diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 904ae884542f5a6fce5217aa9cff5b05b2243f49..f3f7cce5a4b6d43c9a81643d2a7ee22aa3652ebe 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -38,7 +38,7 @@ "metadata": {}, "source": [ "## Buffon's needle\n", - "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { @@ -71,7 +71,7 @@ "metadata": {}, "source": [ "## Using a surface fraction argument\n", - "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2 \\le 1]=\\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { @@ -100,12 +100,13 @@ "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", + "\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", "\n", "fig, ax = plt.subplots(1)\n", - "ax.scatter(x[accept], y [accept], c='b', alpha=0.2, edgecolor=None)\n", - "ax.scatter(x[reject], y [reject], c='r', alpha=0.2, edgecolor=None)\n", + "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", + "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')" ] }, @@ -113,7 +114,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2+Y^2$ is smaller than 1:" + "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" ] }, {