diff --git a/journal/Testifications,ipynb.ipynb b/journal/Testifications,ipynb.ipynb index 7e7f396b14f0463c64c0c180049635d1056e2874..99ed76311b145be7896d078bfce46be180fac4dd 100644 --- a/journal/Testifications,ipynb.ipynb +++ b/journal/Testifications,ipynb.ipynb @@ -1,5 +1,368 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LC_ALL': 'en_US.UTF-8',\n", + " 'JUPYTERHUB_CLIENT_ID': 'jupyterhub-user-d2e4b375a36b4088c1c267af139bd27b',\n", + " 'JUPYTERHUB_ADMIN_ACCESS': '1',\n", + " 'LANG': 'en_US.UTF-8',\n", + " 'HOSTNAME': '8ddd50d99808',\n", + " 'NB_UID': '1000',\n", + " 'CONDA_DIR': '/opt/conda',\n", + " 'CONDA_VERSION': '4.7.12',\n", + " 'JUPYTERHUB_ACTIVITY_URL': 'http://moocrr_jupyterhub:8080/moocrr/jupyter/hub/api/users/d2e4b375a36b4088c1c267af139bd27b/activity',\n", + " 'JUPYTERHUB_BASE_URL': '/moocrr/jupyter/',\n", + " 'PWD': '/home/jovyan',\n", + " 'HOME': '/home/jovyan',\n", + " 'MINICONDA_MD5': '81c773ff87af5cfac79ab862942ab6b3',\n", + " 'JUPYTERHUB_USER': 'd2e4b375a36b4088c1c267af139bd27b',\n", + " 'DEBIAN_FRONTEND': 'noninteractive',\n", + " 'GITLAB_PROJECT': 'mooc-rr',\n", + " 'NB_USER': 'jovyan',\n", + " 'JUPYTERHUB_SERVICE_PREFIX': '/moocrr/jupyter/user/d2e4b375a36b4088c1c267af139bd27b/',\n", + " 'USER_PASSWORD': '9756d5a792',\n", + " 'JUPYTERHUB_SERVER_NAME': '',\n", + " 'SHELL': '/bin/bash',\n", + " 'MEM_LIMIT': '524288000',\n", + " 'JUPYTERHUB_API_URL': 'http://moocrr_jupyterhub:8080/moocrr/jupyter/hub/api',\n", + " 'SHLVL': '0',\n", + " 'LANGUAGE': 'en_US.UTF-8',\n", + " 'JUPYTERHUB_HOST': '',\n", + " 'JPY_API_TOKEN': '',\n", + " 'XDG_CACHE_HOME': '/home/jovyan/.cache/',\n", + " 'JUPYTERHUB_OAUTH_CALLBACK_URL': '/moocrr/jupyter/user/d2e4b375a36b4088c1c267af139bd27b/oauth_callback',\n", + " 'NB_GID': '100',\n", + " 'JUPYTERHUB_API_TOKEN': '',\n", + " 'PATH': '/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin',\n", + " 'MINICONDA_VERSION': '4.7.12.1',\n", + " 'KERNEL_LAUNCH_TIMEOUT': '40',\n", + " 'JPY_PARENT_PID': '7',\n", + " 'TERM': 'xterm-color',\n", + " 'CLICOLOR': '1',\n", + " 'PAGER': 'cat',\n", + " 'GIT_PAGER': 'cat',\n", + " 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%env" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# %load http://matplotlib.org/mpl_examples/pylab_examples/contour_demo.py\n", + "\"\"\"\n", + "Illustrate simple contour plotting, contours on an image with\n", + "a colorbar for the contours, and labelled contours.\n", + "\n", + "See also contour_image.py.\n", + "\"\"\"\n", + "import matplotlib\n", + "import numpy as np\n", + "import matplotlib.cm as cm\n", + "import matplotlib.mlab as mlab\n", + "import matplotlib.pyplot as plt\n", + "\n", + "matplotlib.rcParams['xtick.direction'] = 'out'\n", + "matplotlib.rcParams['ytick.direction'] = 'out'\n", + "\n", + "delta = 0.025\n", + "x = np.arange(-3.0, 3.0, delta)\n", + "y = np.arange(-2.0, 2.0, delta)\n", + "X, Y = np.meshgrid(x, y)\n", + "Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)\n", + "Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)\n", + "# difference of Gaussians\n", + "Z = 10.0 * (Z2 - Z1)\n", + "\n", + "\n", + "# Create a simple contour plot with labels using default colors. The\n", + "# inline argument to clabel will control whether the labels are draw\n", + "# over the line segments of the contour, removing the lines beneath\n", + "# the label\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z)\n", + "plt.clabel(CS, inline=1, fontsize=10)\n", + "plt.title('Simplest default with labels')\n", + "\n", + "\n", + "# contour labels can be placed manually by providing list of positions\n", + "# (in data coordinate). See ginput_manual_clabel.py for interactive\n", + "# placement.\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z)\n", + "manual_locations = [(-1, -1.4), (-0.62, -0.7), (-2, 0.5), (1.7, 1.2), (2.0, 1.4), (2.4, 1.7)]\n", + "plt.clabel(CS, inline=1, fontsize=10, manual=manual_locations)\n", + "plt.title('labels at selected locations')\n", + "\n", + "\n", + "# You can force all the contours to be the same color.\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z, 6,\n", + " colors='k', # negative contours will be dashed by default\n", + " )\n", + "plt.clabel(CS, fontsize=9, inline=1)\n", + "plt.title('Single color - negative contours dashed')\n", + "\n", + "# You can set negative contours to be solid instead of dashed:\n", + "matplotlib.rcParams['contour.negative_linestyle'] = 'solid'\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z, 6,\n", + " colors='k', # negative contours will be dashed by default\n", + " )\n", + "plt.clabel(CS, fontsize=9, inline=1)\n", + "plt.title('Single color - negative contours solid')\n", + "\n", + "\n", + "# And you can manually specify the colors of the contour\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z, 6,\n", + " linewidths=np.arange(.5, 4, .5),\n", + " colors=('r', 'green', 'blue', (1, 1, 0), '#afeeee', '0.5')\n", + " )\n", + "plt.clabel(CS, fontsize=9, inline=1)\n", + "plt.title('Crazy lines')\n", + "\n", + "\n", + "# Or you can use a colormap to specify the colors; the default\n", + "# colormap will be used for the contour lines\n", + "plt.figure()\n", + "im = plt.imshow(Z, interpolation='bilinear', origin='lower',\n", + " cmap=cm.gray, extent=(-3, 3, -2, 2))\n", + "levels = np.arange(-1.2, 1.6, 0.2)\n", + "CS = plt.contour(Z, levels,\n", + " origin='lower',\n", + " linewidths=2,\n", + " extent=(-3, 3, -2, 2))\n", + "\n", + "# Thicken the zero contour.\n", + "zc = CS.collections[6]\n", + "plt.setp(zc, linewidth=4)\n", + "\n", + "plt.clabel(CS, levels[1::2], # label every second level\n", + " inline=1,\n", + " fmt='%1.1f',\n", + " fontsize=14)\n", + "\n", + "# make a colorbar for the contour lines\n", + "CB = plt.colorbar(CS, shrink=0.8, extend='both')\n", + "\n", + "plt.title('Lines with colorbar')\n", + "#plt.hot() # Now change the colormap for the contour lines and colorbar\n", + "plt.flag()\n", + "\n", + "# We can still add a colorbar for the image, too.\n", + "CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)\n", + "\n", + "# This makes the original colorbar look a bit out of place,\n", + "# so let's improve its position.\n", + "\n", + "l, b, w, h = plt.gca().get_position().bounds\n", + "ll, bb, ww, hh = CB.ax.get_position().bounds\n", + "CB.ax.set_position([ll, b + 0.1*h, ww, h*0.8])\n", + "\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:20: MatplotlibDeprecationWarning: The bivariate_normal function was deprecated in version 2.2.\n", + "/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:21: MatplotlibDeprecationWarning: The bivariate_normal function was deprecated in version 2.2.\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Illustrate simple contour plotting, contours on an image with\n", + "a colorbar for the contours, and labelled contours.\n", + "\n", + "See also contour_image.py.