{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Données" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([14. , 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9,\n", " 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7,\n", " 13.1, 13.2, 12.3, 11.7, 16. , 12.4, 17.9, 12.2, 16.2, 18.7, 8.9,\n", " 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7,\n", " 14. , 13.6, 18. , 13.6, 19.9, 13.7, 17. , 20.5, 9.9, 12.5, 13.2,\n", " 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6,\n", " 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15. , 14.3, 16.8, 14. ,\n", " 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8,\n", " 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9,\n", " 21. ])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "\n", "L = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8,\n", " 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4,\n", " 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8,\n", " 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5,\n", " 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1,\n", " 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9,\n", " 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1,\n", " 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n", "L" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Extrema\n", "\n", "## Minimum" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2.8" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.min(L)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2.8" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "min = L[0]\n", "\n", "for i in range(1, len(L)):\n", " if L[i] < min:\n", " min = L[i]\n", "\n", "min " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Maximum" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "23.4" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.max(L)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "23.4" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max = L[0]\n", "\n", "for i in range(1, len(L)):\n", " if L[i] > max:\n", " max = L[i]\n", "\n", "max" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Médiane" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14.5" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.median(L)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Moyenne\n", "\n", "## Calcul de la moyenne avec la fonction *mean* de *numpy*" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14.113000000000001" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean = np.mean(L)\n", "mean" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul de la moyenne *à la main*" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14.113000000000001" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean2 = np.sum(L)/len(L)\n", "mean2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Comparaison" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean == mean2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Écart-type\n", "\n", "## Calcul de l'écart-type (corrigé) avec la fonction *std* de *numpy*" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4.334094455301447" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "SD = np.std(L, ddof=1)\n", "SD" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul de l'écart-type *à la main*" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4.3340944553014475" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from math import *\n", "\n", "V = 0\n", "\n", "for i in range(len(L)):\n", " V += (L[i]-mean2)**2\n", "\n", "V /= len(L)-1\n", "\n", "SD2 = sqrt(V)\n", "SD2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Comparaison" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "SD == SD2" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-8.881784197001252e-16" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "SD - SD2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Bien que les deux résultats ne soient pas **strictement** égaux, la différence est particulièrement faible (correspondant peut-être à la précision machine)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }