WUhusY/i0XMWnRWHojjvuaNSL85vf/AYmU/BflZIk4eOPPz7n89UPjxUVFaFnz56B7UVFRcjIyGh0/MaNG2E2mwNrHCmKAgC46qqrMG3aNDz88MMteTlEBMCnCHh9KgwyJ1ITkT41Owxde+21mp88IyMDMTExyMnJCYShqqoq7Nu3D7NmzWp0/L///e+gr3fv3o177rkHzz77LPr27at5+4j0QBUCHp+CKHNER82JiCKm2T/9lixZovnJzWYzZs2ahaVLlyIxMRHdu3fHE088gdTUVEyePBmKoqCsrAyxsbGwWq2NFmKsn4DdrVu3RrcEIaLmEQLweBTYLCauHk9EuhTxa/vmzZuHGTNm4IEHHsDMmTNhMBiwdu1amM1m5OfnY9y4cdi0aVOkm0nUqXkUFarg/AUi0idJ8E9BAEB5eS0ns4XJaJSRkBDNWoapreroVVSUV7mhCgFJAuJiLLCaDK12vkjge1I7rKU2WEftJCZGa7ZeU8R7hogo8oQAPF6Fq1ETkS4xDBERAMDj5VAZEekTwxARAQBUVcDDbnsi0iGGISIC4L/E3unyQeZ6Q0SkMwxDRBTg8alwe5VIN4OIqE0xDBFRgKoKON0+TqQmIl1hGCKiIG6vAkXl3CEi0g+GISIKoigCDpcP7BwiIr1gGCKiRpweH5ROfBd7IqKGGIaIqBFFEah1ce4QEekDwxARNcnl8cGncO4QEXV+DENE1CRFEah1etk7RESdnjHSDSCitqUKgWOF1XC6Fbi9PiQn2CCfIfC4vAqifApMGt0Mkai11L+vaxxexNhM6JkSe8b3NdFPMQwR6cj+o2X4YFseCsscSIqLQmWNCzE2MyZmd0Pf9PhGx6uqQI3Dg4RYa9s3lqiZ6t/XBWUOKIqAwSAhNdGGqaN7YWDvxEg3jzoA/rlHpBP7j5bhxY8O4ERxDSwmA6KjTDCbDCgoc+LtL4/g8ImKJh/n8al1CzG2bXuJmuOn72t7jBkWkwEnimvx4kcHsP9oWaSbSB0AwxCRDqhC4INteXB5fIiPscBsMkCWAKPRALvNBLdXxWe7T0EVjS+nFwKodfFSe2p/mn5fSzCbDIiPMcPlUfDBtrwm39dEDTEMEenAscJqFJQ5EG01NZoQLUkSbBYDSiqcyC+pbfLxPkVFtcPL3iFqV871vo62GlFQ5sCxwuoItZA6CoYhIh2ocXihKAJGY9P/5Q0GGYoKOFy+Mz6H26PA6eFNXKn9ONf72miUoSgCNQ5vG7eMOhqGISIdiLGZYDBI8PmaXjdIUVQYZMBmPfM1FaoQqHV4wdEyai/O9b72+VQYDBJibKY2bhl1NAxDRDrQMyUWqYk21Lp8ED+ZPyGEgMOtoEt8FNK6RJ/1ebyKihqHh2sPUbtwrvd1rcuH1EQbeqbERqiF1FEwDBHpgCxJmDq6F6xmAypqPPB4FagC8PkUVDm8sJhkTMzu1qx1WVxeBS7vmYfTiNpK0+9rAY9XQUWNB1azAVNH9+J6Q3RODENEOjGwdyLmXDEA6V2j4fYqqHV64fEqSE2MwrXj+jS5zlBT/GsPeSHA8TKKvJ++r6tqPHB7FaR3jcacKwZwnSFqFi66SKQjA3snYkCvhGavQH0mXp+KGocX9mhLo+EJorbW8H3NFagpFAxDRDojSxJ6p9rhVVSUV7lDXoPF6VFgtfBWHdQ+1L+viULBn2JEFJL6W3UQEXV0DENEFDKPT4WDt+ogog6OYYiIQiaEf6FG3qqDiDoyhiEiCotPUVHr8nHtISLqsBiGiChsLo8PPqXpVYCJiNo7hiEiCpuiCDhcXvYOEVGHxDBERJpweRV42TtERB0QwxARaUJRBJzsHSKiDohhiIg04/Qo8PiUSDeDiKhFGIaISDOqKlDj9ALsHCKiDoRhiIg05fEqcHIhRiLqQBiGiEhTQgAOJxdiJKKOg2GIiDTnVVRU1Xo4XEZEHQLDEBG1CrdXQY2DV5cRUfvHMERErUIIwOH2we3l1WVE1L4xDBFRq1FVgVqnJ9LNICI6K4YhImpVHp/Kq8uIqF1jGCKiViUE4HD5wIvLiKi9Mka6AUTUtnyKio3/PYyyajcmZHdDot3a6uf0KipqnV7E2kwQDEVE1M4wDBHpzLc/lOCj7ccBAPuPluPXVw1ESoKt1c/r8iiIjjJC4vX2RNTOcJiMSGdSEm2BOFLj9OL59/ejoMzR6udVFBVOt8K5Q0TU7jAMEelMj+QY3Dx1YCAQ1Tq9eP79fcgvrW3V8woATrePw2RE1O4wDBHp0NisNNw0dWCgl8bh8uH59/fhRHFNq57Xp6hweXyteg4iopZiGCLSqQszU3D9pPMh1wUip1vB2vf3I6+gutXOKYS/d4jThoioPWEYItKx7H5dcP2l50Ou6yJyexW8sGk/Dp+qbLVzenwqXFx3iIjaEYYhIp0bfF4Sfjn5fBjquog8PhUvfpiLA8fKW+V8QgC1Th9UTh4ionaCYYiIMLB3Im68cgBMBv+PBJ8i8NJHB7HncGmrnM+/7pCPN3ElonaBYYiIAADnp8fjV1MyYDEZAACqENjwyQ/YkVvUKudzenzw+HgTVyKKPIYhIgrok2bHr68aiCiLfz1WAeDtz3/E57tPaX4uRRGoqvHAq6icP0REEcUwRERB0rvG4NafZSLWZgps25xzDJtz8iA0nufjVVRU1njg8amaPi8RUUswDBFRIymJNtw2bRAS7ZbAts935+Otz3+EovEdV32KiqoaDydUE1HEMAwRUZMS7VbcNm0Q0pJO37ds14FivPLvg5rP9fEqKqprPRwuI6KIYBgiojOKtZlxy1WZ6J0WG9iWe6wc6z7YD4fLq+m5XF4FtS6uP0REbY9hiIjOKspixE3/30Bk9k4IbDtWWINn/vU9yqvdmp1HCKDW5eX8ISJqcwxDRHROJqOMmZf1x8iM5MC24goX1ryzFydLtLvBa/0VZorC+UNE1HYYhoioWQyyhGvG98FlI9ID26qdXjz3r+81Xa3aq6iocLg5oZqI2gzDEBE1myRJmDQ8HdMvPi9wg1ePT8VLHx1Azr5Czc7j9aqorPVo9nxERGfDMERELTYiIxk3XpkBs8n/I0QVwLtfHsGH2/I069HxeBXUOL28ZQcRtbqIhyFVVbFixQqMHz8e2dnZuPnmm5GXl3fG43/44QfceuutuPDCCzFmzBjMmzcPp05pvzouEZ1d/x7xuPVng2BvsDjjF3vy8eqWg/B4w7/0XgjA4fbB6eEVZkTUuiIehlavXo3XXnsNjz76KDZs2ABJkjB37lx4PI27yMvLy3HTTTchOjoaL7/8Mp577jmUl5fjlltugdut3VUtRNQ83bpE47fXDA5ai2jf0XI8+94+TYa5VFWgutaDWqcXYCAiolYS0TDk8Xiwbt063HXXXZgwYQIyMjKwfPlyFBYWYsuWLY2O//jjj+F0OvH444/j/PPPx+DBg/HEE0/g8OHD+PrrryPwCogoLsaCW382CAN6xAe2nSqpxeq3v8OJopqwn19RBaqdXpRXu6Eogr1ERKQ5YyRPnpubi9raWowePTqwzW63IzMzEzt27MDUqVODjh8zZgxWrVoFi8Xy06dCZWVlWG0xGCLeSdbh1deQtQxPW9VRBWAwSJA0mOJjizLiV1My8MHWPHy5Jx8AUO3w4tn3vsd1l/TD0PO7hH0On6Ki0uGGzWpCdJQRUjO6ivie1A5rqQ3WUTta/mEU0TBUUFAAAEhLSwvanpycjPz8/EbHp6enIz09PWjbM888A4vFgpEjR4bVFrs9KqzH02mspTZau45OtxeKJEHLK9hnTclEzzQ7XttyEKoq4FME/vnxDyir8eDqi/tClrX56aVARqLd2uxfKHxPaoe11Abr2L5ENAw5nU4AgNlsDtpusVia1dPzj3/8A6+++ir++Mc/IikpKay2VFU5oShc+TYcBoMMuz2KtQxTW9XR41NRVeXSfD2f7PMSEXPVQLz80UE43D4AwEfb8pB3qhLXX3Y+oiza/NipqXEhPqZxL3FDfE9qh7XUBuuonbi4KMiyNj1sEQ1DVqsVgH/uUP3nAOB2uxEVdebULITA3//+dzz99NO47bbb8Ktf/SrstiiKCh9vA6AJ1lIbrV1HRVGhKKJVFjfsnWrHb68djJc+OoCicv8fPbnHKvDUxu8wa3J/pCTazvEM51br8EJRBOKizec8lu9J7bCW2mAdw6flj66IDlrWD48VFRUFbS8qKkJqamqTj/F6vbjnnnuwZs0aLFy4EAsWLGj1dhJRyyXZrfjt1YOD7mlWWunC0+/sxXc/lob9/AKAy+PzX7XGSdVEFIaIhqGMjAzExMQgJycnsK2qqgr79u3DiBEjmnzMwoULsXnzZixbtgy//vWv26qpRBQCi9mAGyb3x6UXnJ7r5/Gp+OfHP+DDbXlQ1PD+tBPCH4iquFo1EYUhosNkZrMZs2bNwtKlS5GYmIju3bvjiSeeQGpqKiZPngxFUVBWVobY2FhYrVa89dZb2LRpExYuXIhRo0ahuLg48Fz1xxBR+yJLEi69IB3du0Rjw6eH4K5bkPGLPfk4UVyD6y89H7G2cw91nYkQgNPtg09RYbOaEGU2aNp9TkSdX8Sv7Zs3bx5mzJiBBx54ADNnzoTBYMDatWthNpuRn5+PcePGYdOmTQCA999/HwDw17/+FePGjQv6qD+GiNqnjF4JuGP6YKQknJ4PeCS/Gis3focfT1WF9dxCAB6viqoaD8qr3Qizw4mIdEYSgn9DAUB5eS0ns4XJaJSRkBDNWoapreroVVSUV7X93eE9XgVvf/Ejdh86PW9IkoDJI3rg4qHdIGuweIjJKCPWZkJ0lBnx8Ta+JzXA/9/aYB21k5gYrdl6TREdJiMi/TGbDJgxsS/ios34ck8+VOHv2fn3juM4kl+F6y7pB5vViPySWjhcPtisRqR1iW5RSPL6VFTUeOD1qYiymVtt1WpVCBwrrEaNw4sYmwk9U2I1CXPtjU9VkfNdIRxuFTaLjAsGdIVRo0uaidoDhiEialOHT1Tgs92nUFLhhMVsgMujBOb4/HCiEn97fTfiYs1wOL1QVMAgA13iozAxuxv6psc3+zyqKuBw+1BW5YLX7UWU2QAtLzvbf7QMH2zLQ0GZA4oiYDBISE20YeroXhjYO1Gz80Ta5pw8fLA1D063DwL+Cr5sMWLqmF648sJekW4ekSYY7YmozRw+UYG3vzyCgjIHzCYD4mIsSIy1wNBgZWqH24f8Ege8PhXRUUaYTQYUlDnx9pdHcPhERYvPqQqgtu7eZl5FhaRBz83+o2V48aMDOFFcA4vJAHuMGRaTASeKa/HiRwew/2hZ2OdoDzbn5GHjf39ErcsHWZZgNEiQZQm1Lh82/vdHbM7Ji3QTiTTBMEREbUIVAp/tPgW3V4HdZobJaIAsSbCYjegab4XZGPzjyOFWUFblhiRJsNtMcHtVfLb7VEhznAQAt1dFebUbFdWusEKRKgQ+2JYHl8eH+BgLzCb/6zCbDIiPMcPlUfDBtrw2n4ulNZ+q4oOt/uUPTHUhSJZkyLIEk0GCogp8sDUPPpXzXqjjYxgiojaRX1KLkgonbBZjoyAiyzKirf5R+4a3L/P6VBRXOOF0+xBlllFS4UR+SW3IbVBVAadH8YeiGjcURbQ4FB0rrEZBmQPRVlOjx0qShGirEQVlDhwrrA65ne3B9n2FcLp9MMpSk6/TKEtwun3Yvq8wQi0k0g7DEBG1CYfL558DdKarP+p+38ZFm4LuXyYEUFHjQbXTB58i4HD5wm6Lqgo43T6UVbtQ42zZCtY1dbcBMRqbfh1GowxFEahxeMNuZySVVbkggDPXRvL3uJVVudquUUSthGGIiNqEzWqEQcaZb04p6n/vSkiItSAh1hJ0FZjbo8Dh9qGowqlZmxRVoMbpRWXd2kTN6SSKsZlgMEhnvCza51NhMEiIsZk0a2ckJNqt/u/HmUb76r5fiXYudksdH8MQEbWJtC7R6BIfBYdbwU+XNxNCwONTYTUb4FFUCCEQZTEiOT4KZpPc4Djgg615ePvzH+H2KJq0SwjA6VFQVuVCtcMLVYizhqKeKbFITbSh1uVr8nXUunxITbShZ0qsJu2LlFGZKYiyGOFTRZOv06f6v0ejMlMi1EIi7TAMEVGbkCUJE7O7wWKSUeXwwutToAoBr09BlcMLi9mAicO6wWIyBPZLsn/y9E8nV+/ILcLf39yNQycqNWufT1FR4/SitMqFKocXPrXp+USyJGHq6F6wmg2oqPHA4/W/Do9XQUWNB1azAVNH9+rw6w0ZZRlTx/SCQZbgVQRUVUAVKlRVwKsIGGQJU8f04npD1CnwXUxEbaZvejyuHdcHqYlR8HgV1Di88HgVpCZG4dpxfTA+u3uj/V6fih4pMZg+vg+6dYkOPFdFjQfrNu3H25//CJcn/HlE9RRF1F2K70JlbdOTrAf2TsScKwYgvWs03F4FVTUeuL0K0rtGY84VAzrNOkNXXtgL/zfhPERbjVBVAV9dKIq2GvF/E87jOkPUafB2HHW4NHr4uMy8Njr77TgA/+XpZ1th+kz7FVXFZ9+cwn++PhnU7rhoM64Z3wcDeiYEncdgkBAXZ0NlpX9hxFAYZAkWkwHRUSYYDXLQkJGeVqDedaCYK1BrgD8ntaPl7TgYhurwjRk+/ifXhh7CULhOldRi438PI7/UEbR9SN8kXHVRb8RE+ScvaxGG6hkMEqLMxrqJ4BI6YNnCwv/f2mAdtaNlGGK0J6IOp1uXaNx+7WBcNiI9aPXqPYdLsfz13dh1oKjRpN9wKYoIzCmqdnj9t6bofJ1ARLrEMEREHZJBljFpeDrunJ6FHskxge1Ot/9WEc+9vw+FZY6zPENo6kNRWaULTo/CQETUCTAMEVGHlpJow23TBuFnF/UOugz/aH41/vbGHrz92SF4vNpcht+QV1FRVeNBWbUbLq8CgbNfkk9E7RfDEBF1eLIsYczgVNx9XTYye5+eRK2qAh9ty8PS177Fdz+Waj50pgoBt0dBZY0bpZVuVDu8UM5wST4RtV8MQ0TUacTFWDDr8gGYfXl/xMeYA9srazz458c/4IVNuSgs137oTIjT6xSVVbtQUeNq0FvEYETU3jEMEVGnM7B3Iub/PBuXDOseNMH60MlKPPXmHrz3v6NwurVbm6ghRRFwuk/3FlXWuuHx+YfpmIuI2ifjuQ8hIup4zEYDrhzdExNG9MArm/fjh+P+1apVAWzdW4BvfyjBZRekY1RmMgytsGZOfW+RT1HhciuQZQkWkwyz2QCLUYYkyZoP2xFRaNgzRESdWmpSNH49dSBmXd4fibGWwHan24f3/ncUK97cg/1Hy1o1mKhCwKeoqHX5UFHtRkmlG5U17DEiai/YM0REnZ4kScjsnYjz0+Px1Xf5+Ozbk/B4/QveFVe48NK/D6JPWiyuvLBX0GX6rSGox8ijwGDwr3BtMRsC92BjhxFR22IYIiLdMBllTBzWHRcM6IotO09gV24R6nPHkfxqPP3OXgzuk4jJI3uga3xUq7dHFQKqT8DrU+Fw+2A0SLCajTCbDDAZ/N1FDEZErY9hiIh0J9ZmxvSLz8OYQSnYnHMMP5yoDOzbe6QM+46WYfiAZEwa3h3xMZazPJN2VFXAowp4vB4YZAkGg+QPRUYZJoMcmAjOcESkPYYhItKttKRo3DRlIH44UYGPco7hVN29zlQB7Mwtwrc/FGPkwBRMHNoNsTbzOZ5NO4oqoKgCHq8KSQJk6XQ4spgMMBlkSBKDEZFWGIaISPfOT49H3+5x+O5wKbbsPI6yKjcAwKcIbN1bgJ37i3BhZgrGZ6e1aSgC/IFHEafDkUPywSBL/qvSTAaYTTIkMBgRhYNhiIgI/t6X7H5dMPi8ROzMLcZ/vjmJqloPAP+tN778Lh85+woxamAyxmd3gz26bUNRPVUIqIqA16nC6fYHI6vZALOJE7CJQsUwRETUgEGWcWFmCob374rt+wvx329PocbpBeAPRV/tLUDO/kJcMCAZ44ekIdFujVhbVVVAVf0TsGXZH4ws5oZDaRLXMiJqBoYhIqImmIwyxmalYeTAZGzfV4TPd58ORT5FIGdfIXbsL8SQvl1w8dBuSE20RbS9DYORQ/ZBliSYjDIsJhkmo38ithCCvUZETWAYIiI6C7PRgHFD0jAqMxk79hfhi92nUOXwhyJVAN8eKsG3h0owoGc8xg/phj5psRG/H5mqCqgQdWsZ+YcAjXUTsM0mA4wGCQaZ4YioHsMQEVEzmI0GjM1Kw6iBKfj6YDG+2H0KZdXuwP4Dxypw4FgFuneJxtghacg6L7FVbvPRUg0nYLu9/uE0SQIMsgSTQa67dN8Ag0GqC3EMSKQ/DENERC1gMvrnFI3ISMZ3P5bii92nkF93ST4AnCypxeufHsLmHDNGZ6Zg5MBkRFtNEWxxMFX1Jx1FOX3pviRJp3uPjDKMRgNMRgmyJIPhiPSAYYiIKAQGWcLQfl2Q3TcJP5yoxJd78nHo5OnFG6tqPfj3juP49OsTyO7XBaMHpaJ7l+gItrhpQgBC1A+rAS6PAlnyQZIBo0GG2ejvPZLqFn3kfdSoM2IYIiIKgyRJ6N8jHv17xONUSS2++i4few6XQqnrgfEpArsOFGPXgWL0SI7B6MwUDD4vCSZj5IfQzkQVAlAARVHg9iiQJMBk9MInSfA4PZDqepEMMnuPqHOQBK+7BACUl9fC51Mj3YwOzWiUkZAQzVqGqa3q6FVUlFe5/b/4OimDQUJcnA2VlQ4oStu9zmqHBzn7CrF9f1HgCrSGoixGDO/fBSMHpiC5De6BpoWGtVRVAUmSIEmAUZZgMhlgNJy+bUj93KN6nfgt1mL8OamdxMRoGAza/FHBniEiIo3F2sy4bEQPTBzWHd/9WIpt3xfieFFNYL/T7cNX3xXgq+8K0Cs1FiMGdEXWeUkwmwwRbHXz1Q+tAf65R+6fzD2SZf8woizLkOtuJyLJUt2kbQkSe5OonWEYIiJqJUaDjGHnd8Ww87viZEktcr4vwO7DpfA26BHIK6hGXkE13vvfUQw5LwnDB3RFr5TIX57fUg3nHkGp3xr4JCgsGQITtWUYZRlGA29CS5HFMERE1Aa6d4nG9Al9MWVML3zzQwl25hYFXYXm8arYeaAYOw8UI9FuwbDzu2Lo+V2QFMEVrrX004na9XOR/D1Jpy/zNxr94YhzkagtMQwREbUhq9mIMYNSMTozBSdLarEztwi7D5XC7T3di1JW5cYnu07gk10n0CM5Btn9uiDrvMQ2v0lsa2u4BpLXp0JyA5J8ei6S0WiAUZZgMMiBCdtAy9ZCatjBxmBFZ8IwREQUAZIkIb1rDNK7xmDKmF7Yd6QcXx8sxuGTlWj4O/t4UQ2OF9Xgg61H0bdbHIb0TUJm7wTY2tHaRVoRAIQaPBcJqJtzVDfMZjL4bzMiG+p7kKRA4PH3PgEC/oClNviQZAkGSYJc9xiDfPpx9cN3QW0R/hYxQOkDwxCRjhkMEmThv5mnwOlJsfwF0LbMRgOGnt8FQ8/vgooaN3YfKsE3P5SgqNwZOEYI4NDJShw6WYl3vpDQt7sdg89LwsBeCYiJ6nzBqCHVn3CAuiE2Z90QmyRJkAB/Z1Gd+vfumW418tPHSQ0fXHcRXH3PlMHovzrOUDevSZalBsc39z/J6eevP3f9wpei4XMI/z7UDR3yVilti5fW1+FljuHjJaPaaKs61l/+rNb90FVFg7+kxelfJkKcPsb/eYNfOBAQKtrt5fmRurReC0II5Jc6sPtQCfYcLkVlrafJ4yQJ6J1qx6A+CcjsnYj4GEurtKcj1zIcEhBYRkCSJBhkQK67Uq5+BYFANRr8P6jvoarfL+D/fyJLEmLtUaiqckJR1J+cq25hSxlIjLUEBzVqhJfWE1HY6v8OkiAFJrKiwc+VxhczBa9AXB+efIoKr0+Fy6tAUUSz/6INDFH4/zw/va3+l4fO/zKWJAndukSjW5doXHFhTxwrrMaew6X4/scyVDdYu0gI4Eh+FY7kV+H9/+WhW5INGb0SMLB3Irol2TrcVWntTaDHtEHPlJ9yxsecjcHg7xlSFLWJUOn/2oj2uyBnZ8UwRERNahxEGg+hyZIEs9EAi8mAmCgTvIoKnyKgKioUAaiqGuj+l6S6ybFoMAdEPj3noz6UAYCi1s35UFR4FdX/y0MN7qXSE1mS0DvVjt6pdlw1pjfyCqux98cyfH+kFFWO4EUdT5U6cKrUgU+/Pgm7zYT+PRMwoEc8+nWPg8XcMdYxImprDENEFLb6cGKUZRhlQAr6pRu8GnHD489ENkgwGRo+j/85FFXA4/P3RHl8ClRFBIYj9BKQZFlCnzQ7+qTZMfWiXjhRVIN9R8vw/dFylFa6go6tcnixM7cIO3OLYJAl9EqNRf/0eJzfIw4pibZGk4aJ9IphiIg0FxxMQk8pp5/H/4ksSbCaDIgyGwCYAj1Iiirg9SpweZTAPcH0QJYk9EyJRc+UWFwxqieKK13Yf7QMuXkVOFZUHfR9UFSBH09V4cdTVdi8HYiOMqFfdzv6dY9Dv+5xiGuluUZEHQHDEBF1OPW/5OW6S6VNBiDKbITNosLh8UFVVP+k7roF/Qyyf55GZ+49kiQJyfFRSB7aHROGdkety4uDxypw4HgFfjhRAac7eI5LrdOL3YdKsftQKQAgKc6K89LsOK+b/6OzrWlEdDYMQ0TUKQghYDBIsNtMqJ+RbTTKsNujYIIKp1uB16f6J66qdXOP2vGVcOGKtpowrH9XDOvfFYoqcLK4BgeOV+DQiUqcKK5pFAxLK10orXRhR24RAKBLnDUwHNcrNRZJcew5os6LYYiIOpX6xfL8n4u6niEZVhPqhtf8E7UV1T/Z2+tV4Ky7Ek7tpENsBvn0cNrkET3gcPlw+FQlDp+sxKETlSirdjd6TEmlCyUNwlFctBnn94xHtyQbenSNQWqSDQaZVz1R58AwRES60XBVYQn+1YzNRhm2KJN/eQCPArdHgaKqnXpIzWY1Iuu8JGSdlwQAKK9248dTlYE5RU2taVRZ68HO/UWBr00GGd2To9EzOQbpybHokRyDuGgOrVHHxDBERLpWH3pMBhlmmwwRZYTTrcDh8sHXyUNRvYRYCy4YkIwLBiRDCIHyanfd2kXVyCuoRmmVq9FjvIqKo/nVOJpfDSAfABBrMyG9awy6d41G97o1kjj3iDoChiEiojr+4CPBZjXCajHA7VHg8arw+NTAIpOdnSRJSLRbkWi34oIByQCAKocHx4tqUFDuxMG8cpwqqW3yqr1qhxf788qxP688sM0ebUa3JBvSukSjW1I00pJsSIi1cDFIalcYhoiIfqJ+GM1qNiLK4v/aW7fStturwFe3EKQeeo0AwG4zY0jfJIyvux2Hy63gVElt3U1kq3G8qAYVNU3fLqSq1oOqWg9yj1UEtllMBqQm2pCaZENqog0piVFISbAhysJfSRQZfOcREZ1F0DCaUUa01b++kcfrg9Ptg7cFtyDpLExGGb1SY9ErNRZAGgCgxunFieIanCyuxYniGpwqrg26bUhDbq+CvMJq5BVWB223R5uRkhDlXyIgIQpd6z63WTv3jWgp8hiGiIiaqX4CtiyhrtfICJ8i4FNVqMrp1bH1MqTWUEyUCRk9E5DRMyGwrcrhwamSWpwqqUV+iQP5pbVNXrkWOL6uF+mHE5VB26OtRnSJj0LX+Ch0ibOia5wVSXFRSLRbYNToRp2kbwxDREQhEsJ/2bpBNgBGwGaVIIQIDKl5vErg3mp66jmqZ7eZYe9pDgpILo8PhWVO5JfVoqDUgcIyJwrLHXB5znzj01qXD7UF/sncDUkSEB9jQZLdikS7BUlxViTZrUiItSAx1sp7sVGzMQwREWlE1CWehkNqqvBPwHa7FXh8aqe/bP9crGZjgyE2PyEEqmo9KCx3oqjciaJyB4oq/J+fLSQJ4V8WoLzaDZxsvN9mNSIx1oKEuo/4WAsSYiyIi/H/y7BE9RiGiIhaQf2QmgQJFqMBVpMRqlDh9qrweBRdXaF2LpIkIa4upPTvER/YLoRAjdOL4goniitcKKl0oqTCvxhkebUL5yqdw+WDw+XDieLaJvdbzQbEx1gQF2NGXLQZ8TEW2KP9n9f/azYxMOkBwxARURsQwh+M/DeaNUIIFV5FwOdT6242qwZuOtuZbxPSEpIkIdZmRqzNjPO6xQXtU1QV5VVulFa56j7cKKtyoazKhfJqN3zKuevn8igoKHOgoMxxxmMsJgPs0WbE2kyw2/z/xgb+NSHGZkZslAlWs4HLBXRgDENERG3MP5zmXwHbZJDh/x3qv02IT/HfJsSnqPD6FPgU/3yj+ivWhBBgTAIMsowu8VHoEh/VaJ8qBKodXpRXu1Be5UZ5jTswnFZR7UZlrafJdZKa4vYqdT1TznO0R0JMlCnwER1lQkyUEdFW/+fRVv/nsdEmWKLMgSFVah8YhoiIIqzhbUJkSYLZ6L9NiGQ1QZIAte7GsopaF5IaLASpt8v6m0OWJMTVDXP1Tm28X60bfquscaOixoPKGg8qa/whqbLuirZqh+ecw3ANKaoIPL45DLJ/cc9oqwlRFiNsViNsdf/G2swYPyQVXeNtzW8AhYVhiIionWoYdGRJglzXk2Sz+G9Fqyj+K9d8Pn8vklI3vMaAdHayJPmvdLOZ0SO56WNUVaDG5UV1XTiqcnhR5fCg2uFFdd2/NU4vahzekIY0FVXUPVfTazF9vvsU/vKbMbBwzlKbYBgiImrHVCFwrLAaNQ4vYmwm9EyJhQz/3BSDLEERwJd7TqKixoMucVaMG9oNMiQoioBPFfD6/KtF1zp9sJoNSEm0QQICQ22qEMgvqYXD5YPNakRal2jIP5n7oqgqdh8ug8ujwmqWMbhPYovuWH+uczSnDeGeQ1FV7DlUgooaD+JjzBjSr8tZX4Msnw5M3bue+RwA4HL7UF0Xlk4W+1fjVlQBSfJP4q5xeuFw+VDr8sLpPvPVcQ3VOL04ml+F83vEt7gW1HKSiPDApaqqWLlyJd544w1UVVXhggsuwKJFi9CrV68mjy8vL8ejjz6Kzz//HABw5ZVX4o9//CNstvC6E8vLa+HzqWE9h94ZjTISEqJZyzCxjtrp6LXcf7QMH2zLQ0GZA4oiYDBISE20YeroXhjYOxEvbt6PL/bkQ23w0mQZmJDdDbOvyMDB4+X45OuTKK10ApBgNslIiovCRYNS0SM5BodPVuCrvQUoqXDC6xMABOJjLRg7KBW96yYsf7H7JD775hRcHgX+mU7+q7AmDuuG8dndz/kaDp+owGe7T6GkwglFBQwy0CU+ChOzu6Fvevw59zfHuZ4j3Neg6euQAKPZhPyiKtQ4/CHJ4fbB4fLiVEktjhZUQ1FUxNrM8Cpq0PebgiUmRsOg0aKbEQ9DK1euxKuvvoolS5YgJSUFTzzxBI4fP473338fZnPjux3Pnj0bbrcbixYtQlVVFe6//36MHDkSf/nLX8JqR0f9YdmedPRfPO0F66idjlzL/UfL8OJHB+Dy+BBtNcFolOHzqah1+Xt4UhOjsOdw2RkfP6RvIgrKnI0e7/QoiLEaMWFoN2zdVwivT0GM1QyjUYIQgNurwmyU8f+N7omCUgc+2XXCP4kbAqLuijd/cAImDe+Gi7K6nXFI7vCJCrz95RG4vQpsFiMMBhmKosLhVmAxybhwYDJy9hedcf+14/qcMxCd6xx9u9mx60AxVAEYJKC+W0wRgCwBV4zqcc5ApOXrMBgkxNXd401pcMVbw3OkJtpgsxpRUuEKfL/nXDGAgegntAxDEV3H3OPxYN26dbjrrrswYcIEZGRkYPny5SgsLMSWLVsaHf/NN99g+/btWLJkCQYNGoQxY8bg4YcfxrvvvovCwsIIvAIiIu2pQuCDbXlweXyIj7HAbDL4J1abDIiPMaPW6QkKQlKDj3p7Dpeh1ulu9Hi7zYQqhwfvfHEExeUOSJDgcPtQVeufv+L2+HCqtBYf5eRhc84x1Di9EELAIEuwmv2Xkifa/WsC7TtagRibyb8uj82EGJv/qqkoswFmk4xvDpfCZjUivWsMEu1WxNrMiI+1IjUxCrIkIWdfESABXexWRFlMMBlkWExGxEWb4Paq+Gz3qbPOx1GFwGe7T8HtVWC3mWEy+l+nyeh/nS63DzvrgpBR9g99yZIEWZZglAFVAJ99cwqKeuagfK5zuD0KPvvmLPtDeB1GQ/D32+VR8MG2PC630Ioi2jO0Z88eXHfdddi8eTP69OkT2D5z5kwMGDAAixcvDjr+ueeew4svvogvv/wysM3j8SA7OxvLli3DlClTQm6LqvNVYbUgSYAsy6xlmFhH7XTUWvoUFZW1Hn/AaWK+iKKKZl2aLUkSDHLjx4u6K9Pqw0FT+1VxekXtpmas1J/dbjM3uZKzT1FR7fBCkhq/BgkILDjZVBv8F9f5lxCItppgMDTRAgH4VIFapxdnmlKjCv+aTWd7Ef5zGM+4uKKiqKgJnOMMtap7HU19r0TdSaKjTIH7qMmyFLTYpq/+HPDXqr5m9cfUL6cQF23mvdgaOFPNQxHRCdQFBQUAgLS0tKDtycnJyM/Pb3R8YWFho2PNZjPi4+ObPL4l5BZMBqSzYy21wTpqp6PVsn7BwPpfjOFo6vH1OUo6w35AwukUcXaqEE0OVfgU/3IActB07brzw3+1VmCtnzN8e1RVQKrrZWlyv9c/GVmSpKCz1L8k/3JOp1+sFLTXv08I1J0juBGiwXMEAltTtVQlACoMsgypqdchJH+NZCkoyMgNAl59z9tPQ+HpL6XA2lRaDQtRsIiGIafTv4jVT+cGWSwWVFZWNnl8U/OILBYL3O4z3wmZiKgjsZgNSDZ37DVm2uI1WEwGWJpYdFEL9TnEYjbAYm6dc9SzmI2wmHlxdyRFNGJarVYA/qGuhtxuN6KiGr/5rFZro2Prjw/3ajIiIiLSp4iGofohr6KioqDtRUVFSE1tvGxoampqo2M9Hg8qKiqQkpLSeg0lIiKiTiuiYSgjIwMxMTHIyckJbKuqqsK+ffswYsSIRsePHDkSBQUFyMvLC2yrf+zw4cNbv8FERETU6UR0kNJsNmPWrFlYunQpEhMT0b17dzzxxBNITU3F5MmToSgKysrKEBsbC6vViuzsbAwfPhx33303Fi9eDIfDgUWLFuGaa65hzxARERGFJOKLLiqKgieffBJvvfUWXC4XRo4ciYceegjp6ek4ceIELr30UixZsgTTp08HAJSWluJPf/oTvvjiC1gslsAK1BaLJZIvg4iIiDqoiIchIiIiokjiggVERESkawxDREREpGsMQ0RERKRrDENERESkawxDREREpGsMQ0RERKRruglDpaWluOeeezB69GgMGzYMt956Kw4dOhTYv3//fsyaNQtDhw7FxIkTsXbt2gi2tmM4cuQIhg0bhrfeeiuwjXVsmZMnT2LAgAGNPt544w0ArGdLvPPOO5gyZQqysrIwdepUfPjhh4F9rGPz5OTkNPl+HDBgAC699FIArGVzeb1eLF++HBMnTsSwYcNwww034Ouvvw7sZx2br7a2Fo888ggmTJiACy64ALfffjuOHTsW2K9JLYVOXHfddeIXv/iF2LNnjzh06JC46667xNixY4XD4RBlZWXiwgsvFPfff784dOiQePPNN0VWVpZ48803I93sdsvj8Yjp06eL/v37i40bNwohBOsYgk8++URkZWWJwsJCUVRUFPhwOp2sZwu88847YuDAgWL9+vXi6NGjYuXKlSIjI0N8/fXXrGMLuN3uoPdhUVGR+PLLL0VmZqZ4/fXXWcsW+Pvf/y7Gjh0rvvjiC3H06FFx//33i+HDh4uCggLWsYVuueUWMX78ePHpp5+KQ4cOiQceeEBcdNFFoqysTLNa6iIMlZWVibvvvlscPHgwsG3//v2if//+Yvfu3WLNmjVi/Pjxwuv1BvYvW7ZMXHHFFZFoboewbNkyMXv27KAwxDq23NNPPy2mTZvW5D7Ws3lUVRWXXHKJePzxx4O233zzzWLNmjWsYxg8Ho+YOnWqmD9/vhCC78mWmDZtmliyZEng6+rqatG/f3+xefNm1rEF6n9Xf/bZZ4FtiqKIyy+/XKxcuVKzWupimCwhIQFPPvkkzj//fABASUkJ1q5di9TUVPTr1w87d+7EyJEjYTSevlXb6NGjceTIEZSWlkaq2e3Wjh07sGHDBvzlL38J2s46ttyBAwfQr1+/Jvexns3z448/4uTJk/jZz34WtH3t2rW47bbbWMcwvPLKK8jPz8cf//hHAHxPtkR8fDz+85//4MSJE1AUBRs2bIDZbMbAgQNZxxY4cuQIAATdvF2WZWRkZGDHjh2a1VIXYaihBx98EGPHjsXmzZvx5z//GTabDQUFBUhNTQ06Ljk5GQBw6tSpSDSz3aqqqsLChQvxwAMPIC0tLWgf69hyBw8eRGlpKW644QZcdNFFmDlzJr744gsArGdzHT16FADgcDjw61//GmPGjMF1112HTz/9FADrGCq32401a9Zgzpw5gXqxls13//33w2g04tJLL0VWVhaWL1+Ov/3tb+jZsyfr2AJdu3YF4H/vNXTy5EmUlpZqVkvdhaE5c+Zg48aNmDZtGu644w58//33cLlcMJvNQcfV3/jV7XZHopnt1uLFizF06NBGf4UDYB1byOPx4OjRo6ipqcH8+fPx7LPPIisrC3PnzsXWrVtZz2aqqakBANx777246qqrsG7dOowdOxa333476xiGd999F263G7Nnzw5sYy2b7/Dhw7Db7Vi1ahU2bNiA6dOn495770Vubi7r2ALZ2dno27cvFi1ahPz8fHg8Hqxfvx779++Hx+PRrJbGcx/SudQPSTzyyCP49ttv8fLLL8NqtcLj8QQdV19Em83W5m1sr9555x3s3LkT7733XpP7WceWMZvN2LFjB4xGY+A/8+DBg3H48GGsXbuW9Wwmk8kEAPj1r3+Na6+9FgAwcOBA7Nu3Dy+88ALrGKJ33nkHl19+ORISEgLbWMvmOXnyJO655x6sX78+MLyTlZWFQ4cO4amnnmIdW8BkMmHVqlW47777MHHiRBiNRkycOBEzZszA3r174fF4NKmlLnqGSktL8f7770NRlMA2WZbRt29fFBUVITU1FUVFRUGPqf86JSWlTdvanm3cuBGlpaWBS0WHDRsGAFi0aBGmTp3KOobAZrM1+qumf//+KCwsZD2bqb6LvH///kHb+/XrhxMnTrCOISgrK8M333yDKVOmBG1nLZtnz5498Hq9yMrKCtqenZ2No0ePso4t1KdPH2zYsAHbt2/H1q1bsWrVKlRUVKB3796a1VIXYaioqAi///3vsX379sA2r9eLffv2oW/fvhg5ciR27doVFJa2bt2KPn36ICkpKRJNbpeWLl2KTZs24Z133gl8AMC8efPw7LPPso4tlJubi2HDhmHnzp1B2/fu3Yt+/fqxns2UmZmJ6Oho7N69O2j7wYMH0bNnT9YxBF9//TUkScKoUaOCtrOWzVM/n/LAgQNB2w8ePIhevXqxji1QU1ODWbNmYe/evYiLi4Pdbkd1dTX+97//Yfz48drVUrPr39oxVVXFzTffLK644gqxY8cOceDAAXH33XeLkSNHipMnT4qSkhIxcuRIce+994offvhBbNy4UWRlZYm33nor0k1v9xpeWs86toyiKOK6664TV111ldixY4c4dOiQeOyxx8TgwYNFbm4u69kCq1atEsOGDRPvvfeeyMvLE6tXrxYZGRli27ZtrGMInnrqKXH55Zc32s5aNo+iKOKGG24QV155pdi6das4cuSIWL58uRg4cKD45ptvWMcWmjVrlpg5c6bIzc0V+/fvFzfccIOYNm2a8Hq9mtVSF2FICCGqqqrEokWLxNixY8WQIUPEzTffHLTu0O7du8XPf/5zMXjwYHHJJZeIl156KYKt7TgahiEhWMeWKi0tFX/84x/F2LFjRVZWlvjFL34hduzYEdjPejbfunXrxKRJk8SgQYPEtGnTxJYtWwL7WMeWWbRokfj5z3/e5D7WsnkqKirE4sWLxcSJE8WwYcPEL37xC5GTkxPYzzo2X2FhobjrrrvEiBEjxKhRo8S9994rSktLA/u1qKUkhBCt0LNFRERE1CHoYs4QERER0ZkwDBEREZGuMQwRERGRrjEMERERka4xDBEREZGuMQwRERGRrjEMERERka4xDBERNROXZSPqnHR313oiarn77rsPb7/99lmP6d69Oz799NM2alHb++STT/DRRx/hr3/9a6SbQkQa4wrURHROx44dQ1lZWeDr1atXY9++fVi5cmVgm9lsRmZmZiSa1yZmz54NAHjppZci3BIi0hp7hojonHr27ImePXsGvk5MTITZbMbQoUMj1ygiIo1wzhARaeLgwYO47bbbMHz4cAwfPhx33HEHjh8/Htifk5ODAQMGYOvWrZg9ezaGDBmCiRMn4o033kBRURHuvPNODBs2DBMmTMD69esbPe7LL7/EL3/5SwwZMgSTJ0/Gyy+/HHR+VVXx7LPPYvLkyRg8eDCuuOKKRr04s2fPxh/+8AfMmzcPw4cPx6233goAOHHiBBYuXIhx48Zh0KBBGDNmDBYuXIjy8vLA47Zv347t27djwIAByMnJCbQrJyen0Tnqe5EAYNKkSXjssccwZ84cDB8+HA899BAAoKKiAg899BAuuugiZGVl4ec//zm2bt0a/jeCiFqMYYiIwnbkyBFcf/31KC0txeOPP44///nPOH78OGbOnInS0tKgYxcsWIBJkyZhzZo16N27NxYtWoQbb7wR/fv3x4oVKzBo0CAsWbIEe/bsCXrc3XffjczMTKxatQpjx47FI488EhR2Fi9ejBUrVmDatGlYs2YNrrzySjz22GNYtWpV0PN8+OGHMJlMWLVqFW688UY4nU7ceOONOHz4MBYtWoS1a9di1qxZeP/99/Hkk08CABYtWoTMzExkZmZiw4YNGDRoUIvq88orr2DAgAF46qmncPXVV8PtdmPOnDn45JNPcPfdd2PlypVITU3FLbfcwkBEFAEcJiOisK1cuRJWqxXr169HTEwMAGDMmDG47LLL8Pzzz+Pee+8NHPt///d/uOmmmwAANpsNv/jFLzBkyBDMmzcPADB48GB88skn+PrrrzFkyJDA4y677DLcf//9AIDx48ejqKgITz/9NH75y18iLy8Pr7/+OhYsWBDo7Rk3bhwkScIzzzyDG264AQkJCQAAWZbxyCOPwGazAQD279+P1NRUPP7444GhwNGjR+O7777D9u3bAQD9+vULvK5QhgaTk5Nx3333QZb9f3++/vrryM3Nxeuvv47s7GwAwMUXX4zZs2dj6dKl2LhxY4vPQUShY88QEYVt27ZtuPDCC2G1WuHz+eDz+RATE4MRI0bgf//7X9Cxw4YNC3zepUsXAAgEAgCB0FJdXR30uKuvvjro68svvxylpaU4cuQItm3bBiEEJk2aFDi/z+fDpEmT4Ha7sWvXrsDj0tPTA0EIAAYOHIhXX30V6enpOH78OL744gusW7cOP/74I7xeb5iV8evbt28gCAHA1q1b0bVrVwwaNCjQVkVRcMkll2Dv3r2orKzU5LxE1DzsGSKisFVUVGDTpk3YtGlTo32JiYlBX9f3sDQUFRV1znMkJycHfZ2UlAQAqKqqQkVFBQBg6tSpTT62sLAw8Hl9AGvohRdewDPPPIPy8nJ06dIFgwYNQlRUVKNAFqqfnrOiogLFxcVnHG4rLi5GXFycJucmonNjGCKisMXGxuKiiy4KDH81ZDRq82OmPvDUq5+LlJSUBLvdDgB48cUXER0d3eix3bp1O+Pzvvfee3j88cfx+9//HjNmzAiEt9/97nf47rvvzvg4SZIA+CduN1RbW9tkGxqKjY1F7969sXTp0ib3p6enn/XxRKQtDpMRUdhGjRqFQ4cOYeDAgcjKykJWVhYGDx6M9evXY8uWLZqc46cLOm7evBndu3dHz549MXLkSABAeXl54PxZWVmoqKjA3/72t0ZBqqFdu3YhNjYWt956ayAI1dbWYteuXUFBp+EwF3C6hys/Pz+wrbKyEocPHz7naxk1ahTy8/ORlJQU1N6tW7fi+eefh8FgOOdzEJF22DNERGG7/fbbcf311+O2227DzJkzYbFYsGHDBnz88cdYsWKFJudYv349rFYrhg4din//+9/4z3/+g2XLlgEA+vfvj2nTpuHBBx/EyZMnMXjwYBw5cgTLly9Heno6evfufcbnHTJkCP75z3/i8ccfxyWXXIKioiKsXbsWJSUlQUNVdrsd33zzDbZu3YrMzEwMGDAAaWlpWLlyJWJjYyHLMp599tlmDflNnz4dL7/8Mm666Sb85je/QVpaGv73v//hueeew6xZs2AymcKuFxE1H8MQEYUtIyMDr7zyCpYvX46FCxdCCIH+/ftj1apVuPTSSzU5x//7f/8Pb7/9Np555hmcd955WLFiBa644orA/iVLluCZZ57Ba6+9hoKCAiQlJWHKlCmYP3/+WXtarr32Wpw4cQIbN27Eq6++ipSUFEyYMAE33HADHnzwQRw6dAj9+vXDL3/5S+zduxdz587FkiVL8LOf/QwrVqzAY489hgULFqBLly6YM2cOfvzxRxw5cuSsr8Vms+GVV17BsmXL8MQTT6C6uhrdu3fH73//e9x8882a1IuImo+34yCidi0nJwc33ngj/vGPf+DCCy+MdHOIqBPinCEiIiLSNYYhIiIi0jUOkxEREZGusWeIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHSNYYiIiIh0jWGIiIiIdI1hiIiIiHTt/wdFwNneHOJHTAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set(color_codes=True)\n", + "plt.xlim(30,90)\n", + "plt.ylim(0,1)\n", + "sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cf250191-a2b3-4148-adde-3442cdc86e4b", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}