{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Module 2 : Exercice 2\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Importation de la bibliothèque numpy et des datas" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "data = np.array ([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, \n", " 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4,\n", " 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, \n", " 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, \n", " 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, \n", " 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9,\n", " 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1,\n", " 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul de la moyenne" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14.113000000000001" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul du minimum" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2.8" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.min()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul du maximum" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "23.4" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.max()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul de la médiane" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14.5" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.median(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul de l'écart type\n", "\n", "**Attention à la remarque dans l'énoncé** : pour que numpy calcule une estimation \"corrigée\" de l'écart type empirique, il est nécessaire de passer ddof=1 en argument supplémentaire à la fonction np.std. \n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4.334094455301447" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.std(data,ddof =1)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }