diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..72e526f5abeff846cc7573b181d27fc77d33d582 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -1,5 +1,844 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Travail sur Covid-19" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Chargement de l'url en question" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv'" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "data_file = pd.read_csv(data_url)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Province/State Country/Region Lat \\\n", + "0 NaN Afghanistan 33.000000 \n", + "1 NaN Albania 41.153300 \n", + "2 NaN Algeria 28.033900 \n", + "3 NaN Andorra 42.506300 \n", + "4 NaN Angola -11.202700 \n", + "5 NaN Antigua and Barbuda 17.060800 \n", + "6 NaN Argentina -38.416100 \n", + "7 NaN Armenia 40.069100 \n", + "8 Australian Capital Territory Australia -35.473500 \n", + "9 New South Wales Australia -33.868800 \n", + "10 Northern Territory Australia -12.463400 \n", + "11 Queensland Australia -28.016700 \n", + "12 South Australia Australia -34.928500 \n", + "13 Tasmania Australia -41.454500 \n", + "14 Victoria Australia -37.813600 \n", + "15 Western Australia Australia -31.950500 \n", + "16 NaN Austria 47.516200 \n", + "17 NaN Azerbaijan 40.143100 \n", + "18 NaN Bahamas 25.034300 \n", + "19 NaN Bahrain 26.027500 \n", + "20 NaN Bangladesh 23.685000 \n", + "21 NaN Barbados 13.193900 \n", + "22 NaN Belarus 53.709800 \n", + "23 NaN Belgium 50.833300 \n", + "24 NaN Benin 9.307700 \n", + "25 NaN Bhutan 27.514200 \n", + "26 NaN Bolivia -16.290200 \n", + "27 NaN Bosnia and Herzegovina 43.915900 \n", + "28 NaN Brazil -14.235000 \n", + "29 NaN Brunei 4.535300 \n", + ".. ... ... ... \n", + "234 NaN Mozambique -18.665695 \n", + "235 NaN Syria 34.802075 \n", + "236 NaN Timor-Leste -8.874217 \n", + "237 NaN Belize 13.193900 \n", + "238 Recovered Canada 0.000000 \n", + "239 NaN Laos 19.856270 \n", + "240 NaN Libya 26.335100 \n", + "241 NaN West Bank and Gaza 31.952200 \n", + "242 NaN Guinea-Bissau 11.803700 \n", + "243 NaN Mali 17.570692 \n", + "244 NaN Saint Kitts and Nevis 17.357822 \n", + "245 Northwest Territories Canada 64.825500 \n", + "246 Yukon Canada 64.282300 \n", + "247 NaN Kosovo 42.602636 \n", + "248 NaN Burma 21.916200 \n", + "249 Anguilla United Kingdom 18.220600 \n", + "250 British Virgin Islands United Kingdom 18.420700 \n", + "251 Turks and Caicos Islands United Kingdom 21.694000 \n", + "252 NaN MS Zaandam 0.000000 \n", + "253 NaN Botswana -22.328500 \n", + "254 NaN Burundi -3.373100 \n", + "255 NaN Sierra Leone 8.460555 \n", + "256 Bonaire, Sint Eustatius and Saba Netherlands 12.178400 \n", + "257 NaN Malawi -13.254308 \n", + "258 Falkland Islands (Malvinas) United Kingdom -51.796300 \n", + "259 Saint Pierre and Miquelon France 46.885200 \n", + "260 NaN South Sudan 6.877000 \n", + "261 NaN Western Sahara 24.215500 \n", + "262 NaN Sao Tome and Principe 0.186360 \n", + "263 NaN Yemen 15.552727 \n", + "\n", + " Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 \\\n", + "0 65.000000 0 0 0 0 0 0 \n", + "1 20.168300 0 0 0 0 0 0 \n", + "2 1.659600 0 0 0 0 0 0 \n", + "3 1.521800 0 0 0 0 0 0 \n", + "4 17.873900 0 0 0 0 0 0 \n", + "5 -61.796400 0 0 0 0 0 0 \n", + "6 -63.616700 0 0 0 0 0 0 \n", + "7 45.038200 0 0 0 0 0 0 \n", + "8 149.012400 0 0 0 0 0 0 \n", + "9 151.209300 0 0 0 0 3 4 \n", + "10 130.845600 0 0 0 0 0 0 \n", + "11 153.400000 0 0 0 0 0 0 \n", + "12 138.600700 0 0 0 0 0 0 \n", + "13 145.970700 0 0 0 0 0 0 \n", + "14 144.963100 0 0 0 0 1 1 \n", + "15 115.860500 0 0 0 0 0 0 \n", + "16 14.550100 0 0 0 0 0 0 \n", + "17 47.576900 0 0 0 0 0 0 \n", + "18 -77.396300 0 0 0 0 0 0 \n", + "19 50.550000 0 0 0 0 0 0 \n", + "20 90.356300 0 0 0 0 0 0 \n", + "21 -59.543200 0 0 0 0 0 0 \n", + "22 27.953400 0 0 0 0 0 0 \n", + "23 4.000000 0 0 0 0 0 0 \n", + "24 2.315800 0 0 0 0 0 0 \n", + "25 90.433600 0 0 0 0 0 0 \n", + "26 -63.588700 0 0 0 0 0 0 \n", + "27 17.679100 0 0 0 0 0 0 \n", + "28 -51.925300 0 0 0 0 0 0 \n", + "29 114.727700 0 0 0 0 0 0 \n", + ".. ... ... ... ... ... ... ... \n", + "234 35.529562 0 0 0 0 0 0 \n", + "235 38.996815 0 0 0 0 0 0 \n", + "236 125.727539 0 0 0 0 0 0 \n", + "237 -59.543200 0 0 0 0 0 0 \n", + "238 0.000000 0 0 0 0 0 0 \n", + "239 102.495496 0 0 0 0 0 0 \n", + "240 17.228331 0 0 0 0 0 0 \n", + "241 35.233200 0 0 0 0 0 0 \n", + "242 -15.180400 0 0 0 0 0 0 \n", + "243 -3.996166 0 0 0 0 0 0 \n", + "244 -62.782998 0 0 0 0 0 0 \n", + "245 -124.845700 0 0 0 0 0 0 \n", + "246 -135.000000 0 0 0 0 0 0 \n", + "247 20.902977 0 0 0 0 0 0 \n", + "248 95.956000 0 0 0 0 0 0 \n", + "249 -63.068600 0 0 0 0 0 0 \n", + "250 -64.640000 0 0 0 0 0 0 \n", + "251 -71.797900 0 0 0 0 0 0 \n", + "252 0.000000 0 0 0 0 0 0 \n", + "253 24.684900 0 0 0 0 0 0 \n", + "254 29.918900 0 0 0 0 0 0 \n", + "255 -11.779889 0 0 0 0 0 0 \n", + "256 -68.238500 0 0 0 0 0 0 \n", + "257 34.301525 0 0 0 0 0 0 \n", + "258 -59.523600 0 0 0 0 0 0 \n", + "259 -56.315900 0 0 0 0 0 0 \n", + "260 31.307000 0 0 0 0 0 0 \n", + "261 -12.885800 0 0 0 0 0 0 \n", + "262 6.613081 0 0 0 0 0 0 \n", + "263 48.516388 0 0 0 0 0 0 \n", + "\n", + " ... 4/13/20 4/14/20 4/15/20 4/16/20 4/17/20 4/18/20 4/19/20 \\\n", + "0 ... 665 714 784 840 906 933 996 \n", + "1 ... 467 475 494 518 539 548 562 \n", + "2 ... 1983 2070 2160 2268 2418 2534 2629 \n", + "3 ... 646 659 673 673 696 704 713 \n", + "4 ... 19 19 19 19 19 24 24 \n", + "5 ... 23 23 23 23 23 23 23 \n", + "6 ... 2208 2277 2443 2571 2669 2758 2839 \n", + "7 ... 1039 1067 1111 1159 1201 1248 1291 \n", + "8 ... 102 103 103 103 103 103 103 \n", + "9 ... 2863 2870 2886 2897 2926 2926 2926 \n", + "10 ... 28 28 28 28 28 28 28 \n", + "11 ... 987 998 999 1001 1007 1015 1015 \n", + "12 ... 429 433 433 433 435 435 435 \n", + "13 ... 144 165 165 169 180 180 180 \n", + "14 ... 1281 1291 1299 1299 1302 1319 1319 \n", + "15 ... 517 527 527 532 541 541 541 \n", + "16 ... 14041 14226 14336 14476 14595 14671 14749 \n", + "17 ... 1148 1197 1253 1283 1340 1373 1398 \n", + "18 ... 47 49 49 53 54 55 55 \n", + "19 ... 1361 1528 1671 1700 1740 1773 1881 \n", + "20 ... 803 1012 1231 1572 1838 2144 2456 \n", + "21 ... 72 72 73 75 75 75 75 \n", + "22 ... 2919 3281 3728 4204 4779 4779 4779 \n", + "23 ... 30589 31119 33573 34809 36138 37183 38496 \n", + "24 ... 35 35 35 35 35 35 35 \n", + "25 ... 5 5 5 5 5 5 5 \n", + "26 ... 330 354 397 441 465 493 520 \n", + "27 ... 1037 1083 1110 1167 1214 1268 1285 \n", + "28 ... 23430 25262 28320 30425 33682 36658 38654 \n", + "29 ... 136 136 136 136 136 137 138 \n", + ".. ... ... ... ... ... ... ... ... \n", + "234 ... 21 28 29 31 34 35 39 \n", + "235 ... 25 29 33 33 38 38 39 \n", + "236 ... 4 6 8 18 18 18 19 \n", + "237 ... 18 18 18 18 18 18 18 \n", + "238 ... 0 0 0 0 0 0 0 \n", + "239 ... 19 19 19 19 19 19 19 \n", + "240 ... 26 35 48 49 49 49 51 \n", + "241 ... 308 308 374 374 402 418 437 \n", + "242 ... 38 38 43 43 43 46 50 \n", + "243 ... 123 144 148 171 171 216 224 \n", + "244 ... 12 14 14 14 14 14 14 \n", + "245 ... 5 5 5 5 5 5 5 \n", + "246 ... 8 8 8 8 8 9 9 \n", + "247 ... 283 387 387 449 480 510 510 \n", + "248 ... 62 63 74 85 88 98 111 \n", + "249 ... 3 3 3 3 3 3 3 \n", + "250 ... 3 3 3 3 4 4 4 \n", + "251 ... 10 10 10 11 11 11 11 \n", + "252 ... 9 9 9 9 9 9 9 \n", + "253 ... 13 13 13 15 15 15 20 \n", + "254 ... 5 5 5 5 5 5 5 \n", + "255 ... 10 11 13 15 26 30 35 \n", + "256 ... 3 3 3 3 3 3 5 \n", + "257 ... 16 16 16 16 17 17 17 \n", + "258 ... 5 11 11 11 11 11 11 \n", + "259 ... 1 1 1 1 1 1 1 \n", + "260 ... 4 4 4 4 4 4 4 \n", + "261 ... 6 6 6 6 6 6 6 \n", + "262 ... 4 4 4 4 4 4 4 \n", + "263 ... 1 1 1 1 1 1 1 \n", + "\n", + " 4/20/20 4/21/20 4/22/20 \n", + "0 1026 1092 1176 \n", + "1 584 609 634 \n", + "2 2718 2811 2910 \n", + "3 717 717 723 \n", + "4 24 24 25 \n", + "5 23 23 24 \n", + "6 2941 3031 3144 \n", + "7 1339 1401 1473 \n", + "8 103 103 103 \n", + "9 2926 2926 2926 \n", + "10 28 28 28 \n", + "11 1015 1015 1015 \n", + "12 435 435 435 \n", + "13 180 180 180 \n", + "14 1319 1319 1319 \n", + "15 541 541 541 \n", + "16 14795 14873 14925 \n", + "17 1436 1480 1518 \n", + "18 60 65 65 \n", + "19 1907 1973 2027 \n", + "20 2948 3382 3772 \n", + "21 75 75 75 \n", + "22 6264 6723 7281 \n", + "23 39983 40956 41889 \n", + "24 54 54 54 \n", + "25 5 6 6 \n", + "26 564 598 609 \n", + "27 1309 1342 1368 \n", + "28 40743 43079 45757 \n", + "29 138 138 138 \n", + ".. ... ... ... \n", + "234 39 39 41 \n", + "235 39 42 42 \n", + "236 22 23 23 \n", + "237 18 18 18 \n", + "238 0 0 0 \n", + "239 19 19 19 \n", + "240 51 51 59 \n", + "241 449 466 474 \n", + "242 50 50 50 \n", + "243 246 258 293 \n", + "244 15 15 15 \n", + "245 5 5 5 \n", + "246 11 11 11 \n", + "247 510 510 510 \n", + "248 119 121 123 \n", + "249 3 3 3 \n", + "250 5 5 5 \n", + "251 11 11 11 \n", + "252 9 9 9 \n", + "253 20 20 22 \n", + "254 5 5 11 \n", + "255 43 50 61 \n", + "256 5 5 5 \n", + "257 17 18 23 \n", + "258 11 11 11 \n", + "259 1 1 1 \n", + "260 4 4 4 \n", + "261 6 6 6 \n", + "262 4 4 4 \n", + "263 1 1 1 \n", + "\n", + "[264 rows x 96 columns]\n" + ] + } + ], + "source": [ + "print(data_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Maintenant que cela est fait, nous pouvons évaluer le fichier en récupérant d'abord les jours recensés que nous allons utilisé comme index:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['1/22/20', '1/23/20', '1/24/20', '1/25/20', '1/26/20', '1/27/20',\n", + " '1/28/20', '1/29/20', '1/30/20', '1/31/20', '2/1/20', '2/2/20',\n", + " '2/3/20', '2/4/20', '2/5/20', '2/6/20', '2/7/20', '2/8/20', '2/9/20',\n", + " '2/10/20', '2/11/20', '2/12/20', '2/13/20', '2/14/20', '2/15/20',\n", + " '2/16/20', '2/17/20', '2/18/20', '2/19/20', '2/20/20', '2/21/20',\n", + " '2/22/20', '2/23/20', '2/24/20', '2/25/20', '2/26/20', '2/27/20',\n", + " '2/28/20', '2/29/20', '3/1/20', '3/2/20', '3/3/20', '3/4/20', '3/5/20',\n", + " '3/6/20', '3/7/20', '3/8/20', '3/9/20', '3/10/20', '3/11/20', '3/12/20',\n", + " '3/13/20', '3/14/20', '3/15/20', '3/16/20', '3/17/20', '3/18/20',\n", + " '3/19/20', '3/20/20', '3/21/20', '3/22/20', '3/23/20', '3/24/20',\n", + " '3/25/20', '3/26/20', '3/27/20', '3/28/20', '3/29/20', '3/30/20',\n", + " '3/31/20', '4/1/20', '4/2/20', '4/3/20', '4/4/20', '4/5/20', '4/6/20',\n", + " '4/7/20', '4/8/20', '4/9/20', '4/10/20', '4/11/20', '4/12/20',\n", + " '4/13/20', '4/14/20', '4/15/20', '4/16/20', '4/17/20', '4/18/20',\n", + " '4/19/20', '4/20/20', '4/21/20', '4/22/20'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "time_index = data_file.columns[4:]\n", + "print(time_index)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 Afghanistan\n", + "1 Albania\n", + "2 Algeria\n", + "3 Andorra\n", + "4 Angola\n", + "5 Antigua and Barbuda\n", + "6 Argentina\n", + "7 Armenia\n", + "8 Australia\n", + "9 Australia\n", + "10 Australia\n", + "11 Australia\n", + "12 Australia\n", + "13 Australia\n", + "14 Australia\n", + "15 Australia\n", + "16 Austria\n", + "17 Azerbaijan\n", + "18 Bahamas\n", + "19 Bahrain\n", + "20 Bangladesh\n", + "21 Barbados\n", + "22 Belarus\n", + "23 Belgium\n", + "24 Benin\n", + "25 Bhutan\n", + "26 Bolivia\n", + "27 Bosnia and Herzegovina\n", + "28 Brazil\n", + "29 Brunei\n", + " ... \n", + "234 Mozambique\n", + "235 Syria\n", + "236 Timor-Leste\n", + "237 Belize\n", + "238 Canada\n", + "239 Laos\n", + "240 Libya\n", + "241 West Bank and Gaza\n", + "242 Guinea-Bissau\n", + "243 Mali\n", + "244 Saint Kitts and Nevis\n", + "245 Canada\n", + "246 Canada\n", + "247 Kosovo\n", + "248 Burma\n", + "249 United Kingdom\n", + "250 United Kingdom\n", + "251 United Kingdom\n", + "252 MS Zaandam\n", + "253 Botswana\n", + "254 Burundi\n", + "255 Sierra Leone\n", + "256 Netherlands\n", + "257 Malawi\n", + "258 United Kingdom\n", + "259 France\n", + "260 South Sudan\n", + "261 Western Sahara\n", + "262 Sao Tome and Principe\n", + "263 Yemen\n", + "Name: Country/Region, Length: 264, dtype: object\n" + ] + } + ], + "source": [ + "print(data_file['Country/Region'])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'Belgium': (23,), 'China': (49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81), 'Hong Kong': (61,), 'France': (116,), 'Germany': (120,), 'Iran': (133,), 'Italy': (137,), 'Japan': (139,), 'Korea, South': (143,), 'Netherlands': (169,), 'Portugal': (184,), 'Spain': (201,), 'United Kingdom': (223,), 'US': (225,)}\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "to_study_country = {}\n", + "to_study_country['Belgium'] = ()\n", + "to_study_country['China'] = ()\n", + "to_study_country['Hong Kong'] = ()\n", + "to_study_country['France'] = ()\n", + "to_study_country['Germany'] = ()\n", + "to_study_country['Iran'] = ()\n", + "to_study_country['Italy'] = ()\n", + "to_study_country['Japan'] = ()\n", + "to_study_country['Korea, South'] = ()\n", + "to_study_country['Netherlands'] = ()\n", + "to_study_country['Portugal'] = ()\n", + "to_study_country['Spain'] = ()\n", + "to_study_country['United Kingdom'] = ()\n", + "to_study_country['US'] = ()\n", + "for i, country in enumerate(data_file['Country/Region']):\n", + " if country == 'Belgium':\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'China':\n", + " if data_file['Province/State'][i] == 'Hong Kong':\n", + " to_study_country['Hong Kong'] = to_study_country['Hong Kong'] + (i,)\n", + " else:\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'France':\n", + " if isinstance(data_file['Province/State'][i], str):\n", + " pass\n", + " else:\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'Germany':\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'Iran':\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'Italy':\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'Japan':\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'Korea, South':\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'Netherlands':\n", + " if isinstance(data_file['Province/State'][i], str):\n", + " pass\n", + " else:\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'Portugal':\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'Spain':\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'United Kingdom':\n", + " if isinstance(data_file['Province/State'][i], str):\n", + " pass\n", + " else: \n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " if country == 'US':\n", + " to_study_country[country] = to_study_country[country] + (i,)\n", + " \n", + "print(to_study_country)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Maintenant que nous avons récupérer les indices de chaques lignes nous pouvons commencer à créer le dictionnaire qui servira de données au fichier pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "to_study_country['Belgium'] = data_file.iloc[to_study_country['Belgium'][0], 4:]\n", + "to_study_country['Hong Kong'] = data_file.iloc[to_study_country['Hong Kong'][0], 4:]\n", + "to_study_country['France'] = data_file.iloc[to_study_country['France'][0], 4:]\n", + "to_study_country['Germany'] = data_file.iloc[to_study_country['Germany'][0], 4:]\n", + "to_study_country['Iran'] = data_file.iloc[to_study_country['Iran'][0], 4:]\n", + "to_study_country['Italy'] = data_file.iloc[to_study_country['Italy'][0], 4:]\n", + "to_study_country['Japan'] = data_file.iloc[to_study_country['Japan'][0], 4:]\n", + "to_study_country['Korea, South'] = data_file.iloc[to_study_country['Korea, South'][0], 4:]\n", + "to_study_country['Netherlands'] = data_file.iloc[to_study_country['Netherlands'][0], 4:]\n", + "to_study_country['Portugal'] = data_file.iloc[to_study_country['Portugal'][0], 4:]\n", + "to_study_country['Spain'] = data_file.iloc[to_study_country['Spain'][0], 4:]\n", + "to_study_country['United Kingdom'] = data_file.iloc[to_study_country['United Kingdom'][0], 4:]\n", + "to_study_country['US'] = data_file.iloc[to_study_country['US'][0], 4:]\n", + "China_overall = data_file.iloc[to_study_country['China'][0], 4:]\n", + "for i, j in enumerate(to_study_country['China']):\n", + " if i > 0:\n", + " China_overall += data_file.iloc[j, 4:]\n", + "to_study_country['China'] = China_overall\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "study_data = pd.DataFrame(index = time_index, data = to_study_country)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['1/22/20', '1/23/20', '1/24/20', '1/25/20', '1/26/20', '1/27/20',\n", + " '1/28/20', '1/29/20', '1/30/20', '1/31/20', '2/1/20', '2/2/20',\n", + " '2/3/20', '2/4/20', '2/5/20', '2/6/20', '2/7/20', '2/8/20', '2/9/20',\n", + " '2/10/20', '2/11/20', '2/12/20', '2/13/20', '2/14/20', '2/15/20',\n", + " '2/16/20', '2/17/20', '2/18/20', '2/19/20', '2/20/20', '2/21/20',\n", + " '2/22/20', '2/23/20', '2/24/20', '2/25/20', '2/26/20', '2/27/20',\n", + " '2/28/20', '2/29/20', '3/1/20', '3/2/20', '3/3/20', '3/4/20', '3/5/20',\n", + " '3/6/20', '3/7/20', '3/8/20', '3/9/20', '3/10/20', '3/11/20', '3/12/20',\n", + " '3/13/20', '3/14/20', '3/15/20', '3/16/20', '3/17/20', '3/18/20',\n", + " '3/19/20', '3/20/20', '3/21/20', '3/22/20', '3/23/20', '3/24/20',\n", + " '3/25/20', '3/26/20', '3/27/20', '3/28/20', '3/29/20', '3/30/20',\n", + " '3/31/20', '4/1/20', '4/2/20', '4/3/20', '4/4/20', '4/5/20', '4/6/20',\n", + " '4/7/20', '4/8/20', '4/9/20', '4/10/20', '4/11/20', '4/12/20',\n", + " '4/13/20', '4/14/20', '4/15/20', '4/16/20', '4/17/20', '4/18/20',\n", + " '4/19/20', '4/20/20', '4/21/20', '4/22/20'],\n", + " dtype='object')\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAD8CAYAAABgmUMCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VNX5+PHPubNmJwmEXQkWZQ0hEHYQRMH6BcQqLqiAivtu1a9oVWqLdelXq/5aWxeUWq07aqlaUKGIxSIo1gU0VIOAQPaQZdZ7z++POxmSELKQQDLwvF+vcWbOnHvnzPBynjz33PscpbVGCCGEaC6jvQcghBAitkjgEEII0SISOIQQQrSIBA4hhBAtIoFDCCFEi0jgEEII0SISOIQQQrSIBA4hhBAtIoFDCCFEizjbewBtrXPnzrpPnz7tPQwhhIgpGzduLNJad2lO3yMucPTp04cNGza09zCEECKmKKW2NbevHKoSQgjRIhI4hBBCtIgEDiGEEC1yxM1xCCHaXigUYseOHfj9/vYeimglr9dLr169cLlcB70PCRxCiCbt2LGDpKQk+vTpg1KqvYcjDpLWmuLiYnbs2EFmZuZB70cOVQkhmuT3+0lPT5egEeOUUqSnp7c6c5TAIYRoFgkaR4a2+HeUQ1VCCHEEKAuUgYYUT8ohD/KScQghYoLD4SA7O5uhQ4eSk5PDv/71rya3SUxMbLLPggUL+Prrr9tiiO3GtEz2VO2hLFB2WDJDyTiEEDEhLi6OTZs2AfCPf/yDhQsX8s9//rPV+33qqadavY/2VhooJWyF6Z3U+7C8n2QcQoiYs3fvXlJTU6PPH3zwQXJzc8nKyuLuu+/er79lWVx11VUMGjSI6dOnc9ppp/Hqq68CMGnSpGiZotoZyquvvsr8+fMBmD9/PldeeSWTJ0+mb9++/POf/+Tiiy9mwIAB0T7txbRMinxFJLoTiXfFH5b3lIxDCNEiv/zbV3z949423efAHsncPWNQo318Ph/Z2dn4/X527drFBx98AMCKFSvIy8tj/fr1aK2ZOXMma9asYeLEidFtX3/9dfLz8/niiy8oKChgwIABXHzxxS0aY2lpKR988AFvvfUWM2bM4KOPPuKpp54iNzeXTZs2kZ2d3fIP3gaK/cWYlklGXMZhe0/JOIQQMaHmUNWWLVt49913mTt3LlprVqxYwYoVKxg2bBg5OTls2bKFvLy8OtuuXbuW2bNnYxgG3bp1Y/LkyS1+/xkzZqCUYsiQIXTt2pUhQ4ZgGAaDBg0iPz+/jT5ly4StMMW+YpLcScS54g7b+0rGIYRokaYyg8NhzJgxFBUVUVhYiNaahQsXcvnllx+wv9a6WfutPbFc/1oHj8cDgGEY0cc1z8PhcEuG32aKfcVY2iIj/vBlG9DMjEMpdaNS6iul1JdKqb8qpbxKqTSl1EqlVF7kPrVW/4VKqa1KqW+UUtNqtQ9XSn0Ree1RFflXUkp5lFIvRdr/rZTqU2ubeZH3yFNKzWu7jy6EiFVbtmzBNE3S09OZNm0aS5YsobKyEoCdO3dSUFBQp//48eN57bXXsCyLPXv2sHr16gb327VrVzZv3oxlWSxbtuxQf4xWCVthSvwlJHuS8Tq9h/W9m8w4lFI9geuAgVprn1LqZeBcYCDwvtb6PqXUbcBtwP8qpQZGXh8E9ADeU0odr7U2gceBy4CPgbeBU4F3gEuAUq31T5RS5wL3A+copdKAu4ERgAY2KqXe0lqXtuF3IISIATVzHGBnEEuXLsXhcDB16lQ2b97MmDFjAHuC+y9/+QsZGfv+Cj/zzDN5//33GTx4MMcffzyjRo0iJSVlv/e47777mD59Or1792bw4MHRYNQRFfmK7GzjMM5tRGmtG70BPYHtQBp2oFkOTAW+AbpH+nQHvok8XggsrLX9P4AxkT5barWfB/ypdp/IYydQBKjafSKv/Qk4r7HxDh8+XAsh2tbXX3/d3kNotYqKCq211kVFRbpv3756165d7TyigxcMB/VXRV/p7Xu3H9T2Df17Aht0E/Gg5tZkxqG13qmU+i3wA+ADVmitVyilumqtd0X67FJK1YS9ntgZRY0dkbZQ5HH99trBCa11WClVDqTXbm9gGyGEaLbp06dTVlZGMBjkzjvvpFu3bu09pINW5CtCa02X+Gat9NrmmnOoKhU4HcgEyoBXlFIXNLZJA226kfaD3ab2GC/DPgTGMccc08jQhBBHqwPNa8SakBmiNFBKJ28nPA5P0xscAs2ZHD8Z+F5rXai1DgGvA2OBPUqp7gCR+5rZqB1A7csXewE/Rtp7NdBeZxullBNIAUoa2VcdWusntNYjtNYjunRpnwgshBCHQ6GvEIAuce33W9ecwPEDMFopFR85C2oKsBl4C6g5y2ke8Gbk8VvAuZEzpTKBfsD6yGGtCqXU6Mh+5tbbpmZfZwEfRI65/QOYqpRKjWQ+UyNtQghx1AmaQcr8ZXTydMLtcLfbOJozx/FvpdSrwKdAGPgMeAJIBF5WSl2CHVxmR/p/FTnz6utI/6u1fUYVwJXAs0Ac9tlU70TanwaeU0ptxc40zo3sq0Qp9Svgk0i/e7TWJa36xEIIEaMKqgtAtW+2Ac28AFBrfTf2abG1BbCzj4b6LwYWN9C+ARjcQLufSOBp4LUlwJLmjFMIIY5U1aFqygPldI7rjMtx8Mu+tgUpOSKEiAm7d+/m3HPP5bjjjmPgwIGcdtppPPHEE0yfPr3B/kdCufQaWmv2VO/BYTjoHNe5vYcjJUeEEB2f1pozzjiDefPm8eKLLwKwadMm/va3vx1wmyOhXHqNimAF1aFquid2x2E42ns4knEIITq+VatW4XK5uOKKK6Jt2dnZTJgwgcrKSs466yz69+/P+eefH61LVb9c+h133MHQoUMZPXo0e/bsAeBvf/sbo0aNYtiwYZx88snR9o7E0hZ7qvfgcXhI9aQ2vcFhIBmHEKJl3rkNdn/RtvvsNgR+et8BX/7yyy8ZPnx4g6999tlnfPXVV/To0YNx48bx0UcfMX78+Dp9qqqqGD16NIsXL+bWW2/lySef5Be/+AXjx4/n448/RinFU089xQMPPMD//d//telHa61SfylBM8gxycd0mHXfJXAIIWLayJEj6dXLvkQsOzub/Pz8/QKH2+2OzoUMHz6clStXArBjxw7OOeccdu3aRTAYJDMz8/AOvgmmZVLoKyTBlUCiq+llcA8XCRxCiJZpJDM4VAYNGhRdsa++2iXOHQ5HgyXOXS5X9K/12n2uvfZabrrpJmbOnMnq1atZtGhR2w++FWoWaeqa1LXDZBsgcxxCiBhw0kknEQgEePLJJ6Ntn3zySavXHC8vL6dnT7v83dKlS1u1r7YWskIU+4pJ9iQf1kWamkMChxCiw1NKsWzZMlauXMlxxx3HoEGDWLRoET169GjVfhctWsTs2bOZMGECnTu3/2mutRVVt2PZ9CaomjMQjhQjRozQNWdSCCHaxubNmxkwYEB7D+OoETSDbC3bSidPJ3okti44NqShf0+l1Eat9YjmbC8ZhxBCdDAF1XbN2PYuLXIgEjiEEKIDCYQDlAfKSfemt3tpkQORwCGEEB1Isb8YpRTpcentPZQDksAhhBAdRNgKUx4oJ8WTgtPouFdLSOAQQogOoixQhqUt0r0dN9sACRxCCNEhWNqi2FdMgisBr9Pb3sNpVMfNhYQQohaHw8GQIUOiz9944w369OnTfgNqYxXBCsJWmO4J3dt7KE2SwCGEiAlxcXFs2rTpgK+Hw2Gcztj9SSv2F+N2uElyJ7X3UJokh6qEEDHr2WefZfbs2cyYMYOpU6dSWVnJlClTyMnJYciQIbz55psA5OfnM2DAAC699FIGDRrE1KlT8fl8AGzdupWTTz6ZoUOHkpOTw3//+18AHnzwQXJzc8nKyuLuu+svgNq2qkPV+EI+0rxpHaom1YHEbngWQrSL+9ffz5aSLW26z/5p/fnfkf/baB+fz0d2djYAmZmZLFu2DIB169bxn//8h7S0NMLhMMuWLSM5OZmioiJGjx7NzJkzAcjLy+Ovf/0rTz75JGeffTavvfYaF1xwAeeffz633XYbZ5xxBn6/H8uyWLFiBXl5eaxfvx6tNTNnzmTNmjVMnDixTT93jRJ/CYYy6OTpdEj239YkcAghYsKBDlWdcsoppKWlAfZKgbfffjtr1qzBMAx27twZXZwpMzMzGniGDx9Ofn4+FRUV7Ny5kzPOOAMAr9eelF6xYgUrVqxg2LBhAFRWVpKXl3dIAkfIDNkX/MWld4jV/ZpDAocQokWaygwOt4SEhOjj559/nsLCQjZu3IjL5aJPnz74/X5g//LrPp+PA9Xq01qzcOFCLr/88kM7eOy5DYA0b9ohf6+2InMcQogjRnl5ORkZGbhcLlatWsW2bdsa7Z+cnEyvXr144403AAgEAlRXVzNt2jSWLFlCZWUlADt37qSgoKDNx2taJqX+UpI9ybgd7jbf/6EiGYcQ4ohx/vnnM2PGDEaMGEF2djb9+/dvcpvnnnuOyy+/nLvuuguXy8Urr7zC1KlT2bx5M2PGjAHsNcv/8pe/kJHRtiXOY+WCv/qkrLoQoklSVr3taa3ZWrYVh3LQt1Pfw/reUlZdCCFiUGWokqAZ7NDFDA9EAocQQrSDYl8xLsNFsju5vYfSYhI4hBDiMPOFfFSFqkiLi40L/uqTwCGEEIdZkb8IQxmkelLbeygHRQKHEEIcRkEzyN7AXlK9qTFzwV99EjiEEOIwKvYXo1AxdwpubRI4hBAxYc+ePcyZM4e+ffsyfPhwxowZE61XFSvCVpgyfxkpnpQOu554c0jgEEJ0eFprZs2axcSJE/nuu+/YuHEjL774Ijt27GjW9qZpHuIRNk+pv9S+4C8GT8GtTQKHEKLD++CDD3C73VxxxRXRtmOPPZZrr70W0zS55ZZboiXQ//SnPwGwevVqJk+ezJw5cxgyZAj5+fn079+fBQsWMHjwYM4//3zee+89xo0bR79+/Vi/fj0A69evZ+zYsQwbNoyxY8fyzTffAHYJ95/97Geceuqp9OvXj1tvvRWAp59+mhtvvDE6rieffJKbbrppv89gaYsSfwmJ7sQOv8JfU6TkiBCiRXbfey+BzW1bVt0zoD/dbr/9gK9/9dVX5OTkNPja008/TUpKCp988gmBQIBx48YxdepUwA4CX375JZmZmeTn57N161ZeeeUVnnjiCXJzc3nhhRdYu3Ytb731Fvfeey9vvPEG/fv3Z82aNTidTt577z1uv/12XnvtNQA2bdrEZ599hsfj4YQTTuDaa6/l3HPPJSsriwceeACXy8UzzzwTDV61lfnLCFvhmJ7bqCGBQwgRc66++mrWrl2L2+3m2GOP5T//+Q+vvvoqYBc6zMvLw+12M3LkSDIzM6PbZWZmRpefHTRoEFOmTEEpFc1IarafN28eeXl5KKUIhULR7adMmUJKSgoAAwcOZNu2bfTu3ZuTTjqJ5cuXM2DAAEKhUJ0lbsHONgp9hcS74klwJRDrJHAIIVqksczgUBk0aFD0r36A3//+9xQVFTFixAiOOeYYHnvsMaZNm1Znm9WrV9cpuQ51S6sbhhF9bhgG4XAYgDvvvJPJkyezbNky8vPzmTRpUoPbOxyO6DYLFizg3nvvpX///lx00UX7jb8sYGcbPRN7xuQFf/XJHIcQosM76aST8Pv9PP7449G26upqAKZNm8bjjz8ezQy+/fZbqqqqDvq9ysvL6dmzJ2DPazTHqFGj2L59Oy+88ALnnXdendcsbVFUXUScK+6IyDZAAocQIgYopXjjjTf45z//SWZmJiNHjmTevHncf//9LFiwgIEDB5KTk8PgwYO5/PLLo5nAwbj11ltZuHAh48aNa9HZWGeffTbjxo0jNbXu1eBlgTJCVogucV2OiGwDmllWXSnVCXgKGAxo4GLgG+AloA+QD5yttS6N9F8IXAKYwHVa639E2ocDzwJxwNvA9VprrZTyAH8GhgPFwDla6/zINvOAX0SG8mut9dLGxipl1YVoe1JWvWnTp0/nxhtvZMqUKdE2S1tsLd2K03CSmZLZYQLH4Sqr/gjwrta6PzAU2AzcBryvte4HvB95jlJqIHAuMAg4FfiDUqrmuvrHgcuAfpHbqZH2S4BSrfVPgIeB+yP7SgPuBkYBI4G7lVKxWdxFCHFEKisr4/jjjycuLq5O0AAoD5Tb2Ub8kZNtQDMCh1IqGZgIPA2gtQ5qrcuA04Gav/6XArMij08HXtRaB7TW3wNbgZFKqe5AstZ6nbbTnD/X26ZmX68CU5T9LU8DVmqtSyLZzEr2BRshhGh3nTp14ttvv+WVV16p025pi4LqAuKccSS6EttpdIdGczKOvkAh8IxS6jOl1FNKqQSgq9Z6F0DkvmZNxZ7A9lrb74i09Yw8rt9eZxutdRgoB9Ib2ZcQQnRopf5SwlaYjPiMIyrbgOYFDieQAzyutR4GVBE5LHUADX1DupH2g91m3xsqdZlSaoNSakNhYWEjQxNCiEPPtEwKfYUkuBJIdB9Z2QY0L3DsAHZorf8def4qdiDZEzn8ROS+oFb/3rW27wX8GGnv1UB7nW2UUk4gBShpZF91aK2f0FqP0FqP6NKlSzM+khBCHDrF/mJMyyQjPqPpzjGoycChtd4NbFdKnRBpmgJ8DbwFzIu0zQPejDx+CzhXKeVRSmViT4KvjxzOqlBKjY7MX8ytt03Nvs4CPojMg/wDmKqUSo1Mik+NtAkhRIcUtsIU+4pJcicR74pv7+EcEs09q+pa4Hml1H+AbOBe4D7gFKVUHnBK5Dla66+Al7GDy7vA1VrrmpOhr8Q+rXcr8F/gnUj700C6UmorcBORQ2Fa6xLgV8Ankds9kTYhxFEmMbHuIZ9nn32Wa6655pC+5/z586OlTEpKShg2bBjPPPNMo9sU+YqwtHXEZhvQzJIjWutNQEPn905poA2t9WJgcQPtG7CvBanf7gdmH2BfS4AlzRmnEEIcCuXl5UybNo3LLruswZIiNYJmkBJ/CSmelJivgNsYuXJcCBHztm3bxpQpU8jKymLKlCn88MMPgJ0xXHfddYwdO5a+fftGswfLsrjqqqsYNGgQ06dP57TTTou+Vl9lZSU//elPmTNnDldeeSVgrw9yyy23MHjwYIYMGcJLL70EwJv/eJP5M+dz3fzr6N+/P+effz41F1m//fbb9O/fn/Hjx3Pdddcxffr0Q/21HDJS5FAI0SIfvvwtRdsr23SfnXsnMuHs4xvt4/P5yM7Ojj4vKSlh5syZAFxzzTXMnTuXefPmsWTJEq677jreeOMNAHbt2sXatWvZsmULM2fO5KyzzuL1118nPz+fL774goKCAgYMGMDFF1/c4PvedNNNLFiwoM6aG6+//jqbNm3i888/p6ioiNzcXEaMGUFlqJItX27h9Zdep0ePHowbN46PPvqIESNGcPnll7NmzRoyMzP3q2cVayTjEELEhLi4ODZt2hS93XPPPdHX1q1bx5w5cwC48MILWbt2bfS1WbNmYRgGAwcOZM+ePQCsXbuW2bNnYxgG3bp1Y/LkyQd835NOOok333yTgoKCaNvatWs577zzcDgcdO3alRNPPJH3P3ofh3IwMnckvXr1wjAMsrOzyc/PZ8uWLfTt2zda4j3WA4dkHEKIFmkqM+gIal9wV7sUes1ho+bU6Ktx7rnnMn78eE477TRWrVpFUlLSftsHzSBBM0h3b3e83n1zGzWl11vyfrFAMg4hRMwbO3YsL774IgDPP/8848ePb7T/+PHjee2117Asiz179rB69epG+99www1MmTKFM844g2AwyMSJE3nppZcwTZM9BXtY++FahucOP2Bpkf79+/Pdd99FF4uqmROJVRI4hBAx79FHH+WZZ54hKyuL5557jkceeaTR/meeeSa9evWKlmEfNWpUdGW/A7n//vvp3bs3F154IaeffjpZWVkMHTqUySdN5sa7bmRI5pADlhaJi4vjD3/4A6eeeirjx4+na9euTb5fR9assuqxRMqqC9H2jsSy6pWVlSQmJlJcXMzIkSP56KOP6NatW4v2ES2b7nCSmdx42fSa99Nac/XVV9OvX786E+6HU2vLqsschxDiqDR9+nTKysoIBoPceeedLQ4asK9sevfE7k0WMnzyySdZunQpwWCQYcOGcfnllx/s0NudBA4hxFGpqXmNpljaotBX2Oyy6TfeeGO7ZRhtTeY4hBDiIOwN7CVkHnmLNDWHBA4hhGghrTWFvkK8Tu8Rt0hTc0jgEEKIFioPlhM0g3SJO/qyDZDAIYQQLaK1pshXhMfpIcmd1N7DaRcSOIQQMaF+WfX2UhGsIBAO0Dmu81GZbYAEDiFEDDNNs+lObagm23A5XKS4Y/cCvtaSwCGEiCmrV69m8uTJzJkzhyFDhgB2IcPhw4czaNAgnnjiiWjfxMRE7rjjDoYOHcro0aOjRQ4PVlWoCl/Yd1RnGyDXcQghWmjVs09QsO27Nt1nxrF9mTz/smb3X79+PV9++WW02uySJUtIS0vD5/ORm5vLmWeeSXp6OlVVVYwePZrFixdz66238uSTT/KLX/zioMdZ5CvCaTjp5Ol00Ps4EkjGIYSIOSNHjowGDbBrVdVkFdu3bycvLw8At9sdXTBp+PDh0SKDB6M6VE1VqIr0uHQMdXT/dErGIYRokZZkBodKQkJC9PHq1at57733WLduHfHx8UyaNAm/3w+Ay+WKHlKqKXF+sIp8RTiUg1RPausGfwQ4usOmECLmlZeXk5qaSnx8PFu2bOHjjz9u8/cImkEqghWkelNxGI4233+skcAhhIhpp556KuFwmKysLO68805Gjx7d5u9R4i8BIM2b1ub7jkVSVl0I0aQjsax6c1na4tuSb0lwJ9A7qXd7D6dNtLasumQcQgjRiPJAOaY2JduoRQKHEEIcgNaaEn8JHqeHeGd8ew+nw5DAIYQQB+AL+/CH/aR5047qC/7qk8AhhBAHUOIvwVDGUV1epCESOIQQogEhK8Te4F46eTvJKbj1SOAQQogGlPnL0FqT5pFJ8fokcAghYkJNWfX8/HxeeOGFJvvn5+czePDgg3qvmknxBFcCHqfnoPZxJJPAIYSIKc0NHK1REawgbIXlFNwDkMAhhIgpt912Gx9++CHZ2dk8/PDD5OfnM2HCBHJycsjJyeFf//rXfttMmDCBTZs2RZ+PGzeO//znPwd8jxJ/CS7DddSu8NcUKXIohGiRsr/9l+CPVW26T3ePBDrNOK5Zfe+77z5++9vfsnz5cgCqq6tZuXIlXq+XvLw8zjvvPOpXj1iwYAHPPvssv/vd7/j2228JBAJkZWU1uP9AOEBVqIqM+Aw5BfcAJOMQQsS0UCjEpZdeypAhQ5g9ezZff/31fn1mz57N8uXLCYVCLFmyhPnz5x9wfyWBEpRSpHqlCu6BSMYhhGiR5mYGh8vDDz9M165d+fzzz7EsC6/Xu1+f+Ph4TjnlFN58801efvnl/TKSGqZlUuYvI9mdjNOQn8cDkW9GCBFTkpKSqKioiD4vLy+nV69eGIbB0qVLD7gO+YIFC5gxYwYTJkwgLa3hSe/yYDmWtmRSvAlyqEoIEVOysrJwOp0MHTqUhx9+mKuuuoqlS5cyevRovv322zqLPNU2fPhwkpOTueiiixp8XWtNia8Er9NLnDPuUH6EmCcZhxAiJlRWVgL2qn7vv/9+nddqnyH1m9/8BoA+ffrw5ZdfRtt//PFHLMti6tSpDe8/VEnADNAzqadMijdBMg4hxBHvz3/+M6NGjWLx4sUYRsM/e8W+YpyGk2R38mEeXexpduBQSjmUUp8ppZZHnqcppVYqpfIi96m1+i5USm1VSn2jlJpWq324UuqLyGuPqkhYV0p5lFIvRdr/rZTqU2ubeZH3yFNKzWuLDy2EOLrMnTuX7du3M3v27AZf94V9VIWqSI9Lx1Dy93RTWvINXQ9srvX8NuB9rXU/4P3Ic5RSA4FzgUHAqcAflFI1FcIeBy4D+kVup0baLwFKtdY/AR4G7o/sKw24GxgFjATurh2ghBCiLRT7ijGUQapHfl6ao1mBQynVC/gf4KlazacDSyOPlwKzarW/qLUOaK2/B7YCI5VS3YFkrfU6ba9X++d629Ts61VgSiQbmQas1FqXaK1LgZXsCzZCCNFqITNEeaCcVG+qVMFtpuZmHL8DbgWsWm1dtda7ACL3GZH2nsD2Wv12RNp6Rh7Xb6+zjdY6DJQD6Y3sSwgh2kSxvxhATsFtgSYDh1JqOlCgtd7YzH02dDqCbqT9YLepPcbLlFIblFIbCgsLmzlMIcTRzrRMSv2lpHhScDvc7T2cmNGcjGMcMFMplQ+8CJyklPoLsCdy+InIfUGk/w6gd63tewE/Rtp7NdBeZxullBNIAUoa2VcdWusntNYjtNYjunTp0oyPJISIRTWl1dtKaaAUS1ukx6W36X6PdE0GDq31Qq11L611H+xJ7w+01hcAbwE1ZznNA96MPH4LODdyplQm9iT4+sjhrAql1OjI/MXcetvU7OusyHto4B/AVKVUamRSfGqkTQghWsXSFsW+YhJcCXLBXwu15ryz+4BTlFJ5wCmR52itvwJeBr4G3gWu1lrX1AC4EnuCfSvwX+CdSPvTQLpSaitwE5EztLTWJcCvgE8it3sibUKIo1RlZSVTpkwhJyeHIUOG8Oab9t+f+fn59O/fn3nz5pGVlcVZZ51FdXU1APfccw+5ubkMHjyYyy67DK015YFyLphxAY/86hFGjhzJ8ccfz4cfftieHy1mKPsP+yPHiBEj9IEKmAkhDs7mzZsZMGAAAO+88w67d+9u0/1369aNn/70p032S0xMpKysjOrqapKTkykqKmL06NHk5eWxbds2MjMzWbt2LePGjePiiy9m4MCB3HzzzZSUlETrU1144YXMnj2bARMGcMGMCxg3chwPPfQQb7/9Ng899BDvvfdem362jqj2v2cNpdRGrfWI5mwvV7oIIWKK1prbb7+drKwsTj75ZHbu3MmePXsA6N27N+PGjQPgggsuYO3atQCsWrWKUaNGMWTIED744AM+/c+nBM0gLsPFmWeeCdi1rPLz89vlM8UaqVUlhGiR5mTWs5wIAAAgAElEQVQGh9Lzzz9PYWEhGzduxOVy0adPH/x+P8B+NaaUUvj9fq666io2bNhA7969WbRoEaWVpbgMF07DicdjrynucDgIh8OH/fPEIsk4hBAxpby8nIyMDFwuF6tWrWLbtm3R13744QfWrVsHwF//+lfGjx8fDSqdO3emsrKSl195mZAVkjOpWkEChxAiJoTDYTweD+effz4bNmxgxIgRPP/88/Tv3z/aZ8CAASxdupSsrCxKSkq48sor6dSpU3SFwFmzZjFo2CAMZdDJ06kdP01sk0NVQoiY8NVXX3HcccfRuXPnaFZRW35+PoZh8Mc//nG/137961/z61//Gl/Yx3dl35ERn4HDcLB69epon86dO8scRzNJxiGE6PD++Mc/ct555/HrX/+6Vfspqi7CUIaUF2klyTiEEB3eFVdcwRVXXNFon/oLN9XnD/vZG9xLl/guUsywlSTjEEIcFYp8km20FQkcQogjXtAMRkunOw050NJaEjiEEEe8Il8RSinSvXIKbluQwCGEOKIFzSBl/jJSPam4HK72Hs4RQQKHECIm1C6p/vbbb9OvXz9++OGHJrcr9BWCgs5xndtsLEuWLGHIkCFkZWUxePDgaKHFltq0aRNvv/129PmiRYv47W9/21bDPGTkYJ8QIqa8//77XHvttaxYsYJjjjmm0b4BM0CZv4xkV3KbZRs7duxg8eLFfPrpp6SkpFBZWcnBLiC3adMmNmzYwGmnndYmYztcJOMQQsSMDz/8kEsvvZS///3vHHfccQBs27aNKVOmkJWVxZQpU6JZyPz587n2+mu5aNZFPLToIaqqqrj44ovJzc1l2LBhdcqxT5gwgZycHHJycvjXv/7V6BgKCgpISkqKZkCJiYlkZmYCdiAYPXo0WVlZnHHGGZSWlgIwadIkaqp2FxUV0adPH4LBIHfddRcvvfQS2dnZvPTSSwB8/fXXTJo0ib59+/Loo4+28TfYNiTjEEK0yLff/oqKys1tus+kxAEcf/ydjfYJBAKcfvrprF69uk6ZkWuuuYa5c+cyb948lixZwnXXXccbb7yBqU2++fYblr29jJ7JPbn99ts56aSTWLJkCWVlZYwcOZKTTz6ZjIwMVq5cidfrJS8vj/POO4/GlmYYOnQoXbt2JTMzkylTpvCzn/2MGTNmADB37lwee+wxTjzxRO666y5++ctf8rvf/a7B/bjdbu655x42bNjA//t//w+wD1Vt2bKFVatWUVFRwQknnMCVV16Jy9Wx5mYk4xBCxASXy8XYsWN5+umn67SvW7eOOXPmAPZaGzWl1P1hP9NOn0ZGYgYAK1as4L777iM7O5tJkybh9/v54YcfCIVC0VpWs2fP5uuvv250HA6Hg3fffZdXX32V448/nhtvvJFFixZRXl5OWVkZJ554IgDz5s1jzZo1Lf6c//M//4PH46Fz585kZGRES8Z3JJJxCCFapKnM4FAxDIOXX36Zk08+mXvvvZfbb7+9wX5KKUJmiJAZIiMlA5dh/7Wutea1117jhBNOqNN/0aJFdO3alc8//xzLsvB6vU2ORSnFyJEjGTlyJKeccgoXXXQRN9544wH7O51OLMsCiFbrPZCaMu/QcUu9S8YhhIgZ8fHxLF++nOeffz6aeYwdO5YXX3wRsNfqGD9+PCV+e4XpRPe+M7GmTZvGY489Rs2qp5999hlgl2nv3r07hmHw3HPPYZpmdJvah8Rq/Pjjj3z66afR55s2beLYY48lJSWF1NTU6PKzzz33XDT76NOnDxs3bgTg1VdfjW6blJRERUVFK7+Vw08yDiFETElLS+Pdd99l4sSJdO7cmUcffZSLL76YBx98kC5duvD0kqcpDZTicrjqXCV+5513csMNN5CVlYXWmj59+rB8+XKuuuoqzjzzTF555RUmT55MQkICYE9iN7S0digU4uabb+bHH3/E6/XSpUuXaEXepUuXcsUVV1BdXU3fvn155plnALj55ps5++yzee655zjppJOi+5o8eXL08NnChQsP5dfWpmTNcSFEkxpao7qjKvWX8mPljxybfGydjKOlli9fznfffcd1113XhqPrGFq75rhkHEKII4bWmhJ/CR6nhwRXQqv2NX369DYa1ZFH5jiEEEcMX9iHP+wnzZu23/rjou1I4BBCHDGK/cUYyiDFndLeQzmiSeAQQhwRQmaIikAFqd5UWajpEJPAIYQ4IpT4S9BoWajpMJDAIYSIeaZlUuovJdmdjNvhbu/hHPEkcAghYoJSip///OfR57/97W9ZtGgRAGWBMkxtkh5Xd6Gm1atX1ylaOH/+/DoX4B2MPn36UFRU1Kp91KhdKj6WSOAQQsQEj8fD66+/vt+Pds0puHGuOOJd8XVeqx84WkNrHS0bcrSTwCGEiAlOp5PLLruMhx9+uE57RbCC3Xt2c8P8G8jNzSU3N5ePPvqI/Px8/vjHP/Lwww+TnZ0dLQWyZs0axo4dS9++fetkHw8++CC5ublkZWVx9913A3bJ9QEDBnDVVVeRk5PD9u3b67z3rFmzGD58OIMGDeKJJ56IticmJnLHHXcwdOhQRo8eHS1U+P333zNmzBhyc3O58859Nb927drFxIkTyc7OZvDgwdGxdlRyAaAQokXuzNvBl5W+Nt3n4MQ4ftWvV5P9rr76arKysrj11lujbcX+Yh74xQPcetOtTJgwgR9++IFp06axefNmrrjiChITE7n55psBePrpp9m1axdr165ly5YtzJw5k7POOosVK1aQl5fH+vXr0Vozc+ZM1qxZwzHHHMM333zDM888wx/+8If9xrNkyRLS0tLw+Xzk5uZy5plnkp6eTlVVFaNHj2bx4sXceuutPPnkk/ziF7/g+uuv58orr2Tu3Ln8/ve/j+7nhRdeYNq0adxxxx2Ypkl1dXUbfKuHjgQOIUTMSE5OZu7cuTz66KPExcURMkNUh6r5eM3HXLv12mi/vXv3HrB44KxZszAMg4EDB0YzgRUrVrBixQqGDRsGQGVlJXl5eRxzzDEce+yxjB49usF9PfrooyxbtgyA7du3k5eXR3p6Om63O3rl+fDhw1m5ciUAH330Ea+99hpgl4D/3//9XwByc3O5+OKLCYVCzJo1i+zs7NZ+VYeUBA4hRIs0JzM4lG644QZycnK46KKLqA5XYygDbWnWrVtHXFxck9vXLlteU6tPa83ChQu5/PLL6/TNz8+PFj2sb/Xq1bz33nusW7eO+Pj46BofYK8dUnPlev3S6A1d0T5x4kTWrFnD3//+dy688EJuueUW5s6d2+RnaS8yxyGEiClpaWmcffbZPPX0UwTMAGneNKZOnRpdRQ/sUufQ/LLl06ZNY8mSJVRWVgKwc+dOCgoKGt2mvLyc1NRU4uPj2bJlCx9//HGT7zNu3Lg6JeBrbNu2jYyMDC699FIuueSSOmXbOyIJHEKImPPzn/+coqIiFIq0uDQeffRRNmzYQFZWFgMHDoyWOZ8xYwbLli2rMznekKlTpzJnzhzGjBnDkCFDOOuss5oMOKeeeirhcJisrCzuvPPOAx7Oqu2RRx7h97//Pbm5uZSXl0fbV69eTXZ2NsOGDeO1117j+uuvb+Y30T6krLoQokkdrax6yAyRV5ZHJ08neiT2aO/hxJzWllWXjEMIEXNK/CVorekc17m9h3JUksAhhIgppmVS4i8h2SPlRdqLBA4hREwp8ZdgaUuyjXbUZOBQSvVWSq1SSm1WSn2llLo+0p6mlFqplMqL3KfW2mahUmqrUuobpdS0Wu3DlVJfRF57VEXOS1NKeZRSL0Xa/62U6lNrm3mR98hTSs1ryw8vhIgtNdlGojuROGfTp94edQ7TnHVzMo4w8HOt9QBgNHC1UmogcBvwvta6H/B+5DmR184FBgGnAn9QStUUx38cuAzoF7mdGmm/BCjVWv8EeBi4P7KvNOBuYBQwEri7doASQhxdinxFhK0wXeK6tPdQOgatIeSDit1Q+C2UfHdY3rbJwKG13qW1/jTyuALYDPQETgeWRrotBWZFHp8OvKi1Dmitvwe2AiOVUt2BZK31Om2fyvXnetvU7OtVYEokG5kGrNRal2itS4GV7As2QoijSNAMUuwvJsWTsl8xw6OKFQZfGZT9AAVfQ+EWqNgFWOBu3TrrzdWiOY7IIaRhwL+BrlrrXWAHFyAj0q0nULsS2I5IW8/I4/rtdbbRWoeBciC9kX0JIY4yce44fjbpZ0wbM43Zs2e3uJ7Tvffee0jGlZ+fz+DBgw/JvrFMqCyAku+h8BvY/SXs/gJKv7eDhysOUnpD10HQpT8kdTs046in2YFDKZUIvAbcoLXe21jXBtp0I+0Hu03tsV2mlNqglNpQWFjYyNCEELGoOlSNx+vhn//+J199+RVutzt6kV9TasqhH6rAcUhYpn34qeBr2LvTPhylDPAkQWI3SO8H3QZDWl9I6AyH+eyyZgUOpZQLO2g8r7V+PdK8J3L4ich9zfX5O4DetTbvBfwYae/VQHudbZRSTiAFKGlkX3VorZ/QWo/QWo/o0kWOfQpxJNFas7tqN0opOnvtM6kmTJjA1q1bAXjooYcYPHgwgwcP5ne/+x2wfzn0Sy65BJ/PR3Z2Nueff/5+WULtRaE++eQTsrKyGDNmDLfccku0X35+PhMmTCAnJ4ecnJw2W+cDM7RvjqJg876somIXuOKh8/HQdSB07gepx0Jyd/Ak2oGkge/qcGiyyGFkruFpYLPW+qFaL70FzAPui9y/Wav9BaXUQ0AP7Enw9VprUylVoZQajX2oay7wWL19rQPOAj7QWmul1D+Ae2tNiE8FFh70pxVCtNov//YVX//Y2EGHlhvYI5m7Zwxq8LW9wb34wj4UCodhFwx85513OPXUU9m4cSPPPPMM//73v9FaM2rUKE488URSU1P3K4f+yiuvRGtY5efnH3AsF110EU888QRjx47ltttui7ZnZGSwcuVKvF4veXl5nHfeebSqSkWgEqoKwV8OaHAlgNMLhsO+eTs1OmehtQZTYwVNdMC+4VC4uhz6+Z/mVMcdB1wIfKGU2hRpux07YLyslLoE+AGYDaC1/kop9TLwNfYZWVdrrc3IdlcCzwJxwDuRG9iB6Tml1FbsTOPcyL5KlFK/Aj6J9LtHa11ykJ9VCBFjLG2xp3oPHqcnmjGAnXFccsklPP7445xxxhnRCrY/+9nP+PDDD5k5c2aj5dAPpKysjIqKCsaOHQvAnDlzWL58OQChUIhrrrmGTZs24XA4+Pbbbw/uQwWr7GwiUAHKAQldICHdDhoHoC2NDlnosGXfh0x0yAIrkmEohfI4MDyOA+6jLTUZOLTWa2l4rgFgygG2WQwsbqB9A7DfLJLW2k8k8DTw2hJgSVPjFEIcHgfKDA6FUn8pITPEMcnHEBcXF80YajR2aOZA5dDBXk2w9jKwNeXQG9vfww8/TNeuXfn888+xLAuv98A/9PvRlh0oqoogsNcOGMk9IL6znV3U7qo1OmiigxY6aGIFLTBrLVmrQLkcGHFOlMtAuR32fQPl2g8VuXJcCNEhmZZJoa+QBFcCia7EBvtMnDiRN954g+rqaqqqqli2bBkTJkxosK/L5SIUCgHQtWtXCgoKKC4uJhAIRLOK1NRUkpKSoiXSa0qgg11GvXv37hiGwXPPPYdpmvu/SQ1tQcgPvlIo227PW5R8B6FqSOpunwWV2BUMB9rSWP4w4b0BQoXVhH6sIlzowywPYAUtDLeBI8WDMz0OZ9cEXD0ScWXE40z14kh0Y7gdhzVogCzkJITooIr9xZiWSUZSxgF/GHNycpg/fz4jR44EYMGCBQwbNqzBOYzLLruMrKwscnJyeP7557nrrrsYNWoUmZmZ9O/fP9rv6aef5tJLLyUhIYFJkyaRkpICwFVXXcWZZ57JK6+8wuTJk+tlNBqqS+zAEKy0g0btk0a9nSA+FTxJaJSdSfgD9txEyIx2VS4HRoILwxPJJBwd8297KasuhGjS4S6rHrJCbC3dSqI7kd5JvZveoA1VVlaSmGhnOPfddx+7du3ikUceqdvJMu1DTzU3M2C3K8M+E8oVD644tNMLyo0VisxRhCx7Ejvyu6vcDntuInKvjMOTObS2rLpkHEKIDqewuhBLW2TEZTTduY39/e9/5ze/+Q3hcJhjjz2WZ5991n7BMu35CV8p+PcC2g4U7kT7Wgp3AtrwokMWVtBCV9VMYPui+1YuAyPBieFxtkmg0Fof9sNUIIFDCNHBVAYrKfWXkh6XjsfpaXqDNnbOOedwzjnn2E9qJrVL8+3TZrUFhtM+C8rbCe2IxwpY6EAYq8ICc9/V7NEJ7JrJa6dx0IFCa01YhwmEAwTMAP6wH5/pIxAO4DAcuB1uPA4Pcc440rxpbfAtNE4ChxCiwzAtk52VO/E4PGTEH/5sA7APIwWrIplFmV0bSjkgLhXiUrGMeLQvjFVuooORQGEoDI8D5XbtCxStzCZMy6QiVMHewF6qw9WY1r7JeKfhxOv0khSXhKlNQqEAIV8FGD6QwCGEOJrsrtpN2ApzTMoxGA1cGX1ImSGoLrZvZhAwwJuMjktDG5HMoiyMDtnBQrkdOJLdKK/zoE6HDVthfGEfQTNI0AoStsLR1yxtURWqQmuNy3CS4kjEqxy4LQOnCUbIQleF0eFqdCCIDttnixle576qgYeQBA4hRIewN7CXskAZneM7E+c6jGtthHz2FdzVJYAGdxI6oRsWCeiAxio1wbKv81BuB45OHgyvE+U8+MDmC/nYVrEtmkUYShFnOXGGNc6wxmFqUk0HLlNBOAxWWXRbC9CGAU4nyuHESExAeTwYHg+qJdeWtIIEDiFEuwtZIXZV7cLr9B6etTbMMPhK7FvIh0aBJxXLkYoVdKLLTCAEDmUHCa99VXZbnB5bEaxgR8V2vKaDDFJx+EJQXY02g9E+yoicjutxo5JcKJfbfuxyodxulNG+p+lK4BBCtCutNT9W/oipTY5NPLbRQ1SLFy/mhRdewOFwYBgGf/rTnxg1alTz3sgywV/OW6+/wldff8XCay5CG14sRwZmOBF89vsqN606BNXgZwyHCVdV4q8oJVxdxbEhUNoCSsDlwkhOxoiPtzMHtxscLb+ozwoG0aEwjoSOUatKCCEOmWJ/MZXBSrondsfbSL2mdevWsXz5cj799FM8Hg9FRUUEg8ED9geiE926uhh8ZSgsZpw0lv+ZPJWQlYy23CingRHviNZ6Opiswi44aGIFAuhAAB0K2cEiFMAKBHCE7ENSDkC7HThTUzDi4zHi4uwM4iCCk9Ya7fdj7t2LtbcCK+DH8Hhw9OvX4n21lAQOIUS78YV8FFQVkOxJJtXT+KrQu3btonPnzng89im6nTvbJdb79OnDOeecw6pVqwB44YUX+EnfTN565QUW3/8gwWCQ9NRO/PmxR+jSJZM/v76MT7/YxGOPPsbFly8gOSWZDRs2sHv3bh544AHOOuusRsehtbYDg9+P5fNh+Xxonw9drwSJZSjChibsUFgpblR8PJ7EZJLcSQedxWjLwqqqwqyowKqoQEdKqBjx8bi6dcNITj6o/baUBA4hRMu8c5u9XkQraTQ67KMP4O2Vi/rpA432nzp1Kvfccw/HH388J598Mueccw4nnngiAMnJyaxfv56lS5Zw/VVXsPzZh5gw5Bj+9daLaEcnnn7lDX77zIv838MP4UjyoNwO+wwkZQektWvXsmXLFmbOnLlf4NBaY1VXY1VWNhAkFIbXg05KIODQVBshKlSAsAFep5c0bxqpnpRWnSGmLQursjKSWexFWxYYBo7ERIyMDBxJSSjn4f0pl8AhhGgXQTOI1hqv04vRjHqriYmJbNy4kQ8//JBVq1ZxzjnncN999wFw9vQzMHdv57yTsrjp5zehlZdtpU5uuf56du/eTTAYJDMzs8FrK2bNmoVhGAwcOJA9e/YAoE3T/rEuL8eqrEJbJjVBwkhOxvB6UXFxGF4v1WEf+XvzATtYpLjSSXYnE+eMa9X8iBUIYJaUYpaVok0T5XBgJKfgSEnGSEho1wlyCRxCiJb56X2t3kVZoIydFTvpEt+FhBZc6OdwOJg0aRInjpvIoJ8MYOlzS8EM46jOx2F1J+xMsH9gux/PDeddxk033cTMmTNZvXp1dIW/+moOfWmt0VoT3L4ds6ICLAvldGKkJNt/3Scmohz7l0DfU70Hp+HkuE7H4TRa95OqLQurooJwaSlWZSUohSMpCUdqarsHi9okcAghDqugGWRX5S7iXfEtOvV2y5ebIWRxXI8+6JDFpg3/ok/PFL7abPHS26tYeOcveeXl1xkzxl6Eqby8nJ49ewKwdOnSA+7XCocJFRRglpZC5LCQI6UTjpQUjIT4RrOGimAFvrCPHok9WhU0LL8fs7QUs6zMzi5cLpwZGXbAcLkOer+HigQOIcRho7VmR+UOAHom9mz0R9le0MjCCoTRvjBlPxRy4123UL63DKcTftKnJ088/Bv+vmodQWcioyZMxrIs/vrXvwKwaNEiZs+eTc+ePRk9ejTff//9vv2Gw4T27MHcu5fwjz8SLijASEwEw8BzwgnN+stea01BdQFuh5tOnk4t/y5ME3PvXszSUqzq6rrZRWJiuxQvbC4pqy6EaFJblVXfU7WHIl8RvZJ6keJJ2e91bVpYARPtD2P5zejSqMrtwPCYGKE9qGAFODz2CnreFPpkZrJhw4boWVb77dOy7LOfaia3q6vtCWbss5GMpCQ7u3C7W/RZyvxl7KzcSe+k3iR7mnc2kzZN+4yovXsxKyvtw2FuD87UVBypnQ7bJLeUVRdCxIS9gb0U+Yro5O1UJ2ho08LyhbGqw+hg5Gwlo9YV2y5Q1XvssiDKAck97TLmjZyppMPh6CmrVmXlvkDh9eLo1AkVH48jMfGgf6gtbVFQXWAXGnQnNdo3OpaaYKE1yunE0SlyOCy+8cNhHZEEDiHEIRcIB9hZuZM4ZxzdE7rbh4sCJmZlCB0I20tbuIy6V2yj7TW6i3aDNiE+3V521VH3mH/Nan/asuxTVsvL9/1Au1wYKSk4kpLsyeV6k9stETJDVIer8YV9VIWqCFkheiT2aPBHv2aS2ywrqzMWZ1ravqvEYyxY1CaBQwhxSJmWyQ8VP6CUoldCL3RlGLMqhA5bdmaR6MaIc2K4Iz/qWttrX+z90V5Zz50EKT3hAIUPdThMuKQEs6QEHQ6jnPYPtCOlEyrOe/AX22lNwAxQEayIToIDKKWIc8bRNaErie59a6FHr7eIZBfaNFFOJ870dBzJyai41p2e2xTLstDawuE49D/rEjiEEIeM1pqdlTsJmkF6Gz2gIIiptV1lNs1rH46q+S3VFgSr7YARqgKnB1IzwRM5FGTVuzI7FMIsLiZcWgZaYyQm4ErrbmcW0X2adjnZ/UfW4HgtbVEd9lERqqQiVEUoUuo8zuklIy6dRGccHsNDzeUgOujDqqzC3FuBWVVtZxaGgZEQjyMl0S4poiLvFynHTp15ZR15ruu12yPU2sIyLSzLwjK1fW9ZmDVt1r7XtNa43C7Se/dp6p+l1SRwiCODGbLLY4f99r0ZtB+Ha+79kbaA3dcM7ruF/XZ7qNreNlhlt1th+8fKCtv/U2ur1s207y1zX5tl1muv+UGw9j2Gej8U9X7AGmqLttdpOMBrut7LTfXT+57v9wNWq8/EP8Gu0P7janCs9n80ikLDQ4XTpEsoFa/pwFDlGKoMIxyEsv03rSMcgNLv92u2TAj7HZgBe47D4bZwxlkYjjKoLIPKJvZbb6gBpahUiirDoMpQaBQKTaKl6WJZJFoWrmAQ2Bv9OixTYQYMzKCB1qCUxunWGG4Lw6lRKgDVpVDd8PtaGixtYGqFhbLvtYGlax7bN03DGYqhdPTmxsJwaHsMjsNzspMEDnH4WCZU7IKyH+zV1cKByA955D7sh5B/3w952Gf3q9htb1dVTJ0fMx35Ua+1AE6rGC5wxYM7Hhxue4lQwwmGw56UVSpyc9gTs0bkXjnsfk5P5HFNu7FvAlcpILK93dBAG/Veq69eW50+qoF21UQ/GuhXa1y1t3XHQ3zq/mNoYL9aK6yQi4qwRaGziCQrnnSXCyO+CqUMoNYKdVYIgpX2vzcK3An2rd7EtwYsfwizwodZHQQFjqQ4nCnxGE6jkXHtP86QNqmyQlRaQaqsIGFtpyRu5SDV4SbR8JDgcGNQ831Ehho2MSt9mJU+dChsnz6b4MWRFI8R54l8NrC0xjStyM2MZAS1nkeyhfoMw8BwGBgOBy7DgSPy2L5FHhsGhtFIxd7DtPiVBA7RtkJ++6/E4q1Q/F/7cWm+fSvf0bwfecMJzjj7h9ibYp922SsX4jvbP8rRfo59P9oON7i84Kx989S6RZ473PapnA6XfYu2e+AwHBuOWZs3Q0rvA76sLY3lj5wZ5Q8TUmF2eXbjMTz0TDsGh1FvUjrkg727IFBu/xsmdYP4Lvv9G1jBoD3ZXVbG9999x5nXXMOmD9fiSE/DcLlYtGgRiYmJjB8/nuuvv55AIEAgEOCcc87h7rvvxtQmQTNIyArhC/uoDFUSCAcAcBgOEt1JJLgSSHAl4HY0fDqutizCRcWEC4tAW/bhp06pWF4vQcvECocxy/2Y4TCWGcIyGwgKDgeG04nD5cEd57QfOyP3Dvve6CBXhTeH/J8iDl51CXz5GhRuiQSK76B8O3UOX8SlQVom9BwOg/5/e2ceZkdR7/1PVXeffbZMdiAQCJEdWQTBCOqriCwvCKigviBeV/CigvcKFwUEud4Lbiwq4HIFgSAalIsCKkgUCGENm8QEspF9mZnMOTNn7e56/6iq6Z7JTDKBrEN/n6fPqe6urr1+W22nQeskfeVG9SfaXjYh4DsZ9AK9gLCsGQZKgSMQTS6rwtUQwqSWAUzDr2ntsdJlGMYEyI/pJxCoRkMvjOvu1gvjAJnN4o4fj0in8caP2yAt55xzDnfffTcHHIEyqyMAACAASURBVHgAxWqR5//xPPO65vU7p1sIQc7N0ZpvJe/lyTgbDpwrpQgtM/B9ve1HZxciCPA9l6rrERBCT1FfxJmCSyqb0QzB8WKMwdlhtgrZUkh6aILNR9dimP0TeO5XehAz0wKj9oJJR8Koj0P7FGjfC0btCdnNX1GbYMeF3lLcrLuo+OCHIISeFZVzCTzF0p6lVIMak5onRVJ86EPJrMUAKIyF/Lg+ISFsNPQ6h2KRsLcXAJlO6203Wlq020y7HSxNa9asIWwKmdc1D6UUE/acQMErkHWzpJwUnvRIOSmkkH3MoVGtEjQa+I06gd8gaOhL+j5eEOIGIVIpQiGo53OQzZLxPBzXw/FcHNfb6TSFLYWEcSTYPDx+HTx0hbalHvgROOpLMG7/IWzyCUYKVKgIijXCss+1r3yf+aVXQQqQAuHoug9VSC2ooZQi7aQjTcNORkAZs2Jatxez9YfyfaZmduPC3c5BpNO4Y8bqHWCHOD+76lep+lVqYY3uWjdlWeYTn/8E7zn0PRz97qP50Ic+xGfP/SzZbJbA9/Hrdfx6lVKjG7/eIGjUCYP+mogrJakgxK3VIdTMUORyOE1NuKNGjTiN4c0iYRwJho+nfgp/uQz2OwU++B09tz7BiIUKFdX5XfTOXkkwtU7QUkek9Ul5oub0G48OVKDHDoTeWlwKqSdDBDU9q0w4ZvKA1AyjXu87hAgp9SFHU6Yg0ulBB36rfpV11XXUgzoL1i/oe+6HPgW3wDe+9Q3OP/s8/vynB7n79ru4+/bp3HPnHf0YhHQcXC9FJl/AcV2cMETU6lCpEPaUAYHTVMBpbR10J9wEERLGkWB4eOHXcP/X4G0nwOk/32D1boKRA+WHlF9YS+nvy/BXl5FNKeRBObzxeYQruWTMf/T5DVXIqt5VdFW7yLgZJjVNwlMKisv0Ij4npbcIybQQ1uv4a9cRdOt5uE5rK+7o0UizrflgqPpV1pTXUKqXUBlFsbvIhPwEMspDNQLqnRXGj59MZfka2tIeH/u/J3PGiSew/xFH0lutMXb8BNxUCjeVQtQbBL09es+qclmb3RDIbAZ33DjNMHbAnWh3RCSMI0F/BL4e4F7/ul7X4Nf0/V8uhz3eDWf8T8I0RiiCUp3ep1bR++RKgmIdb3yeUR97G9mDRtM9fx7C7W+uqTQqLOtZRj2o055tZ2xuLLLSBd3LAWUGvsdqhrFsGUF3NwiB2zYKZ3T7kJsK2hXb6yrr6K514ymHMbKVVH4048eM5a+//QPTjj6KrvXreeihh/ncuefy9yef4sSTTiKVzjD/tddwXY9Je09FKkXQ1UVj6TJUQ59PLjMZvfVHoaC3/kg0i81GwjjeqlAKOhfCqhdh9Suw5hU9O6priZ5bPxC7HA5nTddTXhOMGKhQUV9cpPeplZRfWgeBIr13K22n7016atvg+zApRUe1g9W9q/Gkx+7Nu1OQKehcBLUipArQOomgHhAsXUZQKoKUuKNH47a3IwaR6v3Qp+pX6amVKFdK0AjxAkl7kIZQEVKmJiU/vu6HXPyNy7jq2u+CEHzrqqs47Oh3ce31N3Dp5VeQy+VwHYfbbrqJYMUK6sWiXlWey+GOHaM3NtwJtQqlFIFS+IHCD0KCUOGH+lkQRlfKlUxoGXxrli2JhHG8FaCU1iBWvQgrX4Dlz8Ly56Bqlu4KqWdFjd0X9j1Zz4Zq20MTALv2oW1yMk12BMFfV6H8/Bp6n1tD0FlFpB0KR04gf9QEvDG5ob8LfZb3LKen3kNzqsBEmcUprtSL+BCowgQCP0Xw+nLCchnhOLhjxmiGEduJthE0KNa6KVd68Ot1pK9wA4ETCHIIwMFJpUgVMnhpfbmpFOMm78XfH3tfvzQppbjj5z8nLJYISkVUXWsWYW8vTlub1i6GGGjfnlCG6DdCzQz8wDADc/mhftYw/+EQR2AIIXCEwJFim22cmFCCkYigASuehyWPweLHYNkz/ZnE2P30APcuh8GEg2HM24bcQC7ByIBqhNReL1Kd10l1bif+2goISO/VSvMHdie7f3u0yeAQKNaKrOxdSRAGTJAp2nq6EHSiZIpQNhGUFUHnOgCEl8IbPx6nrQ3hOCil6K2U6C2XqNfK0AhxA4GnwEOAlDipFJnmHKlMFi+dQW7EhKSCgLBX7xEVlkqoQK/klvl8nxlqqIH2rQ2rHShlV5Erqn5ItRFQ80MahkkEoUIN3LJFCJAgpdCrxV2BkC4pgT4v3e6Rhd6CSwGBAh9FQ4F0kpXjCYaLShcsfhyWPaWZxIo50YZqY/bRTGLCwfoau5/ePiLBiEZY86kvLVFbVKS+qJva60Xw9QK99J4tFN45gcz+7bitm5bEn135NOVymbAUkkYwqVEno+qEYQa/NyRshEBVL9IbOxaRzxNKSaVWobpuJX69Bo0QYWikK0B4Hulclkw2j5vWi+Y2ReTDel1vVV4q6bUeSiGkg2wq4DQ3b9WZUFY78EPVR/gbYUjD1/eNmPkoBOxuJX1blgj0+I4jkGmJFAIpQAnNAEL6zqwCIDCXhZn5jAN933rof0cIpHmekonGkWAo+DV4fTYs+Css+pvWLlB6r6UJB8Gh5+jFeLtPg8Lwz3ROsPMi6G1QW9hNbeF66ouLNFb1anFUgDexQOGdE0nv2UJ6rxZketPdXtXLzH72x/zy1RnMUj3csN8Pmej7tPjgVyXluoNygEyesNkjlALfbxCUS6hSdxSOgNABmXHxMlny2SbSmU2fRaHMlF19Yl+FsNxLWK0CIFIprVU0NSNz2Te9xiI0BN+ahixzaAQh9cC4LUOQoIRhBlLorctcAZ6DEkPtuRuhgVYqHCFwBbhC4AmBa8xN9ln83hECOQzNSc8S2zZIGMfOAL8Oq1+CpU/Dwkdg0aN6xbb09B5O77kYJh8DEw9NBq/fIgh66tQWFTWjWNRNY5XWMIUnSe3eTNP7JpHevZnUpCZkZuhu3qhVqRSL1NcsxF82h/KCJ3is50V+31rl1bTHKD/gEysCmvcUBL0Z1iJRArAzaP06+HVCqQilInAUYUrgeimymTyFbDNpZ+MmIxUEhNUaqlZFVauEVf1vT+1DSmQ2izdunD4EaSPTdy1CqxmY8YOGGUtohOaZQmsIaoCGYJmCMRnh6PGWweAKgSv7E3pHgEPMbf4lQisgSoE1YYV6D+FoE2WlzU4qpK4UoTJboCidn9C6lXZbU1gYYu4V2ZTLlLGFQdO7JZEwjh0VnQvhH7+H+Q9qjSLQG7PRtge8/eMw5f2wxzRIb/1GkmDHQFhuUH5pHeXn1lBfovdJsoyi+bgxpCY3EbQKqr1FSj0l1navpDKrSLnYTaXY3e+/UVpHe2Mpu2fWsHuhi9WFgHuaCtxfyNOTl+xWcTj1n1nGr5yIl87hOx5BNk1ASI0GgQgJhUK6LqlUhrSTJu9myLpZPOkNORurT4uoVglrNc0gGtEsPiElwh7vmsno6bKxsYpQKep+SC3QVz2MmEKgNEMI48xAxhgBYGw6NrZ+6RPGFOTEtAAJyFD1EXYRE+lVjJjbuBWW4NOfuA8xsL0pSKG1Gmm0Dim125VSZ82Yrez7lJuMcfRBCHE8cB26Xn+mlPqv7ZykLYfA15u+dS6EzgV6R9nFj+rZT6C1iCM+qzWLXQ+Hll23b3oTbFH02/up7BMUa/hryjRWl/E7qloaDwJCPyBcW0eE0Mj5FMeup0utYV3vUnrmdlJ+sptKqdjvzI2MbNCaqtLiVWnL+kzOBbS5vbR4RbJjqlSF4P5sjqsKo5ifd/ECmNKTRzS3sbKll9/v0wX76FXaP/TqrEv14jkeea9AwSuQ9/K4ckMSopQibDRQtZq+DLMIq1W9nQfoLT1SKVQ2i9/SQt31qLkedengYyRyIKzq3Xa1GUhobWewLdSlsicfIRQ4CiQKGSrsputSxU636NudP0boQz3O4CtFfSN0XopIMbFEW5gxCAk4sv/7vndC6DM0ZDRm0cfDjMYghaLvFA4RnY2iBmE8ynyH1VoAqVxg65und3jGIYRwgB8BHwCWAU8LIf5XKfXK9k3ZJqAU9KzRA9f2gKCe1YY5LNSMonsZlFboLRks3AyMPxCO+7Ye1G6dtP3ykKAf9OZ4FYKgShjW+l2BdQdVgrBCGNTwG2VqPd3US900yr2E1Zoe4G344AeIIIRQ04dIlFUoGRBQp5GrEgofUCAU/pgaZb9EI6yQBbISdmuHjFJkwoCM75NuNMhW62SrVVJ+gAI6pWSF67Iw5bIy5bHKy7PKbeEZz6NXSMY4Icfn6hyYCym4DVxRwhESV0gtgTcErVIwSQJhA1FZD73rqQYgzNlVGLe+BpxkJwQNz6WWz1BLpal4GapeGmW2HzHZ1m5f3wsVIlCa2CvFiiVLOP+TZ3HvzMf6zpr60feuIZfLc/bnL9igruyA8z9emMN9M+7i4iv/m6efeIyU53LIO47QYQt9+JEkRAiFJ02cIjSHJIVIEXLkIcfw0CO/YdzoZqSI+uqBBx7PzJnTaW9vY86cVzj77Au5/fYfsHz5Kv75z4VceOG/DNGQGHQwRAzy6tFHn+aGG27l7rtv3EjLjBAEHgnj0DgCeE0ptRBACHEXcAqw9RmHUnpXz6ChF8U1qvpwIb+mT4mzV62kFz7VSnr3z9Uvw6qXoNwxeLhNE/Raicnv1hpE8y566/H2KdA0EZIN1YYNpUKU8lEqQClNLpQKCJWPChso5RvCXtVEPagQ+BUCv0zgl/H9Hny/hN8oEfi9+I2y/vcrhGGZIKzoi15CypoyvlGkJMJzIBSIQCJChdRGbYRSqEChgpAgiOzWPpIAaCCQdR+36pOtBfiBokMJ6sqhFgrKUtArBT3SoSia6Em1UPEk1VBAAKm6wq1Apg7ZhqDFdziFDKNS7WTdVoTvkCrWkcUK6WKFTE+FbLlKrlzBCUMaP1K4KwYXwwMp8aVDIB38lIsvHXzpUHdcGo6Hbw4XEsa+Tw1Ezd/kSLJCzywSCPDNaX9K9kntnoSUo2hNB4bQW6tUJLVPPGo/jjv6SqSoceezM8nn8px07MF9Enwf31I2Rn0QlVJ6ypNSDiiBX81SrTT1S18YSsrlZhYtWsGnPvU1br75J+y999uZOlXw3vcKzFi+zoEwYxzCuI3pzB7KpP9lnz9hDg3zvGVImSWd3rNf3MLM1uoLc9BDu7YedgbGsQuwNHa/DDhyS0dy7/Qf0Xzj8Lj68JAGJg79Wi0CNjwWM8HWxRvtVmZJGiinn7mjX3ix+7gtvO+5+dfvoumpQvXN3USY8MUgYUvl4gbgDnqG9mDYmMcAiI5DBSh6OdZnCnSlmyimRlEanaOYylF2M5zqZVmdG0UoBIGQhEISCEkgHGM+6o++HAUKh8Dcq+hf0M8so/9V9F2/51AWFRwUTarSx3Dc0McNA9xGjTPOOINDDjmEWbNm0d3dzfe++z2OPPJIZs2axU0338TV376aX/ziNhzpcNevf8u3r7qaKXtN4eJLvs7y5csB+NYVV3HEO46gs6uL887/Ah2dHRxy8CGaqfhZaOSxmbW/r81dwQUXnseN3/8ph+13NNTgrt/cwQsvzeE7V36XCy76IoWmJl54cQ5r1q7mskuu5OQTTiUMQy657Gs88eTj7Lbb7qgw5KyPfpKTTziVv858iG9eeTGjRrVz4AEH06hB96qArvWdfOXfvsSSpYvJZrJ89zvXsf++B3DtD77D60uXsHrtKhYuWsAPr/sBs2fP5oEHHmCXXXbhvvvuw9vCq+V3BsYxWF/vJ6sIIT4HfA5g0qQ3ZtrJ5JrobNtw9sTW5N/baurcBtj2a6LePDZSWCLmUhs8GySoIV4Orz7EBmFYu3t/U4OI+bHfRDZ6hT5rWglBiETh9P0HwiHAJcQx32orfVVkqMkMgfQIpIcvUvgyRShS6Lk8Jj1S4kuXwHHMv7586dBw0zS8FHUnBY6LA7gIpNQDrh7gSjsNVM8YciSIVBovp9f/VG/4AWrBq3jAQHI0eNFu+DT+RAlwpkyl9SsXDVHkgmx6PVJICpkWI2FDys2Q9rI059pwpIsULo8+8gR//sufuP766/jDvSeQzzbjuSkO2PftfObTn6NQKPCVf/0qAJ/6zNl89csXcfRR72Lp0tc55bSTee7pF7jq21dyzLuP5ZKvX8qDf7qf2+/8FU3NTTS39Nc4pJSc+9lP8rOf/g/vPy5azZ7Oe3hph0JbBjft0Nm1lkce/hvz5s/jo2eexlmfOJPf/f4eVqxexjNPzWHN2jUc9o6DOffcT+Nm4WuXfpn773uQvfacwtmf+gSuJym0Zbj8P6/hsMMPZcZv72Hm3x7hy//+RWY/9jSprMvSFUt44A9/Zt6rc3nP+45hxowZXHPNNXz4wx/mj3/8I6eeeurgZfsGsTMwjmVA/MzKXYEVcQ9KqVuAWwAOP/zwN0SPP3jK2XDK2W80jQkSjGjMnTuXXcbrQ7lW5dPUvC1LOtJZj5b2oWcItpTySEfSPCrf75tMLkWhNYvjSs4866MUWjO865h38u+XXES+JU22kMJxJfmWNKmMSyrjkmvR03ln/u0R5r86ry+8Uk+JQNSZNftx7rnnHnLNKU77yKm0tbWRa0qRa+6/KaMQ8P4PvJ/b77yVUz58Eo5ZfJjOurgph1xzCteTnP6R0yi0ZjjsiINZs3YNueYUTz83mzPP+hiF1gyF1km8933vJZ1zeX3FQvbcczIHHbI/AOeceza33HILueYUs596ghkzZpBrTnHCyR/k8+d9hoaq4KUdTjzpBFra8xzedihBEHD88ccDcOCBB7J4iAOw3gx2BsbxNLC3EGIysBw4E/j49k1SggRvXYz/j//YtKctjPb2drq6uvo96+zsZPLkyX33abO+w3EcfH/TZ9uHYcgTTzxBNrvhdjvD3arkxhtv5Atf+ALnnXceN99886B+0rF1J2ojs6Q2Ffdg31i/Ng4pJZ7n9RtDGU5ZbC52+FFYpZQPfAn4EzAXuFsp9Y/tm6oECRJsSxQKBSZMmMDDDz8MaKbx4IMPMm3atGGH0dTURKlU6rs/7rjjuDE2rvn8888DcMwxx3DHHXcA8MADD2zAsOKQUjJ9+nTmzZvHZZddNuy0TJs2jRkzZhCGIatXr2bmzJkA7LPPPixatIgFC/Q06OnTp/d9E0/XzJkzGT16NM3NzcOOc0tiZ9A4UErdD9y/vdORIEGC7YfbbruN888/n4su0mMhl19+OXvttdewvz/55JM544wzuPfee7nhhhu4/vrrOf/88znooIPwfZ9jjjmGm266icsvv5yzzjqLQw89lGOPPXaT46bpdJp7772XY489lnHjxpHP5zfqH+D000/n4Ycf5oADDmDq1KkceeSRtLS0kMlkuOWWWzjxxBMZPXo006ZN4+WXXwbgiiuu4Nxzz+Wggw4il8tx6623DjvvWxpiYyrTzojDDz9cPfPMM9s7GQkSjCjMnTuXfffdd3snY0Shp6eHQqFAR0cHRxxxBI8//jjjx4/fJnEPVp9CiGeVUocP5/udQuNIkCBBgpGGk046ifXr11Ov1/nmN7+5zZjGlkDCOBIkSJBgO8COa+yM2OEHxxMkSLBjYKSZtd+q2BL1mDCOBAkSbBKZTIaOjo6EeezkUErR0dFB5k0epTviBseFEGuBJW8iiNHAuk24d2Z/O2Ka3mr+dsQ0bdTfmDFj1l999dV7TJo0Ke84Tt9eJmEYSilluDH3juhvR0zT1sjjQCilWLx4ceXSSy9dvHbt2oELPHZXSg1vh0RltvNNLmWlqWc25d6Z/e2IaXqr+dsR0/RW87cjpmlr5HFrXYmpKkGCBAkSbBYSxpEgQYIECTYLCePYELcMw70z+9sR0/RW87cjpumt5m9HTNPWyONWwYgbHE+QIEGCBFsXicaRIEGCBAk2CyNi5bgQ4hfAScAapdQBsfsS4ANjgQz6HI+J6OPP7Bk0KaLzdyT6WDRlnveLZsC9GuTZxp4P5m+wcDfH73DjGoiQSGgYGEb8Pu6Of2PvYesLH280j28EAbDhaV4aA/P/ZjHcOoj7G6wOBFu/fLZGHWysPG18DTY8K8qiBDQN8D8YKkB2EH8Dv6miacTAdz5QA/KDvFsPtBAdFx4Pz4e+k7jiYW8Mw20HgXnnDngXosslZeL7JzAJyAFlkx6JLpMrgLOAUcA8NI1sA54D/p9Sqr6xhI4UjeOXwPGD3DcBvwLOQ6/tuB34KZo5lID/Am5GV8Tt6EOjXOBHwGXo8z8EumDtnPb56EoAeB1YiG4YClhAVNGzTBygzxSx3/jGP8BKdKNU6Ep/1tz76MoNzeWbNPpETK4KdBEdzbzKuH30eaCW2VTRHRDjbwm63jtjabLniPomvir2uGd40byTwFNEHSk0cdiD1ZcTMd0u833NxF0D1sT8lQekz55f2gBejeWJWP4rQI959mqs3PyYX2Wed5vvAuCZWJmviPktD4h3PbpjLUPXdWesbBaY/PvGbbEI6I2FscKkoW7ya/PYTVQHPrrNSGCtKSsbT6/5D01eA+PvGZNeCTxq8mLrICBqm6+bMGy92LpqmO9XGX9LTP5s+kpEbbWGJji2Dmzb9E0+rL9KzF9o8oy574n5WxrLVzX2XAJ/M+HY7142bgH8FV0fiqiMA1Ou69F9OwB+HQujaNKPSc+v0QRUEZ3TrIz/eJuZjT7rGXSdYPLbMGnJG/c95t62c3vyVC+63YAu5/vRdMSWfYaoDmwfrpk02fLqJmJAHSYvAt1fniISaq/EHgkJ3yIq/28A9wHN6DZyFTAVTbv+zZQZwDjgf4FrgZuVUnsD+wIvGncX8C9sAiOCcSil/k7U0eP3eeAG4Al0hf0f4JvoQs8C30czDwFMQTdkgHcCPyHSOj4TC1+hO4NAV0YrugEINMOyaCEq39nAS8YtiRr3KHRnsswmg2Ye+kTP/qeZ2kblG/dzJm5LQOcQSShrY3FUiAi1QjdwZcpmnYlfoht2j/kuLm1NRjfkOnpRWAPdea2k+4Dx20zUOVuImI3taM+ZdwU0IbSo0V/z/Zn5d4iYl2PCsOkqmPCE+dYSDiulukRlf5n53iHqjJj3towddGcDGGPym4r5+1UsTc8Q1UvR+AsHvPPMM1sHHhFBl+j2o0yZhSb9Nj3d5jsrofrA20z+a+gTMCVa6LBlc6/x20ZEmNuIJFF7/uzT5l0rEYFkQHlZwcnm17Ypx+RVxPz9JBa2PZVTmPxaf2WTVmnCiGsQ44nK2RJTW7bXmW/iQkTd5GuluZdogc8S/TIRk3GIBD/Q5WjjcYmYoe1LFpZxW+3TCm+2HYdE7Sbur0CkIT1hwkoDq427QtQObTt9kKhfR4e/6zKx9SGB7xm3i2ZeNn+/i+XvWeC/zf1ENNMUaI3jAZM+H92+f2K+nyX0iU/txh/ArcAmz5kdEYxjCLQBSinVbe4ddGV9AM2F7bsPEUlvHzTufYDXiDrfciLpYhKwp3GPRks+9hiyg81/DdifSL39B/CO2LscusFZldISlBKaSEBE0CSaoDto5mWJ7BHmnW24x5rnwqTLErQ2NIGynWQX8x8Yf45JU9q4S+jGL9EdMY0mNNKEkzFhWMJuJek8sHcsDTY817jtitQWIH76TpaoUztEGowtE6vZWKkNdF28M1aetgxtOiwh8YEfExGzl4jafBpdD7YsVsWe/4X+5o3LjTsEphN11omxsgrR5lFLqOcSEf8MugwFui4nxcporYnLvms19w0TlkS3sTXG/x7G7x6x8rJmwyZ0HVliHpr0ucaf3X61Bdg9lo/uWH7raKlzoIlEoNtfNvb8P4nwcswtY/6mouve1oElzArd1q1psII+ItrG+zWiNpszz1xzPR+L685YGIKIWQvgAiKtaUqsnCyjtALVF2N5aiViALZt2HY+jYh5WGHLMqLl5t+hvyYwyoSdQtefbacukWTvoevGCoaFWJ6X0J8mjI3lYzkRnfgzmuZg7ncx6S6g207ZxLOAiF7NRzON9ei2DFqw3IVNYVusMtwWF7ojvRy7vwBYFXu3FPiBKbgr0YRif1MxK9HScqdxX4KWVEN0p/oAupFUjB9rIppDZIqxjUuZivgFkemnHnun0MR5vXHfZ/4bJu6O2H0vmrAoNLOz4fWiJS0b3lz6m0nmEElDs0werIpu01oxYVoT2HzzrkpEjKz022XSXEVLrVZV/ztaawnRDbObqKMuIpLWlhCp6BWTJ0s8bNqsNmQ7Q1zyC4CZsfytjH1XJZLmQ1OeNq4XY+EtJTIp+iaMBhEhaJj/LvNd3N/qWL3a/PbGys++W01kZrLmsiK645aIpNy6+W5erMw6jd862pRlhZlutAmqZuJcYNLQMGGtNmkOgRdiYatYnHWTJlsuc01Z2Hzb+rT5svm1Js/AfG/NoXVTp7at2vQpIpOYrdPnYu86YuEFJh3W1GjrMt4uSgPS10vUl2ybmx4Ls5Ooj3QTMYYgFk4Qu6rGf4nIvGrbnDUZ2/hWm3xZ/7Yces1VRLftbiJTWE8szEUmPTZ/PUTmaJtOayJeSX+zs83/ClPW1rS8f6ysdjXhBGgN+TV0O+kw/hrm2QRgMVA3tHGMuX/J3O9m3W/VlePvIbKJg5bETgPOBg5AV9LvgAvRXLcd+CxaUnoO+Dq6UpvQNkuJlhx94CET5h7m+Toi6dBKA0cRNRKFNoth3L806QnQkhD0N52Alhq+jZaAAPYiUnNdtKYUz1t83GRv468XLcnYjlkE7jJxzUdLL1ZVbiUyS1jJsMl8swwtAXUTaRsKeJcpE/vNnfSX6K0EOJ7IBm47IqZ8rLagTBxxbQEiE8G7iUwGVrKz8cQHNfeJvdvNvA/Rtl1bDgPNFZaICVMu+9JfOrWmjCa0Bme1hYkxfxKtWVoTptU2yyYMO8ZTRRN4iZbSrakmRzRwOTaWzrwpw/XGbyP2jUB3fKs5vQ0tjccHgDFhZmJp3YeiYAAAA6VJREFUtabEeNqtWxBp19ZUZImvTVev8WP97Ur/ySajY+FNJmJYVoO36ZpC1KYZ4M6a8OPmrVzMbevgY7G0tsXCaCZqB7ZvWe3QXlYrThFphFZbSxFpzK7J0zjzzNatZ9KUQ7eNtInXmpryRNraHkSaJead1WqsdpY2/q32YU2Ylo7liNpticiEugRd71YTOxot/BbQgtOviJj9H9HjvAghXDTtaiUy/+1KZHYcEiOScRi73T5ExLQZXbEXoiXw/dCN4BLgOHQFfhpNPLLANWgJ1XLwr8aC/yIRsffQA1cTzP0idCdvQWsE1tT0NHB6LIyxMbc94d4SSCtd+GgCZlVvK8lYSbJI1KDmEpmCskSdKw+8QkTcLyAyabWiG421X9vB4RR6oM02+OdNGqzJxI41hGjGO9+E9xsiU51lQMqEZ7Ur+85+Y+39liFAxGCsVGmZy9LYN3Uim7Aist2H6M5lGZM1T1lYjcOOi1jTS4XIBPh289yaI3rQRMPiWvPvowfp7fjKSnS9Q1S/lrAvQwsmAt0pLVM80uTDEqoeNPHIm/Ds2MnKWBonEY0fKZPWGSa8B4lMIyp2FYi0H0z4K4iYcAfReJI1ZxALJ0T3ITuBwjKNebFyXURkNrHhYcKz2rY1d9myvRLdtiwT+20s3pOJ+kFH7PlyIjt/Gd1XbdtaSDTO9grwceMO6d8OrPYDWpM42bgDovEn0O3U1m8DPYYAuj1bzcSWq+1Lr6LpDMCT6L5pLQjxyRmdwGPGbbU8+26FKRNrrnrB/LvAvxL1zdvM88mmXF42cT2plPqNeTfG+FuFpie3oQWql4EzlFYzOoj61zlEY2ZDYkQsABRCTEdrGKPRFbAObVu1jdYSRKveDzY9b2MYrr/N9ZsgwZvFlp4mvLUxnP5hidJQ/rZEf9zY1OudFYONvVhBywpgdnbXSnQZZNAMcgxaY5sDfFIpVRsYeD9s77GJrTTe8Q3gzMHuh/MO+CTwp9jzvvtB3v0GuHMIfxfH4hk0jCHiWgd8wdy/Nph7Y++M+95YmEP5+wt6VtkGZbOJfA03/1vT3+aU58UDvxkkroHxJnWwbeoq3kcGrY9B3q0CfreZ9TGwnDuAn21mGPG62dbld/HG3Jt6t6WvEaFxJEiQIEGCbYedScVNkCBBggQ7ABLGkSBBggQJNgsJ40iQIEGCBJuFhHEkSJAgQYLNQsI4EiRIkCDBZiFhHAkSJEiQYLOQMI4ECRIkSLBZ+P+k8LBxCgS2XQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "axes = study_data.plot(x = time_index).axes\n", + "axes.xaxis.set_ticks(range(len(time_index)))\n", + "axes.xaxis.set_ticklabels(time_index)\n", + "print(time_index)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Belgium China France Germany Hong Kong Iran \\\n", + "1/22/20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "1/23/20 0.693147 0.693147 0.693147 0.693147 0.693147 0.693147 \n", + "1/24/20 1.098612 1.098612 1.098612 1.098612 1.098612 1.098612 \n", + "1/25/20 1.386294 1.386294 1.386294 1.386294 1.386294 1.386294 \n", + "1/26/20 1.609438 1.609438 1.609438 1.609438 1.609438 1.609438 \n", + "1/27/20 1.791759 1.791759 1.791759 1.791759 1.791759 1.791759 \n", + "1/28/20 1.945910 1.945910 1.945910 1.945910 1.945910 1.945910 \n", + "1/29/20 2.079442 2.079442 2.079442 2.079442 2.079442 2.079442 \n", + "1/30/20 2.197225 2.197225 2.197225 2.197225 2.197225 2.197225 \n", + "1/31/20 2.302585 2.302585 2.302585 2.302585 2.302585 2.302585 \n", + "2/1/20 2.397895 2.397895 2.397895 2.397895 2.397895 2.397895 \n", + "2/2/20 2.484907 2.484907 2.484907 2.484907 2.484907 2.484907 \n", + "2/3/20 2.564949 2.564949 2.564949 2.564949 2.564949 2.564949 \n", + "2/4/20 2.639057 2.639057 2.639057 2.639057 2.639057 2.639057 \n", + "2/5/20 2.708050 2.708050 2.708050 2.708050 2.708050 2.708050 \n", + "2/6/20 2.772589 2.772589 2.772589 2.772589 2.772589 2.772589 \n", + "2/7/20 2.833213 2.833213 2.833213 2.833213 2.833213 2.833213 \n", + "2/8/20 2.890372 2.890372 2.890372 2.890372 2.890372 2.890372 \n", + "2/9/20 2.944439 2.944439 2.944439 2.944439 2.944439 2.944439 \n", + "2/10/20 2.995732 2.995732 2.995732 2.995732 2.995732 2.995732 \n", + "2/11/20 3.044522 3.044522 3.044522 3.044522 3.044522 3.044522 \n", + "2/12/20 3.091042 3.091042 3.091042 3.091042 3.091042 3.091042 \n", + "2/13/20 3.135494 3.135494 3.135494 3.135494 3.135494 3.135494 \n", + "2/14/20 3.178054 3.178054 3.178054 3.178054 3.178054 3.178054 \n", + "2/15/20 3.218876 3.218876 3.218876 3.218876 3.218876 3.218876 \n", + "2/16/20 3.258097 3.258097 3.258097 3.258097 3.258097 3.258097 \n", + "2/17/20 3.295837 3.295837 3.295837 3.295837 3.295837 3.295837 \n", + "2/18/20 3.332205 3.332205 3.332205 3.332205 3.332205 3.332205 \n", + "2/19/20 3.367296 3.367296 3.367296 3.367296 3.367296 3.367296 \n", + "2/20/20 3.401197 3.401197 3.401197 3.401197 3.401197 3.401197 \n", + "... ... ... ... ... ... ... \n", + "3/24/20 4.143135 4.143135 4.143135 4.143135 4.143135 4.143135 \n", + "3/25/20 4.158883 4.158883 4.158883 4.158883 4.158883 4.158883 \n", + "3/26/20 4.174387 4.174387 4.174387 4.174387 4.174387 4.174387 \n", + "3/27/20 4.189655 4.189655 4.189655 4.189655 4.189655 4.189655 \n", + "3/28/20 4.204693 4.204693 4.204693 4.204693 4.204693 4.204693 \n", + "3/29/20 4.219508 4.219508 4.219508 4.219508 4.219508 4.219508 \n", + "3/30/20 4.234107 4.234107 4.234107 4.234107 4.234107 4.234107 \n", + "3/31/20 4.248495 4.248495 4.248495 4.248495 4.248495 4.248495 \n", + "4/1/20 4.262680 4.262680 4.262680 4.262680 4.262680 4.262680 \n", + "4/2/20 4.276666 4.276666 4.276666 4.276666 4.276666 4.276666 \n", + "4/3/20 4.290459 4.290459 4.290459 4.290459 4.290459 4.290459 \n", + "4/4/20 4.304065 4.304065 4.304065 4.304065 4.304065 4.304065 \n", + "4/5/20 4.317488 4.317488 4.317488 4.317488 4.317488 4.317488 \n", + "4/6/20 4.330733 4.330733 4.330733 4.330733 4.330733 4.330733 \n", + "4/7/20 4.343805 4.343805 4.343805 4.343805 4.343805 4.343805 \n", + "4/8/20 4.356709 4.356709 4.356709 4.356709 4.356709 4.356709 \n", + "4/9/20 4.369448 4.369448 4.369448 4.369448 4.369448 4.369448 \n", + "4/10/20 4.382027 4.382027 4.382027 4.382027 4.382027 4.382027 \n", + "4/11/20 4.394449 4.394449 4.394449 4.394449 4.394449 4.394449 \n", + "4/12/20 4.406719 4.406719 4.406719 4.406719 4.406719 4.406719 \n", + "4/13/20 4.418841 4.418841 4.418841 4.418841 4.418841 4.418841 \n", + "4/14/20 4.430817 4.430817 4.430817 4.430817 4.430817 4.430817 \n", + "4/15/20 4.442651 4.442651 4.442651 4.442651 4.442651 4.442651 \n", + "4/16/20 4.454347 4.454347 4.454347 4.454347 4.454347 4.454347 \n", + "4/17/20 4.465908 4.465908 4.465908 4.465908 4.465908 4.465908 \n", + "4/18/20 4.477337 4.477337 4.477337 4.477337 4.477337 4.477337 \n", + "4/19/20 4.488636 4.488636 4.488636 4.488636 4.488636 4.488636 \n", + "4/20/20 4.499810 4.499810 4.499810 4.499810 4.499810 4.499810 \n", + "4/21/20 4.510860 4.510860 4.510860 4.510860 4.510860 4.510860 \n", + "4/22/20 4.521789 4.521789 4.521789 4.521789 4.521789 4.521789 \n", + "\n", + " Italy Japan Korea, South Netherlands Portugal Spain \\\n", + "1/22/20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "1/23/20 0.693147 0.693147 0.693147 0.693147 0.693147 0.693147 \n", + "1/24/20 1.098612 1.098612 1.098612 1.098612 1.098612 1.098612 \n", + "1/25/20 1.386294 1.386294 1.386294 1.386294 1.386294 1.386294 \n", + "1/26/20 1.609438 1.609438 1.609438 1.609438 1.609438 1.609438 \n", + "1/27/20 1.791759 1.791759 1.791759 1.791759 1.791759 1.791759 \n", + "1/28/20 1.945910 1.945910 1.945910 1.945910 1.945910 1.945910 \n", + "1/29/20 2.079442 2.079442 2.079442 2.079442 2.079442 2.079442 \n", + "1/30/20 2.197225 2.197225 2.197225 2.197225 2.197225 2.197225 \n", + "1/31/20 2.302585 2.302585 2.302585 2.302585 2.302585 2.302585 \n", + "2/1/20 2.397895 2.397895 2.397895 2.397895 2.397895 2.397895 \n", + "2/2/20 2.484907 2.484907 2.484907 2.484907 2.484907 2.484907 \n", + "2/3/20 2.564949 2.564949 2.564949 2.564949 2.564949 2.564949 \n", + "2/4/20 2.639057 2.639057 2.639057 2.639057 2.639057 2.639057 \n", + "2/5/20 2.708050 2.708050 2.708050 2.708050 2.708050 2.708050 \n", + "2/6/20 2.772589 2.772589 2.772589 2.772589 2.772589 2.772589 \n", + "2/7/20 2.833213 2.833213 2.833213 2.833213 2.833213 2.833213 \n", + "2/8/20 2.890372 2.890372 2.890372 2.890372 2.890372 2.890372 \n", + "2/9/20 2.944439 2.944439 2.944439 2.944439 2.944439 2.944439 \n", + "2/10/20 2.995732 2.995732 2.995732 2.995732 2.995732 2.995732 \n", + "2/11/20 3.044522 3.044522 3.044522 3.044522 3.044522 3.044522 \n", + "2/12/20 3.091042 3.091042 3.091042 3.091042 3.091042 3.091042 \n", + "2/13/20 3.135494 3.135494 3.135494 3.135494 3.135494 3.135494 \n", + "2/14/20 3.178054 3.178054 3.178054 3.178054 3.178054 3.178054 \n", + "2/15/20 3.218876 3.218876 3.218876 3.218876 3.218876 3.218876 \n", + "2/16/20 3.258097 3.258097 3.258097 3.258097 3.258097 3.258097 \n", + "2/17/20 3.295837 3.295837 3.295837 3.295837 3.295837 3.295837 \n", + "2/18/20 3.332205 3.332205 3.332205 3.332205 3.332205 3.332205 \n", + "2/19/20 3.367296 3.367296 3.367296 3.367296 3.367296 3.367296 \n", + "2/20/20 3.401197 3.401197 3.401197 3.401197 3.401197 3.401197 \n", + "... ... ... ... ... ... ... \n", + "3/24/20 4.143135 4.143135 4.143135 4.143135 4.143135 4.143135 \n", + "3/25/20 4.158883 4.158883 4.158883 4.158883 4.158883 4.158883 \n", + "3/26/20 4.174387 4.174387 4.174387 4.174387 4.174387 4.174387 \n", + "3/27/20 4.189655 4.189655 4.189655 4.189655 4.189655 4.189655 \n", + "3/28/20 4.204693 4.204693 4.204693 4.204693 4.204693 4.204693 \n", + "3/29/20 4.219508 4.219508 4.219508 4.219508 4.219508 4.219508 \n", + "3/30/20 4.234107 4.234107 4.234107 4.234107 4.234107 4.234107 \n", + "3/31/20 4.248495 4.248495 4.248495 4.248495 4.248495 4.248495 \n", + "4/1/20 4.262680 4.262680 4.262680 4.262680 4.262680 4.262680 \n", + "4/2/20 4.276666 4.276666 4.276666 4.276666 4.276666 4.276666 \n", + "4/3/20 4.290459 4.290459 4.290459 4.290459 4.290459 4.290459 \n", + "4/4/20 4.304065 4.304065 4.304065 4.304065 4.304065 4.304065 \n", + "4/5/20 4.317488 4.317488 4.317488 4.317488 4.317488 4.317488 \n", + "4/6/20 4.330733 4.330733 4.330733 4.330733 4.330733 4.330733 \n", + "4/7/20 4.343805 4.343805 4.343805 4.343805 4.343805 4.343805 \n", + "4/8/20 4.356709 4.356709 4.356709 4.356709 4.356709 4.356709 \n", + "4/9/20 4.369448 4.369448 4.369448 4.369448 4.369448 4.369448 \n", + "4/10/20 4.382027 4.382027 4.382027 4.382027 4.382027 4.382027 \n", + "4/11/20 4.394449 4.394449 4.394449 4.394449 4.394449 4.394449 \n", + "4/12/20 4.406719 4.406719 4.406719 4.406719 4.406719 4.406719 \n", + "4/13/20 4.418841 4.418841 4.418841 4.418841 4.418841 4.418841 \n", + "4/14/20 4.430817 4.430817 4.430817 4.430817 4.430817 4.430817 \n", + "4/15/20 4.442651 4.442651 4.442651 4.442651 4.442651 4.442651 \n", + "4/16/20 4.454347 4.454347 4.454347 4.454347 4.454347 4.454347 \n", + "4/17/20 4.465908 4.465908 4.465908 4.465908 4.465908 4.465908 \n", + "4/18/20 4.477337 4.477337 4.477337 4.477337 4.477337 4.477337 \n", + "4/19/20 4.488636 4.488636 4.488636 4.488636 4.488636 4.488636 \n", + "4/20/20 4.499810 4.499810 4.499810 4.499810 4.499810 4.499810 \n", + "4/21/20 4.510860 4.510860 4.510860 4.510860 4.510860 4.510860 \n", + "4/22/20 4.521789 4.521789 4.521789 4.521789 4.521789 4.521789 \n", + "\n", + " US United Kingdom \n", + "1/22/20 0.000000 0.000000 \n", + "1/23/20 0.693147 0.693147 \n", + "1/24/20 1.098612 1.098612 \n", + "1/25/20 1.386294 1.386294 \n", + "1/26/20 1.609438 1.609438 \n", + "1/27/20 1.791759 1.791759 \n", + "1/28/20 1.945910 1.945910 \n", + "1/29/20 2.079442 2.079442 \n", + "1/30/20 2.197225 2.197225 \n", + "1/31/20 2.302585 2.302585 \n", + "2/1/20 2.397895 2.397895 \n", + "2/2/20 2.484907 2.484907 \n", + "2/3/20 2.564949 2.564949 \n", + "2/4/20 2.639057 2.639057 \n", + "2/5/20 2.708050 2.708050 \n", + "2/6/20 2.772589 2.772589 \n", + "2/7/20 2.833213 2.833213 \n", + "2/8/20 2.890372 2.890372 \n", + "2/9/20 2.944439 2.944439 \n", + "2/10/20 2.995732 2.995732 \n", + "2/11/20 3.044522 3.044522 \n", + "2/12/20 3.091042 3.091042 \n", + "2/13/20 3.135494 3.135494 \n", + "2/14/20 3.178054 3.178054 \n", + "2/15/20 3.218876 3.218876 \n", + "2/16/20 3.258097 3.258097 \n", + "2/17/20 3.295837 3.295837 \n", + "2/18/20 3.332205 3.332205 \n", + "2/19/20 3.367296 3.367296 \n", + "2/20/20 3.401197 3.401197 \n", + "... ... ... \n", + "3/24/20 4.143135 4.143135 \n", + "3/25/20 4.158883 4.158883 \n", + "3/26/20 4.174387 4.174387 \n", + "3/27/20 4.189655 4.189655 \n", + "3/28/20 4.204693 4.204693 \n", + "3/29/20 4.219508 4.219508 \n", + "3/30/20 4.234107 4.234107 \n", + "3/31/20 4.248495 4.248495 \n", + "4/1/20 4.262680 4.262680 \n", + "4/2/20 4.276666 4.276666 \n", + "4/3/20 4.290459 4.290459 \n", + "4/4/20 4.304065 4.304065 \n", + "4/5/20 4.317488 4.317488 \n", + "4/6/20 4.330733 4.330733 \n", + "4/7/20 4.343805 4.343805 \n", + "4/8/20 4.356709 4.356709 \n", + "4/9/20 4.369448 4.369448 \n", + "4/10/20 4.382027 4.382027 \n", + "4/11/20 4.394449 4.394449 \n", + "4/12/20 4.406719 4.406719 \n", + "4/13/20 4.418841 4.418841 \n", + "4/14/20 4.430817 4.430817 \n", + "4/15/20 4.442651 4.442651 \n", + "4/16/20 4.454347 4.454347 \n", + "4/17/20 4.465908 4.465908 \n", + "4/18/20 4.477337 4.477337 \n", + "4/19/20 4.488636 4.488636 \n", + "4/20/20 4.499810 4.499810 \n", + "4/21/20 4.510860 4.510860 \n", + "4/22/20 4.521789 4.521789 \n", + "\n", + "[92 rows x 14 