\n", + "\"\"\"\n", + "import matplotlib\n", + "import numpy as np\n", + "import matplotlib.cm as cm\n", + "import matplotlib.mlab as mlab\n", + "import matplotlib.pyplot as plt\n", + "\n", + "matplotlib.rcParams['xtick.direction'] = 'out'\n", + "matplotlib.rcParams['ytick.direction'] = 'out'\n", + "\n", + "delta = 0.025\n", + "x = np.arange(-3.0, 3.0, delta)\n", + "y = np.arange(-2.0, 2.0, delta)\n", + "X, Y = np.meshgrid(x, y)\n", + "Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)\n", + "Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)\n", + "# difference of Gaussians\n", + "Z = 10.0 * (Z2 - Z1)\n", + "\n", + "\n", + "# Create a simple contour plot with labels using default colors. The\n", + "# inline argument to clabel will control whether the labels are draw\n", + "# over the line segments of the contour, removing the lines beneath\n", + "# the label\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z)\n", + "plt.clabel(CS, inline=1, fontsize=10)\n", + "plt.title('Simplest default with labels')\n", + "\n", + "\n", + "# contour labels can be placed manually by providing list of positions\n", + "# (in data coordinate). See ginput_manual_clabel.py for interactive\n", + "# placement.\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z)\n", + "manual_locations = [(-1, -1.4), (-0.62, -0.7), (-2, 0.5), (1.7, 1.2), (2.0, 1.4), (2.4, 1.7)]\n", + "plt.clabel(CS, inline=1, fontsize=10, manual=manual_locations)\n", + "plt.title('labels at selected locations')\n", + "\n", + "\n", + "# You can force all the contours to be the same color.\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z, 6,\n", + " colors='k', # negative contours will be dashed by default\n", + " )\n", + "plt.clabel(CS, fontsize=9, inline=1)\n", + "plt.title('Single color - negative contours dashed')\n", + "\n", + "# You can set negative contours to be solid instead of dashed:\n", + "matplotlib.rcParams['contour.negative_linestyle'] = 'solid'\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z, 6,\n", + " colors='k', # negative contours will be dashed by default\n", + " )\n", + "plt.clabel(CS, fontsize=9, inline=1)\n", + "plt.title('Single color - negative contours solid')\n", + "\n", + "\n", + "# And you can manually specify the colors of the contour\n", + "plt.figure()\n", + "CS = plt.contour(X, Y, Z, 6,\n", + " linewidths=np.arange(.5, 4, .5),\n", + " colors=('r', 'green', 'blue', (1, 1, 0), '#afeeee', '0.5')\n", + " )\n", + "plt.clabel(CS, fontsize=9, inline=1)\n", + "plt.title('Crazy lines')\n", + "\n", + "\n", + "# Or you can use a colormap to specify the colors; the default\n", + "# colormap will be used for the contour lines\n", + "plt.figure()\n", + "im = plt.imshow(Z, interpolation='bilinear', origin='lower',\n", + " cmap=cm.gray, extent=(-3, 3, -2, 2))\n", + "levels = np.arange(-1.2, 1.6, 0.2)\n", + "CS = plt.contour(Z, levels,\n", + " origin='lower',\n", + " linewidths=2,\n", + " extent=(-3, 3, -2, 2))\n", + "\n", + "# Thicken the zero contour.\n", + "zc = CS.collections[6]\n", + "plt.setp(zc, linewidth=4)\n", + "\n", + "plt.clabel(CS, levels[1::2], # label every second level\n", + " inline=1,\n", + " fmt='%1.1f',\n", + " fontsize=14)\n", + "\n", + "# make a colorbar for the contour lines\n", + "CB = plt.colorbar(CS, shrink=0.8, extend='both')\n", + "\n", + "plt.title('Lines with colorbar')\n", + "#plt.hot() # Now change the colormap for the contour lines and colorbar\n", + "plt.flag()\n", + "\n", + "# We can still add a colorbar for the image, too.\n", + "CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)\n", + "\n", + "# This makes the original colorbar look a bit out of place,\n", + "# so let's improve its position.\n", + "\n", + "l, b, w, h = plt.gca().get_position().bounds\n", + "ll, bb, ww, hh = CB.ax.get_position().bounds\n", + "CB.ax.set_position([ll, b + 0.1*h, ww, h*0.8])\n", + "\n", + "\n", + "plt.show()" + ] + }, { "cell_type": "code", "execution_count": null,