From 682a3aa3a3061e2ee425db805899b476c99e654e Mon Sep 17 00:00:00 2001 From: ce14f10f5bc5e484777f1060f8856ea9 Date: Tue, 7 Jun 2022 13:35:24 +0000 Subject: [PATCH] plot 2 ready --- module2/exo3/exercice.ipynb | 31 ++++++++++++++++++++++++++++--- 1 file changed, 28 insertions(+), 3 deletions(-) diff --git a/module2/exo3/exercice.ipynb b/module2/exo3/exercice.ipynb index 7c7aaf3..1669013 100644 --- a/module2/exo3/exercice.ipynb +++ b/module2/exo3/exercice.ipynb @@ -37,10 +37,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHRRJREFUeJzt3V9sY1l9B/DvbzxxEsBVBm/j8ZK0bi1iZbSFobuilaiqrRAIeOguSCD2gS4CaXiAiqo8FPECEkJCFaV9qaouArGVgAqJpSCEWlaIsEVbseyswv6LkiXIuxPG42izE2FQEifOrw/33vzuDDOT2GfmnDM3348UJXbsnN/9+vjEPr73XFFVEBFRsZwIXQAREd18HNyJiAqIgzsRUQFxcCciKiAO7kREBcTBnYiogA4d3EVkVkR+JCJLIvKciHw8vf4zIvIrEVlMv95168slIqKjkMP2cxeROoC6qj4lIhUA5wHcD+B9AH6jql+49WUSEdEwTh52A1XtAOikP/dEZAnA6251YURENLpDX7lfcWORBoDHANwF4O8BfBDArwE8CeATqnr5Gvc5B+AcAIyPj9/darUwGAywu7sLAJiYmLji8vj4OFQV/X7/4DIA7OzsAADK5TJE5ODy2NgYSqUStre3r3n55MmTGBsbw/b2NlQVpVIJY2Nj2NnZueJyv9/H/v4+Tpw4gXK5jN3dXQwGA4gIxsfHr7g8MTGB3d1d7O3tXXMbjrJNWf1F2qZRH6d+v49XvepVhdqmUR8nVcWJEycKtU2jPk6//e1vUS6XC7VNoz5OKysrL6vq72MIRx7cReQ1AH4M4HOq+oiI1AC8DEABfBbJ1M2HbvQ33vjGN+rPf/7zYeorrIsXL+LOO+8MXUYUmIVhFoZZGBE5r6r3DHOfI+0tIyJjAL4F4Guq+ggAqGpXVQequg/gSwDefNjfyf5TErCyshK6hGgwC8MsDLNwc5S9ZQTAlwEsqeoXc9fXczd7N4Bnb355REQ0ikM/UAXwFgAfAPCMiCym130KwAMichbJtEwbwEcO+0NjY2Mjllk809PToUuIBrMwzMIwCzdH2VvmJwDkGr/6/rCNlUqlYe9SWNVqNXQJ0WAWhlkYZuHG6xGqnHM3S0tLoUuIBrMwzMIwCzdcfoCIqIC8Du4nTx5liv944FtOwywMszDMwo3XwZ0fqJparRa6hGgwC8MsDLNwwzn3QJaXl0OXEA1mYZiFYRZuvA7uPBm3GQwGoUuIBrMwzMIwCzdeB3fuCmmmpqZClxANZmGYhWEWbjjnHki9Xj/8RscEszDMwjALN14H9/xKiMfd6upq6BKiwSwMszDMwg3n3APJlvYkZpHHLAyzcMM590AqlUroEqLBLAyzMMzCDefcA5mZmQldQjSYhWEWhlm48Tq4822WabfboUuIBrMwzMIwCzdeB/f9/X2fzUVta2srdAnRYBaGWRhm4cbr4H7iBNcpy0xOToYuIRrMwjALwyzceB1ty+Wyz+ai1mg0QpcQDWZhmIVhFm68Du7Zmb4JWFtbC11CNJiFYRaGWbjxOrhzrQjT6/VClxANZmGYhWEWbrwO7sm5tgngFFUeszDMwjALN14H9/HxcZ/NRa3ZbIYuIRrMwjALwyzccM49kE6nE7qEaDALk2Vx+nQDIuLt6/TpRtgNvwb2Czdez3vHOXezubkZuoRoMAuTZdHtvgjA31pM3W58U6bsF2445x4I19kxzMIwC8Ms3Hgd3CcmJnw2F7VWqxW6hGgwC8MsDLNwwzn3QLrdbugSosEsDLMwzMKN18F9b2/PZ3NR29jYCF1CNJiFYRaGWbjhYi9ERAXEOfdA5ufnQ5cQDWZhmIVhFm64/EAgfMtpmIVhFoZZuOEHqoGsr6+HLiEazMIwC8Ms3HDOnYiogDjnHsjc3FzoEqLBLAyzMMzCDefcA+FypoZZGGZhmIUbzrkHwkWRDLMwzMIwCzeccyciKqBDB3cRmRWRH4nIkog8JyIfT69/rYg8KiIvpN9PHfa3uJ674VrVhlkYZmGYhZujvHLfA/AJVZ0H8OcAPioiZwB8EsAPVfX1AH6YXr4hVX9LmMau3++HLiEazMIwC8Ms3Bw6uKtqR1WfSn/uAVgC8DoA9wF4OL3ZwwDuP+xv8cEyFy5cCF1CNJiFYRaGWbgZ6mQdItIA8CYAPwVQU9UOkPwDEJHp69znHIBzAHDq1Cl0u11sbGwcHKAwNzeHXq938OFJs9lEv98/eGAbjQYAoN1uAwBmZ2dRLpexuroKAKjX66hUKlhZWQEATE9Po1qtYmlpCQBQrVZRq9WwvLyMwWCAqakp1Ot1rK6uot/vo1KpYGZmBu12G1tbW5icnESj0cDa2hp6vR7K5TKazSY6nQ42NzdRKpXQarUOtgNIDpMedpsuXbqEhYWFQm3TqI/T4uJi9Nv0nve8H5cv+16l8HEATQAdAJsASgBaALoAsqM359OfswN+5gD00vsgvX8fQDZQNtLv7fT7LIDkXKULCwtR9b3FxcVki47pGJHfplHIUadKROQ1AH4M4HOq+oiIbKrqVO73l1X1hvPub3jDG/Tpp58eudgiabfbBw/gcXc7ZJGcaMbHtGIbyQDsq72MRDdtejv0C19E5Lyq3jPMfY60t4yIjAH4FoCvqeoj6dVdEamnv6/DXjoQEVFgR9lbRgB8GcCSqn4x96vvAngw/flBAN857G/t7OyMUmMhubzdKhpmkdcOXUA02C/cHGXO/S0APgDgGRFZTK/7FIDPA/imiHwYwEsA3ntrSiQiomEdOrir6k+QTABey1uHaaxcLg9z80KbnZ0NXUI0mEUes8iwX7jxeoRqMsNDAP/R5TGLPGaRYb9w43Vw55y7yXbTImZxJWaRYb9ww7VliIgKyOvgPjY25rO5qNXr9dAlRINZ5DGLDPuFG6+De6lU8tlc1CqVSugSosEs8phFhv3CjdfBfXt722dzUcsOhSZmcSVmkWG/cMM5dyKiAuKceyDT09dcZ+1YYhZ5zCLDfuGGc+6BVKvV0CVEg1nkMYsM+4UbzrkHki03SsziSswiw37hhnPuREQF5HVwP3lyqHODFBrfchpmkccsMuwXbviBaiC1Wi10CdFgFnnMIsN+4YZz7oEsLy+HLiEazCKPWWTYL9x4HdxjO41XSIPBIHQJ0WAWecwiw37hhrtCBjI1NXX4jY4JZpHHLDLsF2445x4IF0UyzCKPWWTYL9xwPfdAuFa1YRZ5zCLDfuGGc+6B9Pv90CVEg1nkMYsM+4UbzrkHwuVMDbPIYxYZ9gs3nHMPZGZmJnQJ0WAWecwiw37hxuvgzrdZpt1uhy4hGswirx26gGiwX7jxOrjv7+/7bC5qW1tboUuIBrPIYxYZ9gs3Xgf3Eye4TllmcnIydAnRYBZ5zCLDfuHG62hbLpd9Nhe1RqMRuoRoMIu8RugCosF+4cbr4L67u+uzuaitra2FLiEazCKPWWTYL9x4Hdy5VoTp9XqhS4gGs8hjFhn2CzdeB3cR8dlc1DhFZZhFHrPIsF+48Tq4j4+P+2wuas1mM3QJ0WAWecwiw37hhnPugXQ6ndAlRGPULE6fbkBEvHz5w36R4XPEjdfz3nHO3WxuboYuIRqjZtHtvgjA13pFvgZ49osMnyNuOOceCNfZMcwij1lk2C/ceB3cJyYmfDYXtVarFbqEaDCLPGaRYb9wwzn3QLrdbugSosEs8phFhv3CzaGDu4h8RUTWReTZ3HWfEZFfichi+vWuozS2t7fnUmuhbGxshC4hGswij1lk2C/cHOWV+1cBvOMa1/+zqp5Nv75/c8siIiIXhw7uqvoYgFduRmOcczfz8/OhS4gGs8hjFhn2Czcuu0J+TET+BsCTAD6hqpevdSMROQfgHABUq1V0u11sbGxgfX0dADA3N4der3ewT2uz2US/38eFCxcA2OJB2drOs7OzKJfLB+dXrNfrqFQqWFlZAQBMT0+jWq1iaWkJWZu1Wg3Ly8sYDAaYmppCvV7H6uoq+v0+KpUKZmZm0G63sbW1hcnJSTQaDaytraHX66FcLqPZbKLT6WBzcxOlUgmtVutgO4CkEw67TS+88MLByUuKsk2jPk7tdht333330NuUOI/kkP0ykgOAOkh2Jywh+XCyC5vqmE9/Xk8vz6X3zfanbiI5zd2F9HIj/d5Ov6+m7WTn9qwjOXPSSnp5GkAVwFJ6uQqgBmAZwADAVHqf1bSdCpKTc7SRLPU7CWAHtr7M4x62aRbZUbELCwtR9b0nnngCjUbj2I4R+W0ahRzlvKYi0gDwPVW9K71cA/Aykp2MPwugrqofOuzvtFotXV5eHrnYIllYWMC9994buowojJpFsmutz/3cfbS1AOBej+1lJLpzHPM5YkTkvKreM8x9RtpbRlW7qjpQ1X0AXwLw5lH+DhER3RojDe4iUs9dfDeAZ6932zzOuZu5ubnQJUSDWeQxiwz7hZtD59xF5BtI3ifeISJrAD4N4F4ROYvkfWMbwEeO0hiXHzBcztQwizxmkWG/cHOUvWUeUNW6qo6p6oyqfllVP6Cqf6Kqb1DVv1bVI63ww4OYDBdFMswij1lk2C/c8KSmREQFxPXcA+Fa1YZZ5DGLDPuFG6+De2y7WoXU7/dDlxANZpHHLDLsF268Du58sEx2sAIxiysxiwz7hRvOuRMRFRDn3APJDi8mZnGlRugCosF+4Yav3ImICsjr4L6zs+Ozuai5LAhUNMwirx26gGiwX7jhK3ciogLyOriXy2WfzUVtdnY2dAnRYBZ5zCLDfuHG6+CeLNFKAP/R5TGLPGaRYb9wwzn3QLITCRCzuBKzyLBfuOGcOxFRAXkd3LPTylFy6i9KMIs8ZpFhv3DjdXAvlUo+m4tapVIJXUI0mEUes8iwX7jxOrhvb2/7bC5q2cl6iVlciVlk2C/ccM6diKiAOOceyPT0dOgSosEs8phFhv3CDefcA6lWq6FLiAazyGMWGfYLN5xzD2RpaSl0CdFgFnnMIsN+4YZz7kREBeR1cD958qTP5qLGt5yGWeQxiwz7hRt+oBpIrVYLXUI0mEUes8iwX7jhnHsgy8vLoUuIBrPIYxYZ9gs3Xgd3VfXZXNQGg0HoEqLBLPKYRYb9wg13hQxkamoqdAnRYBZ5zCLDfuGGc+6BcFEkwyzymEWG/cIN13MPhGtVG2aRxywy7BduOOceSL/fD11CNJhFHrPIsF+44Zx7IFzO1DCLPGaRYb9wwzn3QGZmZkKXEA1mkccsMuwXbrwO7nybZdrtdugSosEs8tqhC4gG+4Ubr4P7/v6+z+aitrW1FbqEaDCLPGaRYb9w43VwP3GC65RlJicnQ5cQDWaRxywy7BduvI625XLZZ3NRazQaoUuIBrPIa4QuIBrsF24OHdxF5Csisi4iz+aue62IPCoiL6TfTx2lsd3dXZdaC2VtbS10CdFgFnnMIsN+4eYor9y/CuAdV133SQA/VNXXA/hhevlQXCvC9Hq90CVEg1nkMYsM+4WbQwd3VX0MwCtXXX0fgIfTnx8GcP9RGhORoYorMk5RGWaRxywy7BduRj17Rk1VOwCgqh0Rue6ZbEXkHIBzAHDHHXeg2+1iY2MD6+vrAIC5uTn0ej10Oh0AQLPZRL/fx4ULFwDYvFu2W9Ts7CzK5fLBocn1eh2VSgUrKysAkpPqVqvVg1N0VatV1Go1LC8vYzAYYGpqCvV6Haurq+j3+6hUKpiZmUG73cbW1hYmJyfRaDSwtraGXq+HcrmMZrOJTqeDzc1NlEoltFqtg+0AgPn5+aG3aWxsDAsLC4XaplEfp1deeQXPPPPM0NuUOI/k1W4ZQBNAB8AmgBKAFoAugI30tvPpz+vp5bn0vp30chPJEaIX0suN9Hs7/b6atpMdFl9HctDRSnp5GsnJNrLTw1WRrM++jGS1x6n0PqtpOxUk+7W3kewlMwng99JtAoDHPWzTLLJ/KAsLC1H1vUuXLmFhYeHYjhH5bRqFHGVJABFpAPieqt6VXt5U1anc7y+r6qHz7mfOnNHnn39+5GKLZHFxEWfPng1dRhRGzSJ5J+hrSQtfbS0COOuxvYxEtzwInyNGRM6r6j3D3GfUvWW6IlJPG63DXjbcEOfczebmZugSosEs8phFhv3CzaiD+3cBPJj+/CCA7xzlTpxzN1xnxzCLPGaRYb9wc5RdIb8B4P8AtERkTUQ+DODzAN4mIi8AeFt6+VATExMutRZKq9UKXUI0mEUes8iwX7g59ANVVX3gOr9667CNcT930+12MT193c+hjxVmkddF8sEssV+48XqE6t7ens/mopZ9ik7M4krMIsN+4YaLvRARFZDXwZ1z7mZ+fj50CdFgFnnMIsN+4cbr4M5dIU0R33KePt2AiAz9dfr06ZHuV0yh+sX4SI/BaI9340gVFfE54pPXwZ0fqJrsSLUi6XZfRHLgzbBfPxrxfkUUql/sYLTHYPivpJ8crojPEZ84505EVECccw9kbm4udAkRYRaGWWT4HHHDOfdAuJxpHrMwzCLD54gbzrkHkq0GR4CtYEjMwvA54oZz7kREBeR1cB8fH/fZXNSazWboEiLCLAyzyPA54mbUk3WMJLb1okPq9/uhS4gIszDHIYtxr8cp1Gp/iEuX2t7ai4XXV+4c0Ex2xhUC7CxBdDyyOOo+9aMe/zDafvVFwzl3IqIC4px7INk5Egmw83oSs8hrhC7gtsZX7kREBeR1cN/Z2fHZXNRczmpePO3QBUSkHbqAiLRDF3Bb4yt3IqIC8jq4l8tln81FbXZ2NnQJEWEWhlkYZuHC6+Be3DW4h8d/dHnMwjALwyxccM49kNXV1dAlRIRZGGZhmIULzrkTERWQ18F9bGzMZ3NRq9froUuICLMwzMIwCxdeB/dSqeSzuahVKpXQJUSEWRhmYZiFC6+D+/b2ts/morayshK6hIgwC8MsDLNwwTl3IqIC4px7INPT06FLiAizMMzCMAsXnHMPpFqthi4hIszCMAvDLFxwzj2QpaWl0CVEhFkYZmGYhQvOuRMRFZDXwf3kSa9n9Ysap2XymIVhFoZZuOAHqoHUarXQJUSEWRhmYZiFC865B7K8vBy6hIgwC8MsDLNw4XVwV1WfzUVtMBiELiEizMIwC8MsXDhNgotIG0APyaOwp6r33Oj23BXSTE1NhS4hIszCMAvDLFzcjE84/0pVXz7KDTnnbrhwWB6zMMzCMAsXXM89EK7nnscsDLMwzMKF6yt3BfADEVEA/66qD119AxE5B+AcAJw6dQrdbhcbGxtYX18HAMzNzaHX66HT6QAAms0m+v0+Lly4AABoNBoA7ITSs7OzKJfLB4NjvV5HpVI5WIhrenoa1Wr14CCharWKWq2G5eVlDAYDTE1NoV6vY3V1Ff1+H5VKBTMzM2i329ja2sLk5CQajQbW1tbQ6/VQLpfRbDbR6XSwubmJUqmEVqt1sB0AMD8/P/Q2vfTSS+j3+7d8m975zvtw+XLX6UEezkL6fRbJmXSyJ2gdySp/2WJQ00h2dVsCsJj+robkQ7QBkrfk9fT+/fT3M0hOmrwFYDL9O+eRzAyWATQBdABsAigBaAHoAthIbzuf/ryeXp5L79tJLzfTti6klxvp93b6fXWIbUL687DbdCndJgB43MM2ZY8TkDx2t2KbGgDWYI8TkDzmh23TE+nfHHWb7J/DxYsXb7sxArBxbxTi8iGniNypqhdFZBrAowD+VlUfu97tz5w5o88///zI7RXJ+fPncffdd9/ydpJTG/r6IHvUts4DGCWL22HbhpVl4XPb4Lm9o7Y1ar/43fZu9505ROT8YZ9pXs1pWkZVL6bf1wF8G8Cbb3R7zrmbmZmZ0CVEhFkYZmGYhYuRB3cRebWIVLKfAbwdwLM3uk82DUFub7eKpx26gIi0QxcQkXboAm5rLnPuNQDfTt724ySAr6vqf9/oDvv7+w7NFcvW1lboEiLCLAyzMMzCxciDu6r+EsAbh7nPiRNcpywzOTl5+I2ODWZhmIVhFi68jrblcvnwGx0T2afhBNjeDsQs8hqhC7iteR3cd3d3fTYXtbW1tdAlRIRZGGZhmIULr4M711MxvV4vdAkRYRaGWRhm4cLr4J5++BqV06cbEBFvX6dPNwBwiupKzMIwC3Ozshj3/vyOgdezZ4yPj/ts7ki63Rfh82CRbjf5B9dsNr21GT9mYZiFuVlZ7MDXczx7fseAc+6BZIcdE2CHlROzyGMWLjjnHsjm5mboEiLCLAyzMMzCxbGfcw+Fa9vnMQvDLAyzcOF1cJ+YmPDZXNRarVboEiLCLAyzMMzCBefcA+l2fS7DGztmYZiFYRYuvA7ue3t7PpuLWrbOMwG2jjcxizxm4YKLvRARFZDX/dw55w5kB1RQ3nzoAiLCLAyzcMFdIb3LDqh4Lv1+q79uB3z7bZiFYRYu+IFqMOuH3+TYYBaGWRhm4YJz7kREBcT93IOZC11ARJiFYRaGWbjgnHswXM7UMAvDLAyzcME592C4KJJhFoZZGGbhgnPuREQF5HVwj3E993C4brdhFoZZGGbhwuvgrnq77HftQz90ARFhFoZZGGbhwuvg3u/zwTIXQhcQEWZhmIVhFi44505EVECccw+mEbqAiDRCFxCRRugCItIIXcBtja/ciYgKyOvgvrOz47O5yLVDFxCRdugCItIOXUBE2qELuK3xlTsRUQF5HdzL5bLP5iI3G7qAiDALwywMs3DhdXDnSSry+I/OMAvDLAyzcME592BWQxcQEWZhmIVhFi44505EVEBeB/exsTGfzUWuHrqAiDALwywMs3DhdXAvlUo+m4tcJXQBEWEWhlkYZuHC6+C+vb3ts7nIrYQuICLMwjALwyxcOA3uIvIOEVkWkV+IyCdvVlFERORm5MFdREoA/hXAOwGcAfCAiJy50X045543HbqAiDALwywMs3Dh8sr9zQB+oaq/VNU+gP8EcN+N7sA597xq6AIiwiwMszDMwsVJh/u+DlcuuLwG4M+uvpGInANwLr24IyLPOrR5i/g+uEoA4A4AL3tsz5OR2nLIIvptG1YuiyD9Mqa2buJzxN+23aKDNVvD3sFlcL/WFvzOqZZU9SEADwGAiDypqvc4tFkYzMIwC8MsDLMwIvLksPdxmZZZw5WLP8wAuOjw94iI6CZxGdx/BuD1IvJHIlIG8H4A3705ZRERkYuRp2VUdU9EPgbgfwCUAHxFVZ875G4PjdpeATELwywMszDMwgydhaj+zjQ5ERHd5rhwGBFRAXFwJyIqIC+DO5cpuJKItEXkGRFZHGUXp9uZiHxFRNbzxzuIyGtF5FEReSH9fipkjb5cJ4vPiMiv0r6xKCLvClmjDyIyKyI/EpElEXlORD6eXn/s+sUNshi6X9zyOfd0mYIVAG9DsvvkzwA8oKrP39KGIyYibQD3qKqng5jiISJ/CeA3AP5DVe9Kr/tHAK+o6ufTf/6nVPUfQtbpw3Wy+AyA36jqF0LW5pOI1AHUVfUpEakAOA/gfgAfxDHrFzfI4n0Ysl/4eOU+9DIFVFyq+hiAV666+j4AD6c/P4ykMxfedbI4dlS1o6pPpT/3ACwhOQL+2PWLG2QxNB+D+7WWKRip2AJRAD8QkfPp8gzHXU1VO0DSucEVoz4mIk+n0zaFn4rIE5EGgDcB+CmOeb+4KgtgyH7hY3A/0jIFx8xbVPVPkayo+dH07TkRAPwbgCaAswA6AP4pbDn+iMhrAHwLwN+p6q9D1xPSNbIYul/4GNy5TMFVVPVi+n0dwLeRTF0dZ910rjGbc1wPXE8wqtpV1YGq7gP4Eo5J3xCRMSSD2ddU9ZH06mPZL66VxSj9wsfgzmUKckTk1ekHJRCRVwN4O4AIV8r06rsAHkx/fhDAdwLWElQ2mKXejWPQNyRZRvHLAJZU9Yu5Xx27fnG9LEbpF16OUE132/kX2DIFn7vljUZKRP4Yyat1IFn+4evHKQ8R+QaAe5Es59oF8GkA/wXgmwD+AMBLAN6rqoX/oPE6WdyL5K23AmgD+Eg271xUIvIXAP4XwDMA9tOrP4VkrvlY9YsbZPEAhuwXXH6AiKiAeIQqEVEBcXAnIiogDu5ERAXEwZ2IqIA4uBMRFRAHdyKiAuLgTkRUQP8PtKLLelomFIQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "data = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", + "\n", + "fig = plt.figure()\n", + "plt.hist(data, color='b', edgecolor='k')\n", + "plt.xlim(0, 25)\n", + "plt.ylim(0, 25)\n", + "plt.grid(visible=True, which='major', color='k', ls='dotted', lw=0.5)" + ] } ], "metadata": { -- 2.18.1