diff --git a/module2/exo3/exercice_python_en.org b/module2/exo3/exercice_python_en.org index 5782f493934678ba782fb65634a4d86e5f3adefc..a57a8f86b66df792803688893437be5a8cdb27a1 100644 --- a/module2/exo3/exercice_python_en.org +++ b/module2/exo3/exercice_python_en.org @@ -11,84 +11,35 @@ #+HTML_HEAD: #+HTML_HEAD: -* Some explanations -This is an org-mode document with code examples in R. Once opened in -Emacs, this document can easily be exported to HTML, PDF, and Office -formats. For more information on org-mode, see -https://orgmode.org/guide/. -When you type the shortcut =C-c C-e h o=, this document will be -exported as HTML. All the code in it will be re-executed, and the -results will be retrieved and included into the exported document. If -you do not want to re-execute all code each time, you can delete the # -and the space before ~#+PROPERTY:~ in the header of this document. - -Like we showed in the video, Python code is included as follows (and -is exxecuted by typing ~C-c C-c~): - -#+begin_src python :results output :exports both -print("Hello world!") +#+begin_src python :results file :session :var matplot_lib_filename=(org-babel-temp-file "figure" ".png") :exports both +import numpy as np +import matplotlib.pyplot as plt +l= [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0] +print(len(l)) +x=numpy.linspace(0,100,100) +plt.figure(figsize=(10,5)) +plt.plot(x,l) +plt.savefig(matplot_lib_filename) +matplot_lib_filename #+end_src #+RESULTS: -: Hello world! - -And now the same but in an Python session. With a session, Python's -state, i.e. the values of all the variables, remains persistent from -one code block to the next. The code is still executed using ~C-c -C-c~. +[[file:/tmp/babel-XsHjUo/figure3nkNUU.png]] -#+begin_src python :results output :session :exports both -import numpy -x=numpy.linspace(-15,15) -print(x) -#+end_src -#+RESULTS: -#+begin_example -[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041 - -11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592 - -8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143 - -5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694 - -2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245 - 0.30612245 0.91836735 1.53061224 2.14285714 2.75510204 - 3.36734694 3.97959184 4.59183673 5.20408163 5.81632653 - 6.42857143 7.04081633 7.65306122 8.26530612 8.87755102 - 9.48979592 10.10204082 10.71428571 11.32653061 11.93877551 - 12.55102041 13.16326531 13.7755102 14.3877551 15. ] -#+end_example -Finally, an example for graphical output: -#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results +#+begin_src python :results file :session :var matplot_lib_file=(org-babel-temp-file "figure2" ".png") :exports both +import numpy as np import matplotlib.pyplot as plt - -plt.figure(figsize=(10,5)) -plt.plot(x,numpy.cos(x)/x) -plt.tight_layout() - -plt.savefig(matplot_lib_filename) -print(matplot_lib_filename) +print(len(l)) +num_bins = 10 +n, bins, patches = plt.hist(l,num_bins, facecolor = 'blue', alpha = 0.5, edgecolor= 'black') +plt.savefig(matplot_lib_file) +matplot_lib_file #+end_src #+RESULTS: -[[file:./cosxsx.png]] - -Note the parameter ~:exports results~, which indicates that the code -will not appear in the exported document. We recommend that in the -context of this MOOC, you always leave this parameter setting as -~:exports both~, because we want your analyses to be perfectly -transparent and reproducible. - -Watch out: the figure generated by the code block is /not/ stored in -the org document. It's a plain file, here named ~cosxsx.png~. You have -to commit it explicitly if you want your analysis to be legible and -understandable on GitLab. - -Finally, don't forget that we provide in the resource section of this -MOOC a configuration with a few keyboard shortcuts that allow you to -quickly create code blocks in Python by typing ~|z|) -(Intercept) -1.389528 3.195752 -0.435 0.664 -Temperature 0.001416 0.049773 0.028 0.977 + Estimate Std. Error z value Pr(>|z|) +(Intercept) 5.08498 3.05247 1.666 0.0957 . +Temperature -0.11560 0.04702 -2.458 0.0140 * +--- +codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) - Null deviance: 1.3347 on 6 degrees of freedom -Residual deviance: 1.3339 on 5 degrees of freedom -AIC: 18.894 + Null deviance: 24.230 on 22 degrees of freedom +Residual deviance: 18.086 on 21 degrees of freedom +AIC: 35.647 -Number of Fisher Scoring iterations: 4 +Number of Fisher Scoring iterations: 5 #+end_example L'estimateur le plus probable du paramètre de température est 0.001416 diff --git a/module3/exo1/analyse-syndrome-grippal.org b/module3/exo1/analyse-syndrome-grippal.org index 1720b70df3a93009c79592b68d1dcf57a53f6341..6db4cbf0ad3d45f2d2f923fa9869a79a471f2b83 100644 --- a/module3/exo1/analyse-syndrome-grippal.org +++ b/module3/exo1/analyse-syndrome-grippal.org @@ -80,6 +80,47 @@ Regardons ce que nous avons obtenu: table[:5] #+END_SRC +** Utilisation de données locales +Dans le cas ou internet est indisponible, ou si le jeu de données +fourni en ligne est susceptible d’être modifié, mieux vaut travailler +sur des données téléchargées, en local. + +On vérifie que le jeu de données n’existe pas déja +#+begin_src shell :session *shell* :results output :exports both +cd /home/lcs/Documents/césure/mooc-rr/module3/exo1 +ls +#+end_src + +#+RESULTS: +: +: analyse-syndrome-grippal.ipynb incidence-PAY-3.csv +: analyse-syndrome-grippal.org#' influenza-like-illness-analysis.ipynb +: analyse-syndrome-grippal.org influenza-like-illness-analysis.org +: analyse-syndrome-grippal.Rmd influenza-like-illness-analysis.Rmd + + + +#+BEGIN_SRC python :results silent :var data_url=data-url +#import panda as pd +#data = pd.read_csv('incidence-PAY-3.csv',header = 1) + +import csv +with open('incidence-PAY-3.csv') as csv_file: + csv_read=csv.reader(csv_file, delimiter=',') + + +lines = data.decode('latin-1').strip().split('\n') +data_lines = lines[1:] +table = [line.split(',') for line in data_lines] +#+END_SRC + +Regardons ce que nous avons obtenu: +#+BEGIN_SRC python :results value +table[:5] +#+END_SRC + +#+RESULTS: + ** Recherche de données manquantes Il y a malheureusement beaucoup de façon d'indiquer l'absence d'un point de données. Nous testons ici seulement pour la présence de champs vides. Il faudrait aussi rechercher des valeurs non-numériques dans les colonnes à priori numériques. Nous ne le faisons pas ici, mais une vérification ultérieure capterait des telles anomalies. @@ -94,6 +135,13 @@ for row in table: valid_table.append(row) #+END_SRC +#+RESULTS: +: Traceback (most recent call last): +: File "", line 1, in +: File "/tmp/babel-XsHjUo/python-WeKugl", line 2, in +: for row in table: +: NameError: name 'table' is not defined + ** Extraction des colonnes utilisées Il y a deux colonnes qui nous intéressent: la première (~"week"~) et la troisième (~"inc"~). Nous vérifions leurs noms dans l'en-tête, que nous effaçons par la suite. Enfin, nous créons un tableau avec les deux colonnes pour le traitement suivant. #+BEGIN_SRC python :results silent