From 1bf8603cbbef0027b45fa4404a03fcbaf5cc05e8 Mon Sep 17 00:00:00 2001 From: d2ec15aa088014456b201a40df7a14ca Date: Sun, 27 Feb 2022 14:49:33 +0000 Subject: [PATCH] Update toy_document_fr.Rmd --- module2/exo1/toy_document_fr.Rmd | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index aeddf93..7fb2bcc 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -10,7 +10,7 @@ knitr::opts_chunk$set(echo = TRUE) ``` ## En demandant à la lib maths -Mon ordinateur m'indique que $\pi$ vaut approximativement +Mon ordinateur m'indique que $\pi$ vaut *approximativement* ```{r cars} @@ -18,7 +18,6 @@ pi ``` ## En utilisant la méthode des aiguilles de Buffon - Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ : ```{r} @@ -29,8 +28,7 @@ theta = pi/2*runif(N) 2/(mean(x+sin(theta)>1)) ``` ## Avec un argument "fréquentiel" de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et -$Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : ```{r} set.seed(42) -- 2.18.1