columns]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAADuCAYAAAAZZe3jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlcVOX+wPHPmWEXcAEBd8gyRUVU3NFcyqUUtauZmWtuKSpUt7J7Te2q1+2XZnYzzYVyL1xRyyXJNExBRyU1KMUVAVFEkG2G8/sDnaRUEIGZge/79eoVc+Y5z/me48uvD8855/soqqoihBDCcmhMHYAQQojHI4lbCCEsjCRuIYSwMJK4hRDCwkjiFkIICyOJWwghLIwkbiGEsDCSuIUQwsJI4hZCCAtjVRKdurq6qp6eniXRtRBClElRUVHXVVWtWpi2JZK4PT09iYyMLImuhRCiTFIU5UJh28pUiRBCWBhJ3EIIYWEkcQshhIUpkTluIUTxysnJ4fLly2RmZpo6FPGE7OzsqFmzJtbW1kXuQxK3EBbg8uXLODk54enpiaIopg5HFJGqqiQnJ3P58mW8vLyK3I9MlQhhATIzM3FxcZGkbeEURcHFxeWJf3OSxC2EhZCkbf7SUlMKbFMcf44yVSKEEI8h5UYSWRm3wZCDxpCL1pCL1qBiZQAUwLlSiccgiVsIUSharZbGjRujqiparZbFixfTtm3bR+7j6OhIWlraI9uMHDmSt956C29v7+IM94mk3b5FeuqNu8nZkC852+aC7X1tDVrQayHTViFXq8HeYECr1ZZofJK4hRCFYm9vj06nA+D7779n8uTJ/Pjjj0/c75dffvnEfRRFdnYWKckJqPosNAbD3QStYqUHbS4439fWoLmbnG3yknOuVgtWNjg6V8HR0fmhxygpkriFsDDTt//K6aupxdqnd3VnpvZqWOj2qampVK5c2fh53rx5bNy4kaysLPr27cv06dPztc/NzSUwMJAff/wRLy8vcnNzGTFiBP369aNjx47Mnz8fPz+/fCP0b7/9lrCwMFatWsWwYcOwt7fn7NmzXLhwgZUrVxISEkJERAStWrVi1apVD4311s3rZKbfQjHojcn5XoJ2uj9GBfRWkG2jYLiXnLVWODhVxsm58kP7NwVJ3EKIQsnIyMDX15fMzEzi4+P54YcfANi9ezexsbEcOXIEVVUJCAjgwIEDdOjQwbjvpk2biIuL49SpUyQmJtKgQQNGjBjxWMe/efMmP/zwA9u2baNXr14cOnSIL7/8khYtWhAVFUWdmu4YsjNQDAa0942ebXLB5r5+9HenNrIdNORqNahaK6xtK1CxiluJT3EUF0ncQliYxxkZF6f7p0oiIiIYMmQI0dHR7N69m927d9O0aVMA0tLSiI2NzZe4Dx48SP/+/dFoNHh4eNCpU6fHPn6vXr3Iyc6imnsVXF2q4OFoRcq5MzxTswaxhw7i3bmLse2DRs+KlS0Vq7jhZGf/hFfC9CRxCyEeW5s2bbh+/TpJSUmoqsrkyZMZM2bMQ9urqlqofu89KpeRcYfE+EtkpKeSdP4M2akpGK4noI/9Hedbd7C3ssYx3YBBAxqtQoYml9tOVqgaK6zsKlDJgkbPRSHPcQshHtvZs2cxGAy4uLjQrVs3VqxYYZybvnLlComJifna+/v7ExoaSm5uLgkJCYSHhwOQnZVJTnYmydcucP38GapWqczRHdswxP7O7m07sck24JhuQFFVVAXuOGhIq2CFQaOQU7Majt6NsHGujJNHLdzq1Me91tO4VK1WppM2yIhbCFFI9+a4IW8EHRISglarpWvXrpw5c4Y2bdoAeY8Arl69Gjc3N+O+ffr0IWz7Vuo/W4+6XnVo1rghVrduoI/9HW2OgQrpeiqkG5geHMQrb46nevVqPPvsM6RnZGKoUwvripWpUL02rk95k6ZxwMraBudKLia5DuZAKeyvMI/Dz89PlYUUhCg+Z86coUGDBqYOo1BSbiSSdScVRa9HazBgpc+7SXgn/Q6ODg4kp6TQ4bWB7Fr3NS7V3MjValGtrKng7IKjU0VTh18qHvTnqShKlKqqfoXZX0bcQogiyc7KJCX5Gqo+C63egJU+Fyt9/hdU7t0kzLRT6PNGILdup6HXG/jwo//wbLuOpgzfokniFkIUKOVGEll3bqHR6+8m6fzPQav85SkOKyu0tg5UdvEwzjcfOnzEZPGXNZK4hRBGBoOBG9fjyc26k/cstD4XK72KreHPUbRBk5ek7zhoMNx9g9C5ijvO9g4mjb08kcQtRDml1+dwI/Eqqj7TONVhnQOO99320mshx0oh0y5vFG1lW4FKLu5l/qkNcyeJW4hyIDs7i5vX41Fy8s9HO91N0vemOrJsFfRWeTcLHZyrmN2r3iKPJG4hypi8kfQV1JwsrO6NpPXgfC9JK5Bz94ahwUqLamVLJRcPHMrAG4XlhSRuISyYwWDgRtJVcrMz0Or1WOXkJWmnvyTpDDtNXpK2tqWyazUcbGwf3fFDXLt2jaCgII4ePYqtrS2enp706dOHbdu2ERYW9rf25liytSyQxC2EBbmZnED2nVQ0ej3WOQas9eCYm/edCuRY3xtJW6Fa2VK5atGT9F+pqkrfvn0ZOnQo69evB0Cn07F9+/aH7mOqkq1lnSRuIczUuZhf2RYyE7vEi/i9Pp3bGLAzgJNuIUrK76hK3oha1SigKGitbHDQFPGmoUdj6DH7kU3279+PtbU1Y8eONW7z9fUlJSWFffv20a9fP6Kjo2nevDmrV69GUZS/lWydNGkSYWFh2Nvbs3XrVtzd3dm+fTszZswgOzsbFxcX1qxZg7u7e9HOo5yQWiVCmInV/5vOJ5O68tXAZuzq7M3tl/vRLfQ4z/2UjJUB9FYKaRW0ZNlaodraYOVQAWv7CtjYOmBjY4+2qEm7kO4l5Qc5fvw4Cxcu5PTp05w7d45Dhw79rU16ejqtW7fmxIkTdOjQgWXLlgF5dUwOHz7M8ePHefXVV5k7d26JnkdZUOgRt6IoWiASuKKqas+SC0mIsu9SXCybvpyOTWIcVa/dwuOanuZ310bI0cJVN4WTjey4WdUVe88mtHX3oPIzd8u5ei0xXeAP0bJlS2rWrAnkjcLj4uLw9/fP18bGxoaePfNSR/PmzdmzZw8Aly9fZsCAAcTHx5OdnY2Xl1fpBm+BHmeqZBJwhvwr+gghCiF8x3qO/7CWionxuF1Lp3qCStfsvO9SHOGqh5bTjZ1Jd6tFtwFBdPdtk2//M2fOmCDq/Bo2bMi33377wO9sbf+cR9dqtej1+r+1sba2NpZtvb/NhAkTeOuttwgICCA8PJxp06YVf/BlTKESt6IoNYGXgJnAWyUakRBlwPrls0k48QNVEpLwuJZJtUTorubV7oh3hTPP2nLD3QU7r6YMHPUhbZzNfzzUuXNnPvjgA5YtW8aoUaMAOHr06BOvO3nr1i1q1KgBQEhIyBPHWR4UdsS9EHiX/Eu0CSHuWrHwPdJjj1I1Pplq8dk0uZm3PdsKLnsoHG3uQIp7NRo99wovBAw2bbBFpCgKmzdvJigoiNmzZ2NnZ2d8HPBJTJs2jf79+1OjRg1at27N+fPniynisqvAsq6KovQEXlRVdZyiKB2Bdx40x60oymhgNEDt2rWbX7hwoQTCFcI8LJ33Ntnnj1E1PpnqV3NwvZW3/Y4tXK6mIbG6E2lutenx+mTqN2r6xMezpLKuomClUda1HRCgKMqLgB3grCjKalVVX7+/kaqqS4GlkFePuzAHF8JShCyeQuqZQ7jFX6fG5Rza372ReNserlTXcrpxRTKrP8UrY2bSvEZt0wYryrwCE7eqqpOByQD3jbhff+ROQli4zasXcfFIGFWvJlDjSjYt7059pNvBpRpaon0qkl2jHoMnzqGli9ujOxOimMkLOEIAkRF7+enbRbjEX6ba5QzqJUJ9IMMGLlXX8Jt3RTJq1GXIpP/DTxK1MLHHStyqqoYD4SUSiRCl6GZyIl998jYOl2OpdimVWldVuhtAr4FL1RUOt3IktZonvUdMpVm9hqYOV4h8ZMQtyo2NK+eTELUL98uJ1L6op+udvO3xrnCysR3Xq1enda8xvNgpwLSBClEASdyizIq/cpH1i/9JpcvnqHExjYYJ0Ji8G4oXa1kRWdMV54YdGDJ+uqlDFeKxSOIWZcrW9f/j4sFQPC4lUueinu4ZeS+9XPLIm/64XfNphr61UG4oFoFWq6Vx48bGz1u2bMHT09N0AZVjkriFRUtLTWXVwrewPR9NzQupPB2vUk+FVAeIq2PFtVru1Gn3Mr1fHWfqUC2evb09Op3uod/r9XqsrCSllAa5ysLiXIqL5dvP3sX1Uhx14jLpkpK3/YobHPFzJKXWUwx7+1NaldFR9Zwjczh742yx9lm/Sn3ea/neY++3atUqduzYQWZmJunp6Wzbto3evXtz8+ZNcnJymDFjBr179yYuLo4ePXrg7+/Pzz//TI0aNdi6dSv29vb8/vvvjB07lqSkJLRaLd988w1169Zl3rx5bNy4kaysLPr27cv06TKldY8kbmERIvZv48iWxVSLi+epC3q6Z0K2Fi7U0hDdpAp23u0ZMWmWqcMs0zIyMvD19QXAy8uLzZs3AxAREcHJkyepUqUKer2ezZs34+zszPXr12ndujUBAXk3e2NjY1m3bh3Lli3jlVdeITQ0lNdff51Bgwbx/vvv07dvXzIzM8nNzWX37t3ExsZy5MgRVFUlICCAAwcO0KFDB5OdvzmRxC3M1rYNS7j440ZqxiXgdTGXrnpIs4NzntbE1/Ggac+xBLzwsqnDLHVFGRkXh4dNlbzwwgtUqVIFyFsl54MPPuDAgQNoNBquXLlCQkICkJfs7yX+5s2bExcXx+3bt7ly5Qp9+/YFwM7ODoDdu3eze/dumjbNKxeQlpZGbGysJO67JHELs7Jx5XySftlG7XPX8bqs8kwu3HSCU952JNWpQ7/x82jh+YypwxT3qVChgvHnNWvWkJSURFRUFNbW1nh6epKZmQn8vfRrRkYGD6uVpKoqkydPZsyYMSUbvIWSxC1MLjRkIQkRm6j9x3W8L6toVUiqBMd8Hbjp+TQj319GWwsoeyrySrS6ublhbW3N/v37KajYnLOzMzVr1mTLli306dOHrKwsDAYD3bp1Y8qUKQwaNAhHR0euXLmCtbU1bm5l877F45LELUxi24YlXApfR+0/knj2koq3ComVIbJ5BW491YA33vmMDpKsLc6gQYPo1asXfn5++Pr6Ur9+/QL3+frrrxkzZgwffvgh1tbWfPPNN3Tt2pUzZ87Qpk3eghKOjo6sXr1aEvddBZZ1LQo/Pz81MjKy2PsVlu2XA9/zyzfzqPVHPHUv5GJtgOsV4Y+nHUh5qiEj/7kYR0nWDyRlXcuW0ijrKkSRxV+5yPqPA6nxRxxPn8vhhey8pbpONLbjet36jHrvC9pLshbisUjiFiVi0dThVIo5wTMxGXRPz1tgIOZpa67WfYqBQYtoIzWrhSgySdyi2ISGLCTpp294OuYGLyTmVdr73VPDkadr8Nzgf/NqC3mUS4jiIIlbPJH4KxfZ8H9vUjvmAvXOGfDOhctu8GP7KlRp25dXhr9j6hCFKHMkcYsiWTrvbaxPHuDZs2l0u51XcU/nY8fNej5M/CiEF0wdoBBlmCRuUWiX4mLZtCAQr7OXaXchF4A/6mg42qYG3UbPYXAxLIorhCiYJG5RoJDFUzD88h0NzqTRNQ1uOsIvLRxRm3fijaC5pg5PlKKEhASCg4M5fPgwlStXxsbGhnfffdf4yrooHZK4xQOlpaay7D9DqXMmluZ/GFDUvNH1Ef9avBz0KW3ltfNyR1VV+vTpw9ChQ1m7di0AFy5cYNu2bYXa32AwoNVqSzLEckMSt8jnlwPfE7l2Jg2ik+h+Pa+o0zFfe+74+jP2vUWmDk8A12bNIutM8ZZ1tW1QH48PPnhkmx9++AEbGxvGjh1r3FanTh0mTJiAwWDg/fffJzw8nKysLMaPH8+YMWMIDw9n+vTpVKtWDZ1Ox86dO+nevTv+/v4cPnyYJk2aMHz4cKZOnUpiYiJr1qyhZcuWHDlyhKCgIDIyMrC3t2flypU8++yzrFq1im3btnHnzh3++OMP+vbty9y5c1m+fDnR0dEsWLAAgGXLlnHmzBk+/vjjYr1O5kIStwDypkPUiJ00/PUOnTPhalX4oZMbrYZMYUib500dnjADv/76K82aNXvgd8uXL6dixYocPXqUrKws2rVrR9euXQE4cuQI0dHReHl5ERcXx++//84333zD0qVLadGiBWvXruXgwYNs27aNWbNmsWXLFurXr8+BAwewsrJi7969fPDBB4SGhgKg0+k4fvw4tra2PPvss0yYMIFXX30VHx8f5s6di7W1NStXruSLL74otWtT2iRxl3MLpwyh+snjNIvVo8mF3+pqudCoHqP+tYou8kajWSpoZFxaxo8fz8GDB7GxsaFOnTqcPHmSb7/9FsgrNhUbG4uNjQ0tW7bEy8vLuJ+Xl5dxCbSGDRvSpUsXFEWhcePGxMXFGfcfOnQosbGxKIpCTk6Ocf8uXbpQsWJFALy9vblw4QK1atWic+fOhIWF0aBBA3JycvIts1bWSOIuh9JSU1n20WCePhlLt4sqGTaga2xHerPnGPveQlOHJ8xUw4YNjaNegM8++4zr16/j5+dH7dq1+fTTT+nWrVu+fcLDw/OVfYX85V01Go3xs0ajQa/XAzBlyhQ6derE5s2biYuLo2PHjg/cX6vVGvcZOXIks2bNon79+gwfPrx4TtpMaUwdgCg98Vcu8snErkT0bEX3sBiqJqscbOPM5X9NYvCG45K0xSN17tyZzMxMPv/8c+O2O3fuANCtWzc+//xz48g4JiaG9PT0Ih/r1q1b1KhRA8hbHq0wWrVqxaVLl1i7di0DBw4s8rEtgYy4y4FzMb+yc+F4Gh1PoOvNvPKpP3Ryo9OY2YzybWPq8ISFUBSFLVu2EBwczNy5c6latSoVKlRgzpw59O/fn7i4OJo1a4aqqlStWpUtW7YU+VjvvvsuQ4cO5eOPP6Zz586F3u+VV15Bp9NRuXLlIh/bEkhZ1zLsbPRx9i2eRJNjSbik5t1w/NW3Jv3fX041KfJkUaSsa+H07NmT4OBgunTpYupQHknKuoq/ORfzK7s+fpMmx5LonAqX3CGynRcjp6+XG46iTEpJSaFly5Y0adLE7JN2cZDEXYZciotl69zRNIm6RudbcNFD4aj/U4yatpaukrBFGVapUiViYmJMHUapkcRdBqSlprJ8Sn+aHL1IlxtwxQ2+f9GLkdPW000SthBljiRuC7fgvb54//IbXa+pJFSB3V1rMWTqap53kbX5hCirJHFbqMUzRlPz0CG6n8/lplPeUyIB731JR6khIkSZJ4nbwmxcOZ+cnavpGJ1FljUcbFORpqNnMF5eSxei3JAXcCzEuZhf+WJkW+ouXE6T6CxONLLlj+A3GLXyMH6StEUpcHR0zPd51apVBAYGlugxhw0bZnyN/saNGzRt2pSVK1eW6DEtgYy4LcCCd3rj+3MMHW7A77UVLvi3JfDDL00dlhCl5tatW3Tr1o3Ro0eX+dfZC0MStxkLWTwFx+830z3WQFIl+L67JyM/2oCjPClSrv20MYbrl9KKtU/XWo60f6Vekfe/cOECI0aMICkpiapVq7Jy5Upq167NsGHDcHZ2JjIykmvXrjF37lz69etHbm4ugYGB/Pjjj3h5eZGbm8uIESPo16/f3/pOS0ujR48evPbaa7z55ptAXm3wd999l127dqEoCv/+978ZMGAA4eHhTJs2DVdXV6Kjo2nevDmrV69GURR27tzJW2+9haurK82aNePcuXOEhYUV+ZxNqcDErSiKHXAAsL3b/ltVVaeWdGDl2aW4WHbOGEqLIzfR5sLPrZxoHjifIFklXZhQRkYGvr6+xs83btwgICAAgMDAQIYMGcLQoUNZsWIFEydONL7yHh8fz8GDBzl79iwBAQH069ePTZs2ERcXx6lTp0hMTKRBgwaMGDHigcd96623GDlyJMHBwcZtmzZtQqfTceLECa5fv06LFi3o0CHv78fx48f59ddfqV69Ou3atePQoUP4+fkxZswYDhw4gJeXl8XXMinMiDsL6KyqapqiKNbAQUVRdqmqeriEYyuXFv77dRoeiKJDIsR4aojv9IIUfxL5PMnI+EnY29uj0+mMn1etWsW90hYRERFs2rQJgMGDB/Puu+8a2/Xp0weNRoO3tzcJCQkAHDx4kP79+6PRaPDw8KBTp04PPW7nzp3ZunUr77zzDm5ubsb9Bw4ciFarxd3dneeee46jR4/i7OxMy5YtqVmzJgC+vr7ExcXh6OjIU089ZSwvO3DgQJYuXVqMV6d0FZi41bxiJvd+L7O++1/xFzgp53458D2/LZnM88czSLPPex77jRnfyrSIsEiKohh/vr8M673aSI9TI+nVV1/F39+fF198kf379+Pk5PTI/R9U9rUkajKZUqGeKlEURasoig5IBPaoqvrLA9qMVhQlUlGUyKSkpOKOs0xbMLk/me8F0eJYBtENbEh8bxKTFu2WpC0sRtu2bVm/fj0Aa9aswd/f/5Ht/f39CQ0NJTc3l4SEBMLDwx/ZPigoiC5dutC3b1+ys7Pp0KEDGzZswGAwkJSUxIEDB2jZsuVD969fvz7nzp0zLtSwYcOGxzo/c1Oom5OqqhoAX0VRKgGbFUVppKpq9F/aLAWWQl51wGKPtAyKjNjL6UXv0vV4Bjed4btezxI8r+ilMIUwlUWLFjFixAjmzZtnvDn5KP/4xz/Yt28fjRo1ol69erRq1cq4qs3DzJkzh+HDhzN48GDWrl1LREQETZo0QVEU5s6di4eHB2fPPngtTnt7e/73v//RvXt3XF1dH5nkLcFjl3VVFGUqkK6q6vyHtZGyrgX75N+v4/NDFB434HgjG6oPn0zHl141dVjCTJXFsq5paWk4OjqSnJxMy5YtOXToEB4eHiV+PFVVGT9+PM8880y+G56lqcTLuiqKUhXIUVU1RVEUe+B5YE5RghVwMzmRb/8ZQOfDt0hzgO9eeobg/9tm6rCEKHU9e/YkJSWF7OxspkyZUqJJG/JWfg8JCSE7O5umTZsyZsyYEj1eSSrMVEk1IERRFC15c+IbVVW1zIcfTeyrz6bisuUb/C+pnKmrRRk4muDXJ5o6LCFMoqB57eIWHBxsshF2cSvMUyUngaalEEuZtuDtXrT74Xds9HkFoYbO2S43H4UQRSJvTpawS3Gx7PvXq3SPukO8K5zu3p7Af1vu86NCCNOTxF2C1i+fjdO6r2h1WeWEtw1eQXMJ7NDN1GEJISycJO4SsuBfA2m1W0eFDNjX2YPA/+03dUhCiDJCyrqWgMVvdqTzFh25Cuzv01yStigT/lrWVZiOjLiLUfyVi+z5Zx+6HMvgj1oKWa+PJmhokKnDEqLEGAwGtFqtqcModyRxF5MDezaRvGAKLc7lcqyxLR3mfUMtWUZMlID9q5aSeOFcsfbpVucpOg0bXai24eHhTJ8+nWrVqqHT6Th9+jR9+vTh0qVLZGZmMmnSJEaPzuvL0dGRSZMmERYWhr29PVu3bsXd3b1YYy+PZKqkGHz12VSy//Mv6p3P5cf2VRj0jU6StijTjhw5wsyZMzl9+jQAK1asICoqisjISBYtWkRycjIA6enptG7dmhMnTtChQweWLVtmyrDLDBlxP6HPZoylybYfcciE3T2eIvjjHaYOSZRxhR0Zl6SWLVsaS6RCXq2SzZs3A3Dp0iViY2NxcXHBxsaGnj17AtC8eXP27NljknjLGkncT2DBBwNot+skqgI/BjQjeMYaU4ckRKmoUKGC8efw8HD27t1LREQEDg4OdOzYkczMTACsra2NJV7vlVgVT04SdxEteLsXnXb/zm0HiO7TmeDJn5k6JCFM4tatW1SuXBkHBwfOnj3L4cOyxkpJkznuIlgY1IMu3/3O9Upw+Y0hvClJW5Rj3bt3R6/X4+Pjw5QpU2jdurWpQyrzHrusa2GU5bKun0zsSue9l4ivCpnjJhEwYKypQxLlQFks61qelXhZV/GnTwO78Py+q1yspmAVNJmAgMGmDkkIUQ5J4i6kTyZ25fl9V4mroeD03gw6vPCyqUMSQpRTkrgLYeFbL9Jl7yUuVlOo8q/ZtOkUYOqQhBDlmNycLMCCd3rT6fvzxFcFzYT3JGkLIUxOEvcjLPjXQDp9H0NyZUgf9Sbd+g41dUhCCCGJ+2GWzJlI2106bjtA/ODX6CtLjAkhzIQk7gcIDVlIgy170OTCyV7PMWjMFFOHJITJ3SvrGhcXx9q1awtsHxcXR6NGjUo6rHJJEvdfREbspcKqpVRKhZ+6NWT8v5eYOiQhzEphE7coOfJUyX3SUlOJ+28wDeJV9natxVtzvjV1SEL8Tcr2P8i+ml6sfdpUr0ClXnUL1fb999/nzJkz+Pr6MnToUPr27cvgwYNJT8+LafHixbRt2zbfPu3bt+fTTz/F19cXgHbt2vH555/j4+NTrOdRXsiI+z5rg7rRMEZPRGtnJi3abepwhDBLs2fPpn379uh0OoKDg3Fzc2PPnj0cO3aMDRs2MHHi3+8HjRw5klWrVgEQExNDVlaWJO0nICPuuxa8HUDXiBROP6Pl1UVSelKYr8KOjEtLTk4OgYGB6HQ6tFotMTExf2vTv39//vOf/zBv3jxWrFjBsGHDSj/QMkQSN7BkThDt98VyzQWqTvwIR2dnU4ckhMVYsGAB7u7unDhxgtzcXOzs7P7WxsHBgRdeeIGtW7eyceNGymoto9JS7hO37ugBngn7HoDYXt0YK6+yC/FITk5O3L592/j51q1b1KxZE41GQ0hICAaD4YH7jRw5kl69etG+fXuqVKlSWuGWSeV+jjt63iSqJ8HBzk8x9r2Fpg5HCLPn4+ODlZUVTZo0YcGCBYwbN46QkBBat25NTExMvkUW7te8eXOcnZ0ZPnx4KUdc9pTrEffCoB50O5lJpK8dQbLkmBCPlJaWBuStarNv37583508edL483//+18APD09iY6ONm6/evUqubm5dO3atRSiLdvK7YiRi6LwAAAd1ElEQVQ7ZPEU2v4YxxU3aP7+/0wdjhBl2ldffUWrVq2YOXMmGk25TTvFplyOuOOvXMR1ayjWeojp/hzP+7YxdUhClGlDhgxhyJAhpg6jzCiX//RtmzqQpy6pHPJ3Z9wH8makEMKylLvEvXReMK1+uUGMp4Zhc7aZOhwhhHhs5Spxp6WmUn3P9+QqkNy9pzyvLYSwSOUqcYe814u6F1UOt3FlRNAcU4cjhBBFUm4S91efTaX1z4mcr6EwcFaoqcMRwiLdK+0qTKvcJG6H7zdhZYC45ztS2cXN1OEIIUSRFfg4oKIotYCvAA8gF1iqquonJR1Ycfr4vX70iNET0cKRcZPlmW1h2Xbt2sW1a9eKtU8PDw969OhRqLZpaWn07t2bmzdvkpOTw4wZM+jduzdxcXF0796dVq1acfz4cerVq8dXX32Fg4MDH330Edu3bycjI4O2bdvyxRdfoCgKHTt2pFWrVuzfv5+UlBSWL19O+/bti/XcyqLCjLj1wNuqqjYAWgPjFUXxLtmwis/N5EQaH/6Vm47QYISsZCPEk7Kzs2Pz5s0cO3aM/fv38/bbb6OqKgC//fYbo0eP5uTJkzg7O/O//+UNlAIDAzl69CjR0dFkZGQQFhZm7E+v13PkyBEWLlzI9OnTTXJOlqbAEbeqqvFA/N2fbyuKcgaoAZwu4diKxZopr9AlAfZ2qcYEWaFdlAGFHRmXFFVV+eCDDzhw4AAajYYrV66QkJAAQK1atWjXrh0Ar7/+OosWLeKdd95h//79zJ07lzt37nDjxg0aNmxIr169AHj55bzCbs2bNycuLs4k52RpHuvNSUVRPIGmwC8P+G40MBqgdu3axRDakzuwZxN+vyRw0UPh9Y/WmzocIcqENWvWkJSURFRUFNbW1nh6epKZmQmAoij52iqKQmZmJuPGjSMyMpJatWoxbdo0Y3sAW1tbALRaLXq9vvROxIIV+uakoiiOQCgQpKpq6l+/V1V1qaqqfqqq+lWtWrU4YyyycyGzqJgOp9s0lhuSQhSTW7du4ebmhrW1Nfv37+fChQvG7y5evEhERAQA69atw9/f35ikXV1dSUtL49tvZUnAJ1WoxK0oijV5SXuNqqqbSjak4rHmi//QVJdO9LNWBP93g6nDEcLi6fV6bG1tGTRoEJGRkfj5+bFmzRrq169vbNOgQQNCQkLw8fHhxo0bvPnmm1SqVIlRo0bRuHFj+vTpQ4sWLUx4FmVDYZ4qUYDlwBlVVT8u+ZCKR+7+zVgZIKm13KEWojj8+uuv1K1bF1dXV+Oo+n5xcXFoNBqWLPl7/Z8ZM2YwY8aMv20PDw83/uzq6ipz3IVUmBF3O2Aw0FlRFN3d/14s4bieyLql/6VxdAa/Pmslj/8JUQyWLFnCwIEDH5h8RekrzFMlBwGloHbmJGf/N1gb4HrLdqYORYgyYezYsYwdO/aRbf66cIIoOWXuzcn1y2fjE53B6XpWUrJVCFEmlbnEnbXvG6xzIKGFLI4ghCibylTiDg1ZiM+pO5ypZ0Xgv5eaOhwhhCgRZSpx3whfh10OXG0mjxsJIcquMpO4L8XF4v1rKudqKUyctsLU4QhR5txf0nXnzp0888wzXLx40SSxrFixgsaNG+Pj40OjRo3YunVrkfrR6XTs3LnT+HnatGnMnz+/uMIsMWVmseDQhRPolgqRbWqZOhQhyrR9+/YxYcIEdu/eXejyFnq9Hiur4kk3ly9fZubMmRw7doyKFSuSlpZGUlJSkfrS6XRERkby4otm/YTz35SZxP306YvccIKXgxebOhQhSlRMzH+4nXamWPt0cmxAvXoFV8/86aefGDVqFDt37qRu3boAXLhwgREjRpCUlETVqlVZuXIltWvXZtiwYVSpUoXjx4/TrFkzPvroIyZMmMCpU6fQ6/VMmzbNWA528ODBpKenA7B48WLatm370BgSExNxcnIy/gbg6Oho/Fmn0zF27Fju3LlD3bp1WbFiBZUrV6Zjx47Mnz8fPz8/rl+/jp+fHzExMXz44YdkZGRw8OBBJk+eDMDp06fp2LEjFy9eJCgoiIkTJz7RtS0JZWKqZPGM0dS9qHKmoTO1PJ8xdThClElZWVn07t2bLVu25HvNPTAwkCFDhnDy5EkGDRqUL9HFxMSwd+9e/u///o+ZM2fSuXNnjh49yv79+/nnP/9Jeno6bm5u7Nmzh2PHjrFhw4YCE2WTJk1wd3fHy8uL4cOHs337duN3Q4YMYc6cOZw8eZLGjRs/skysjY0NH330EQMGDECn0zFgwAAAzp49y/fff8+RI0eYPn06OTk5Rb1kJaZMjLgrnTxKjhYc2/c1dShClLjCjIxLgrW1NW3btmX58uV88smfa6lERESwaVNeCaPBgwfz7rvvGr/r378/Wq0WgN27d7Nt2zbjHHJmZiYXL16kevXqBAYGotPp0Gq1xMTEPDIOrVbLd999x9GjR9m3bx/BwcFERUURHBxMSkoKzz33HABDhw6lf//+j32eL730Era2ttja2uLm5kZCQgI1a9Z87H5KksWPuMN3rMf7bCa/PW3Fq2+8b+pwhCizNBoNGzdu5OjRo8yaNeuh7e4v7VqhQgXjz6qqEhoaik6nQ6fTcfHiRRo0aMCCBQtwd3fnxIkTREZGkp2dXWAsiqLQsmVLJk+ezPr16wkNffQ6slZWVuTm5gLkKyn7IPfKzIL5lpq1+MR9ettn2GfDZW+LWZRHCIvl4OBAWFgYa9asYfny5QC0bduW9evz6t2vWbMGf3//B+7brVs3Pv30U+NqOcePHwfyysRWq1YNjUbD119/jcFgMO5z/5TMPVevXuXYsWPGzzqdjjp16lCxYkUqV67MTz/9BMDXX39tHH17enoSFRUFkK+srJOTE7dv3y7axTAhi58qqRuTzFVXGDV5malDEaJcqFKlCt999x0dOnTA1dWVRYsWMWLECObNm2e8OfkgU6ZMISgoCB8fH1RVxdPTk7CwMMaNG8c//vEPvvnmGzp16mQcpV+/ft2Y5O+Xk5PDO++8w9WrV7Gzs6Nq1arGioQhISHGm5NPPfWUMZZ33nmHV155ha+//prOnTsb++rUqROzZ8/G19fXeHPSEigPujBPys/PT42MjCz2fv9q6by3ab98JwfbODNq5d8W5RGizDhz5gwNGjQwdRilKiwsjHPnzpnlUx1P6kF/noqiRKmq6leY/S16xK2cOQSAob7UJRGirOnZs6epQzBbFj3H7fX7LS55KIx9b6GpQxFCiFJjsYn7f7PGUiMRzj9dydShCCFEqbLYxG372zFyATvfLqYORQghSpVFJu601FSeir3NxRoKQwP/Y+pwhBCiVFlk4l7xf5PwuAFxdV1MHYoQQpQ6i0zczn+cIleByq1eMnUoQpQbiqLw9ttvGz/Pnz+fadOmPXKf8PBwfv75Z+PnYcOG5XsBpig8PT25fv36E/Vxz/2lai2JRSbup35P51wtRV5xF6IU2drasmnTpsdKmn9N3E9CVVXja+vlncU9x71kThDPpcDpxpVNHYoQJjEl9jLRaRnF2mcjR3v+88yjCylZWVkxevRoFixYwMyZM/N9l5SUxNixY40LKyxcuJAaNWqwZMkStFotq1ev5tNPPwXgwIEDfPzxx1y7do25c+fSr18/AObNm8fGjRvJysqib9++TJ8+nbi4OHr06EGnTp2IiIhgy5Yt+Y7bp08fLl26RGZmJpMmTWL06NFA3kh60qRJhIWFYW9vz9atW3F3d+f8+fO89tpr6PV6unfvbuwnPj6eAQMGkJqail6v5/PPP6d9+/ZPdlFLkMWNuHPP59Uo0NdpaOJIhCh/xo8fz5o1a7h161a+7ZMmTSI4OJijR48SGhrKyJEj8fT0ZOzYsQQHB6PT6YyJMD4+noMHDxIWFsb77+f91rx7925iY2M5cuQIOp2OqKgoDhw4AMBvv/3GkCFDOH78OHXq1Ml33BUrVhAVFUVkZCSLFi0iOTkZgPT0dFq3bs2JEyfo0KEDy5YtM8b55ptvcvToUTw8PIz9rF27lm7duqHT6Thx4gS+vr4lcwGLicWNuN2v3OCmEwybaP7LCwlREgoaGZckZ2dnhgwZwqJFi7C3tzdu37t3L6dPnzZ+Tk1NfWjxpj59+qDRaPD29iYhIQHIS9y7d++madOmAKSlpREbG0vt2rWpU6cOrVu3fmBfixYtYvPmzQBcunSJ2NhYXFxcsLGxMb552bx5c/bs2QPAoUOHjJUEBw8ezHvvvQdAixYtGDFiBDk5OfTp00cSd3GKv3KR2pcMnPOypq2zs6nDEaJcCgoKolmzZgwfPty4LTc3l4iIiHzJ/GHuL5t6r1aSqqpMnjyZMWPG5GsbFxeXrzTs/cLDw9m7dy8RERE4ODjQsWNHY8lWa2trY3nZv5Zmvb/s7D0dOnTgwIED7Nixg8GDB/PPf/6TIUOGFHgupmJRUyXrP5+MYyYk1qhq6lCEKLeqVKnCK6+8YizrCtC1a1cWL/5z2UCdTgcUvmxqt27dWLFiBWlpaQBcuXKFxMTER+5z69YtKleujIODA2fPnuXw4cMFHqddu3b5StDec+HCBdzc3Bg1ahRvvPFGvrKx5siiErfjlT8AqNK4o2kDEaKce/vtt/M9XbJo0SIiIyPx8fHB29vbWGa1V69ebN68GV9fX2Od7Afp2rUrr732Gm3atKFx48b069evwITfvXt39Ho9Pj4+TJky5aHTKff75JNP+Oyzz2jRokW+efrw8HB8fX1p2rQpoaGhTJo0qcC+TMmiyrqGdfXG4Y5K54PFu1CqEOauPJZ1LcuetKyrxYy4IyP2UuuKypWadqYORQghTMpiEvdPoZ9iY4Dk6tVMHYoQQpiUxSTuKvGX0WvAt4v53ukVQojSYDGJu9rlO1z2UOj40qumDkUIIUzKIhL31vX/o0YCXK1pmQVhhBCiOFlE4j5/eDsaILWa6d4YE0IIc2ERidvpRjK5QPPnXzd1KEKUW1qtFl9fXxo1akT//v25c+fOY+0/a9asEokrLi6ORo0alUjf5qrAxK0oygpFURIVRYkujYAepEryHa5Xhg4vvGyqEIQo9+zt7dHpdERHR2NjY2N8yaYg98qxllTiLo8KU6tkFbAY+KpkQ3m4qkkGrnlYVFkVIUrM9O2/cvpqarH26V3dmam9Cl9xs3379pw8eRKAjz/+mBUrVgAwcuRIgoKC/laO1dfXl4yMDHx9fWnYsCEzZ86kZ8+eREfnjQfnz59PWloa06ZN4+jRo7zxxhtUqFABf39/du3aRXR0NHFxcQwePJj09HQAFi9eTNu2bYv1OliKAkfcqqoeAG6UQiwPtOPbL3FJhZsuDqYKQQhxH71ez65du2jcuDFRUVGsXLmSX375hcOHD7Ns2TKOHz8O5C/HunLlSuOI/f4aIQ8yfPhwlixZQkREBFqt1rjdzc2NPXv2cOzYMTZs2MDEiRNL9DzNWbENYxVFGQ2MBqhdu3ZxdUvMLzt4CkirLIWlhAAea2RcnO6NmCFvxP3GG2/w+eef07dvX2MFv5dffpmffvqJgICAR5ZjfZiUlBRu375tHEm/9tprhIWFAZCTk0NgYCA6nQ6tVktMTEwxnp1lKbbErarqUmAp5NUqKa5+HW7m1ev1qN+uuLoUQhTBvRHz/R5V6+hh5VghbzWd+5chu1eO9VH9LViwAHd3d06cOEFubi52duW3/IXZP1VSKTmNWxVg4OjJpg5FCPEXHTp0YMuWLdy5c4f09HQ2b9780CW/rK2tycnJAcDd3Z3ExESSk5PJysoyjqorV66Mk5OTsUTrvRKskFfGtVq1amg0Gr7++msMBkMJn535MvvE7ZqUQ6Kr2YcpRLnUrFkzhg0bRsuWLWnVqhUjR440rmLzV6NHj8bHx4dBgwZhbW3Nhx9+SKtWrejZsyf169c3tlu+fDmjR4+mTZs2qKpKxYoVARg3bhwhISG0bt2amJiYR47oy7oCy7oqirIO6Ai4AgnAVFVVlz9qn+Iq63paF4HhtRFENXVg2JqoJ+5PCEtVnsq6pqWl4eiY95b07NmziY+P55NPPjFxVMXrScu6FjjHrarqwCLG9sT2fPsZXXMhtUoVU4UghChlO3bs4L///S96vZ46deqwatUqU4dkdsz64Wht8mUArKrVNXEkQojSMmDAAAYMGGDqMMyaWU8eV0q+RaY1DBzzkalDEUIIs2HWidslOYsEV4XKLm6mDkUIIcyG2Sbum8mJuCepJLvamDoUIYQwK2abuDd8OQP7bEhxrWjqUIQQwqyYbeLOunIWgJwqNUwciRDinpkzZ9KwYUN8fHzw9fXll19+eew+tm3bxuzZs0sguvLDbJ8qcb5xA4MCHfuMNXUoQgggIiKCsLAwjh07hq2tLdevXyc7O/ux+wkICCAgIKAEIiw/zDdx38okuRI816KDqUMRwrzseh+unSrePj0aQ49Hj4Lj4+NxdXXF1tYWAFdXVwA8PT0ZMGAA+/fvB2Dt2rU8/fTTbN++nRkzZpCdnY2Liwtr1qzB3d2dVatWERkZyeLFixk2bBjOzs5ERkZy7do15s6dS79+/Yr33Mogs50qqZCWS5qjYuowhBB3de3alUuXLlGvXj3GjRvHjz/+aPzO2dmZI0eOEBgYSFBQEAD+/v4cPnyY48eP8+qrrzJ37twH9hsfH8/BgwcJCwvj/fffL5VzsXRmO+J2SlO5XNPa1GEIYX4KGBmXFEdHR6Kiovjpp5/Yv38/AwYMMM5VDxw40Pj/4OBgAC5fvsyAAQOIj48nOzsbLy+vB/bbp08fNBoN3t7eJCQklM7JWDizHHHHX7lIxTS4U0EeBRTCnGi1Wjp27Mj06dNZvHgxoaGhACjKn78d3/t5woQJBAYGcurUKb744gtj6da/ujf1Ao8u6yr+ZJaJe/fmZWhVyKhgb+pQhBB3/fbbb8TGxho/63Q66tSpA8CGDRuM/2/Tpg2QV4a1Ro28p8JCQkJKOdqyzSynSm5czVvZItvBycSRCCHuSUtLY8KECaSkpGBlZcXTTz/N0qVLCQsLIysri1atWpGbm8u6desAmDZtGv3796dGjRq0bt2a8+fPm/gMyo4Cy7oWxZOWdf1kYle67r7E9/1bEPQfk61RLITZMOeyrp6enkRGRhqfMhEFe9KyrmY5VWJ3J28V5zrPFuochBCiXDHLqRL79AyyreCFgGGmDkUIUYC4uDhTh1DumOWI2yE9h1uO4OjsbOpQhBDC7Jhl4q6QZuC2k7x8I4QQD2KWidspTSW9gtbUYQghhFkyu8QtL98IIcSjmV3i3rd1JVa5kFHBwdShCCHuExcXR6NGjfJtmzZtGvPnz+fw4cO0atUKX19fGjRowLRp00wTZDlhdk+VJN2tw53l4GjiSIQQhTV06FA2btxIkyZNMBgM/Pbbb6YOqUwzu8StSbsBgOLoYuJIhDBPc47M4eyNs8XaZ/0q9Xmv5XtF3j8xMZFq1aoBefVMvL29iys08QBmN1Vim54GQLW6viaORAhRWMHBwTz77LP07dv3kQWlRPEwuxG3w50McrTw4j9GmzoUIczSk4yMn8T9FQD/uv3DDz9k0KBB7N69m7Vr17Ju3TrCw8NLN8ByxOxG3A5p8vKNEObIxcWFmzdv5tt248YNY42SunXr8uabb7Jv3z5OnDhBcnKyKcIsF8wucVdIl5dvhDBHjo6OVKtWjX379gF5Sfu7777D39+fHTt2GGtpx8bGotVqqVSpkinDLdPMbqrE6bZKfDWzC0sIAXz11VeMHz+et99+G4CpU6dSt25d/vWvfxEcHIyDgwNWVlasWbMGrVZeoispZpUhbyYnUjEN/pCXb4QwS97e3sZFge+3fv16E0RTfpnVVMl3ocvvvnwjK98IIcTDmFXiTrhwCoCsCvLyjRBCPIxZJW7S816+yZWXb4QQ4qHMKnHb3X35xqN2owJaCiFE+WVWids+PQO9Brr/4w1ThyKEEGarUIlbUZTuiqL8pijK74qivF9SwTikZ5PiBJVd3ErqEEIIYfEKTNyKomiBz4AegDcwUFGUEqkgUyHNQJqjvHwjhLl5VEnXR4mMjGTixIkAhIeH8/PPPz/2sT09Pbl+/fojt0dFReHl5cXx48fZtm0bs2fPfuzjPEh4eDg9e/Yslr6KU2Ge424J/K6q6jkARVHWA72B08UdjFOaSoK7WT1aLoR4An5+fvj5+QF5SdDR0ZG2bdsW6zFOnjxJv3792LBhA02bNqVp06YEBAQU6zHMTWGyZA3g0n2fLwOt/tpIUZTRwGiA2rVrP3YgaampVEyD83WtH3tfIcqTa7NmkXWmeMu62jaoj8cHHxR5/44dO9KqVSv2799PSkoKy5cvp3379oSHhzN//nwWL17MkiVL0Gq1rF69mk8//ZT69eszduxYLl68CMDChQtp164dycnJDBw4kKSkJFq2bGl8lf5Bzpw5w9ChQ/n6669p2bIlAKtWrSIyMpLFixczbNgwnJ2diYyM5Nq1a8ydO5d+/fqRm5tLYGAgP/74I15eXuTm5jJixAj69evHd999R1BQEK6urjRr1sx4rBs3bjBixAjOnTuHg4MDS5cuxcfHh2nTpnH+/Hni4+OJiYnh448/5vDhw+zatYsaNWqwfft2rK2LN68VZo77QXMXf7uSqqouVVXVT1VVv6pVqxYpmJ+HvIDa9qUi7SuEMC29Xs+RI0dYuHAh06dPz/edp6cnY8eOJTg4GJ1OR/v27Zk0aRLBwcEcPXqU0NBQRo4cCcD06dPx9/fn+PHjBAQEGBP7g/Tu3ZvFixfj7+//0Dbx8fEcPHiQsLAw3n8/7xbdpk2biIuL49SpU3z55ZdEREQAkJmZyahRo9i+fTs//fQT165dM/YzdepUmjZtysmTJ5k1axZDhgwxfvfHH3+wY8cOtm7dyuuvv06nTp04deoU9vb27Nix4/EvZgEKM+K+DNS673NN4GpxB+Lo7MzY9xYVd7dClDlPMjIuqkeVdL3n5ZdfBqB58+bExcUV2OfevXs5ffrPGdfU1FRu377NgQMH2LRpEwAvvfQSlStXfmgfzz//PF9++SXdunV7aG2UPn36oNFo8Pb2JiEhAYCDBw/Sv39/NBoNHh4edOrUCYCzZ8/i5eXFM888A8Drr7/O0qVLjfuEhoYC0LlzZ5KTk7l16xYAPXr0wNramsaNG2MwGOjevTsAjRs3LtS1eFyFGXEfBZ5RFMVLURQb4FVgW7FHIoQwWwWVdAWwtbUF8lbA0ev1BfaZm5tLREQEOp0OnU7HlStXcHJyAh7+D8VfLV68GIBx48Y9tM29uADjtMujpl8eduwH7XOv7b1jaDQarK2tjds1Gk2hrsXjKjBxq6qqBwKB74EzwEZVVX8t9kiEEGbrUSVdC8vJyYnbt28bP3ft2tWYeAF0Oh0AHTp0YM2aNQDs2rXrb/9g3E+j0bBu3Tp+++03Pvzww0LH4u/vT2hoKLm5uSQkJBgXfahfvz7nz5/njz/+AGDdunXGfe6PKzw8HFdXV5xNtG5AoR7hUFV1J7CzhGMRQpixh5V0LaxevXrRr18/tm7dyqeffsqiRYsYP348Pj4+6PV6OnTowJIlS5g6dSoDBw6kWbNmPPfccwU+7GBra8vWrVt57rnncHd3p0KFCgXG8o9//IN9+/bRqFEj6tWrR6tWrahYsSJ2dnYsXbqUl156CVdXV/z9/YmOjgbyHn8cPnw4Pj4+ODg4EBISUuhzL27Ko35lKCo/Pz81MjKy2PsVorw6c+YMDRo0MHUYZUpaWhqOjo4kJyfTsmVLDh06hIeHR6kc+0F/noqiRKmq6leY/eWhaSFEudSzZ09SUlLIzs5mypQppZa0i4MkbiFEuWTJixmbVZEpIcTDlcS0pih9xfHnWCIj7qioqOuKolwo4u6uwN8LE5RPci3+VK6vxdKlS5/OyMiw02g0ipWVVfE/X2aBDAaDlVartahroaoqOTk52qioqExvb+/f//J1ncL2UyI3J5+EoiiRhZ2gL+vkWvypvF+LqKgoNysrqy8TExO7ubm5xZs6HnOQlJRUrWrVqpZ2LXKBaL1eP7J58+aJRe1E5riFsAB3/5IHlPd/wO5Xnq+FzHELIYSFMcfEvdTUAZgRuRZ/kmuRR67Dn8rttTC7OW4hhBCPZo4jbiGEEI8giVsIISyMJG4hhLAwkriFEMLCSOIWQggL8/+1h0thtq1sBwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "log_study_data = {}\n", + "for country in study_data.columns:\n", + " list_for_country = list()\n", + " for i in range(len(study_data[country])):\n", + " list_for_country.append(math.log(i+1))\n", + " log_study_data[country] = list_for_country\n", + "\n", + "log_study_data_df = pd.DataFrame(index = time_index, data = log_study_data)\n", + "print(log_study_data_df)\n", + "log_study_data_df.plot(x = time_index)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +855,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -