"Mo ordinateur m'indique que $\\pi$ vaut *approximativement* "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import * \n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.2 En utilisant la méthode des aiguilles de Buffon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**:"
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonctionsinus se base sur le fait que si X $\\sim$ $\\mu$(0,1) et $\\Upsilon$ $\\sim$ $\\mu$(0,1) alors P[$X^2$ + $\\Upsilon$$^2$ $\\le$ 1] = $\\pi$/4 (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : "
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement* "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import * \n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.2 En utilisant la méthode des aiguilles de Buffon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**:"
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonctionsinus se base sur le fait que si X $\\sim$ $\\mu$(0,1) et $\\Upsilon$ $\\sim$ $\\mu$(0,1) alors P[$X^2$ + $\\Upsilon$$^2$ $\\le$ 1] = $\\pi$/4 (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"