diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index edd1f0e68fde4fb9d06e52f910f42d018801402e..904ae884542f5a6fce5217aa9cff5b05b2243f49 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -12,12 +12,12 @@ "metadata": {}, "source": [ "## Asking the maths library\n", - "My computer tells me that $\\pi$ is *approximately*" + "My computer tells me that $\\pi$ is *approximatively*" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -52,7 +52,7 @@ "3.128911138923655" ] }, - "execution_count": 4, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -71,12 +71,12 @@ "metadata": {}, "source": [ "## Using a surface fraction argument\n", - "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim\\mathcal{U}(0,1)$ and $Y\\sim\\mathcal{U}(0,1)$, then $P[X^2+Y^2 \\le 1]=pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2 \\le 1]=\\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -118,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -127,7 +127,7 @@ "3.112" ] }, - "execution_count": 5, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }