maj

parent 64f692f5
......@@ -23,7 +23,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
......@@ -36,7 +36,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 2,
"metadata": {},
"outputs": [
{
......@@ -45,7 +45,7 @@
"'/home/jovyan/work/module3/exo3'"
]
},
"execution_count": 17,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
......@@ -56,7 +56,7 @@
},
{
"cell_type": "code",
"execution_count": 37,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
......@@ -65,7 +65,7 @@
},
{
"cell_type": "code",
"execution_count": 38,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
......@@ -74,7 +74,7 @@
},
{
"cell_type": "code",
"execution_count": 39,
"execution_count": 5,
"metadata": {},
"outputs": [
{
......@@ -83,7 +83,7 @@
"<_io.TextIOWrapper name='moliere_avare.txt' mode='r' encoding='UTF-8'>"
]
},
"execution_count": 39,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
......@@ -94,7 +94,7 @@
},
{
"cell_type": "code",
"execution_count": 40,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
......@@ -103,7 +103,7 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
......@@ -114,7 +114,7 @@
},
{
"cell_type": "code",
"execution_count": 47,
"execution_count": 8,
"metadata": {},
"outputs": [
{
......@@ -123,7 +123,7 @@
"'# ACTEURS.\\n'"
]
},
"execution_count": 47,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
......@@ -134,7 +134,7 @@
},
{
"cell_type": "code",
"execution_count": 61,
"execution_count": 9,
"metadata": {},
"outputs": [
{
......@@ -179,7 +179,7 @@
},
{
"cell_type": "code",
"execution_count": 134,
"execution_count": 22,
"metadata": {},
"outputs": [
{
......@@ -222,28 +222,37 @@
},
{
"cell_type": "code",
"execution_count": 137,
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"dico_acte = {}\n",
"acte_courant = 0\n",
"for k in range(34,len(lignes)) :\n",
" l = lignes[k]\n",
" if l[:3] == '###' :\n",
" scène_courante += 1\n",
" dico_scènes[scène_courante]= {}\n",
" for perso in persos :\n",
" dico_scènes[scène_courante][perso] = 0\n",
" elif l[:2] == '##' :\n",
" if acte_courant >= 1 :\n",
" dico_acte[acte_courant] = dico_scènes\n",
" scène_courante = 0\n",
" acte_courant += 1\n",
" dico_scènes = {}\n",
" if l in persos :\n",
" Nombre_repliques[l] += 1\n",
" Nombre_mots[l] += len(l.split()) #problème ponctuation\n",
" dico_scènes[scène_courante][l] += 1\n",
" Nombre_mots[l] += len(lignes[k+1].split()) #problème ponctuation\n",
" if not (acte_courant in Nombre_actes[l]) :\n",
" Nombre_actes[l].append(acte_courant)"
" Nombre_actes[l].append(acte_courant)\n",
"dico_acte[acte_courant] = dico_scènes"
]
},
{
"cell_type": "code",
"execution_count": 138,
"execution_count": 51,
"metadata": {},
"outputs": [
{
......@@ -265,7 +274,7 @@
" ' LE COMMISSAIRE.\\n': [5]}"
]
},
"execution_count": 138,
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
......@@ -274,6 +283,703 @@
"Nombre_actes"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 193,\n",
" ' LA MERLUCHE.\\n': 255,\n",
" ' MAÎTRE SIMON.\\n': 940,\n",
" ' LE COMMISSAIRE.\\n': 1439,\n",
" ' ANSELME.\\n': 2460,\n",
" ' MARIANE.\\n': 4297,\n",
" ' ÉLISE.\\n': 4515,\n",
" ' MAÎTRE JACQUES.\\n': 6871,\n",
" ' LA FLÈCHE.\\n': 7223,\n",
" ' FROSINE.\\n': 10224,\n",
" ' VALÈRE.\\n': 12759,\n",
" ' CLÉANTE.\\n': 16020,\n",
" ' HARPAGON.\\n': 26239}"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dict(sorted(Nombre_mots.items(), key=lambda item:item[1]))"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 18,\n",
" ' MAÎTRE SIMON.\\n': 30,\n",
" ' LA MERLUCHE.\\n': 30,\n",
" ' LE COMMISSAIRE.\\n': 102,\n",
" ' ANSELME.\\n': 120,\n",
" ' MARIANE.\\n': 162,\n",
" ' ÉLISE.\\n': 300,\n",
" ' FROSINE.\\n': 354,\n",
" ' LA FLÈCHE.\\n': 384,\n",
" ' MAÎTRE JACQUES.\\n': 498,\n",
" ' VALÈRE.\\n': 594,\n",
" ' CLÉANTE.\\n': 960,\n",
" ' HARPAGON.\\n': 2064}"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dict(sorted(Nombre_repliques.items(), key=lambda item:item[1]))"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{1: {1: {' HARPAGON.\\n': 0,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 8,\n",
" ' VALÈRE.\\n': 8,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 2: {' HARPAGON.\\n': 0,\n",
" ' CLÉANTE.\\n': 10,\n",
" ' ÉLISE.\\n': 9,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 3: {' HARPAGON.\\n': 34,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 32,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 4: {' HARPAGON.\\n': 53,\n",
" ' CLÉANTE.\\n': 29,\n",
" ' ÉLISE.\\n': 23,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 5: {' HARPAGON.\\n': 20,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 4,\n",
" ' VALÈRE.\\n': 22,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0}},\n",
" 2: {1: {' HARPAGON.\\n': 0,\n",
" ' CLÉANTE.\\n': 21,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 20,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 2: {' HARPAGON.\\n': 9,\n",
" ' CLÉANTE.\\n': 6,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 5,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 1,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 3: {' HARPAGON.\\n': 1,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 1,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 4: {' HARPAGON.\\n': 0,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 5,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 6,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 5: {' HARPAGON.\\n': 35,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 35,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0}},\n",
" 3: {1: {' HARPAGON.\\n': 34,\n",
" ' CLÉANTE.\\n': 3,\n",
" ' ÉLISE.\\n': 1,\n",
" ' VALÈRE.\\n': 11,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 27,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 1,\n",
" ' LA MERLUCHE.\\n': 2,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 2: {' HARPAGON.\\n': 0,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 11,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 11,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 3: {' HARPAGON.\\n': 0,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 2,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 1,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 4: {' HARPAGON.\\n': 0,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 6,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 5,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 5: {' HARPAGON.\\n': 2,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 1,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 6: {' HARPAGON.\\n': 6,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 1,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 1,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 1,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 7: {' HARPAGON.\\n': 9,\n",
" ' CLÉANTE.\\n': 20,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 10,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 2,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 8: {' HARPAGON.\\n': 2,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 2,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 9: {' HARPAGON.\\n': 6,\n",
" ' CLÉANTE.\\n': 2,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 2,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 3,\n",
" ' LE COMMISSAIRE.\\n': 0}},\n",
" 4: {1: {' HARPAGON.\\n': 0,\n",
" ' CLÉANTE.\\n': 10,\n",
" ' ÉLISE.\\n': 2,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 6,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 6,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 2: {' HARPAGON.\\n': 3,\n",
" ' CLÉANTE.\\n': 1,\n",
" ' ÉLISE.\\n': 1,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 3: {' HARPAGON.\\n': 23,\n",
" ' CLÉANTE.\\n': 22,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 4: {' HARPAGON.\\n': 8,\n",
" ' CLÉANTE.\\n': 8,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 17,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 5: {' HARPAGON.\\n': 18,\n",
" ' CLÉANTE.\\n': 19,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 6: {' HARPAGON.\\n': 0,\n",
" ' CLÉANTE.\\n': 5,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 5,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 7: {' HARPAGON.\\n': 1,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0}},\n",
" 5: {1: {' HARPAGON.\\n': 6,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 0,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 7},\n",
" 2: {' HARPAGON.\\n': 19,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 22,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 8},\n",
" 3: {' HARPAGON.\\n': 30,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 30,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 2,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 4: {' HARPAGON.\\n': 4,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 1,\n",
" ' VALÈRE.\\n': 1,\n",
" ' MARIANE.\\n': 0,\n",
" ' ANSELME.\\n': 0,\n",
" ' FROSINE.\\n': 1,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 1,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 5: {' HARPAGON.\\n': 11,\n",
" ' CLÉANTE.\\n': 0,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 14,\n",
" ' MARIANE.\\n': 3,\n",
" ' ANSELME.\\n': 14,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 1,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 0},\n",
" 6: {' HARPAGON.\\n': 10,\n",
" ' CLÉANTE.\\n': 4,\n",
" ' ÉLISE.\\n': 0,\n",
" ' VALÈRE.\\n': 0,\n",
" ' MARIANE.\\n': 1,\n",
" ' ANSELME.\\n': 6,\n",
" ' FROSINE.\\n': 0,\n",
" ' MAÎTRE SIMON.\\n': 0,\n",
" ' MAÎTRE JACQUES.\\n': 1,\n",
" ' LA FLÈCHE.\\n': 0,\n",
" ' DAME CLAUDE.\\n': 0,\n",
" ' BRINDAVOINE.\\n': 0,\n",
" ' LA MERLUCHE.\\n': 0,\n",
" ' LE COMMISSAIRE.\\n': 2}}}"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dico_acte"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"scrolled": true
},
"outputs": [
{
"ename": "ValueError",
"evalue": "shape mismatch: objects cannot be broadcast to a single shape",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-64-6d44178c73cd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;31m# Création du diagramme en bâtons (bâtons côte à côte)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mpos\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpos\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'lightsteelblue'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpos\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'IndianRed'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxticks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpos\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Scène \"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mscene\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mbar\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 2773\u001b[0m mplDeprecation)\n\u001b[1;32m 2774\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2775\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2776\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2777\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1865\u001b[0m \u001b[0;34m\"the Matplotlib list!)\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlabel_namer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1866\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1867\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1868\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1869\u001b[0m inner.__doc__ = _add_data_doc(inner.__doc__,\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mbar\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2236\u001b[0m x, height, width, y, linewidth = np.broadcast_arrays(\n\u001b[1;32m 2237\u001b[0m \u001b[0;31m# Make args iterable too.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2238\u001b[0;31m np.atleast_1d(x), height, width, y, linewidth)\n\u001b[0m\u001b[1;32m 2239\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2240\u001b[0m \u001b[0;31m# Now that units have been converted, set the tick locations.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/numpy/lib/stride_tricks.py\u001b[0m in \u001b[0;36mbroadcast_arrays\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 250\u001b[0m \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_m\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msubok\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msubok\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_m\u001b[0m \u001b[0;32min\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 252\u001b[0;31m \u001b[0mshape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_broadcast_shape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 253\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mshape\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0marray\u001b[0m \u001b[0;32min\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/numpy/lib/stride_tricks.py\u001b[0m in \u001b[0;36m_broadcast_shape\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;31m# use the old-iterator because np.nditer does not handle size 0 arrays\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0;31m# consistently\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 187\u001b[0;31m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbroadcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 188\u001b[0m \u001b[0;31m# unfortunately, it cannot handle 32 or more arguments directly\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mpos\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m31\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: shape mismatch: objects cannot be broadcast to a single shape"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADgVJREFUeJzt3X+IZfV9h/HnnV2Ntoa6dkfZqriNSIgJOJphq7WVVJN2DaVqwVBbdCXSFRrBQEqxFhr7h20K/qC0wbCidTHGRBJFCbbRLjHW1NqMdv3FRrSpGs3Gna21Km0tu376xxzJoDPeO/fH3p2vzwsu995zzp3zWRiePXvuuXdTVUiSVr73TXoASdJoGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHQ1Icl9Sf4zyfv73H59kkqyeoh9bknyVJI3k1w46M+RRsWga8VLsh74VaCA39qHu34U+APgkX24T2lJBl0tuAD4Z+AmYNPCFUkOTnJ1kueS/FeSB5IcDNzfbfJKkteTnNJt/5kkO7qj/W8nOWapnVbVl6pqG/C/Y/lTSctk0NWCC4BbuttvJDliwbqrgI8BvwwcBvwR8CZwWrf+0Ko6pKoeTHI2cDnw28AU8I/ArfvmjyANz6BrRUvyK8AxwG1V9TDwb8DvduveB3wGuLSqXqyqvVX1T1X1xhI/7mLgL6pqR1XtAf4cmH63o3Rpf2LQtdJtAu6pqt3d86/y09Mua4GDmI98P44B/irJK0leAV4GAhw5wnmlsRn4HX5p0rpz4Z8GViX5Sbf4/cChSU4AHmf+/PaxzL+BudBiXzP6I+DKqrplTCNLY+URulays4G9wPHAdHf7MPPnvi+oqjeBG4FrkvxCklVJTukubZxj/lz6Bxf8vC8Df5zkIwBJfi7JuUvtPMmBSQ5i/ij+gCQHdad5pInwl08r2Sbgb6vq+ar6yVs34G+A3+uuMf9D5o/Uv8/8KZS/BN5XVf8NXAl8rzvFcnJV3dGt/1qSV4EngDPfZf/3AP/D/BuuW7rHp73L9tJYxf/gQpLa4BG6JDXCoEtSIwy6JDXCoEtSI/bpdehr166t9evX78tdStKK9/DDD++uqqle2/UMened7f3Mf2BjNfCNqvpCkiuA32f+el6Ay6vq7nf7WevXr2d2drbXLiVJCyR5rp/t+jlCfwM4vapeT3IA8ECSv+vWXVtVVw06pCRpdHoGveYvVH+9e3pAd/PidUnaz/T1pmj3kentwC7g3qp6qFt1SZLHktyYZM3YppQk9dRX0LuvHZ0GjgI2JPkocB3zX3o0DewErl7stUk2J5lNMjs3N7fYJpKkEVjWZYtV9QpwH7Cxql7qQv8mcD2wYYnXbKmqmaqamZrq+SatJGlAPYOeZCrJod3jg4FPAD9Ism7BZucw/0VGkqQJ6ecql3XA1iSrmP8L4Laq+laSm5NMM/8G6bPM/28vkqQJ6ecql8eAExdZfv5YJpIkDcSP/ktSI1bMf0F35/f+fdIjTMzRX/7TSY8wESfdfPOkR5BWFI/QJakRBl2SGmHQJakRBl2SGmHQJakRBl2SGmHQJakRBl2SGmHQJakRBl2SGmHQJakRK+a7XKRW+L1E70374ruJPEKXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqRM+gJzkoyb8keTTJk0n+rFt+WJJ7kzzd3a8Z/7iSpKX0c4T+BnB6VZ0ATAMbk5wMXAZsq6rjgG3dc0nShPQMes17vXt6QHcr4Cxga7d8K3D2WCaUJPWlr3PoSVYl2Q7sAu6tqoeAI6pqJ0B3f/gSr92cZDbJ7Nzc3KjmliS9TV9Br6q9VTUNHAVsSPLRfndQVVuqaqaqZqampgadU5LUw7KucqmqV4D7gI3AS0nWAXT3u0Y+nSSpb/1c5TKV5NDu8cHAJ4AfAHcBm7rNNgF3jmtISVJv/Xwf+jpga5JVzP8FcFtVfSvJg8BtSS4CngfOHeOckqQeega9qh4DTlxk+X8AZ4xjKEnS8vlJUUlqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqRM+gJzk6yXeS7EjyZJJLu+VXJHkxyfbu9qnxjytJWsrqPrbZA3y+qh5J8gHg4ST3duuuraqrxjeeJKlfPYNeVTuBnd3j15LsAI4c92CSpOVZ1jn0JOuBE4GHukWXJHksyY1J1ox4NknSMvQd9CSHAN8EPldVrwLXAccC08wfwV+9xOs2J5lNMjs3NzeCkSVJi+kr6EkOYD7mt1TV7QBV9VJV7a2qN4HrgQ2LvbaqtlTVTFXNTE1NjWpuSdLb9HOVS4AbgB1Vdc2C5esWbHYO8MTox5Mk9aufq1xOBc4HHk+yvVt2OXBekmmggGeBi8cyoSSpL/1c5fIAkEVW3T36cSRJg/KTopLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY3oGfQkRyf5TpIdSZ5Mcmm3/LAk9yZ5urtfM/5xJUlL6ecIfQ/w+ar6MHAy8NkkxwOXAduq6jhgW/dckjQhPYNeVTur6pHu8WvADuBI4Cxga7fZVuDscQ0pSeptWefQk6wHTgQeAo6oqp0wH33g8CVesznJbJLZubm54aaVJC2p76AnOQT4JvC5qnq139dV1ZaqmqmqmampqUFmlCT1oa+gJzmA+ZjfUlW3d4tfSrKuW78O2DWeESVJ/ejnKpcANwA7quqaBavuAjZ1jzcBd45+PElSv1b3sc2pwPnA40m2d8suB74I3JbkIuB54NzxjChJ6kfPoFfVA0CWWH3GaMeRJA3KT4pKUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiN6Bj3JjUl2JXliwbIrkryYZHt3+9R4x5Qk9dLPEfpNwMZFll9bVdPd7e7RjiVJWq6eQa+q+4GX98EskqQhDHMO/ZIkj3WnZNYstVGSzUlmk8zOzc0NsTtJ0rsZNOjXAccC08BO4OqlNqyqLVU1U1UzU1NTA+5OktTLQEGvqpeqam9VvQlcD2wY7ViSpOUaKOhJ1i14eg7wxFLbSpL2jdW9NkhyK/BxYG2SF4AvAB9PMg0U8Cxw8RhnlCT1oWfQq+q8RRbfMIZZJElD8JOiktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjegZ9CQ3JtmV5IkFyw5Lcm+Sp7v7NeMdU5LUSz9H6DcBG9+27DJgW1UdB2zrnkuSJqhn0KvqfuDlty0+C9jaPd4KnD3iuSRJyzToOfQjqmonQHd/+FIbJtmcZDbJ7Nzc3IC7kyT1MvY3RatqS1XNVNXM1NTUuHcnSe9Zgwb9pSTrALr7XaMbSZI0iEGDfhewqXu8CbhzNONIkgbVz2WLtwIPAh9K8kKSi4AvAp9M8jTwye65JGmCVvfaoKrOW2LVGSOeRZI0BD8pKkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNWD3Mi5M8C7wG7AX2VNXMKIaSJC3fUEHv/FpV7R7Bz5EkDcFTLpLUiGGDXsA9SR5OsnmxDZJsTjKbZHZubm7I3UmSljJs0E+tqpOAM4HPJjnt7RtU1ZaqmqmqmampqSF3J0laylBBr6ofd/e7gDuADaMYSpK0fAMHPcnPJvnAW4+BXweeGNVgkqTlGeYqlyOAO5K89XO+WlV/P5KpJEnLNnDQq+qHwAkjnEWSNAQvW5SkRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWrEUEFPsjHJU0meSXLZqIaSJC3fwEFPsgr4EnAmcDxwXpLjRzWYJGl5hjlC3wA8U1U/rKr/A74GnDWasSRJy7V6iNceCfxowfMXgF96+0ZJNgObu6evJ3lqiH2+V60Fdk96iH3uK1+Z9AQavffm7zIM+/t8TD8bDRP0LLKs3rGgaguwZYj9vOclma2qmUnPIQ3L3+XxGuaUywvA0QueHwX8eLhxJEmDGibo3weOS/KLSQ4Efge4azRjSZKWa+BTLlW1J8klwLeBVcCNVfXkyCbTQp6yUiv8XR6jVL3jtLckaQXyk6KS1AiDLkmNMOj7sSR/kuTJJI8l2Z7kHdf5S9JbhrkOXWOU5BTgN4GTquqNJGuBAyc8lqT9mEfo+691wO6qegOgqnZXldf5a8VKckH3r81Hk9w86Xla5FUu+6kkhwAPAD8D/APw9ar67mSnkgaT5CPA7cCpVbU7yWFV9fKk52qNR+j7qap6HfgY89+DMwd8PcmFEx1KGtzpwDeqajeAMR8Pz6Hvx6pqL3AfcF+Sx4FNwE2TnEkaUFjku540Wh6h76eSfCjJcQsWTQPPTWoeaUjbgE8n+XmAJIdNeJ4meYS+/zoE+OskhwJ7gGf46dcQSytKVT2Z5Ergu0n2Av8KXDjZqdrjm6KS1AhPuUhSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSI/4fr0NJV9P+00kAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"for acte in range(1,6) :\n",
" plt.figure()\n",
" for scene in range(1,len(dico_acte[acte])+1) :\n",
" x = np.zeros()\n",
" labels = []\n",
" for perso in persos :\n",
" if dico_acte[acte][scene][perso] != 0 :\n",
" x.append(dico_acte[acte][scene][perso])\n",
" labels.append(perso)\n",
" plt.title('Acte ' + str(acte))\n",
" #plt.bar(labels,x)\n",
" width = 0.35 # épaisseur de chaque bâton\n",
"\n",
" # Création du diagramme en bâtons (bâtons côte à côte)\n",
" pos = np.arange(2)\n",
" plt.bar(pos - width/2, x, width, color='lightsteelblue')\n",
" plt.bar(pos + width/2,x, width, color='IndianRed')\n",
" plt.xticks(pos, \"Scène \"+str(scene))"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEICAYAAACnL3iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFaVJREFUeJzt3X+wnNV93/H3ByEFCiqKKxILQxAqlDEwFSAJWwWMMBrq1BTTVimtm0GMmZFonRgmeBhs9cckGdqJaV2KYtdVKY1nim25tG5dPEVQGpEQsKV7FYGQEZg2xiYogOoQBVBEkL79Yx+Sa410V0fs1UrL+zVzR3ef5zzn+Z4rtB/OObt7U1VIktTimGEXIEk6+hgekqRmhockqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SE1SrI+yR8m+YmDbD83SSU59h3cc02SZ5LsTXL9ofYjDYrhITVIMhe4FCjg6sN46yeAfwRsOoz3lA7I8JDaXAd8G/gNYPnEE0mOT/Kvkjyf5I+SPJrkeOC3uiavJnktyeKu/SeSPN3NYtYlOf1AN62qL1TVw8CfTMmopEaGh9TmOuDe7uuvJ/npCef+JbAA+GvAe4Bbgb3Ah7rzs6rqxKp6PMk1wGeBvw2cDPw28NXDMwTpnTM8pIOU5BLgdODrVTUO/B/g4925Y4BPADdV1e9X1Z6qeqyqdh+gu5XAv6iqp6vqLeCfA+dPNvuQjiSGh3TwlgMPVtWO7vFX+POlq9nAcfQC5WCcDvybJK8meRX4ERDgfQOsV5oyh/zqD+ndpNu7+LvAtCR/0B3+CWBWkvnAFnr7EX+Z3ub2RPv76OofArdX1b1TVLI0pZx5SAfnGmAPcA5wfvf1fnp7FddV1V7gHuDzSU5JMi3J4u7lvK/Q2/uYN6G/LwGfSXIuQJKTkvzcgW6eZEaS4+jNTqYnOa5bKpOGwv/4pIOzHPiPVfWDqvqDt7+AXwf+Qfcejk/Tm4FspLcM9WvAMVX1BnA78DvdMtUHq+ob3fmvJdkJPAX87CT3fxDYRW8zfk33/YcmaS9NqfjLoCRJrZx5SJKaGR6SpGaGhySpmeEhSWo2su/zmD17ds2dO3fYZUjSUWV8fHxHVZ3cr93IhsfcuXMZGxsbdhmSdFRJ8vzBtHPZSpLUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSs5F9k+DuXbv4vSeeGnYZOkKcMf+8YZcgjRRnHpKkZoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySp2ci+VPeH393LL17wxpT1f//ei6asb0k60jnzkCQ1MzwkSc0MD0lSM8NDktTM8JAkNRt4eCS5Msn8QfcrSTpypKomb5CsAj4O7AH2Aiur6juTtP8LwJeAX6mq5wZSZHI9cAfw+92hX6+quye75tSTFtSnLnl8ELfXEejWb80YdgnSSEoyXlUL+7Wb9H0eSRYDVwEXVtXuJLOBSf/VVtUbwHUtxR6ktVX1C1PQrySpUb9lqznAjqraDVBVO6rqRYAki5I8luSJJBuSzEwyLckdSTYm2ZJkZdd2SZL1Se5Lsi3JvUnSnVuQ5JEk40nWJZkzlQOWJL1z/cLjQeC0JM8m+WKSywCSzADWAjdV1XxgKbALuAHYWVWLgEXAyiTzur4uAG4GzgHmARcnmQ6sBpZV1QLgHuD2A9Tyd5I82QXQaftrkGRFkrEkY6+/uePgfgKSpGaTLltV1WtJFgCXApcDa5PcBowD26tqY9duJ/Q2y4EzklzRdTGDXlC8BWyoqhe6dpuBucCrwHnAQ91EZBqwfT+l/A/gq93S2Y3Al4EP76feNcAa6O15HOTPQJLUqO9nW1XVHmA9sD7JFmA5sAnY35NzgFVV9cCPHUyWALsnHNrT3TvA1qpa3KeG/zfh4b8Hfq1f3ZKkqTPpslWSs5OcNeHQ+cDzwDbglCSLunYzkxwLrANu7Jaj3r7+hElu8QxwcrcxT5LpSc7dTx0T90GuBp7uPzRJ0lTpN/M4EVidZBa9pafngBVV9WaSa7tzx9Pb71gK3E1vOWpTtyH+CnDNgTrv+lkG3JXkpK6eO4Gt+zT9VJKruxp+BFzfb2DvPSu+nFOSpkjf93kcrRYuXFhjY2PDLkOSjioH+z4PP55EktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDXr9zvMj1rPjb/OVcdsGHYZOsLdv/eiYZcgHZWceUiSmhkekqRmhockqZnhIUlqZnhIkpoZHpKkZqmqYdcwJaafenq955OfHXYZUrOXPrNy2CXoXSzJeFUt7NfOmYckqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SFJajbwl+omuRJ4qaqeGGjHjU49aUF96pLHh1mCJB12t35rxju6fmAv1U2yKsnWJE8m2ZzkA30ueRS4JcmZB1vswUqyLEkl6TswSdLUmfT3eSRZDFwFXFhVu5PMBiaNtap6A7hucCX+WS0zgU8B3xl035KkNv1mHnOAHVW1G6CqdlTViwBJFiV5LMkTSTYkmZlkWpI7kmxMsiXJyq7tkiTrk9yXZFuSe5OkO7cgySNJxpOsSzLnALX8KvA54E8GMnJJ0iHrFx4PAqcleTbJF5NcBpBkBrAWuKmq5gNLgV3ADcDOqloELAJWJpnX9XUBcDNwDjAPuDjJdGA1sKyqFgD3ALfvW0SSC4DTqur+yYpNsiLJWJKx19/ccTDjlyQdgkmXrarqtSQLgEuBy4G1SW4DxoHtVbWxa7cT/myz/IwkV3RdzKAXFG8BG6rqha7dZmAu8CpwHvBQNxGZBmyfWEOSY4B/DVzfbzBVtQZYA70N837tJUmHpu/vMK+qPcB6YH2SLcByYBOwvyfnAKuq6oEfO5gsAXZPOLSnu3eArVW1eJISZtILmPVdwLwX+GaSq6tqrF/9kqTB67dhfjawt6q+1x06H3ge2AackmRRVW3sNrN3AeuAG5M8XFV/2l3/wiS3eAY4Ocniqnq8W8b6K1W19e0GVfVHwOwJNa0HPt0vON57Vt7xS9YkSfvXb+ZxIrA6ySx6S0/PASuq6s0k13bnjqcXHEuBu+ktR23qNsRfAa45UOddP8uAu5Kc1NVzJ7D1QNdIkoZvZH+fx8KFC2tszFUtSWrh7/OQJE0Zw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTt22AVMlW3bi8W/+tawy5CG5vF/MrL/vHUEcOYhSWpmeEiSmhkekqRmhockqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SFJamZ4SJKajeznF8x6Df7Wt/cOuwxpaD730Teb2t/6rRlTVIlG0cBnHkmuTDJ/0P1Kko4cfcMjyaokW5M8mWRzkg/0ueRR4JYkZw6mREhyY5It3f0fTXLOoPqWJLWbdNkqyWLgKuDCqtqdZDYw6dy2qt4ArhtciQB8paq+1NV0NfB54CMDvock6SD1m3nMAXZU1W6AqtpRVS8CJFmU5LEkTyTZkGRmkmlJ7kiysZsprOzaLkmyPsl9SbYluTdJunMLkjySZDzJuiRz9i2iqnZOeHgCUIMYvCTp0PTbMH8Q+KdJngX+F7C2qh5JMgNYC1xbVRuT/EVgF3ADsLOqFiU5DngsyUNdXxcA5wIvAr8DXJzkO8Bq4GNV9UqSa4HbgU/sW0iSTwK/RG/m8+H9FZtkBbACYNZxP3PQPwRJUptJw6OqXkuyALgUuBxYm+Q2YBzYXlUbu3Y7obdZDpyR5IquixnAPOAtYENVvdC12wzMBV4FzgMe6iYi04DtB6jlC8AXknwc+MfA8v20WQOsATj1pAXOTiRpivR9qW5V7QHWA+uTbKH3pL2J/S8dBVhVVQ/82MFkCbB7wqE93b0DbK2qxQ01fw34tw3tJUkDNumeR5Kzk5w14dD5wPPANuCUJIu6djOTHAusA25MMn3C9SdMcotngJO7jXmSTE9y7n7qmFjDR4Hv9R+aJGmq9Jt5nAisTjKL3tLTc8CKqnqz259YneR4evsdS4G76S1Hbeo2xF8BrjlQ510/y4C7kpzU1XMnsHWfpr+QZCnwp8Afsp8lK0nS4ZOq0dwaWLhwYY2NjQ27DEk6qiQZr6qF/dr52VaSpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlqZnhIkpodO+wCpspz469z1TEbhl3GwN2/96JhlyBJzjwkSe0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzVJVw65hSkw/9fR6zyc/O+wyDpuXPrNy2CVIGgFJxqtqYb92A595JLkyyfxB9ytJOnL0DY8kq5JsTfJkks1JPtDnkkeBW5KcOZgSIckvJfluV8PDSU4fVN+SpHaTfjBiksXAVcCFVbU7yWxgxmTXVNUbwHWDKxGA3wUWVtUbSf4h8Dng2gHfQ5J0kPrNPOYAO6pqN0BV7aiqFwGSLEryWJInkmxIMjPJtCR3JNmYZEuSlV3bJUnWJ7kvybYk9yZJd25BkkeSjCdZl2TOvkVU1W92oQTwbeDUQf0AJEnt+oXHg8BpSZ5N8sUklwEkmQGsBW6qqvnAUmAXcAOws6oWAYuAlUnmdX1dANwMnAPMAy5OMh1YDSyrqgXAPcDtfWq6Afif+zuRZEWSsSRje19/rU83kqRDNemyVVW9lmQBcClwObA2yW3AOLC9qjZ27XZCb7McOCPJFV0XM+gFxVvAhqp6oWu3GZgLvAqcBzzUTUSmAdsPVE+SnwcWApcdoN41wBrovdqqz9glSYeo7y+Dqqo9wHpgfZItwHJgE7C/J+cAq6rqgR87mCwBdk84tKe7d4CtVbW4Xx1JlgKrgMveXkaTJA3HpMtWSc5OctaEQ+cDzwPbgFOSLOrazUxyLLAOuLFbjnr7+hMmucUzwMndxjxJpic5dz91XAD8O+Dqqnr54IcnSZoK/WYeJwKrk8yit/T0HLCiqt5Mcm137nh6+x1LgbvpLUdt6jbEXwGuOVDnXT/LgLuSnNTVcyewdZ+md3S1/OdueesHVXV100glSQMzsu8wX7hwYY2NjQ27DEk6qgztHeaSpNFneEiSmhkekqRmhockqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlqZnhIkpoZHpKkZoaHJKnZscMuYKrs3rWL33viqWGXccjOmH/esEuQpANy5iFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlqNrLvMP/hd/fyixe8MewyDtn9e4ddgSQd2MBnHkmuTDJ/0P1Kko4cfcMjyaokW5M8mWRzkg/0ueRR4JYkZw6mREjyoSSbkryVZNmg+pUkHZpJl62SLAauAi6sqt1JZgMzJrumqt4ArhtciQD8ALge+PSA+5UkHYJ+M485wI6q2g1QVTuq6kWAJIuSPJbkiSQbksxMMi3JHUk2JtmSZGXXdkmS9UnuS7Ityb1J0p1bkOSRJONJ1iWZs28RVfX9qnoScCdAko4A/cLjQeC0JM8m+WKSywCSzADWAjdV1XxgKbALuAHYWVWLgEXAyiTzur4uAG4GzgHmARcnmQ6sBpZV1QLgHuD2Qx1MkhVJxpKMvcmrh9qNJKmPSZetquq1JAuAS4HLgbVJbgPGge1VtbFrtxN6m+XAGUmu6LqYQS8o3gI2VNULXbvNwFzgVeA84KFuIjIN2H6og6mqNcAagFl5fx1qP5KkyfV9qW5V7QHWA+uTbAGWA5uA/T05B1hVVQ/82MFkCbB7wqE93b0DbK2qxYdSvCRpOCZdtkpydpKzJhw6H3ge2AackmRR125mkmOBdcCN3XLU29efMMktngFO7jbmSTI9ybmHPhxJ0uHQb+ZxIrA6ySx6S0/PASuq6s0k13bnjqe337EUuJvectSmbkP8FeCaA3Xe9bMMuCvJSV09dwJbJ7brQuobwE8CfzPJL1eVISNJQ5Kq0dwamJX31yX58rDLOGT3771o2CVIehdKMl5VC/u1G9mPJzlzwQncP+YTsCRNBT8YUZLUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc1SVcOuYUok+WPgmWHXcRjNBnYMu4jD6N02Xnj3jdnxDsfpVXVyv0bHHo5KhuSZqlo47CIOlyRjjne0vdvG7HiPbC5bSZKaGR6SpGajHB5rhl3AYeZ4R9+7bcyO9wg2shvmkqSpM8ozD0nSFDE8JEnNRjI8knwkyTNJnkty27DrGbQk9yR5OclTE469J8lDSb7X/fmTw6xxkJKcluQ3kzydZGuSm7rjIznmJMcl2ZDkiW68v9wdH8nxvi3JtCS/m+T+7vHIjjfJ95NsSbI5yVh37Kga78iFR5JpwBeAnwXOAf5+knOGW9XA/QbwkX2O3QY8XFVnAQ93j0fFW8AtVfV+4IPAJ7u/01Ed827gw1U1Hzgf+EiSDzK6433bTcDTEx6P+ngvr6rzJ7y346ga78iFB3AR8FxV/d+qehP4GvCxIdc0UFX1W8CP9jn8MeDL3fdfBq45rEVNoaraXlWbuu//mN4TzPsY0TFXz2vdw+ndVzGi4wVIcirwUeDuCYdHdrwHcFSNdxTD433ADyc8fqE7Nup+uqq2Q+/JFvipIdczJZLMBS4AvsMIj7lbwtkMvAw8VFUjPV7gTuBWYO+EY6M83gIeTDKeZEV37Kga7yh+PEn2c8zXI4+AJCcC/wW4uap2Jvv7qx4NVbUHOD/JLOAbSc4bdk1TJclVwMtVNZ5kybDrOUwurqoXk/wU8FCSbcMuqNUozjxeAE6b8PhU4MUh1XI4vZRkDkD358tDrmegkkynFxz3VtV/7Q6P9JgBqupVYD29Pa5RHe/FwNVJvk9vmfnDSf4ToztequrF7s+XgW/QW24/qsY7iuGxETgryRlJZgB/D/jmkGs6HL4JLO++Xw789yHWMlDpTTH+A/B0VX1+wqmRHHOSk7sZB0mOB5YC2xjR8VbVZ6rq1KqaS+/f6/+uqp9nRMeb5IQkM9/+HrgSeIqjbLwj+Q7zJH+D3hrqNOCeqrp9yCUNVJKvAkvofYTzS8A/A/4b8HXgZ4AfAD9XVftuqh+VklwC/DawhT9fE/8svX2PkRtzkr9Kb8N0Gr3/wft6Vf1Kkr/ECI53om7Z6tNVddWojjfJPHqzDehtHXylqm4/2sY7kuEhSZpao7hsJUmaYoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWr2/wHMkgceePrAYQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEICAYAAACnL3iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFnBJREFUeJzt3X+QndV93/H3B/0IGClgW6otDEYopkyAqQBJcVSMkWOVOo2LSaqEJu0gx2QkOvaAJ/ak2KpbJx6mjUlsYjWOo9gkbgfbSkldu+3Egs5YJBhsaVcVyKoFoalxKMJGIbIs44hIfPvHfZQumt29e8Su7u7yfs3ssPvc85zn+xyh+9E55967qSokSWpx2qALkCTNPIaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiNkmxP8ldJfmiC7ZcmqSRzT/J6fzfJF5I8neSZJNuSXHQyfUmTxfCQGiRZClwFFHDtKbrs2cAXgYuAVwE7gC+comtLozI8pDY3AF8F/gBYP/KBJGck+c0kjyf5bpL7k5wB/EnX5GCSw0lWd+3fkeQb3SxmW5LzR7tgVe2oqk9V1TNV9TfAR4GLkrxyqm5S6sfwkNrcANzVff3DJK8a8dhvACuAvw+8AvgV4Hngjd3jZ1fVgqp6MMl1wPuBnwEWA38KfHaCNbwReKqq/vLF3ox0suJnW0kTk+QNwJeBJVV1IMk+4Her6qNJTgO+D/x4VT10wnlLgf8DzKuqo92xPwburqpPdT+fBhwGfrSqHh+nhnOBrwHvraqJho006Zx5SBO3Hrinqg50P3+G/790tQg4HfjfE+zrfOC3khxMchB4BgjwmrFOSLIYuAf4uMGhQTupV39ILzXd3sXPAXOSPNUd/iHg7CTLgT3AXwM/Ajx0wumjTe//Aritqu6a4PVfTi84vlhVt53ELUiTypmHNDHXAceAi4HLuq8fpbdXcUNVPQ/cCXwkyTlJ5iRZ3b2c92l6ex/LRvT3CeB9SS4BSHJWkp8d7cJJfhjYBnylqm6dmtuT2hge0sSsB36/qr5VVU8d/wL+PfDPuvdwvJfeDGQnvWWoXwdOq6pngduAr3TLVD9eVZ/vHv9ckkPA14GfHOPaPw2sAn6xe7XW8a/XTuUNS+Nxw1yS1MyZhySpmeEhSWpmeEiSmhkekqRms/Z9HosWLaqlS5cOugxJmlGGh4cPVNXifu1mbXgsXbqUoaGhQZchSTNKkjE/Hmckl60kSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDWbtR/JPnfeabXglacPugxJOqUOPvXsizo/yXBVrezXzpmHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlqNmt/h/mrX3Y5N694cNBlSNKsNOkzjyTXJFk+2f1KkqaPvuGRZFOSvUkeTrI7yev7nHI/8J4kr5ucEiHJ25M83V1/d5Jfmqy+JUntxl22SrIaeCtwRVUdSbIImD/eOVX1LHDD5JX4t7ZW1bumoF9JUqN+M48lwIGqOgJQVQeq6kmAJKuSPJDkoSQ7kixMMifJ7Ul2JtmTZGPXdk2S7UnuTrIvyV1J0j22Isl9SYaTbEuyZCpvWJL04vULj3uA85I8muTjSa4GSDIf2ArcUlXLgbXAD4AbgUNVtQpYBWxMsqzr63Lg3cDFwDLgyiTzgM3AuqpaAdwJ3DZGLf+kWzq7O8l5ozVIsiHJUJKh7z93YGIjIElqNu6yVVUdTrICuAp4E7A1ya3AMLC/qnZ27Q5Bb7McuCDJm7su5tMLiqPAjqp6omu3G1gKHAQuBe7tJiJzgP2jlPJfgc92S2c3AZ8GfmKUercAWwDOPWvF7PwtV5I0DfR9qW5VHQO2A9uT7AHWA7uA0Z6cA2yqqi+94GCyBjgy4tCx7toB9lbV6j41/OWIH38P+PV+dUuSps64y1ZJLkpy4YhDlwGPA/uAc5Ks6totTDIX2Abc1C1HHT//zHEu8QiwuNuYJ8m8JJeMUsfIfZBrgW/0vzVJ0lTpN/NYAGxOcja9pafHgA1V9VyS67vHzqC337EW+CS95ahd3Yb408B1Y3Xe9bMO+FiSs7p67gD2ntD05iTXdjU8A7y96S4lSZMqVbNza2DlypU1NDQ06DIkaUZJMlxVK/u187OtJEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1mzvoAqbKvv3F6g8dHXQZU+LBD8zaPzZJM4QzD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVKzVNWga5gSc+edVgteefqgy2h28KlnB12CpJewJMNVtbJfu0mfeSS5Jsnyye5XkjR99A2PJJuS7E3ycJLdSV7f55T7gfcked3klPiCWtYlqSR9U1GSNHXG/YS9JKuBtwJXVNWRJIuA+eOdU1XPAjdMXol/W8tC4Gbga5PdtySpTb+ZxxLgQFUdAaiqA1X1JECSVUkeSPJQkh1JFiaZk+T2JDuT7EmysWu7Jsn2JHcn2ZfkriTpHluR5L4kw0m2JVkyRi0fAj4M/PWk3Lkk6aT1C497gPOSPJrk40muBkgyH9gK3FJVy4G1wA+AG4FDVbUKWAVsTLKs6+ty4N3AxcAy4Mok84DNwLqqWgHcCdx2YhFJLgfOq6r/Nl6xSTYkGUoy9PzzE7l9SdLJGHfZqqoOJ1kBXAW8Cdia5FZgGNhfVTu7doegt1kOXJDkzV0X8+kFxVFgR1U90bXbDSwFDgKXAvd2E5E5wP6RNSQ5Dfgo8PZ+N1NVW4At0Hu1Vb/2kqST0/e3ClXVMWA7sD3JHmA9sAsY7ck5wKaq+tILDiZrgCMjDh3rrh1gb1WtHqeEhfQCZnsXMK8Gvpjk2qoa6le/JGnyjbtsleSiJBeOOHQZ8DiwDzgnyaqu3cIkc4FtwE3dctTx888c5xKPAIu7jXmSzEtyycgGVfXdqlpUVUurainwVcDgkKQB6jfzWABsTnI2vaWnx4ANVfVckuu7x86gt9+xFvgkveWoXd2G+NPAdWN13vWzDvhYkrO6eu4A9r6425IkTSXfYT7N+A5zSYM00XeY993zmKkuW34FQ0OubEnSVPCDESVJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktQsVTXoGqbE3Hmn1YJXnj5um4NPPXuKqpGkmSHJcFWt7NfOmYckqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWo2d9AFTJVXv+xybl7x4KDLkKRZadJnHkmuSbJ8svuVJE0ffcMjyaYke5M8nGR3ktf3OeV+4D1JXjc5JUKSm5Ls6a5/f5KLJ6tvSVK7cZetkqwG3gpcUVVHkiwC5o93TlU9C9wweSUC8Jmq+kRX07XAR4C3TPI1JEkT1G/msQQ4UFVHAKrqQFU9CZBkVZIHkjyUZEeShUnmJLk9yc5uprCxa7smyfYkdyfZl+SuJOkeW5HkviTDSbYlWXJiEVV1aMSPZwKz83PkJWmG6Ldhfg/wr5M8CvwPYGtV3ZdkPrAVuL6qdib5YeAHwI3AoapaleR04IEk93Z9XQ5cAjwJfAW4MsnXgM3A26rq6STXA7cB7zixkCTvBH6Z3sznJ0YrNskGYAPA2ae/dsKDIElqM254VNXhJCuAq4A3AVuT3AoMA/uramfX7hD0NsuBC5K8uetiPrAMOArsqKonuna7gaXAQeBS4N5uIjIH2D9GLb8N/HaSXwD+FbB+lDZbgC0A5561wtmJJE2Rvi/VrapjwHZge5I99J60dzH60lGATVX1pRccTNYAR0YcOtZdO8DeqlrdUPPngN9paC9JmmTj7nkkuSjJhSMOXQY8DuwDzkmyqmu3MMlcYBtwU5J5I84/c5xLPAIs7jbmSTIvySWj1DGyhp8C/qz/rUmSpkq/mccCYHOSs+ktPT0GbKiq57r9ic1JzqC337EW+CS95ahd3Yb408B1Y3Xe9bMO+FiSs7p67gD2ntD0XUnWAn8D/BWjLFlJkk6dVM3OrYGVK1fW0NDQoMuQpBklyXBVrezXzs+2kiQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVKzuYMuYKrs21+s/tDRcds8+IFZe/uSNKWceUiSmhkekqRmhockqZnhIUlqlqoadA1T4vQ5F9RrF3xw0GU0e/S76wddgqSXsCTDVbWyXztnHpKkZoaHJKmZ4SFJajbp4ZHkmiTLJ7tfSdL00XfDPMkm4BeAY8DzwMaq+to47V8GfAL4tap6bFKKTH4Z+CXgKPA08I6qeny8c+ade3694p3vn4zLTzvfft/GQZcgaZaa6Ib5uJ/PkWQ18Fbgiqo6kmQRMH+8c6rqWeCGlmIn4H8CK6vq2ST/AvgwcP0kX0OSNEH9lq2WAAeq6ghAVR2oqicBkqxK8kCSh5LsSLIwyZwktyfZmWRPko1d2zVJtie5O8m+JHclSffYiiT3JRlOsi3JkhOLqKovd6EE8FXg3MkaAElSu37hcQ9wXpJHk3w8ydUASeYDW4Fbqmo5sBb4AXAjcKiqVgGrgI1JlnV9XQ68G7gYWAZcmWQesBlYV1UrgDuB2/rUdCPwx6M9kGRDkqEkQ89//3CfbiRJJ2vcZauqOpxkBXAV8CZga5JbgWFgf1Xt7Nodgt5mOXBBkjd3XcynFxRHgR1V9UTXbjewFDgIXArc201E5gD7x6onyT8HVgJXj1HvFmAL9PY8+ty7JOkk9f1M8qo6BmwHtifZA6wHdgGjPTkH2FRVX3rBwWQNcGTEoWPdtQPsrarV/epIshbYBFx9fBltPK/63iJuvv8X+zWbkT78U8+dsmv9yn8fd4tL0kvUuMtWSS5KcuGIQ5cBjwP7gHOSrOraLUwyF9gG3NQtRx0//8xxLvEIsLjbmCfJvCSXjFLH5cDvAtdW1XcmfnuSpKnQb+axANic5Gx6S0+PARuq6rkk13ePnUFvv2Mt8El6y1G7ug3xp4Hrxuq862cd8LEkZ3X13AHsPaHp7V0t/6lb3vpWVV3bdKeSpEkzaz8Y8dyzVtTNb3hw0GXMeC5bSS8tfjCiJGnKzNpf4v3qC+O/miVpijjzkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNZu2vod23v1j9oaODLkOaVA9+YNb+ldUM48xDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1GzWvl31SA7w53M/NegypEn1qn/bv82337dx6gvRS96kzzySXJNk+WT3K0maPvqGR5JNSfYmeTjJ7iSv73PK/cB7krxuckqEJG9MsivJ0STrJqtfSdLJGXfZKslq4K3AFVV1JMkiYP5451TVs8ANk1ciAN8C3g68d5L7lSSdhH4zjyXAgao6AlBVB6rqSYAkq5I8kOShJDuSLEwyJ8ntSXYm2ZNkY9d2TZLtSe5Osi/JXUnSPbYiyX1JhpNsS7LkxCKq6ptV9TDw/KTevSTppPQLj3uA85I8muTjSa4GSDIf2ArcUlXLgbXAD4AbgUNVtQpYBWxMsqzr63Lg3cDFwDLgyiTzgM3AuqpaAdwJ3HayN5NkQ5KhJEPPf//wyXYjSepj3GWrqjqcZAVwFfAmYGuSW4FhYH9V7ezaHYLeZjlwQZI3d13MpxcUR4EdVfVE1243sBQ4CFwK3NtNROYA+0/2ZqpqC7AFYN6559fJ9iNJGl/fl+pW1TFgO7A9yR5gPbALGO3JOcCmqvrSCw4ma4AjIw4d664dYG9VrT6Z4iVJgzHuslWSi5JcOOLQZcDjwD7gnCSrunYLk8wFtgE3dctRx88/c5xLPAIs7jbmSTIvySUnfzuSpFOh38xjAbA5ydn0lp4eAzZU1XNJru8eO4Pefsda4JP0lqN2dRviTwPXjdV518864GNJzurquQPYO7JdF1KfB14O/OMkv1pVhowkDUiqZufWwLxzz69XvPP9gy5DOuV8h7lejCTDVbWyX7tZ+/Eky1+9mCH/EknSlPCDESVJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktQsVTXoGqZEku8Bjwy6jpOwCDgw6CIazcSaYWbWPRNrhplZ90ysGV583edX1eJ+jea+iAtMd49U1cpBF9EqydBMq3sm1gwzs+6ZWDPMzLpnYs1w6up22UqS1MzwkCQ1m83hsWXQBZykmVj3TKwZZmbdM7FmmJl1z8Sa4RTVPWs3zCVJU2c2zzwkSVPE8JAkNZuV4ZHkLUkeSfJYklsHXc9EJPlmkj1JdicZGnQ9Y0lyZ5LvJPn6iGOvSHJvkj/r/vvyQdZ4ojFq/mCS/9uN9+4k/2iQNY4myXlJvpzkG0n2JrmlOz5tx3ucmqf1eCc5PcmOJA91df9qd3w6j/VYNZ+SsZ51ex5J5gCPAv8AeALYCfx8Vf2vgRbWR5JvAiuralq/KSnJG4HDwH+oqku7Yx8Gnqmqf9eF9cur6l8Oss6Rxqj5g8DhqvqNQdY2niRLgCVVtSvJQmAYuA54O9N0vMep+eeYxuOdJMCZVXU4yTzgfuAW4GeYvmM9Vs1v4RSM9WycefwY8FhV/XlVPQd8DnjbgGuaNarqT4BnTjj8NuDT3fefpvdkMW2MUfO0V1X7q2pX9/33gG8Ar2Eaj/c4NU9r1XO4+3Fe91VM77Eeq+ZTYjaGx2uAvxjx8xPMgP956f2h35NkOMmGQRfT6FVVtR96Tx7A3xlwPRP1riQPd8ta02Y5YjRJlgKXA19jhoz3CTXDNB/vJHOS7Aa+A9xbVdN+rMeoGU7BWM/G8Mgox2bC2tyVVXUF8JPAO7ulFk2d3wF+BLgM2A/85mDLGVuSBcAfAe+uqkODrmciRql52o93VR2rqsuAc4EfS3LpoGvqZ4yaT8lYz8bweAI4b8TP5wJPDqiWCauqJ7v/fgf4PL3lt5ni291a9/E17+8MuJ6+qurb3V+854HfY5qOd7eW/UfAXVX1n7vD03q8R6t5pow3QFUdBLbT2zuY1mN93MiaT9VYz8bw2AlcmOSCJPOBfwp8ccA1jSvJmd3mIknOBK4Bvj7+WdPKF4H13ffrgS8MsJYJOf6E0PlppuF4dxuinwK+UVUfGfHQtB3vsWqe7uOdZHGSs7vvzwDWAvuY3mM9as2naqxn3autALqXpt0BzAHurKrbBlzSuJIsozfbgN4nHX9mutac5LPAGnof+/xt4N8A/wX4Q+C1wLeAn62qabNBPUbNa+hN6wv4JrDx+Nr2dJHkDcCfAnuA57vD76e3hzAtx3ucmn+eaTzeSf4evQ3xOfT+Uf2HVfVrSV7J9B3rsWr+j5yCsZ6V4SFJmlqzcdlKkjTFDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1Oz/ASkEpLFsA0SiAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEICAYAAACnL3iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+UnmV95/H3hzAxaRITJSmEEgmpQIXUJGSmmkUkNFmOrdTSNi1CXULLbsIeraC4FpueLXU3R6stIkGqKWVrPahpcdva2hJY17FFkWSS5kcHE8hWwZQQGCHGNHQiyWf/uK/YYc7M88ydPMn84PM6h8PM/Vz3dX+f++h8ub7X89xf2SYiIqKOU4Y7gIiIGH2SPCIiorYkj4iIqC3JIyIiakvyiIiI2pI8IiKitiSPiIioLckjoiZJnZKel/SKIY6fLcmSTj3G602X9DVJ35W0T9LDki4+lrkiWiXJI6IGSbOBSwADbztJlz0A/DowA3gV8HvAXx9rMopohSSPiHquBb4B/AmwvO8LkiZK+gNJT0j6nqSHJE0E/r4M2SfpgKRFZfyvS/pmWcWsl3T2QBe0/W+2d9o+Agg4TJVEXn1i3mJEc/kvl4h6rgVuAx4BviHpdNt7y2u/D1wI/AfgaeANwBHgzcC3gGm2XwSQdCXwW8DPAY8DtwCfK+cOSNI24CeANuBu28+0/N1FDJHybKuIoZH0JuArwEzbPZJ2AJ+y/TFJpwD/CrzR9tZ+582mSh5tfZLH3wH32f7j8vspVOWp19l+okEME4BfAMbb/nSr32PEUKVsFTF0y4EHbPeU3z/Lv5eupgMTgP83xLnOBj5eNsD3Ac9RlaR+rNFJpYT1OeAWSfPqvoGIVknZKmIIyt7FrwDjJD1dDr8CmFb+iG8H/g34cWBrv9MHWt5/B1ht+95jDKkNmDPAtSJOiqw8IobmSqqN6guA+eWf1wH/AFxbNrPvAW6TdKakcZIWlY/zPku19zGnz3yfBD4g6UIASVMl/fJAF5b0RklvkjS+bMr/JnA61b5LxLBI8ogYmuXA/7L9pO2nj/4D3An8avnY7PuoViAbqcpQvwecYvsgsBr4WilTvdH2X5TXPy9pP/BPwM8Mcu1XAJ8Avgv8C/CzwFttP3XC3m1EE9kwj4iI2rLyiIiI2pI8IiKitiSPiIioLckjIiJqG7Pf85g+fbpnz5493GFERIwqmzZt6rE9o9m4MZs8Zs+eTVdX13CHERExqkga9PE4faVsFRERtSV5REREbUkeERFRW5JHRETUluQRERG1JXlERERtSR4REVFbkkdERNQ2Zr8k+OTBbbxry2tO2vXunP/kSbtWRMRwy8ojIiJqS/KIiIjaWl62knQ5sNf21lbPXcfpOpebta4lc50zb25L5omIGCuarjwkrZLULWmbpC2S3tDklIeAmyW9tjUhgqSzJX25xNAp6axWzR0REfU1XHlIWgRcAVxku1fSdGB8o3NsHwSubV2IAPw+8Ke2Py3pp4EPAf+pxdeIiIghala2mgn02O4FsN1z9AVJHcDHgUlAL7AEOAh8GFgMTADutP0pSYuBW4EeYC6wCXiHbUtaCNwGTC6vX2d7T784LgDeU37+CvCXzd7Yju8d4I1/+7Vmw4Zkb8pWEREv0axs9QAwS9Jjku6SdCmApPHAOuBG2/OApcALwPXAftsdQAewUtKcMtcC4CaqRDAHuFhSG7AGWGZ7IXAPsHqAOLYCv1R+/gVgiqTTjukdR0TEcWu48rB9oKwMLgEuA9ZJuoVq5bDH9sYybj/8cLP8HElLyhTjqRLFi8AG27vLuC3AbGAf1UrkQUkA44D+qw6A9wF3SroO+HvgX8qcLyFpBbAC4JRprx7SDYiIiPqaftrK9mGgE+iUtB1YDmwGPMBwAats3/+Sg1XZqrfPocPl2gK6bS9qEsNTwC+WuSYDv2T7ewOMWwusBThr6kK/+6Ffa/b2huQjbz3Uknla6f1farj1FBFxQjUsW0k6X9K5fQ7NB54AdgBnln0PJE2RdCqwHrihlKOOnj+pwSV2AjPKxjyS2iRdOEAc0yUdjfUDVOWtiIgYJs1WHpOBNZKmUZWJdgErbB+SdFV5bSLVfsdS4G6qctRmVXWoZ4ErB5u8zLMMuEPS1BLP7UB3v6GLgQ9JMlXZ6p213mVERLSU7IGqT6Nfe3u7u7q6hjuMiIhRRdIm2+3NxuXxJBERUVuSR0RE1JbkERERtSV5REREbUkeERFRW5JHRETUluQRERG1JXlERERtSR4REVFby9vQjhTfefRbvOf1rekX9bFtn2nJPBERY0VWHhERUVuSR0RE1JbkERERtSV5REREbS1PHpIulzSv1fNGRMTI0fTTVpJWAddQtY49Aqy0/UiDUx4CPinpg7Z3tSJISa8BPg1Mo+pzfovtv210TlvbbGbO+uNWXD4iIvppmDxKe9grgIts90qaDjRsnm37IHBt60IE4LeBP7P9h5IuAP6WqmNhREQMg2Zlq5lAj+1eANs9tp8CkNQh6euStkraUPqYj5P0UUkbJW2XtLKMXSypU9J9knZIure0qUXSQklflbRJ0npJMweIw8Ary89Tgada8eYjIuLYNEseDwCzJD0m6S5JlwJIGg+sA260PY+qf/kLwPXAftsdQAewUtKcMtcC4CbgAmAOcLGkNmANsMz2QuAeYPUAcdwKvEPSbqpVx28MFKykFZK6JHX966Geod2BiIiorWHZyvYBSQuBS4DLgHWSbgE2AXtsbyzj9kO1WQ6cI2lJmWI8VaJ4Edhge3cZt4Wq7LQPmAs8WBYi44A9A4RyNfAntv+glNI+I2mu7SP94l0LrAU4a+rCsdmcPSJiBGi6YW77MNAJdEraDiwHNlOVkvoTsMr2/S85KC0GevscOlyuLaDb9qImYVwPvKXE87CkCcB04Jlm8UdEROs12zA/Hzhi+/FyaD7wBLADOFNSh+2NkqZQla3WAzdI+rLtH5Tzdze4xE5ghqRFJSm0AefZ7u437klgCfAnkl4HTACebRT7GeeK93+p4d5+REQco2Yrj8nAGknTqEpPu4AVtg9Juqq8NpEqcSwF7qYqR20uG+LPAlcONnmZZxlwh6SpJZ7bgf7J42bgjyS9h2rFc53tlKUiIoaJxurf4Pb2dnd1dQ13GBERo4qkTbbbm43L40kiIqK2JI+IiKgtySMiImpL8oiIiNqSPCIiorYkj4iIqC3JIyIiakvyiIiI2pI8IiKitiSPiIiobcw+nuTUtlM8+bQJLZlr39MHWzJPRMRIl8eTRETECZPkERERtbW8bFW6Ce61vbWlE9c0d848f2H1+uEM4WXp/KvPGO4QIuI4tKxsJWmVpG5J2yRtkfSGJqc8BNws6bVDDXYIMXysXHtL6ae+r1VzR0REfc06CS4CrgAust0raTpVX/JB2T4IXNu6EMH2e/rE9BvAglbOHxER9TTrJDgT6LHdC2C75+gLkjqAjwOTqPqTLwEOAh8GFlO1ir3T9qdKD/NbgR5gLrAJeIdtS1oI3EbVtbCHqkvgngYxXQ38TrM3tvPQPt787b9qNixa7UPDHcDL094PrBzuEOJlplnZ6gFgVikV3SXpUgBJ44F1wI2251G1oH0BuB7Yb7sD6ABWSppT5loA3ARcAMwBLi49y9cAy2wvBO4BVg8WjKSzgXOA/zvI6yskdUnqOvKvB4bw9iMi4lg0XHnYPlBWBpcAlwHrJN1CtXLYY3tjGbcffrhZfo6kJWWK8VSJ4kVgg+3dZdwWql7n+6hWIg9WLc8ZBzRadbwduM/24UHiXQusBWg76+yx+QWWiIgRoFnZivKHuhPolLQdWA5sBgb64yxgle37X3KwKlv19jl0uFxbQLftRUOM9+3AO4cy8PTvT+fdD/3aEKeNZt7/pYZbXRHxMtOwbCXpfEnn9jk0H3gC2AGcWfY9kDRF0qnAeuCGUo46ev6kBpfYCcwoG/NIapN04WCxAK8CHh7aW4uIiBOl2cpjMrBG0jSq0tMuYIXtQ5KuKq9NpNrvWArcTVWO2qyqDvUscOVgk5d5lgF3SJpa4rkd6B5g+NXA5z3EL6acca7yX8sRESfImH22VXt7u7u6uoY7jIiIUSXPtoqIiBMmySMiImpL8oiIiNqSPCIiorYkj4iIqC3JIyIiakvyiIiI2pI8IiKitiSPiIioLckjIiJqG7OPJzm17RRPPm1CwzH7nj54kqKJiBgd8niSiIg4YZI8IiKitqbNoOoq3QT32t7a6rnr+IlZP8kXVq8fzhAiIsaspisPSaskdUvaJmmLpDc0OeUh4GZJr21NiD+M41ckPVpi+Wwr546IiHoarjxKh78rgIts90qaTtWXfFC2DwLXti5EKN0MPwBcbPt5ST/ayvkjIqKeZmWrmUCP7V4A2z1HXygtaD8OTKLqT74EOAh8GFgMTADutP2p0sP8VqAHmAtsAt5h25IWArdRdS3sAa6zvadfHP8F+ITt50sczzR7Y7u/dYibf/XJhmP+5uozmk0TEREDaFa2egCYJekxSXdJuhRA0nhgHXCj7XlULWhfAK4H9tvuADqAlZLmlLkWADcBFwBzgItLr/M1wDLbC4F7gNUDxHEecJ6kr0n6hqS3DBSspBWSuiR1HWLfkG9CRETU03DlYftAWRlcAlwGrJN0C9XKYY/tjWXcfvjhZvk5kpaUKcZTJYoXgQ22d5dxW6h6ne+jWok8WLU8ZxzQf9VxNM5zqVY0ZwH/IGmu7ZdkCNtrgbUA0/S6sfkFloiIEaDpp61sHwY6gU5J24HlwGZgoD/OAlbZvv8lB6uyVW+fQ4fLtQV0217UJIzdwDds/wD4lqSdVMlk42AnTH7lj/DmN81vOOlH3nqoyWVHrvd/qeHWU0TECdWwbCXp/LJZfdR84AlgB3Bm2fdA0hRJpwLrgRtKOero+ZMaXGInMKNszCOpTdKFA4z7S6qVD2XT/jzgn4fyBiMiovWarTwmA2skTaMqPe0CVtg+JOmq8tpEqv2OpcDdVOWozarqUM8CVw42eZlnGXCHpKklntuB7n5D1wOXS3qUatXy32x/t95bjYiIVhmzz7Zqb293V1fXcIcRETGq5NlWERFxwiR5REREbUkeERFRW5JHRETUluQRERG1JXlERERtSR4REVFbkkdERNSW5BEREbWN2W+Yn9p2iiefNqHhmH1PHzxJ0UREjA75hnlERJwwSR4REVFbkkdERNTW8uQh6XJJ81o9b0REjBxNk4ekVZK6JW2TtEXSG5qc8hBws6TXtiZEkHSdpGfL9bdI+s+tmjsiIupr+Gmr0uHvNmCx7d7SxW+87adOVoAljuuAdtvvGuo5Z01d6He/6eGWXD8tXyPi5aJVn7aaCfTY7gWw3XM0cUjqkPR1SVslbSitaMdJ+qikjZK2S1pZxi6W1CnpPkk7JN1bOg0iaaGkr0raJGm9pJnH99YjIuJEa5Y8HgBmSXpM0l2SLgWQNB5YB9xoex5VC9oXgOuB/bY7gA5gpaQ5Za4FwE3ABcAc4OLS63wNsMz2QuAeYPUgsfxSKZ3dJ2nWsb7hiIg4fg17mNs+IGkhcAlwGbBO0i3AJmCP7Y1l3H6oNsuBcyQtKVOMp0oULwIbbO8u47ZQ9TrfB8wFHiwLkXHAngFC+Wvgc6V0dgPwaeCn+w+StAJYATBtwmuGeAsiIqKuhskDwPZhoBPolLQdWA5sBgbaLBGwyvb9LzkoLQZ6+xw6XK4toNv2oiYxfLfPr38E/N4g49YCa6Ha82g0Z0REHLuGZStJ50s6t8+h+cATwA7gTEkdZdwUSacC64EbSjnq6PmTGlxiJzCjbMwjqU3ShQPE0Xcf5G3AN5u/tYiIOFGarTwmA2skTaMqPe0CVtg+JOmq8tpEqv2OpcDdVOWozWVD/FngysEmL/MsA+6QNLXEczvQ3W/ouyW9rcTwHHBdszd2xrnKp6QiIk6QMftgxPb2dnd1dQ13GBERo0oejBgRESdMkkdERNSW5BEREbUleURERG1JHhERUVuSR0RE1JbkERERtSV5REREbUkeERFR25j9hvmpbad48mkThjuMY7Lv6YPDHUJEvEzlG+YREXHCJHlERERtSR4REVFbkkdERNTW8uQh6XJJ81o9b0REjBxNP20laRVwDVXr2CPAStuPNBj/I8AngQ/a3tXCWCmNo/4c6LDdsFnH3Dnz/IXV61t5+RHl/KvPGO4QImIMGuqnrRp2EiztYa8ALrLdK2k60LA9n+2DwLV1gh0KSVOAdwODJq6IiDg5mpWtZgI9tnsBbPfYfgpAUoekr0vaKmlD6WM+TtJHJW2UtF3SyjJ2saROSfdJ2iHp3tKmFkkLJX1V0iZJ6/v1K+/rfwAfAf6tJe88IiKOWbPk8QAwS9Jjku6SdCmApPHAOuBG2/Oo+pe/AFwP7LfdAXQAKyXNKXMtAG4CLgDmABdLagPWAMtsLwTuAVb3D0LSAmCW7b9pFKykFZK6JHU9//3vDuX9R0TEMWhYtrJ9QNJC4BLgMmCdpFuATcAe2xvLuP1QbZYD50haUqYYT5UoXgQ22N5dxm0BZgP7gLnAg2UhMg7Y0zcGSacAHwOua/ZmbK8F1kK159FsfEREHJuGyQPA9mGgE+iUtB1YDmwGBvrjLGCV7ftfclBaDPT2OXS4XFtAt+1FDUKYQpVgOkuCOQP4oqS3Nds0j4iIE6PZhvn5wBHbj5dD84EngB3AmZI6bG8sm9kvAOuBGyR92fYPyvm7G1xiJzBD0iLbD5cy1nm2u48OsP09YHqfmDqB9zVLHBNe3ZZPJEVEnCDNVh6TgTWSplGVnnYBK2wfknRVeW0iVeJYCtxNVY7aXDbEnwWuHGzyMs8y4A5JU0s8twPdg50TERHDb8w+Vbe9vd1dXalqRUTUkafqRkTECZPkERERtSV5REREbUkeERFRW5JHRETUluQRERG1JXlERERtSR4REVFb02dbjVbb9j7HWbd9tuGY3e+95iRFExExtmTlERERtSV5REREbUkeERFRW5JHRETU1vLkIelySfNaPW9ERIwcTR/JLmkVcA1V978jwErbjzQY/yPAJ4EP2t7VkiClG4B3lhgOUPUUebTROae2neLJp01oxeXZ9/TBlswTETHSDfWR7M06CS4CrgAust0raTpVX/JB2T4IXFsn2CH4rO1PlpjeBtwGvKXF14iIiCFqVraaCfTY7gWw3WP7KQBJHZK+LmmrpA2SpkgaJ+mjkjZK2i5pZRm7WFKnpPsk7ZB0b+k0iKSFkr4qaZOk9ZJm9g/C9v4+v05i4P7pERFxkjT7kuADwH+X9Bjwf4B1tr8qaTywDriq9DB/JVUr2uuB/bY7JE0Avi7pwTLXAuBC4Cnga8DFkh4B1gA/b/vZ0tp2NfDr/QOR9E7gvVQrn58eKFhJK4AVADpFQ74JERFRT8PkYfuApIXAJcBlwDpJtwCbgD22N5Zx+6HaLAfOkbSkTDEemEPV/3yD7d1l3BaqXuf7gLnAg2UhMg7YM0gsnwA+Ieka4LeB5QOMWQushWrPY2i3ICIi6mr6eBLbh4FOoFPSdqo/2psZuHQkYJXt+19yUFoM9PY5dLhcW0C37UU1Yv488Ic1xkdERIs12zA/Hzhi+/FyaD7wBLADOFNSRylbTaEqW60HbpD0Zds/KOfvbnCJncAMSYtsPyypDTjPdne/OM7tE8Nbgcf7T9Tf/HkX0dXV1WxYREQcg2Yrj8nAGknTqEpPu6g+Jnuo7E+skTSRKnEsBe6mKkdtLhvizwJXDjZ5mWcZcIekqSWe24HufkPfJWkp8APgeQYoWUVExMnT9Hseo1V7e7uz8oiIqGeo3/PI40kiIqK2JI+IiKgtySMiImpL8oiIiNqSPCIiorYkj4iIqC3JIyIiakvyiIiI2pI8IiKitqYPRhyttu19jrNu++xwhxED2P3ea4Y7hIg4Tll5REREbUkeERFRW5JHRETU1vLkIelySfNaPW9ERIwcTZOHpFWSuiVtk7RF0huanPIQcLOk17YmRJD0XkmPlhi+LOnsVs0dERH1NeskuAi4ArjIdq+k6VR9yQdl+yBwbetCBOAfgXbbByX9V+AjwFWNTjj/lRP54pLXtziMiIiA5iuPmUCP7V4A2z22nwKQ1CHp65K2StogaYqkcZI+KmmjpO2SVpaxiyV1SrpP0g5J95ZOg0haKOmrkjZJWi9pZv8gbH+lJCWAbwBnteoGREREfc2SxwPALEmPSbpL0qUAksYD64Abbc+jakH7AnA9sN92B9ABrJQ0p8y1ALgJuACYA1xcepavAZbZXgjcA6xuEtP1wN8N9IKkFZK6JHU99/zzTaaJiIhj1bBsZfuApIXAJcBlwDpJtwCbgD22N5Zx+6HaLAfOkbSkTDGeKlG8CGywvbuM20LV63wfMBd4sCxExgF7BotH0juAduDSQeJdC6wF+MkLLxyb/XUjIkaApt8wt30Y6AQ6JW0HlgObgYH+OAtYZfv+lxyUFgO9fQ4dLtcW0G17UbM4JC0FVgGXHi2jRUTE8Gi2YX4+cMT24+XQfOAJYAdwpqQO2xslTaEqW60HbpD0Zds/KOfvbnCJncAMSYtsP1zKWOfZ7u4XxwLgU8BbbD8zlDf2iokTOWfe3KEMjYiImpqtPCYDayRNoyo97QJW2D4k6ary2kSqxLEUuJuqHLW5bIg/C1w52ORlnmXAHZKmlnhuB7r7Df1oieXPS3nrSdtvq/VOIyKiZWSPza2B9vZ2d3V1DXcYERGjiqRNttubjcvjSSIiorYkj4iIqC3JIyIiakvyiIiI2pI8IiKitiSPiIioLckjIiJqS/KIiIjakjwiIqK2JI+IiKit6VN1R6snD27jXVte05K57pz/ZEvmiYgYK7LyiIiI2sbsykPfnkLbtQP2jPqhj237zEmKJiJibMnKIyIiamv5I9lLK9q9tre2dOKaxs+a4x99z/8czhAi4iTa/d5rhjuEMWGoj2RvWraStAq4hqp17BFgpe1HGpzyEPBJSR+0vWuoATeJ4c1UTaJeD7zd9n3Nzjn/lRP54pLXt+Ly0WLp8Bgx+jVrQ7sIuAK4yHavpOnA+Ebn2D4IXNu6EAF4ErgOeF+L542IiGPQbOUxE+ix3Qtgu+foC5I6gI8Dk4BeYAlwEPgwsBiYANxp+1OSFgO3Aj3AXGAT8A7blrQQuI2qzWwPcJ3tPX2DsP3tcs0jQ31j33n0CL+x4GDDMX9z5KeGOl1ERPTRbMP8AWCWpMck3SXpUgBJ44F1wI2251H1L38BuB7Yb7sD6ABWSppT5loA3ARcAMwBLpbUBqwBltleCNwDrD7WNyNphaQuSV2H2Hes00RERBMNVx62D5SVwSXAZcA6SbdQrRz22N5Yxu2HH26WnyNpSZliPFWieBHYYHt3GbcFmA3so1qJPCgJYBzwklVHHbbXAmsB2s462xvf+Y8Nx5/+ocav17H3AytbNldExEjXdMPc9mGgE+iUtB1YDmwGBvqYloBVtu9/ycGqbNXb59Dhcm0B3bYXHUvwjZz+/em8+6Ffa/W0g/rIWw+dtGtFRAzm/V9quC3dMg3LVpLOl3Run0PzgSeAHcCZZd8DSVMknQqsB24o5aij509qcImdwIyyMY+kNkkXHvvbiYiIk6HZymMysEbSNKrS0y5ghe1Dkq4qr02k2u9YCtxNVY7arKoO9Sxw5WCTl3mWAXdImlriuR3o7juuJKm/AF4F/Jyk37XdMMmcca5OWgaOiHi5afmXBEeK9vZ2d3V1DXcYERGjylC/JJjHk0RERG1JHhERUVuSR0RE1JbkERERtSV5REREbUkeERFRW5JHRETUluQRERG1jdkvCUr6PtXjT0aj6VSPpx+NEvvwSOwn32iNGxrHfrbtGc0maPpgxFFs51C+JTkSSepK7CdfYh8eozX20Ro3tCb2lK0iIqK2JI+IiKhtLCePtcMdwHFI7MMjsQ+P0Rr7aI0bWhD7mN0wj4iIE2csrzwiIuIESfKIiIjaxmTykPQWSTsl7ZJ0y3DHU4ekb0vaLmmLpBHdzUrSPZKekfRPfY69WtKDkh4v/37VcMY4kEHivlXSv5T7vkXSzw5njIORNEvSVyR9U1K3pBvL8dFw3weLfcTfe0kTJG2QtLXE/rvl+Gi474PFflz3fczteUgaBzwG/EdgN7ARuNr2o8Ma2BBJ+jbQbnvEf/lI0puBA8Cf2p5bjn0EeM72h0vifpXt3xzOOPsbJO5bgQO2f384Y2tG0kxgpu3NkqYAm6haPV/HyL/vg8X+K4zwe1/aak+yfUBSG/AQcCPwi4z8+z5Y7G/hOO77WFx5/BSwy/Y/2z4EfB74+WGOaUyy/ffAc/0O/zzw6fLzp2nQw364DBL3qGB7j+3N5efvA98EfozRcd8Hi33Ec+VA+bWt/GNGx30fLPbjMhaTx48B3+nz+25Gyf9ACwMPSNokacVwB3MMTre9B6o/FsCPDnM8dbxL0rZS1hpx5Yf+JM0GFgCPMMrue7/YYRTce0njJG0BngEetD1q7vsgscNx3PexmDw0wLHRVJu72PZFwM8A7ywlljjx/hD4cWA+sAf4g+ENpzFJk4EvADfZ3j/c8dQxQOyj4t7bPmx7PnAW8FOS5g53TEM1SOzHdd/HYvLYDczq8/tZwFPDFEtttp8q/34G+AuqMtxosrfUto/WuJ8Z5niGxPbe8n+wI8AfMYLve6lbfwG41/b/LodHxX0fKPbRdO8BbO8DOqn2DEbFfT+qb+zHe9/HYvLYCJwr6RxJ44G3A18c5piGRNKkspGIpEnA5cA/NT5rxPkisLz8vBz4q2GMZciO/gEofoERet/L5ucfA9+0fVufl0b8fR8s9tFw7yXNkDSt/DwRWArsYHTc9wFjP977PuY+bQVQPnJ2OzAOuMf26mEOaUgkzaFabUD1xOPPjuTYJX0OWEz1eOe9wO8Afwn8GfAa4Engl22PqM3pQeJeTLV8N/BtYOXRWvZIIulNwD8A24Ej5fBvUe0djPT7PljsVzPC772k11NtiI+j+o/uP7P9QUmnMfLv+2Cxf4bjuO9jMnlERMSJNRbLVhERcYIleURERG1JHhERUVuSR0RE1JbkERERtSU4C+q4AAAAEUlEQVR5REREbUkeERFR2/8HyRls3bIdTBYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEICAYAAACnL3iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGeJJREFUeJzt3X+QXeV93/H3x0KKKajgVASEIQjVMjXQkWB37aiYIIKGOg11aKuUhHSQE1qJFsfQOPVA1B/5McST0NgUxcRRCE3awbZS0riu3SKoG5EQMNJKESiKBVYT4yrIWIqtyPyoZKRv/7hHziJ2790jrrir1fs1o5H2nOc853uO7tzPPM9z79lUFZIktfGmQRcgSTr+GB6SpNYMD0lSa4aHJKk1w0OS1JrhIUlqzfCQJLVmeEgtJVmf5BtJvmOS7eclqSQn9eHcy5u+/unr7Ut6PQwPqYUk84DLgQLe+waf+y3A7cC2N/K80ngMD6mdG4AvAL8JLB+7I8nJSX45ybNJ/jLJo0lOBn6/abI3yQtJFjftfzzJF5tRzLok5/U494eBu4E9fb0i6SgYHlI7NwD3N3/+bpIzx+z798AQ8HeA7wQ+BBwCvrfZf3pVnVpVjye5Fvhp4B8CZwB/AHxyopMmeScwDHy8v5cjHR3DQ5qkJO8GzgN+u6o2Af8HuL7Z9ybgx4FbqurPq+pgVT1WVfsn6G4l8OGq+mJVvQL8ArBovNFHkhnAPcBPVNWh/l+Z1J7hIU3ecuChqjo8bfQJ/mrqag7wZjqBMhnnAf8hyd4ke4GvAwHeOk7bfwE8VVWPH3XlUp/Fp+pKvTVrF18FZgAvNJu/AzgdWARsBV4Evqeqnjzi2POALwMzm1EGSdYB/6mq7p/EuT8NXAEcHsV8J/Ay8J+r6v2v78qko+PIQ5qca4GDwIV0wmIR8A46axU3NNNJ9wEfSXJ2khlJFjcf591NZ+1j/pj+Pg7cnuQigCSnJfmhCc79vuZch887CvwssKq/lyhNnuEhTc5y4D9W1Veq6quH/wC/Avxo8x2On6IzAtlIZxrqF4E3VdVLwB3AHzbTVN9TVb/b7P9Ukn3AHwPfP96Jq2rvEec8AOyrqr88xtcsTchpK0lSa448JEmtGR6SpNYMD0lSa4aHJKm11/2Uz6lqzpw5NW/evEGXIUnHlU2bNu2pqjN6tZu24TFv3jxGR0cHXYYkHVeSPDuZdk5bSZJaMzwkSa0ZHpKk1gwPSVJrhockqTXDQ5LUmuEhSWrN8JAktTZtvyT41S8Vv/QDB1of96HPzToG1UjS9OLIQ5LUmuEhSWrN8JAktWZ4SJJaMzwkSa0ZHpKk1gwPSVJrhockqTXDQ5LUmuEhSWrN8JAktWZ4SJJaMzwkSa1N26fqnrUgPiFXko4RRx6SpNYMD0lSa30PjyRXJ1nY734lSVNHz/BIsirJtiRPJdmS5F09DnkU+GCSt/WnREjy0ebcW5I8k2Rvv/qWJLXXdcE8yWLgGuDSqtqfZA7QdRW6ql4CbuhfiVBV/3JMTT8BXNLP/iVJ7fQaecwF9lTVfoCq2lNVzwEkGUnyWJInk2xIMjvJjCR3JtmYZGuSlU3bJUnWJ3kgyfYk9ydJs28oySNJNiVZl2Ruj5p+BPjk67tsSdLr0Ss8HgLObaaK7klyBUCSWcBa4JaqWggsBV4GbgT2VdUIMAKsTDK/6esS4FbgQmA+cFmSmcBqYFlVDQH3AXdMVEyS84Dzgf89wf4VSUaTjO7evXsSly9JOhpdp62q6oUkQ8DlwJXA2iS3AZuAXVW1sWm3DzqL5cD5Sa5quphFJyheATZU1c6m3RZgHrAXuBh4uBmIzAB2dSnph4EHqurgBPWuAdYADA8PV9crlyQdtZ5fEmzeqNcD65NsBZYDm4Hx3pwDrKqqB1+1MVkC7B+z6WBz7gDbqmrxJOv9YeDmSbaVJB0jXaetklyQZMGYTYuAZ4HtwNlJRpp2s5OcBKwDbmqmow4ff0qXUzwNnNEszJNkZpKLJqoFeAvw+OQuTZJ0rPQaeZwKrE5yOp2ppx3Aiqo6kOS6Zt/JdNY7lgL30pmO2twsiO8Grp2o86afZcDdSU5r6rkL2DZO8x8BPlVVTkdJ0oBlur4XDw8P1+jo6KDLkKTjSpJNVTXcq52PJ5EktWZ4SJJaMzwkSa0ZHpKk1gwPSVJrhockqTXDQ5LUmuEhSWrN8JAktWZ4SJJaMzwkSa0ZHpKk1nr+Po/j1fZdxeKff2XQZUwpj/+bafvfLekN5shDktSa4SFJas3wkCS1ZnhIklozPCRJrfU9PJJcnWRhv/uVJE0dPT+7mWQVcD1wEDgErKyqJ7oc8ijw8SQ/V1U7+lMmJPnHwM8ABTxZVdd3a78/e/jTk36jX6efJlYOugBJ00TX8EiyGLgGuLSq9ieZA8zqdkxVvQTc0L8SIckC4Hbgsqr6RpLv6mf/kqR2ek1bzQX2VNV+gKraU1XPASQZSfJYkieTbEgyO8mMJHcm2Zhka5KVTdslSdYneSDJ9iT3J0mzbyjJI0k2JVmXZO44dfwz4GNV9Y2mjq/16wZIktrrFR4PAecmeSbJPUmuAEgyC1gL3FJVC4GlwMvAjcC+qhoBRoCVSeY3fV0C3ApcCMwHLksyE1gNLKuqIeA+4I5x6ng78PYkf5jkC0neM16xSVYkGU0yeujFFyZ9EyRJ7XSdtqqqF5IMAZcDVwJrk9wGbAJ2VdXGpt0+6CyWA+cnuarpYhadoHgF2FBVO5t2W4B5wF7gYuDhZiAyA9g1QZ0LgCXAOcAfJLm4qvYeUe8aYA3AzHPOq0nfBUlSKz0XzKvqILAeWJ9kK7Ac2Exn4fpIAVZV1YOv2pgsAfaP2XSwOXeAbVW1uEcZO4EvVNW3gD9L8jSdMNnYq35JUv91nbZKckGzWH3YIuBZYDtwdpKRpt3sJCcB64Cbmumow8ef0uUUTwNnNAvzJJmZ5KJx2n2azsiHZtH+7cCfTuYCJUn912vkcSqwOsnpdKaedgArqupAkuuafSfTWe9YCtxLZzpqc7Mgvhu4dqLOm36WAXcnOa2p5y5g2xFN1wFXJ/kTOqOWf1VVf9Gt8IVnncHo7X40VZKOhVRNz6WB4eHhGh0dHXQZknRcSbKpqoZ7tfPxJJKk1gwPSVJrhockqTXDQ5LUmuEhSWrN8JAktWZ4SJJaMzwkSa0ZHpKk1gwPSVJrhockqTXDQ5LUWs/f53G8evKruznzw7826DIkTTHP+7TtvnDkIUlqzfCQJLVmeEiSWjM8JEmtGR6SpNb6Hh5Jrk6ysN/9SpKmjp4f1U2yCrgeOAgcAlZW1RNdDnkU+HiSn6uqHf0oMsn7gDuBP282/UpV3dvtmDO/OYcPPPpj/Ti9pCnqQ5+bNegSTlhdwyPJYuAa4NKq2p9kDtD1f6uqXgJu6F+J37a2qt5/DPqVJLXUa9pqLrCnqvYDVNWeqnoOIMlIkseSPJlkQ5LZSWYkuTPJxiRbk6xs2i5Jsj7JA0m2J7k/SZp9Q0keSbIpybokc4/lBUuSXr9e4fEQcG6SZ5Lck+QKgCSzgLXALVW1EFgKvAzcCOyrqhFgBFiZZH7T1yXArcCFwHzgsiQzgdXAsqoaAu4D7pigln+U5KkmgM4dr0GSFUlGk4y+eGDP5O6AJKm1rtNWVfVCkiHgcuBKYG2S24BNwK6q2ti02wedxXLg/CRXNV3MohMUrwAbqmpn024LMA/YC1wMPNwMRGYAu8Yp5b8Dn2ymzm4Cfgv4vnHqXQOsATjntKGa5D2QJLXUc8G8qg4C64H1SbYCy4HNwHhvzgFWVdWDr9qYLAH2j9l0sDl3gG1VtbhHDX8x5sdfB36xV92SpGOn67RVkguSLBizaRHwLLAdODvJSNNudpKTgHXATc101OHjT+lyiqeBM5qFeZLMTHLROHWMXQd5L/DF3pcmSTpWeo08TgVWJzmdztTTDmBFVR1Icl2z72Q66x1LgXvpTEdtbhbEdwPXTtR5088y4O4kpzX13AVsO6LpB5K8t6nh68D7el3YWQvix/gk6RhJ1fRcGhgeHq7R0dFBlyFJx5Ukm6pquFc7H08iSWrN8JAktWZ4SJJaMzwkSa0ZHpKk1gwPSVJrhockqTXDQ5LUmuEhSWrN8JAktWZ4SJJa6/lI9uPVU89/nXM+8olBlyFpEnb+5PWDLkEtOfKQJLVmeEiSWjM8JEmtTds1j6qDfGv/Nwddho7C87evHHQJknpw5CFJas3wkCS11vfwSHJ1koX97leSNHX0DI8kq5JsS/JUki1J3tXjkEeBDyZ5W39KfFUty5JUkp6/X1eSdOx0XTBPshi4Bri0qvYnmQPM6nZMVb0E3NC/Er9dy2zgA8ATk2l/5jfn8IFHf6zfZUiS6D3ymAvsqar9AFW1p6qeA0gykuSxJE8m2ZBkdpIZSe5MsjHJ1iQrm7ZLkqxP8kCS7UnuT5Jm31CSR5JsSrIuydwJavl54JeA/9eXK5ckHbVe4fEQcG6SZ5Lck+QKgCSzgLXALVW1EFgKvAzcCOyrqhFgBFiZZH7T1yXArcCFwHzgsiQzgdXAsqoaAu4D7jiyiCSXAOdW1We7FZtkRZLRJKMvHtgzmeuXJB2FrtNWVfVCkiHgcuBKYG2S24BNwK6q2ti02wedxXLg/CRXNV3MohMUrwAbqmpn024LMA/YC1wMPNwMRGYAu8bWkORNwEeB9/W6mKpaA6wBOOe0oerVXpJ0dHp+SbCqDgLrgfVJtgLLgc3AeG/OAVZV1YOv2pgsAfaP2XSwOXeAbVW1uEsJs+kEzPomYM4CPpPkvVU12qt+SVL/9VowvwA4VFVfajYtAp4FtgNnJxmpqo3NYvbLwDrgpiSfr6pvNcfv7HKKp4Ezkiyuqsebaay3V9W2ww2q6i+BOWNqWg/8VK/gOGtB+NDnuq7tS5KOUq+Rx6nA6iSn05l62gGsqKoDSa5r9p1MJziWAvfSmY7a3CyI7waunajzpp9lwN1JTmvquQvYNtExkqTBS9X0XBoYHh6u0VFntSSpjSSbqqrnd+l8PIkkqTXDQ5LUmuEhSWrN8JAktWZ4SJJaMzwkSa0ZHpKk1gwPSVJrhockqTXDQ5LUmuEhSWrN8JAktdbz93kcr5786m7O/PCvDboMSToqz9++ctAldOXIQ5LUmuEhSWrN8JAktWZ4SJJaMzwkSa31PTySXJ1kYb/7lSRNHT1/h3mSVcD1wEHgELCyqp7o0v6vAR8Hfq6qdvSlyOQm4OamhheAFVX1J92OOee0ofrAux/vx+kl6bjxoc/Nel3HT/Z3mHf9nkeSxcA1wKVVtT/JHKBrZVX1EnBDm2In4RNV9fGmpvcCHwHe0+dzSJImqde01VxgT1XtB6iqPVX1HECSkSSPJXkyyYYks5PMSHJnko1JtiZZ2bRdkmR9kgeSbE9yf5I0+4aSPJJkU5J1SeYeWURV7Rvz4ylA9+GSJOmY6vUN84eAf5vkGeB/AWur6pEks4C1wHVVtTHJXwdeBm4E9lXVSJI3A48lebjp6xLgIuA54A+By5I8AawGfrCqdie5DrgD+PEjC0lyM/CTdEY+3zdesUlWACsATn/zd0/6JkiS2ukaHlX1QpIh4HLgSmBtktuATcCuqtrYtNsHncVy4PwkVzVdzALmA68AG6pqZ9NuCzAP2AtcDDzcDERmALsmqOVjwMeSXA/8a2D5OG3WAGugs+YxuVsgSWqr57OtquogsB5Yn2QrnTftzYw/dRRgVVU9+KqNyRJg/5hNB5tzB9hWVYtb1Pwp4FdbtJck9VnXNY8kFyRZMGbTIuBZYDtwdpKRpt3sJCcB64Cbkswcc/wpXU7xNHBGszBPkplJLhqnjrE1/ADwpd6XJkk6VnqNPE4FVic5nc7U0w46H5M90KxPrE5yMp31jqXAvXSmozY3C+K7gWsn6rzpZxlwd5LTmnruArYd0fT9SZYC3wK+wThTVkc6a0Fe90fWJEnj6/k9j+PV8PBwjY6ODroMSTquTPZ7Hj6eRJLUmuEhSWrN8JAktWZ4SJJaMzwkSa0ZHpKk1gwPSVJrhockqTXDQ5LUmuEhSWrN8JAktdbzkezHqx2bXuSaN21ofdxnD73zGFQjSdOLIw9JUmuGhySpNcNDktTatF3zePGtL7Hx5j86iiNd85CkXhx5SJJaMzwkSa31PTySXJ1kYb/7lSRNHT3DI8mqJNuSPJVkS5J39TjkUeCDSd7WnxIhyU8m+ZOmhs8nOa9ffUuS2ktVTbwzWQx8BFhSVfuTzAFmVdVzb1SBTR1XAk9U1UtJ/nlTz3XdjjnntKH6wLsff2MKfB0+9LlZgy5Bkr4tyaaqGu7VrtfIYy6wp6r2A1TVnsPBkWQkyWNJnkyyIcnsJDOS3JlkY5KtSVY2bZckWZ/kgSTbk9yfJM2+oSSPJNmUZF2SuUcWUVW/V1UvNT9+AThn8rdCktRvvcLjIeDcJM8kuSfJFQBJZgFrgVuqaiGwFHgZuBHYV1UjwAiwMsn8pq9LgFuBC4H5wGVJZgKrgWVVNQTcB9zRo6Ybgf853o4kK5KMJhl98cCeHt1Iko5W1+95VNULSYaAy4ErgbVJbgM2AbuqamPTbh90FsuB85Nc1XQxi05QvAJsqKqdTbstwDxgL3Ax8HAzEJkB7JqoniT/BBgGrpig3jXAGuhMW/W4dknSUer5JcGqOgisB9Yn2QosBzYD4705B1hVVQ++amOyBNg/ZtPB5twBtlXV4l51JFkKrAKuODyNJkkajK7hkeQC4FBVfanZtAh4FtgOnJ1kpKo2JplNZ9pqHXBTks9X1bea43d2OcXTwBlJFlfV48001turatsRdVwC/Brwnqr62mQu7KwFcTFako6RXiOPU4HVSU6nM/W0A1hRVQeSXNfsO5lOcCwF7qUzHbW5WRDfDVw7UedNP8uAu5Oc1tRzF7DtiKZ3NrX8l2Z66ytV9d5WVypJ6puuH9U9ng0PD9fo6Oigy5Ck40q/PqorSdJrGB6SpNYMD0lSa4aHJKk1w0OS1JrhIUlqzfCQJLVmeEiSWjM8JEmtGR6SpNYMD0lSa4aHJKk1w0OS1Nq0faruSTPfVKf+jTcPuoxpYe9XX+rdSNK04FN1JUnHjOEhSWrN8JAktdbr19Aet/7WuX+b37lj3aDLkKRpqe8jjyRXJ1nY734lSVNHz/BIsirJtiRPJdmS5F09DnkU+GCSt/WnREjyvUk2J3klybJ+9StJOjpdp62SLAauAS6tqv1J5gCzuh1TVS8BN/SvRAC+ArwP+KnJHrDzzw7wwR/9Sp/LmNhnD73zDTuXJA1ar5HHXGBPVe0HqKo9VfUcQJKRJI8leTLJhiSzk8xIcmeSjUm2JlnZtF2SZH2SB5JsT3J/kjT7hpI8kmRTknVJ5h5ZRFV9uaqeAg719eolSUelV3g8BJyb5Jkk9yS5AiDJLGAtcEtVLQSWAi8DNwL7qmoEGAFWJpnf9HUJcCtwITAfuCzJTGA1sKyqhoD7gDuO9mKSrEgymmT0AHuPthtJUg9dp62q6oUkQ8DlwJXA2iS3AZuAXVW1sWm3DzqL5cD5Sa5quphFJyheATZU1c6m3RZgHrAXuBh4uBmIzAB2He3FVNUaYA3A6XnH9PzqvCRNAT0/qltVB4H1wPokW4HlwGZgvDfnAKuq6sFXbUyWAPvHbDrYnDvAtqpafDTFd/PiW19i481/1O9uJ3Tmh9+4c6m/nr995aBLkI47XaetklyQZMGYTYuAZ4HtwNlJRpp2s5OcBKwDbmqmow4ff0qXUzwNnNEszJNkZpKLjv5yJElvhF4jj1OB1UlOpzP1tANYUVUHklzX7DuZznrHUuBeOtNRm5sF8d3AtRN13vSzDLg7yWlNPXcB28a2a0Lqd4G3AH8/yc9WlSEjSQMybZ+qOzw8XKOjo4MuQ5KOKz5VV5J0zBgekqTWDA9JUmuGhySpNcNDktSa4SFJas3wkCS1ZnhIklozPCRJrRkekqTWDA9JUmuGhySpNcNDktTatH2qbpJv0vl9Iforc4A9gy5iCvK+vJb35LVOlHtyXlWd0atRz98keBx7ejKPFT6RJBn1nryW9+W1vCev5T15NaetJEmtGR6SpNamc3isGXQBU5D3ZHzel9fynryW92SMabtgLkk6dqbzyEOSdIwYHpKk1qZleCR5T5Knk+xIctug65kKknw5ydYkW5KMDrqeQUhyX5KvJfnjMdu+M8nDSb7U/P2WQdY4CBPcl59J8ufN62VLkr83yBrfaEnOTfJ7Sb6YZFuSW5rtJ/zr5bBpFx5JZgAfA74fuBD4kSQXDraqKePKqlp0An9W/TeB9xyx7Tbg81W1APh88/OJ5jd57X0B+GjzellUVf/jDa5p0F4BPlhV7wC+B7i5eR/x9dKYduEBvBPYUVV/WlUHgE8BPzjgmjQFVNXvA18/YvMPAr/V/Pu3gGvf0KKmgAnuywmtqnZV1ebm398Evgi8FV8v3zYdw+OtwP8d8/POZtuJroCHkmxKsmLQxUwhZ1bVLui8YQDfNeB6ppL3J3mqmdY6YadnkswDLgGewNfLt03H8Mg42/w8MlxWVZfSmc67Ocn3DrogTWm/CvxNYBGwC/jlwZYzGElOBX4HuLWq9g26nqlkOobHTuDcMT+fAzw3oFqmjKp6rvn7a8Dv0pneEzyfZC5A8/fXBlzPlFBVz1fVwao6BPw6J+DrJclMOsFxf1X912azr5fGdAyPjcCCJOcnmQX8MPCZAdc0UElOSTL78L+Bq4E/7n7UCeMzwPLm38uB/zbAWqaMw2+QjX/ACfZ6SRLgN4AvVtVHxuzy9dKYlt8wbz5WeBcwA7ivqu4YcEkDlWQ+ndEGdJ6k/IkT8Z4k+SSwhM6jtZ8H/h3waeC3ge8GvgL8UFWdUIvHE9yXJXSmrAr4MrDy8Fz/iSDJu4E/ALYCh5rNP01n3eOEfr0cNi3DQ5J0bE3HaStJ0jFmeEiSWjM8JEmtGR6SpNYMD0lSa4aHJKk1w0OS1Nr/B3F2YvuntZGdAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEICAYAAACnL3iHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGU9JREFUeJzt3X+0nVWd3/H3h5AIAxHUoATDGDIC8qMTIMk4KQJhSNGpFOk0I5XOAiqS0KUFFlqKpqtVW1ZnRBmGjI5GhtauBZqRGWfssIZAXQZFVHKTBmIk/KiKRiKQgRgjTCLh2z/Ogw3pzT33Cefm5B7fr7XuSu5z9rOf775P7v1k733OuakqJElqY79+FyBJGn8MD0lSa4aHJKk1w0OS1JrhIUlqzfCQJLVmeEiSWjM8pJaSrEjyTJJXjLL99CSVZP+Xcc1K8vMkW5uPm/a0L6kXDA+phSTTgdOAAs7dy5efWVUHNx/v2cvXll7C8JDauRD4FvDfgYt2fiDJgUk+keSxJD9Nck+SA4GvNU02N7OGuU37dyd5sJnFLE/yhr05EOnlMDykdi4Ebmk+3prkdTs99nFgFvCPgVcDVwMvAKc3jx/azBq+meQ84EPA7wGHAV8HPt/l2l9L8pMkf9XMgKS+ie9tJY1OkrcAXwWmVtWmJOuBz1TVHyfZD/g58NtVdf8u500Hvg9MrKrnm2N/B9xWVX/efL4fsBU4rqoeG+bap9OZ8fwa8F+AecBJL/Yn7W3OPKTRuwi4s6o2NZ/fyv9bupoCHAD8n1H29QbgT5JsTrIZeBoI8PrhGlfV16pqe1VtBq4AjgKO27NhSC/fHj/7Q/pV0uxdvBOYkOQnzeFXAIcmmQmsBf4B+A3g/l1OH256/yPg2qq6ZQ9LKjphI/WFMw9pdM4DdgDHAyc1H8fR2au4sKpeAG4Grk9yRJIJSeY2T+d9is7ex4yd+vs08MEkJwAkOSTJ7w934SQnJDmp6fNg4BPAj4EHx2Sk0igYHtLoXAT8t6r6YVX95MUP4E+Bf9W8huMDdGYgK+ksQ/0RsF9VPQtcC3yjWab67ar6UvP4F5JsAb4D/O5urv06YBmwBfgeMB04p6p+MVaDlbpxw1yS1JozD0lSa4aHJKk1w0OS1JrhIUlqbWBf5zFlypSaPn16v8uQpHFl1apVm6rqsG7tBjY8pk+fztDQUL/LkKRxJcn/9/Y4w3HZSpLUmuEhSWrN8JAktWZ4SJJaMzwkSa0ZHpKk1gwPSVJrhockqbWBfZHgcxs2se4Dn+1pnyd8/NKe9idJ45UzD0lSa4aHJKm1gV22emTifrz1iING1XbDVReMcTWSNFiceUiSWjM8JEmtpar6XcOYOOJNr6hLlx7e7zL65iOnj+pdlSXpJZKsqqrZ3dr1fOaR5OwkM3vdryRp39E1PJIsTrIuyQNJ1iR5c5dT7gHen+SNvSnxl3W8M8l3m1pu7WXfkqR2Rny2VZK5wDnAKVW1LckUYNJI51TVs8CFvSsRkhwNfBA4taqeSfLabue8evubuODHy0fV/7Hv+tVd3pKkPdFt5jEV2FRV2wCqalNVPQ6QZE6Se5Pcn+S+JJOTTEhyXZKVSdYmWdS0nZdkRZLbkqxPckuSNI/NSnJ3klVJlieZOkwdlwKfrKpnmjqe7NUXQJLUXrfwuBM4MsnDST6V5AyAJJOAZcAVVTUTmA88B1wCbKmqOcAcYFGSGU1fJwNXAscDM4BTk0wElgALqmoWcDNw7TB1HAMck+QbSb6V5G3DFZtkYZKhJEPP/OzvR/1FkCS1M+KyVVVtTTILOA04E1iW5BpgFbCxqlY27bZAZ7McOCrJWU0Xk+gExfPAfVW1oWm3BpgObAZOBO5qJiITgI27qfNoYB4wDfh6khOravMu9S4FlgJMnPaGOv0HfzO6r8J/HV2zsfLEBxf1twBJaqnrK8yragewAliRZC1wEbAaGO45vgEWV9UdLzmYzAO27XRoR3PtAOuqam6XMjYA36qqXwDfT/IQnTBZ2a1+SVLvjbhsleTYZrP6RScBjwHrgSOSzGnaTU6yP7AcuKxZjnrx/JHeI+Qh4LBmY54kE5OcMEy7v6Yz86HZtD8G+N5oBihJ6r1uM4+DgSVJDqWz9PQosLCqtic5v3nsQDr7HfOBm+gsR61uNsSfAs7bXedNPwuAG5Mc0tRzA7Bul6bLgbOTfJfOrOXfVdWImxqv+9kULr/nX3cZ3r7hY2/f3u8S+ubq20d88p6kfdTAvsJ82iGz6vK3fLPfZagLw0Pat/TtFeaSpME3sG/JfvjR8X+1kjRGnHlIklozPCRJrRkekqTWDA9JUmuGhySpNcNDktSa4SFJas3wkCS1ZnhIklozPCRJrRkekqTWDA9JUmuGhySpNcNDktSa4SFJas3wkCS1NrC/DOqBJ55m2vW3jqrthqsuGONqJGmwOPOQJLVmeEiSWktV9buGMXHEm15Rly49vN9laIB85PTH+l2CNOaSrKqq2d3aOfOQJLVmeEiSWjM8JEmtDexTdV+9/U1c8OPlfbv+se9yv0XS4Or5zCPJ2Ulm9rpfSdK+o2t4JFmcZF2SB5KsSfLmLqfcA7w/yRt7UyIkuTjJU8311yR5T6/6liS1N+KyVZK5wDnAKVW1LckUYNJI51TVs8CFvSvxl5ZV1fvGoF9JUkvd9jymApuqahtAVW168YEkc4A/AQ4CtgFnAc8CfwjMAw4A/rSqPpNkHvBhYBNwIrAK+IOqqiSzgOuBg5vHL66qjS93YDnweSYdv6l7wzHy/fv7d22NjaNmntjvEqR9RrdlqzuBI5M8nORTSc4ASDIJWAZcUVUzgfnAc8AlwJaqmgPMARYlmdH0dTJwJXA8MAM4NclEYAmwoKpmATcD1+6mln/RLJ3dluTI4RokWZhkKMnQ0888M7qvgCSptRFnHlW1tZkZnAacCSxLcg2dmcPGqlrZtNsCnc1y4KgkZzVdTKITFM8D91XVhqbdGmA6sJnOTOSuJAATgOFmHf8T+HyzdHYZ8Dngd4apdymwFOAfnXDCYL50XpL2AV2fqltVO4AVwIoka4GLgNXAcD+cAyyuqjtecrCzbLVtp0M7mmsHWFdVc7vU8Pc7ffpZ4I+61f3MhgP44oeO6dZM48jVt4+43SZpLxpx2SrJsUmO3unQScBjwHrgiGbfgySTk+wPLAcua5ajXjz/oBEu8RBwWLMxT5KJSU4Ypo6pO316LvBg96FJksZKt5nHwcCSJIfSWXp6FFhYVduTnN88diCd/Y75wE10lqNWp7MO9RRw3u46b/pZANyY5JCmnhuAdbs0vTzJuU0NTwMXtxqlJKmnBvZddacdMqsuf8s3+12GeshlK2nsjfZddQf27UkOPzr+sJGkMeIbI0qSWjM8JEmtGR6SpNYMD0lSa4aHJKk1w0OS1JrhIUlqzfCQJLVmeEiSWjM8JEmtGR6SpNYMD0lSa4aHJKk1w0OS1JrhIUlqzfCQJLVmeEiSWhvY3yT4wBNPM+36W0fVdsNVF4xxNZI0WJx5SJJaMzwkSa0ZHpKk1lJV/a5hTOw/cb86+DUHjKrt5p88O8bVSNL4kGRVVc3u1s6ZhySpNcNDktTawD5V97hjjuPLty7rdxmSNJCceUiSWut5eCQ5O8nMXvcrSdp3dA2PJIuTrEvyQJI1Sd7c5ZR7gPcneWNvSnxJLQuSVJKuzwSQJI2dEfc8kswFzgFOqaptSaYAk0Y6p6qeBS7sXYm/rGUycDnw7dG0/9F3X+Dfnjy6p+D+7QsvozBJ+hXUbeYxFdhUVdsAqmpTVT0OkGROknuT3J/kviSTk0xIcl2SlUnWJlnUtJ2XZEWS25KsT3JLkjSPzUpyd5JVSZYnmbqbWv4z8DHgH3oycknSHusWHncCRyZ5OMmnkpwBkGQSsAy4oqpmAvOB54BLgC1VNQeYAyxKMqPp62TgSuB4YAZwapKJwBJgQVXNAm4Grt21iCQnA0dW1d+OVGyShUmGkgxtZ/Noxi9J2gMjLltV1dYks4DTgDOBZUmuAVYBG6tqZdNuC3Q2y4GjkpzVdDGJTlA8D9xXVRuadmuA6cBm4ETgrmYiMgHYuHMNSfYD/hi4uNtgqmopsBTg0Bw3mC+dl6R9QNfXeVTVDmAFsCLJWuAiYDUw3A/nAIur6o6XHEzmAdt2OrSjuXaAdVU1d4QSJtMJmBVNwBwOfDnJuVU1tLuTDn7lr3H6W04aeXCNj719+6jajZWrbx9xG0mS9jkjLlslOTbJ0TsdOgl4DFgPHJFkTtNucpL9geXAZc1y1IvnHzTCJR4CDms25kkyMckJOzeoqp9W1ZSqml5V04FvASMGhyRpbHWbeRwMLElyKJ2lp0eBhVW1Pcn5zWMH0tnvmA/cRGc5anWzIf4UcN7uOm/6WQDcmOSQpp4bgHUvb1iSpLE0sO+qO3v27BoacnIiSW34rrqSpDFjeEiSWjM8JEmtGR6SpNYMD0lSa4aHJKk1w0OS1JrhIUlqzfCQJLVmeEiSWjM8JEmtGR6SpNYMD0lSa4aHJKk1w0OS1FrXX0M7Xj3wxNNMu/7Wnva54aoLetqfJI1XzjwkSa0ZHpKk1gwPSVJrhockqTXDQ5LU2sA+2+rYVx7Il8/6zZ72+f37v9PT/iSp146aeeJeuY4zD0lSa4aHJKk1w0OS1JrhIUlqrefhkeTsJDN73a8kad/R9dlWSRYDFwA7gBeARVX17RFOuQf4dJKPVtWjvSgyyWXAe5satgILq+q7I53zzIYD+OKHjunF5SVp3Lj69r1znRHDI8lc4BzglKralmQKMGmkc6rqWeDC3pUIwK1V9emmpnOB64G39fgakqRR6rZsNRXYVFXbAKpqU1U9DpBkTpJ7k9yf5L4kk5NMSHJdkpVJ1iZZ1LSdl2RFktuSrE9yS5I0j81KcneSVUmWJ5m6axFVtWWnTw8CqheDlyTtmW7LVncC/zHJw8D/ApZV1d1JJgHLgPOramWSVwLPAZcAW6pqTpIDgHuT3NX0dTJwAvA48A3g1CTfBpYA76iqp5KcD1wLvHvXQpK8F7iKzsznd4YrNslCYCHAoQf8+qi/CJKkdkYMj6rammQWcBpwJrAsyTXAKmBjVa1s2m2BzmY5cFSSs5ouJgEzgOeB+6pqQ9NuDTAd2AycCNzVTEQmABt3U8sngU8muQD4D8BFw7RZCiwFmHbILGcnkjRGum6YV9UOYAWwIslaOj+0VzP80lGAxVV1x0sOJvOAbTsd2tFcO8C6qprbouYvAH/Wor0kqce6bZgfC7xQVY80h04CHgPWA0ckmdMsW02ms2y1HLgsyVeq6hfN+RtGuMRDwGFJ5lbVN5NMBI6pqnW71HH0TjW8HXhk1452dfjR4erbR9zblyTtoW4zj4OBJUkOpbP09Cidp8lub/YnliQ5kE5wzAduorMctbrZEH8KOG93nTf9LABuTHJIU88NwLpdmr4vyXzgF8AzDLNkJUnae1I1mFsDs2fPrqGhoX6XIUnjSpJVVTW7WzvfnkSS1JrhIUlqzfCQJLVmeEiSWjM8JEmtGR6SpNYMD0lSa4aHJKk1w0OS1JrhIUlqzfCQJLVmeEiSWjM8JEmtGR6SpNYMD0lSa4aHJKm1rr/DfLx6bsMm1n3gs/0uY6Cc8PFL+12CpH2EMw9JUmuGhySpNcNDktSa4SFJas3wkCS1NrDPtnpk4n689YiD+l3GYLn+1n5XoAGz4aoL+l2C9pAzD0lSa4aHJKk1w0OS1JrhIUlqrefhkeTsJDN73a8kad/R9dlWSRYDFwA7gBeARVX17RFOuQf4dJKPVtWjvSgyyVXAe4DngaeAd1fVYyOd89otr+LyryzoxeWlgXX17ZP6XYLGqRHDI8lc4BzglKralmQKMOK/tqp6FriwdyUC8L+B2VX1bJJ/A3wMOL/H15AkjVK3ZaupwKaq2gZQVZuq6nGAJHOS3Jvk/iT3JZmcZEKS65KsTLI2yaKm7bwkK5LclmR9kluSpHlsVpK7k6xKsjzJ1F2LqKqvNqEE8C1gWq++AJKk9rqFx53AkUkeTvKpJGcAJJkELAOuqKqZwHzgOeASYEtVzQHmAIuSzGj6Ohm4EjgemAGcmmQisARYUFWzgJuBa7vUdAnwd8M9kGRhkqEkQz/fvqlLN5KkPTXislVVbU0yCzgNOBNYluQaYBWwsapWNu22QGezHDgqyVlNF5PoBMXzwH1VtaFptwaYDmwGTgTuaiYiE4CNu6snyR8As4EzdlPvUmApwLRDZlWXsUuS9lDXDfOq2gGsAFYkWQtcBKwGhvvhHGBxVd3xkoPJPGDbTod2NNcOsK6q5narI8l8YDFwxovLaJKk/ui2YX4s8EJVPdIcOgl4DFgPHJFkTlWtTDKZzrLVcuCyJF+pql80528Y4RIPAYclmVtV32yWsY6pqnW71HEy8BngbVX15GgGdvjR8ZkkkjRGus08DgaWJDmUztLTo8DCqtqe5PzmsQPpBMd84CY6y1Grmw3xp4Dzdtd5088C4MYkhzT13ACs26XpdU0tX2yWt35YVee2GqkkqWdSNZhbA7Nnz66hoaF+lyFJ40qSVVU1u1s7355EktSa4SFJas3wkCS1ZnhIklozPCRJrRkekqTWDA9JUmuGhySpNcNDktSa4SFJas3wkCS1ZnhIklozPCRJrRkekqTWDA9JUmuGhySpNcNDktRat19DO249t2ET6z7w2X6Xsc874eOX9rsESeOQMw9JUmuGhySpNcNDktSa4SFJas3wkCS1ZnhIklozPCRJrRkekqTWev4iwSRnA09U1f297ruNnz73Gm5/8KJ+ltBXV98+qd8lSBpgXWceSRYnWZfkgSRrkry5yyn3AO9P8sbelAhJTk+yOsnzSRb0ql9J0p4ZceaRZC5wDnBKVW1LMgUY8b+0VfUscGHvSgTgh8DFwAd63K8kaQ90m3lMBTZV1TaAqtpUVY8DJJmT5N4k9ye5L8nkJBOSXJdkZZK1SRY1beclWZHktiTrk9ySJM1js5LcnWRVkuVJpu5aRFX9oKoeAF7o6eglSXukW3jcCRyZ5OEkn0pyBkCSScAy4IqqmgnMB54DLgG2VNUcYA6wKMmMpq+TgSuB44EZwKlJJgJLgAVVNQu4Gbh2TweTZGGSoSRDP9++aU+7kSR1MeKyVVVtTTILOA04E1iW5BpgFbCxqlY27bbALzfLj0pyVtPFJDpB8TxwX1VtaNqtAaYDm4ETgbuaicgEYOOeDqaqlgJLAaYdMqv2tB9J0si6PtuqqnYAK4AVSdYCFwGrgeF+OAdYXFV3vORgMg/YttOhHc21A6yrqrl7UrwkqT9GXLZKcmySo3c6dBLwGLAeOCLJnKbd5CT7A8uBy5rlqBfPP2iESzwEHNZszJNkYpIT9nw4kqS9odvM42BgSZJD6Sw9PQosrKrtSc5vHjuQzn7HfOAmOstRq5sN8aeA83bXedPPAuDGJIc09dwArNu5XRNSXwJeBfyzJB+pKkNGkvokVYO5NTB79uwaGhrqdxmSNK4kWVVVs7u18+1JJEmtGR6SpNYMD0lSa4aHJKk1w0OS1JrhIUlqzfCQJLVmeEiSWjM8JEmtDewrzJP8jM57Zw2SKcCgvdf8II4JBnNcjml8eLljekNVHdatUc9/h/k+5KHRvMR+PEky5JjGh0Ecl2MaH/bWmFy2kiS1ZnhIklob5PBY2u8CxoBjGj8GcVyOaXzYK2Ma2A1zSdLYGeSZhyRpjBgekqTWBjI8krwtyUNJHk1yTb/r6YUkP0iyNsmaJOPyVyQmuTnJk0m+s9OxVye5K8kjzZ+v6meNbe1mTB9O8uPmXq1J8k/7WWNbSY5M8tUkDyZZl+SK5vi4vVcjjGnc3qskByS5L8n9zZg+0hzfK/dp4PY8kkwAHgb+CbABWAm8q6q+29fCXqYkPwBmV9W4fUFTktOBrcD/qKoTm2MfA56uqj9sgv5VVfXv+1lnG7sZ04eBrVX18X7WtqeSTAWmVtXqJJOBVcB5wMWM03s1wpjeyTi9V0kCHFRVW5NMBO4BrgB+j71wnwZx5vFbwKNV9b2q2g58AXhHn2sSUFVfA57e5fA7gM81f/8cnW/ocWM3YxrXqmpjVa1u/v4z4EHg9YzjezXCmMat6tjafDqx+Sj20n0axPB4PfCjnT7fwDj/R9Io4M4kq5Is7HcxPfS6qtoInW9w4LV9rqdX3pfkgWZZa9ws7+wqyXTgZODbDMi92mVMMI7vVZIJSdYATwJ3VdVeu0+DGB4Z5tggrM2dWlWnAL8LvLdZLtG+6c+A3wBOAjYCn+hvOXsmycHAXwJXVtWWftfTC8OMaVzfq6raUVUnAdOA30py4t669iCGxwbgyJ0+nwY83qdaeqaqHm/+fBL4Ep3luUHwRLMe/eK69JN9rudlq6onmm/qF4DPMg7vVbOG/pfALVX1V83hcX2vhhvTINwrgKraDKwA3sZeuk+DGB4rgaOTHJVkEvAvgS/3uaaXJclBzSYfSQ4Czga+M/JZ48aXgYuav18E/E0fa+mJF79xG/+ccXavmo3YPwcerKrrd3po3N6r3Y1pPN+rJIclObT5+4HAfGA9e+k+DdyzrQCap9vdAEwAbq6qa/tc0suSZAad2QZ03gn51vE4piSfB+bRecvoJ4D/BPw18BfArwM/BH6/qsbNBvRuxjSPzjJIAT8AFr24Bj0eJHkL8HVgLfBCc/hDdPYIxuW9GmFM72Kc3qskv0lnQ3wCnYnAX1TVR5O8hr1wnwYyPCRJY2sQl60kSWPM8JAktWZ4SJJaMzwkSa0ZHpKk1gwPSVJrhockqbX/Cw1QfnAItrzeAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"colors = np.random.rand(14,3)\n",
"for acte in range(1,6) :\n",
" plt.figure()\n",
" x = np.zeros((len(dico_acte[acte]),len(persos)))\n",
" labels = persos\n",
" for scene in range(1,len(dico_acte[acte])+1) :\n",
" for l,perso in enumerate(persos) :\n",
" x[scene-1,l] += dico_acte[acte][scene][perso]\n",
" plt.title('Acte ' + str(acte))\n",
" #plt.bar(labels,x)\n",
" width = 1/2 # épaisseur de chaque bâton\n",
"\n",
" # Création du diagramme en bâtons (bâtons côte à côte)\n",
" pos = np.arange(len(dico_acte[acte]))\n",
" for scene in range(1,len(dico_acte[acte])+1) :\n",
" nb_perso = 0\n",
" for l,perso in enumerate(persos) :\n",
" if x[scene-1,l] != 0 :\n",
" nb_perso +=1\n",
" nb = 0\n",
" for l,perso in enumerate(persos) :\n",
" if x[scene-1,l] != 0 :\n",
" nb +=1\n",
" if scene == 1 :\n",
" plt.barh(scene+(nb-nb_perso//2)*width/nb_perso, x[scene-1,l],width/nb_perso,label=persos[l],color=colors[l])\n",
" else :\n",
" plt.barh(scene+(nb-nb_perso//2)*width/nb_perso, x[scene-1,l],width/nb_perso,color=colors[l])\n",
" plt.yticks(np.arange(scene)+1, np.array([\"Scène \"+str(k) for k in range(1,scene+1)]))"
]
},
{
"cell_type": "code",
"execution_count": null,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment