diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index b42e3005ee9b7a99a69ab68d5823b3862ffcb6ca..22f881c83e9ac6a00707f287150b951226eb5800 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -21,11 +21,11 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
- "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
]
},
{
@@ -37,13 +37,2300 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 202333 | \n",
+ " 7 | \n",
+ " 3664 | \n",
+ " 956 | \n",
+ " 6372 | \n",
+ " 6 | \n",
+ " 2 | \n",
+ " 10 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 202332 | \n",
+ " 7 | \n",
+ " 8068 | \n",
+ " 1178 | \n",
+ " 14958 | \n",
+ " 12 | \n",
+ " 2 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 202331 | \n",
+ " 7 | \n",
+ " 3318 | \n",
+ " 1398 | \n",
+ " 5238 | \n",
+ " 5 | \n",
+ " 2 | \n",
+ " 8 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 202330 | \n",
+ " 7 | \n",
+ " 5821 | \n",
+ " 3269 | \n",
+ " 8373 | \n",
+ " 9 | \n",
+ " 5 | \n",
+ " 13 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 202329 | \n",
+ " 7 | \n",
+ " 13558 | \n",
+ " 8297 | \n",
+ " 18819 | \n",
+ " 20 | \n",
+ " 12 | \n",
+ " 28 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 202328 | \n",
+ " 7 | \n",
+ " 6700 | \n",
+ " 4043 | \n",
+ " 9357 | \n",
+ " 10 | \n",
+ " 6 | \n",
+ " 14 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 202327 | \n",
+ " 7 | \n",
+ " 7253 | \n",
+ " 4599 | \n",
+ " 9907 | \n",
+ " 11 | \n",
+ " 7 | \n",
+ " 15 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 202326 | \n",
+ " 7 | \n",
+ " 9192 | \n",
+ " 6223 | \n",
+ " 12161 | \n",
+ " 14 | \n",
+ " 10 | \n",
+ " 18 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 202325 | \n",
+ " 7 | \n",
+ " 11498 | \n",
+ " 8257 | \n",
+ " 14739 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 202324 | \n",
+ " 7 | \n",
+ " 11115 | \n",
+ " 7968 | \n",
+ " 14262 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 202323 | \n",
+ " 7 | \n",
+ " 12563 | \n",
+ " 6134 | \n",
+ " 18992 | \n",
+ " 19 | \n",
+ " 9 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 202322 | \n",
+ " 7 | \n",
+ " 12184 | \n",
+ " 8125 | \n",
+ " 16243 | \n",
+ " 18 | \n",
+ " 12 | \n",
+ " 24 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 202321 | \n",
+ " 7 | \n",
+ " 11349 | \n",
+ " 7598 | \n",
+ " 15100 | \n",
+ " 17 | \n",
+ " 11 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 202320 | \n",
+ " 7 | \n",
+ " 9000 | \n",
+ " 4615 | \n",
+ " 13385 | \n",
+ " 14 | \n",
+ " 7 | \n",
+ " 21 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 202319 | \n",
+ " 7 | \n",
+ " 9344 | \n",
+ " 6091 | \n",
+ " 12597 | \n",
+ " 14 | \n",
+ " 9 | \n",
+ " 19 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 202318 | \n",
+ " 7 | \n",
+ " 10671 | \n",
+ " 7291 | \n",
+ " 14051 | \n",
+ " 16 | \n",
+ " 11 | \n",
+ " 21 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 202317 | \n",
+ " 7 | \n",
+ " 9184 | \n",
+ " 6162 | \n",
+ " 12206 | \n",
+ " 14 | \n",
+ " 9 | \n",
+ " 19 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 202316 | \n",
+ " 7 | \n",
+ " 11387 | \n",
+ " 8014 | \n",
+ " 14760 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 202315 | \n",
+ " 7 | \n",
+ " 14040 | \n",
+ " 7613 | \n",
+ " 20467 | \n",
+ " 21 | \n",
+ " 11 | \n",
+ " 31 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 202314 | \n",
+ " 7 | \n",
+ " 15247 | \n",
+ " 11032 | \n",
+ " 19462 | \n",
+ " 23 | \n",
+ " 17 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 202313 | \n",
+ " 7 | \n",
+ " 13322 | \n",
+ " 9700 | \n",
+ " 16944 | \n",
+ " 20 | \n",
+ " 15 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 202312 | \n",
+ " 7 | \n",
+ " 10374 | \n",
+ " 7218 | \n",
+ " 13530 | \n",
+ " 16 | \n",
+ " 11 | \n",
+ " 21 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 202311 | \n",
+ " 7 | \n",
+ " 4919 | \n",
+ " 2880 | \n",
+ " 6958 | \n",
+ " 7 | \n",
+ " 4 | \n",
+ " 10 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 202310 | \n",
+ " 7 | \n",
+ " 4854 | \n",
+ " 2731 | \n",
+ " 6977 | \n",
+ " 7 | \n",
+ " 4 | \n",
+ " 10 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 202309 | \n",
+ " 7 | \n",
+ " 7004 | \n",
+ " 4548 | \n",
+ " 9460 | \n",
+ " 11 | \n",
+ " 7 | \n",
+ " 15 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 202308 | \n",
+ " 7 | \n",
+ " 8175 | \n",
+ " 5316 | \n",
+ " 11034 | \n",
+ " 12 | \n",
+ " 8 | \n",
+ " 16 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 202307 | \n",
+ " 7 | \n",
+ " 6595 | \n",
+ " 3782 | \n",
+ " 9408 | \n",
+ " 10 | \n",
+ " 6 | \n",
+ " 14 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 202306 | \n",
+ " 7 | \n",
+ " 9595 | \n",
+ " 6017 | \n",
+ " 13173 | \n",
+ " 14 | \n",
+ " 9 | \n",
+ " 19 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 202305 | \n",
+ " 7 | \n",
+ " 6237 | \n",
+ " 3907 | \n",
+ " 8567 | \n",
+ " 9 | \n",
+ " 5 | \n",
+ " 13 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 202304 | \n",
+ " 7 | \n",
+ " 6299 | \n",
+ " 3973 | \n",
+ " 8625 | \n",
+ " 9 | \n",
+ " 6 | \n",
+ " 12 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1677 | \n",
+ " 199126 | \n",
+ " 7 | \n",
+ " 17608 | \n",
+ " 11304 | \n",
+ " 23912 | \n",
+ " 31 | \n",
+ " 20 | \n",
+ " 42 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1678 | \n",
+ " 199125 | \n",
+ " 7 | \n",
+ " 16169 | \n",
+ " 10700 | \n",
+ " 21638 | \n",
+ " 28 | \n",
+ " 18 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1679 | \n",
+ " 199124 | \n",
+ " 7 | \n",
+ " 16171 | \n",
+ " 10071 | \n",
+ " 22271 | \n",
+ " 28 | \n",
+ " 17 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1680 | \n",
+ " 199123 | \n",
+ " 7 | \n",
+ " 11947 | \n",
+ " 7671 | \n",
+ " 16223 | \n",
+ " 21 | \n",
+ " 13 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1681 | \n",
+ " 199122 | \n",
+ " 7 | \n",
+ " 15452 | \n",
+ " 9953 | \n",
+ " 20951 | \n",
+ " 27 | \n",
+ " 17 | \n",
+ " 37 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1682 | \n",
+ " 199121 | \n",
+ " 7 | \n",
+ " 14903 | \n",
+ " 8975 | \n",
+ " 20831 | \n",
+ " 26 | \n",
+ " 16 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1683 | \n",
+ " 199120 | \n",
+ " 7 | \n",
+ " 19053 | \n",
+ " 12742 | \n",
+ " 25364 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1684 | \n",
+ " 199119 | \n",
+ " 7 | \n",
+ " 16739 | \n",
+ " 11246 | \n",
+ " 22232 | \n",
+ " 29 | \n",
+ " 19 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1685 | \n",
+ " 199118 | \n",
+ " 7 | \n",
+ " 21385 | \n",
+ " 13882 | \n",
+ " 28888 | \n",
+ " 38 | \n",
+ " 25 | \n",
+ " 51 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1686 | \n",
+ " 199117 | \n",
+ " 7 | \n",
+ " 13462 | \n",
+ " 8877 | \n",
+ " 18047 | \n",
+ " 24 | \n",
+ " 16 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1687 | \n",
+ " 199116 | \n",
+ " 7 | \n",
+ " 14857 | \n",
+ " 10068 | \n",
+ " 19646 | \n",
+ " 26 | \n",
+ " 18 | \n",
+ " 34 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1688 | \n",
+ " 199115 | \n",
+ " 7 | \n",
+ " 13975 | \n",
+ " 9781 | \n",
+ " 18169 | \n",
+ " 25 | \n",
+ " 18 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1689 | \n",
+ " 199114 | \n",
+ " 7 | \n",
+ " 12265 | \n",
+ " 7684 | \n",
+ " 16846 | \n",
+ " 22 | \n",
+ " 14 | \n",
+ " 30 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1690 | \n",
+ " 199113 | \n",
+ " 7 | \n",
+ " 9567 | \n",
+ " 6041 | \n",
+ " 13093 | \n",
+ " 17 | \n",
+ " 11 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1691 | \n",
+ " 199112 | \n",
+ " 7 | \n",
+ " 10864 | \n",
+ " 7331 | \n",
+ " 14397 | \n",
+ " 19 | \n",
+ " 13 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1692 | \n",
+ " 199111 | \n",
+ " 7 | \n",
+ " 15574 | \n",
+ " 11184 | \n",
+ " 19964 | \n",
+ " 27 | \n",
+ " 19 | \n",
+ " 35 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1693 | \n",
+ " 199110 | \n",
+ " 7 | \n",
+ " 16643 | \n",
+ " 11372 | \n",
+ " 21914 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1694 | \n",
+ " 199109 | \n",
+ " 7 | \n",
+ " 13741 | \n",
+ " 8780 | \n",
+ " 18702 | \n",
+ " 24 | \n",
+ " 15 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1695 | \n",
+ " 199108 | \n",
+ " 7 | \n",
+ " 13289 | \n",
+ " 8813 | \n",
+ " 17765 | \n",
+ " 23 | \n",
+ " 15 | \n",
+ " 31 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1696 | \n",
+ " 199107 | \n",
+ " 7 | \n",
+ " 12337 | \n",
+ " 8077 | \n",
+ " 16597 | \n",
+ " 22 | \n",
+ " 15 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1697 | \n",
+ " 199106 | \n",
+ " 7 | \n",
+ " 10877 | \n",
+ " 7013 | \n",
+ " 14741 | \n",
+ " 19 | \n",
+ " 12 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1698 | \n",
+ " 199105 | \n",
+ " 7 | \n",
+ " 10442 | \n",
+ " 6544 | \n",
+ " 14340 | \n",
+ " 18 | \n",
+ " 11 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1699 | \n",
+ " 199104 | \n",
+ " 7 | \n",
+ " 7913 | \n",
+ " 4563 | \n",
+ " 11263 | \n",
+ " 14 | \n",
+ " 8 | \n",
+ " 20 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1700 | \n",
+ " 199103 | \n",
+ " 7 | \n",
+ " 15387 | \n",
+ " 10484 | \n",
+ " 20290 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1701 | \n",
+ " 199102 | \n",
+ " 7 | \n",
+ " 16277 | \n",
+ " 11046 | \n",
+ " 21508 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1702 | \n",
+ " 199101 | \n",
+ " 7 | \n",
+ " 15565 | \n",
+ " 10271 | \n",
+ " 20859 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1703 | \n",
+ " 199052 | \n",
+ " 7 | \n",
+ " 19375 | \n",
+ " 13295 | \n",
+ " 25455 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1704 | \n",
+ " 199051 | \n",
+ " 7 | \n",
+ " 19080 | \n",
+ " 13807 | \n",
+ " 24353 | \n",
+ " 34 | \n",
+ " 25 | \n",
+ " 43 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1705 | \n",
+ " 199050 | \n",
+ " 7 | \n",
+ " 11079 | \n",
+ " 6660 | \n",
+ " 15498 | \n",
+ " 20 | \n",
+ " 12 | \n",
+ " 28 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1706 | \n",
+ " 199049 | \n",
+ " 7 | \n",
+ " 1143 | \n",
+ " 0 | \n",
+ " 2610 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1707 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202333 7 3664 956 6372 6 2 \n",
+ "1 202332 7 8068 1178 14958 12 2 \n",
+ "2 202331 7 3318 1398 5238 5 2 \n",
+ "3 202330 7 5821 3269 8373 9 5 \n",
+ "4 202329 7 13558 8297 18819 20 12 \n",
+ "5 202328 7 6700 4043 9357 10 6 \n",
+ "6 202327 7 7253 4599 9907 11 7 \n",
+ "7 202326 7 9192 6223 12161 14 10 \n",
+ "8 202325 7 11498 8257 14739 17 12 \n",
+ "9 202324 7 11115 7968 14262 17 12 \n",
+ "10 202323 7 12563 6134 18992 19 9 \n",
+ "11 202322 7 12184 8125 16243 18 12 \n",
+ "12 202321 7 11349 7598 15100 17 11 \n",
+ "13 202320 7 9000 4615 13385 14 7 \n",
+ "14 202319 7 9344 6091 12597 14 9 \n",
+ "15 202318 7 10671 7291 14051 16 11 \n",
+ "16 202317 7 9184 6162 12206 14 9 \n",
+ "17 202316 7 11387 8014 14760 17 12 \n",
+ "18 202315 7 14040 7613 20467 21 11 \n",
+ "19 202314 7 15247 11032 19462 23 17 \n",
+ "20 202313 7 13322 9700 16944 20 15 \n",
+ "21 202312 7 10374 7218 13530 16 11 \n",
+ "22 202311 7 4919 2880 6958 7 4 \n",
+ "23 202310 7 4854 2731 6977 7 4 \n",
+ "24 202309 7 7004 4548 9460 11 7 \n",
+ "25 202308 7 8175 5316 11034 12 8 \n",
+ "26 202307 7 6595 3782 9408 10 6 \n",
+ "27 202306 7 9595 6017 13173 14 9 \n",
+ "28 202305 7 6237 3907 8567 9 5 \n",
+ "29 202304 7 6299 3973 8625 9 6 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1677 199126 7 17608 11304 23912 31 20 \n",
+ "1678 199125 7 16169 10700 21638 28 18 \n",
+ "1679 199124 7 16171 10071 22271 28 17 \n",
+ "1680 199123 7 11947 7671 16223 21 13 \n",
+ "1681 199122 7 15452 9953 20951 27 17 \n",
+ "1682 199121 7 14903 8975 20831 26 16 \n",
+ "1683 199120 7 19053 12742 25364 34 23 \n",
+ "1684 199119 7 16739 11246 22232 29 19 \n",
+ "1685 199118 7 21385 13882 28888 38 25 \n",
+ "1686 199117 7 13462 8877 18047 24 16 \n",
+ "1687 199116 7 14857 10068 19646 26 18 \n",
+ "1688 199115 7 13975 9781 18169 25 18 \n",
+ "1689 199114 7 12265 7684 16846 22 14 \n",
+ "1690 199113 7 9567 6041 13093 17 11 \n",
+ "1691 199112 7 10864 7331 14397 19 13 \n",
+ "1692 199111 7 15574 11184 19964 27 19 \n",
+ "1693 199110 7 16643 11372 21914 29 20 \n",
+ "1694 199109 7 13741 8780 18702 24 15 \n",
+ "1695 199108 7 13289 8813 17765 23 15 \n",
+ "1696 199107 7 12337 8077 16597 22 15 \n",
+ "1697 199106 7 10877 7013 14741 19 12 \n",
+ "1698 199105 7 10442 6544 14340 18 11 \n",
+ "1699 199104 7 7913 4563 11263 14 8 \n",
+ "1700 199103 7 15387 10484 20290 27 18 \n",
+ "1701 199102 7 16277 11046 21508 29 20 \n",
+ "1702 199101 7 15565 10271 20859 27 18 \n",
+ "1703 199052 7 19375 13295 25455 34 23 \n",
+ "1704 199051 7 19080 13807 24353 34 25 \n",
+ "1705 199050 7 11079 6660 15498 20 12 \n",
+ "1706 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 10 FR France \n",
+ "1 22 FR France \n",
+ "2 8 FR France \n",
+ "3 13 FR France \n",
+ "4 28 FR France \n",
+ "5 14 FR France \n",
+ "6 15 FR France \n",
+ "7 18 FR France \n",
+ "8 22 FR France \n",
+ "9 22 FR France \n",
+ "10 29 FR France \n",
+ "11 24 FR France \n",
+ "12 23 FR France \n",
+ "13 21 FR France \n",
+ "14 19 FR France \n",
+ "15 21 FR France \n",
+ "16 19 FR France \n",
+ "17 22 FR France \n",
+ "18 31 FR France \n",
+ "19 29 FR France \n",
+ "20 25 FR France \n",
+ "21 21 FR France \n",
+ "22 10 FR France \n",
+ "23 10 FR France \n",
+ "24 15 FR France \n",
+ "25 16 FR France \n",
+ "26 14 FR France \n",
+ "27 19 FR France \n",
+ "28 13 FR France \n",
+ "29 12 FR France \n",
+ "... ... ... ... \n",
+ "1677 42 FR France \n",
+ "1678 38 FR France \n",
+ "1679 39 FR France \n",
+ "1680 29 FR France \n",
+ "1681 37 FR France \n",
+ "1682 36 FR France \n",
+ "1683 45 FR France \n",
+ "1684 39 FR France \n",
+ "1685 51 FR France \n",
+ "1686 32 FR France \n",
+ "1687 34 FR France \n",
+ "1688 32 FR France \n",
+ "1689 30 FR France \n",
+ "1690 23 FR France \n",
+ "1691 25 FR France \n",
+ "1692 35 FR France \n",
+ "1693 38 FR France \n",
+ "1694 33 FR France \n",
+ "1695 31 FR France \n",
+ "1696 29 FR France \n",
+ "1697 26 FR France \n",
+ "1698 25 FR France \n",
+ "1699 20 FR France \n",
+ "1700 36 FR France \n",
+ "1701 38 FR France \n",
+ "1702 36 FR France \n",
+ "1703 45 FR France \n",
+ "1704 43 FR France \n",
+ "1705 28 FR France \n",
+ "1706 5 FR France \n",
+ "\n",
+ "[1707 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
"raw_data"
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "pas de points manquants"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 202333 | \n",
+ " 7 | \n",
+ " 3664 | \n",
+ " 956 | \n",
+ " 6372 | \n",
+ " 6 | \n",
+ " 2 | \n",
+ " 10 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 202332 | \n",
+ " 7 | \n",
+ " 8068 | \n",
+ " 1178 | \n",
+ " 14958 | \n",
+ " 12 | \n",
+ " 2 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 202331 | \n",
+ " 7 | \n",
+ " 3318 | \n",
+ " 1398 | \n",
+ " 5238 | \n",
+ " 5 | \n",
+ " 2 | \n",
+ " 8 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 202330 | \n",
+ " 7 | \n",
+ " 5821 | \n",
+ " 3269 | \n",
+ " 8373 | \n",
+ " 9 | \n",
+ " 5 | \n",
+ " 13 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 202329 | \n",
+ " 7 | \n",
+ " 13558 | \n",
+ " 8297 | \n",
+ " 18819 | \n",
+ " 20 | \n",
+ " 12 | \n",
+ " 28 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 202328 | \n",
+ " 7 | \n",
+ " 6700 | \n",
+ " 4043 | \n",
+ " 9357 | \n",
+ " 10 | \n",
+ " 6 | \n",
+ " 14 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 202327 | \n",
+ " 7 | \n",
+ " 7253 | \n",
+ " 4599 | \n",
+ " 9907 | \n",
+ " 11 | \n",
+ " 7 | \n",
+ " 15 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 202326 | \n",
+ " 7 | \n",
+ " 9192 | \n",
+ " 6223 | \n",
+ " 12161 | \n",
+ " 14 | \n",
+ " 10 | \n",
+ " 18 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 202325 | \n",
+ " 7 | \n",
+ " 11498 | \n",
+ " 8257 | \n",
+ " 14739 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 202324 | \n",
+ " 7 | \n",
+ " 11115 | \n",
+ " 7968 | \n",
+ " 14262 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 202323 | \n",
+ " 7 | \n",
+ " 12563 | \n",
+ " 6134 | \n",
+ " 18992 | \n",
+ " 19 | \n",
+ " 9 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 202322 | \n",
+ " 7 | \n",
+ " 12184 | \n",
+ " 8125 | \n",
+ " 16243 | \n",
+ " 18 | \n",
+ " 12 | \n",
+ " 24 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 202321 | \n",
+ " 7 | \n",
+ " 11349 | \n",
+ " 7598 | \n",
+ " 15100 | \n",
+ " 17 | \n",
+ " 11 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 202320 | \n",
+ " 7 | \n",
+ " 9000 | \n",
+ " 4615 | \n",
+ " 13385 | \n",
+ " 14 | \n",
+ " 7 | \n",
+ " 21 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 202319 | \n",
+ " 7 | \n",
+ " 9344 | \n",
+ " 6091 | \n",
+ " 12597 | \n",
+ " 14 | \n",
+ " 9 | \n",
+ " 19 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 202318 | \n",
+ " 7 | \n",
+ " 10671 | \n",
+ " 7291 | \n",
+ " 14051 | \n",
+ " 16 | \n",
+ " 11 | \n",
+ " 21 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 202317 | \n",
+ " 7 | \n",
+ " 9184 | \n",
+ " 6162 | \n",
+ " 12206 | \n",
+ " 14 | \n",
+ " 9 | \n",
+ " 19 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 202316 | \n",
+ " 7 | \n",
+ " 11387 | \n",
+ " 8014 | \n",
+ " 14760 | \n",
+ " 17 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 202315 | \n",
+ " 7 | \n",
+ " 14040 | \n",
+ " 7613 | \n",
+ " 20467 | \n",
+ " 21 | \n",
+ " 11 | \n",
+ " 31 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 202314 | \n",
+ " 7 | \n",
+ " 15247 | \n",
+ " 11032 | \n",
+ " 19462 | \n",
+ " 23 | \n",
+ " 17 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 202313 | \n",
+ " 7 | \n",
+ " 13322 | \n",
+ " 9700 | \n",
+ " 16944 | \n",
+ " 20 | \n",
+ " 15 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 202312 | \n",
+ " 7 | \n",
+ " 10374 | \n",
+ " 7218 | \n",
+ " 13530 | \n",
+ " 16 | \n",
+ " 11 | \n",
+ " 21 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 202311 | \n",
+ " 7 | \n",
+ " 4919 | \n",
+ " 2880 | \n",
+ " 6958 | \n",
+ " 7 | \n",
+ " 4 | \n",
+ " 10 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 202310 | \n",
+ " 7 | \n",
+ " 4854 | \n",
+ " 2731 | \n",
+ " 6977 | \n",
+ " 7 | \n",
+ " 4 | \n",
+ " 10 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 202309 | \n",
+ " 7 | \n",
+ " 7004 | \n",
+ " 4548 | \n",
+ " 9460 | \n",
+ " 11 | \n",
+ " 7 | \n",
+ " 15 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 202308 | \n",
+ " 7 | \n",
+ " 8175 | \n",
+ " 5316 | \n",
+ " 11034 | \n",
+ " 12 | \n",
+ " 8 | \n",
+ " 16 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 202307 | \n",
+ " 7 | \n",
+ " 6595 | \n",
+ " 3782 | \n",
+ " 9408 | \n",
+ " 10 | \n",
+ " 6 | \n",
+ " 14 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 202306 | \n",
+ " 7 | \n",
+ " 9595 | \n",
+ " 6017 | \n",
+ " 13173 | \n",
+ " 14 | \n",
+ " 9 | \n",
+ " 19 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 202305 | \n",
+ " 7 | \n",
+ " 6237 | \n",
+ " 3907 | \n",
+ " 8567 | \n",
+ " 9 | \n",
+ " 5 | \n",
+ " 13 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 202304 | \n",
+ " 7 | \n",
+ " 6299 | \n",
+ " 3973 | \n",
+ " 8625 | \n",
+ " 9 | \n",
+ " 6 | \n",
+ " 12 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1677 | \n",
+ " 199126 | \n",
+ " 7 | \n",
+ " 17608 | \n",
+ " 11304 | \n",
+ " 23912 | \n",
+ " 31 | \n",
+ " 20 | \n",
+ " 42 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1678 | \n",
+ " 199125 | \n",
+ " 7 | \n",
+ " 16169 | \n",
+ " 10700 | \n",
+ " 21638 | \n",
+ " 28 | \n",
+ " 18 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1679 | \n",
+ " 199124 | \n",
+ " 7 | \n",
+ " 16171 | \n",
+ " 10071 | \n",
+ " 22271 | \n",
+ " 28 | \n",
+ " 17 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1680 | \n",
+ " 199123 | \n",
+ " 7 | \n",
+ " 11947 | \n",
+ " 7671 | \n",
+ " 16223 | \n",
+ " 21 | \n",
+ " 13 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1681 | \n",
+ " 199122 | \n",
+ " 7 | \n",
+ " 15452 | \n",
+ " 9953 | \n",
+ " 20951 | \n",
+ " 27 | \n",
+ " 17 | \n",
+ " 37 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1682 | \n",
+ " 199121 | \n",
+ " 7 | \n",
+ " 14903 | \n",
+ " 8975 | \n",
+ " 20831 | \n",
+ " 26 | \n",
+ " 16 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1683 | \n",
+ " 199120 | \n",
+ " 7 | \n",
+ " 19053 | \n",
+ " 12742 | \n",
+ " 25364 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1684 | \n",
+ " 199119 | \n",
+ " 7 | \n",
+ " 16739 | \n",
+ " 11246 | \n",
+ " 22232 | \n",
+ " 29 | \n",
+ " 19 | \n",
+ " 39 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1685 | \n",
+ " 199118 | \n",
+ " 7 | \n",
+ " 21385 | \n",
+ " 13882 | \n",
+ " 28888 | \n",
+ " 38 | \n",
+ " 25 | \n",
+ " 51 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1686 | \n",
+ " 199117 | \n",
+ " 7 | \n",
+ " 13462 | \n",
+ " 8877 | \n",
+ " 18047 | \n",
+ " 24 | \n",
+ " 16 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1687 | \n",
+ " 199116 | \n",
+ " 7 | \n",
+ " 14857 | \n",
+ " 10068 | \n",
+ " 19646 | \n",
+ " 26 | \n",
+ " 18 | \n",
+ " 34 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1688 | \n",
+ " 199115 | \n",
+ " 7 | \n",
+ " 13975 | \n",
+ " 9781 | \n",
+ " 18169 | \n",
+ " 25 | \n",
+ " 18 | \n",
+ " 32 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1689 | \n",
+ " 199114 | \n",
+ " 7 | \n",
+ " 12265 | \n",
+ " 7684 | \n",
+ " 16846 | \n",
+ " 22 | \n",
+ " 14 | \n",
+ " 30 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1690 | \n",
+ " 199113 | \n",
+ " 7 | \n",
+ " 9567 | \n",
+ " 6041 | \n",
+ " 13093 | \n",
+ " 17 | \n",
+ " 11 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1691 | \n",
+ " 199112 | \n",
+ " 7 | \n",
+ " 10864 | \n",
+ " 7331 | \n",
+ " 14397 | \n",
+ " 19 | \n",
+ " 13 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1692 | \n",
+ " 199111 | \n",
+ " 7 | \n",
+ " 15574 | \n",
+ " 11184 | \n",
+ " 19964 | \n",
+ " 27 | \n",
+ " 19 | \n",
+ " 35 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1693 | \n",
+ " 199110 | \n",
+ " 7 | \n",
+ " 16643 | \n",
+ " 11372 | \n",
+ " 21914 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1694 | \n",
+ " 199109 | \n",
+ " 7 | \n",
+ " 13741 | \n",
+ " 8780 | \n",
+ " 18702 | \n",
+ " 24 | \n",
+ " 15 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1695 | \n",
+ " 199108 | \n",
+ " 7 | \n",
+ " 13289 | \n",
+ " 8813 | \n",
+ " 17765 | \n",
+ " 23 | \n",
+ " 15 | \n",
+ " 31 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1696 | \n",
+ " 199107 | \n",
+ " 7 | \n",
+ " 12337 | \n",
+ " 8077 | \n",
+ " 16597 | \n",
+ " 22 | \n",
+ " 15 | \n",
+ " 29 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1697 | \n",
+ " 199106 | \n",
+ " 7 | \n",
+ " 10877 | \n",
+ " 7013 | \n",
+ " 14741 | \n",
+ " 19 | \n",
+ " 12 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1698 | \n",
+ " 199105 | \n",
+ " 7 | \n",
+ " 10442 | \n",
+ " 6544 | \n",
+ " 14340 | \n",
+ " 18 | \n",
+ " 11 | \n",
+ " 25 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1699 | \n",
+ " 199104 | \n",
+ " 7 | \n",
+ " 7913 | \n",
+ " 4563 | \n",
+ " 11263 | \n",
+ " 14 | \n",
+ " 8 | \n",
+ " 20 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1700 | \n",
+ " 199103 | \n",
+ " 7 | \n",
+ " 15387 | \n",
+ " 10484 | \n",
+ " 20290 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1701 | \n",
+ " 199102 | \n",
+ " 7 | \n",
+ " 16277 | \n",
+ " 11046 | \n",
+ " 21508 | \n",
+ " 29 | \n",
+ " 20 | \n",
+ " 38 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1702 | \n",
+ " 199101 | \n",
+ " 7 | \n",
+ " 15565 | \n",
+ " 10271 | \n",
+ " 20859 | \n",
+ " 27 | \n",
+ " 18 | \n",
+ " 36 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1703 | \n",
+ " 199052 | \n",
+ " 7 | \n",
+ " 19375 | \n",
+ " 13295 | \n",
+ " 25455 | \n",
+ " 34 | \n",
+ " 23 | \n",
+ " 45 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1704 | \n",
+ " 199051 | \n",
+ " 7 | \n",
+ " 19080 | \n",
+ " 13807 | \n",
+ " 24353 | \n",
+ " 34 | \n",
+ " 25 | \n",
+ " 43 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1705 | \n",
+ " 199050 | \n",
+ " 7 | \n",
+ " 11079 | \n",
+ " 6660 | \n",
+ " 15498 | \n",
+ " 20 | \n",
+ " 12 | \n",
+ " 28 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1706 | \n",
+ " 199049 | \n",
+ " 7 | \n",
+ " 1143 | \n",
+ " 0 | \n",
+ " 2610 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1707 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202333 7 3664 956 6372 6 2 \n",
+ "1 202332 7 8068 1178 14958 12 2 \n",
+ "2 202331 7 3318 1398 5238 5 2 \n",
+ "3 202330 7 5821 3269 8373 9 5 \n",
+ "4 202329 7 13558 8297 18819 20 12 \n",
+ "5 202328 7 6700 4043 9357 10 6 \n",
+ "6 202327 7 7253 4599 9907 11 7 \n",
+ "7 202326 7 9192 6223 12161 14 10 \n",
+ "8 202325 7 11498 8257 14739 17 12 \n",
+ "9 202324 7 11115 7968 14262 17 12 \n",
+ "10 202323 7 12563 6134 18992 19 9 \n",
+ "11 202322 7 12184 8125 16243 18 12 \n",
+ "12 202321 7 11349 7598 15100 17 11 \n",
+ "13 202320 7 9000 4615 13385 14 7 \n",
+ "14 202319 7 9344 6091 12597 14 9 \n",
+ "15 202318 7 10671 7291 14051 16 11 \n",
+ "16 202317 7 9184 6162 12206 14 9 \n",
+ "17 202316 7 11387 8014 14760 17 12 \n",
+ "18 202315 7 14040 7613 20467 21 11 \n",
+ "19 202314 7 15247 11032 19462 23 17 \n",
+ "20 202313 7 13322 9700 16944 20 15 \n",
+ "21 202312 7 10374 7218 13530 16 11 \n",
+ "22 202311 7 4919 2880 6958 7 4 \n",
+ "23 202310 7 4854 2731 6977 7 4 \n",
+ "24 202309 7 7004 4548 9460 11 7 \n",
+ "25 202308 7 8175 5316 11034 12 8 \n",
+ "26 202307 7 6595 3782 9408 10 6 \n",
+ "27 202306 7 9595 6017 13173 14 9 \n",
+ "28 202305 7 6237 3907 8567 9 5 \n",
+ "29 202304 7 6299 3973 8625 9 6 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1677 199126 7 17608 11304 23912 31 20 \n",
+ "1678 199125 7 16169 10700 21638 28 18 \n",
+ "1679 199124 7 16171 10071 22271 28 17 \n",
+ "1680 199123 7 11947 7671 16223 21 13 \n",
+ "1681 199122 7 15452 9953 20951 27 17 \n",
+ "1682 199121 7 14903 8975 20831 26 16 \n",
+ "1683 199120 7 19053 12742 25364 34 23 \n",
+ "1684 199119 7 16739 11246 22232 29 19 \n",
+ "1685 199118 7 21385 13882 28888 38 25 \n",
+ "1686 199117 7 13462 8877 18047 24 16 \n",
+ "1687 199116 7 14857 10068 19646 26 18 \n",
+ "1688 199115 7 13975 9781 18169 25 18 \n",
+ "1689 199114 7 12265 7684 16846 22 14 \n",
+ "1690 199113 7 9567 6041 13093 17 11 \n",
+ "1691 199112 7 10864 7331 14397 19 13 \n",
+ "1692 199111 7 15574 11184 19964 27 19 \n",
+ "1693 199110 7 16643 11372 21914 29 20 \n",
+ "1694 199109 7 13741 8780 18702 24 15 \n",
+ "1695 199108 7 13289 8813 17765 23 15 \n",
+ "1696 199107 7 12337 8077 16597 22 15 \n",
+ "1697 199106 7 10877 7013 14741 19 12 \n",
+ "1698 199105 7 10442 6544 14340 18 11 \n",
+ "1699 199104 7 7913 4563 11263 14 8 \n",
+ "1700 199103 7 15387 10484 20290 27 18 \n",
+ "1701 199102 7 16277 11046 21508 29 20 \n",
+ "1702 199101 7 15565 10271 20859 27 18 \n",
+ "1703 199052 7 19375 13295 25455 34 23 \n",
+ "1704 199051 7 19080 13807 24353 34 25 \n",
+ "1705 199050 7 11079 6660 15498 20 12 \n",
+ "1706 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 10 FR France \n",
+ "1 22 FR France \n",
+ "2 8 FR France \n",
+ "3 13 FR France \n",
+ "4 28 FR France \n",
+ "5 14 FR France \n",
+ "6 15 FR France \n",
+ "7 18 FR France \n",
+ "8 22 FR France \n",
+ "9 22 FR France \n",
+ "10 29 FR France \n",
+ "11 24 FR France \n",
+ "12 23 FR France \n",
+ "13 21 FR France \n",
+ "14 19 FR France \n",
+ "15 21 FR France \n",
+ "16 19 FR France \n",
+ "17 22 FR France \n",
+ "18 31 FR France \n",
+ "19 29 FR France \n",
+ "20 25 FR France \n",
+ "21 21 FR France \n",
+ "22 10 FR France \n",
+ "23 10 FR France \n",
+ "24 15 FR France \n",
+ "25 16 FR France \n",
+ "26 14 FR France \n",
+ "27 19 FR France \n",
+ "28 13 FR France \n",
+ "29 12 FR France \n",
+ "... ... ... ... \n",
+ "1677 42 FR France \n",
+ "1678 38 FR France \n",
+ "1679 39 FR France \n",
+ "1680 29 FR France \n",
+ "1681 37 FR France \n",
+ "1682 36 FR France \n",
+ "1683 45 FR France \n",
+ "1684 39 FR France \n",
+ "1685 51 FR France \n",
+ "1686 32 FR France \n",
+ "1687 34 FR France \n",
+ "1688 32 FR France \n",
+ "1689 30 FR France \n",
+ "1690 23 FR France \n",
+ "1691 25 FR France \n",
+ "1692 35 FR France \n",
+ "1693 38 FR France \n",
+ "1694 33 FR France \n",
+ "1695 31 FR France \n",
+ "1696 29 FR France \n",
+ "1697 26 FR France \n",
+ "1698 25 FR France \n",
+ "1699 20 FR France \n",
+ "1700 36 FR France \n",
+ "1701 38 FR France \n",
+ "1702 36 FR France \n",
+ "1703 45 FR France \n",
+ "1704 43 FR France \n",
+ "1705 28 FR France \n",
+ "1706 5 FR France \n",
+ "\n",
+ "[1707 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation comme nouvel index de notre jeux de données. Ceci en fait une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans le sens chronologique.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et le début de la période qui suit, la différence temporelle doit être zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\" d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations que nous avions supprimées !\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "ok premier regard sur les données sans incohérence"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcXUWZPv6893anO3tCdhIgQMKSIFtiBGSRTYL4E1QYozOCMzgog1+30RF1mBlHUJxRUVRQFBXQERBUUDbZBAIhJGEJCUnICtnIRpbO1um+t35/nFPn1KnzVp06d+m+na7n80n63rp1quqcU1VvvTsJIeDh4eHh4eGKQncPwMPDw8OjZ8ETDg8PDw+PXPCEw8PDw8MjFzzh8PDw8PDIBU84PDw8PDxywRMODw8PD49c8ITDw8PDwyMXPOHw8PDw8MgFTzg8PDw8PHKhqbsHUCmGDx8uxo8f393D8PDw8OhRmDdv3mYhxIhq2uixhGP8+PGYO3dudw/Dw8PDo0eBiN6otg0vqvLw8PDwyAVPODw8PDw8csETDg8PDw+PXPCEw8PDw8MjFzzh8PDw8PDIBU84PDw8PDxywRMODw8PD49c8ITDo0di3htvY/FbO7p7GB4evRI91gHQo3fjwzfPAgCsuv6Cbh6Jh0fvg+c4PDw8PDxywRMODw8PD49c8ITDw8PDwyMXMgkHEbUS0QtE9AoRLSSib4Tl/0VEa4no5fDf+5RrvkpEy4hoCRGdp5RPIaJXw99uJCIKy1uI6K6wfDYRja/9rXp4eHh41AIuHEc7gLOEEMcBOB7AdCI6KfztBiHE8eG/BwGAiCYBmAFgMoDpAG4iomJY/2YAVwCYGP6bHpZfDmCrEGICgBsAfKf6W/Pw8PDwqAcyCYcIsDP82hz+E5ZLLgRwpxCiXQixEsAyANOIaAyAQUKIWUIIAeB2ABcp19wWfr4HwNmSG/Hw8PDwaCw46TiIqEhELwPYCOBRIcTs8KfPENF8IvolEQ0Ny8YCWK1cviYsGxt+1ssT1wghOgFsBzCMGccVRDSXiOZu2rTJ6QY9PDw8PGoLJ8IhhCgJIY4HMA4B93AMArHT4QjEV+sBfC+sznEKwlJuu0Yfxy1CiKlCiKkjRlSVwMqjF2LB2u1YuqGtu4fh4dHjkcuqSgixDcDfAEwXQmwICUoZwM8BTAurrQFwkHLZOADrwvJxTHniGiJqAjAYwNu57sTDIwPv/9FMnHvD0909DA+PHg8Xq6oRRDQk/NwXwDkAFoc6C4kPAlgQfr4fwIzQUupQBErwF4QQ6wG0EdFJof7iUgD3KddcFn6+GMAToR7Ew8PDw6PB4BJyZAyA20LLqAKAu4UQfyGiO4joeAQipVUAPgUAQoiFRHQ3gNcAdAK4SghRCtu6EsCvAfQF8FD4DwBuBXAHES1DwGnMqMG9eXh4eHjUAZmEQwgxH8AJTPnHLddcB+A6pnwugGOY8r0ALskai4eHh4dH98N7jnv0eHziVy/gvpfXdvcwPDx6DTzh8Ojx+NuSTfjcnS939zA8PHoNPOHw8PDw8MgFTzg8PDw8PHLBEw4PjxriG39eiDmrvAuSx/4NTzg8PGqIXz27Cpf8dFZ3D8PDo67whMPDw8PDIxc84fDw8PDwyAVPODw8PDw8csETDg+PGsGHV/PoLfCEw8OjRvB0w6O3wBOOBsayjTuxdtue7h6Gh4eHRwIu0XE9ugnnfP8pAMCq6y/o5pF4uMAzHB69BZ7j8PCoEbyOw6O3wBMODw8PD49c8ITDw6NG8PxG7bFy8y78+ZV12RU9uhRex+HhUSN4SVXtcfW98zF75ds4feIIDO7X3N3D8QjhOQ4PD4+GxeyVQcDIjnK5m0fioSKTcBBRKxG9QESvENFCIvpGWH4AET1KREvDv0OVa75KRMuIaAkRnaeUTyGiV8PfbiQiCstbiOiusHw2EY2v/a16eNQXoouFVdc/tBjjr36gS/vsLnhurrHgwnG0AzhLCHEcgOMBTCeikwBcDeBxIcREAI+H30FEkwDMADAZwHQANxFRMWzrZgBXAJgY/psell8OYKsQYgKAGwB8pwb3VjNs3tmOe+at6e5heDQ4unpz++lTy7u2w26Et1hrLGQSDhFgZ/i1OfwnAFwI4Law/DYAF4WfLwRwpxCiXQixEsAyANOIaAyAQUKIWSKYBbdr18i27gFwtuRGGgGfumMevvT7V7B+u3fG8/DoDniy0Vhw0nEQUZGIXgawEcCjQojZAEYJIdYDQPh3ZFh9LIDVyuVrwrKx4We9PHGNEKITwHYAwyq5oXpgw469AIDOkp++Hh7dgbLnOBoKToRDCFESQhwPYBwC7uEYS3WOUxCWcts1yYaJriCiuUQ0d9OmTVnD9vDoUvi9rX4o+2fbUMhlVSWE2Abgbwh0ExtC8RPCvxvDamsAHKRcNg7AurB8HFOeuIaImgAMBpDKvymEuEUIMVUIMXXEiBF5hu7Rzdi9rxNbdrZ39zDqinoox59cshGb9/Pn5gKv42gsuFhVjSCiIeHnvgDOAbAYwP0ALgurXQbgvvDz/QBmhJZShyJQgr8QirPaiOikUH9xqXaNbOtiAE+IBpwpd81ZjScWb+juYfRIvP/GmZhy7WNOdbfv7sCFP3kWb27ZXedRNTZKZYF//NUczLjleWu9BlwqNUcvuMUeBReOYwyAJ4loPoA5CHQcfwFwPYBziWgpgHPD7xBCLARwN4DXADwM4CohRCls60oAv0CgMF8O4KGw/FYAw4hoGYAvIrTQajT8+Mll+Kdfz626nS0727Fq864ajKjnYEWO+31wwXq8snobbvrbsjqOqPao1ebWWSrjueWbI4KwbONOa/3esKn2hnvsScj0HBdCzAdwAlO+BcDZhmuuA3AdUz4XQEo/IoTYC+ASh/HuFzj1O09iT0fJR72tAcoNJPyu1Uh+9MQy/PDxpfjtJ9/Vpf02MrxyvLHgPce7AXs6StmVPJywdfe+7h5CzSG5s7e273Wq3ytEVd09AI8EPOHw6NFoKjbOFK7VBi5NDF1P2fvzploIH4bnOBoLjbPqPDw0OO0VDbSf1Goo0vXVda+U9b7/1yV4fsWWGo2iMSD9gHsDV9WT4AmHR49GV8eH6gq4cBzrlJTC8hnc+MSyTAusngpPNxoLnnB49Gg00oZSq7FEp2xLnVOuf6I2nTU4YiLarcPw0OAJR4Ni977O7h5CtyFPkLKGkn3XjHAEf0uOu2UjPYJ6YX/kLHsyPOFoUPx1oXc0dMH+uJ0QvFxfohBSUZ+Oo7HgCYdHw8LllNlIHEetTsWxJZFjv2I/JjLeqqoh4QmHR49GI+0ntdNxBH/dzXGF1wF4dCk84fDo0XDVA7ji3dc/ga/cMz/63ra3A4++1rViw0g8k4Pj2F9P5Hl9Wjy6Bp5wePRofPo382ra3tpte3DX3DidzJd/Px//fPtcrHSItZVna5uz6m3c9/LaVPmSt9pw55yg/13tbgYSArUnoI0GTzcaC5mxqjw8Gg2qPH/+mu117WvVloBg7NmXHSYmj57hkp/OAgBcePzYRPnMZZujz99/9HWntoTYf0VVecV2Hl0Dz3F4dBvumLUKr29oy31dp+Mu2d5ZwtOvBwm/Nu5wi/tkQleZg1aSL3l/5jgiC7NuHodHEp5weHQbrrlvIab/4Onc17lukv/78BJc+ssX8OKbW/HBm57L3U9eqKN6ZOFbuH3WqtxtUAWUY8++0n5rrhqHX/Gko5HgCYdHTVEqC3z7oUXOWes4GpC1eXaU3HbJN94OEkFt3LEXa5UQHZWAHHgBdW/71B3z8B/3LczdT6ECyvGubz2OWftZjCoJ7znemPCEw6OmeGbpJvzsqRX42h9erVsfrhxHn6Zgerd3Vn8cdxFV1UKcVQnHAdTeSKBRIMOvvLllN26dubKbR+Mh4ZXj3QghRLQw9hdIJaYrV1AJXHUcLWHI9Y5S5Rt6V7+f/W0+VAv5NP71968AAD50wlgM7d+n+wbkAcBzHN2K/VFsm3VPtZBV5+U49tWA43BCDd5ntWRjf6c7pf1x0fRAZBIOIjqIiJ4kokVEtJCIPheW/xcRrSWil8N/71Ou+SoRLSOiJUR0nlI+hYheDX+7kcLjFRG1ENFdYflsIhpf+1ttPOzPJoamk3MtbtmVm4kJR9dkXKzF26x2469ER6Jj5eZd2L6no+p2agLtdhopVXBvhgvH0QngX4UQRwM4CcBVRDQp/O0GIcTx4b8HASD8bQaAyQCmA7iJiIph/ZsBXAFgYvhvelh+OYCtQogJAG4A8J3qb63xsT+ugUyOowZtOXMcoahqXx3FZpXAxnVVu/EXasBxnPndv+HCH8+svqEaQL8dz3E0BjIJhxBivRDixfBzG4BFAMZaLrkQwJ1CiHYhxEoAywBMI6IxAAYJIWaJYOXcDuAi5Zrbws/3ADibeoGwd3/mOEyoxT276jgkx1GNjiMP8mbs41C9qKo2y2bVlt1seXtnCef/8BnMWt41Vlz6/eyPh62eiFw6jlCEdAKA2WHRZ4hoPhH9koiGhmVjAaxWLlsTlo0NP+vliWuEEJ0AtgMYlmdsPRH7I93I2rdqcc8uHMfsFVuwaP0OADWyqnIYt6tVle3U3Agchw2rNu/GovU78J/3L6hvRyH0x+FFVY0BZ8JBRAMA3Avg80KIHQjETocDOB7AegDfk1WZy4Wl3HaNPoYriGguEc3dtGmT69AbFp0N7rW1fU8Hbnl6eS6FdlZVyXFUoyR34Vo+csvzeHJJMEeqUY7XYx+2Ej5Dhw/MX+/Udi10HDZI/VJToXvsanojl96IcHr7RNSMgGj8VgjxBwAQQmwQQpSEEGUAPwcwLay+BsBByuXjAKwLy8cx5YlriKgJwGAAb+vjEELcIoSYKoSYOmLECLc7bGB0dpEIpVJc86cF+NaDi/FcBWKJrO2rmvWf99rfPv9G5X3lqVtHUdVV//eiU9v1JhxSTLhkQxueXLyxrn0B6efhGY7GgItVFQG4FcAiIcT3lfIxSrUPApC86/0AZoSWUociUIK/IIRYD6CNiE4K27wUwH3KNZeFny8G8IToBTEGGklpu3zTTsy4ZRZWKVFgt+wKvL/znPKyaro0leWlnXdmtDlGma0WrsOqp6iq3prBznDOlsoC//jrOXXrp1QWeO8NT2Hr7o5UuUf3w4XjeDeAjwM4SzO9/Z/QtHY+gDMBfAEAhBALAdwN4DUADwO4Sggh7SGvBPALBArz5QAeCstvBTCMiJYB+CKAq2tydzkwZ9XbeGt7dYHw8sImQulq04A/vbQWz694Gw+8GotEOjqDRSqtk2qBSFRVsxbri3q8BhshbgRzXBu6ytBg975OvL5hZ6rcE47GQKbnuBBiJvj186DlmusAXMeUzwVwDFO+F8AlWWOpJy756Sy0Nhew+Jvnd1mfjcRxyBesis/aw/E1N9WOcNRi2XdVpNq8cGWSbQre6glHdddnIc/GvbFtL4QARg1qzd2PyTqs0fWCvQXec1zB3o6unZT1DMtRKdRNuSPkiFSOY/aKLXhjS3ZSI9MGWAvleFcKMfNs5K7jsm2+LhyD7dkV60w5OnJs3NOuexzv+tbjFfVjukdPNxoDPlZVN4Ao2GS6LBSGC8INS12vkrA1K4TjI7c8DwBYdf0FFXUj229MniGNehCp+kpb6ks4usoc1kQg8hAuj/rBcxwG/PCxpRh/9QNor0O4iuYo+J55EXS1aYDcbtRuK+GIsjiJXKa9xjZyDKgBYdNxuHEc5t/qLarqKt2b6RntjzYzX/r9K/jIz2Z19zBywXMcBtw6cwUAYO++2p9wmguEfQD2dZoXQVfbq3MbQt7D5Zad7bht1iprnYjjqMYctwv5lXqIqqpVjtu6qbdy3CUvSS1gsjxrQOlu1bhn3prsSg0Gz3F0IcplgT+/si6SQ9uU411pPLJsYxt+8NjS4AuzYF036i/c/QqeXWb3+YitqnqGjqMeqKdlUBbHsbejhLvnrK785N7NHId3AGwMeI4jA1t2tWP3vtqIq+6Ztwb/du/86HuHRcchF0hXiAYeWbgh+swtSyECbqKlucj8GmP77n3KN0N03ArGV482cvdZw5AjNjF9tcrxrFhVNzz6On729AoM6tuM6ceMzuwr1X7uKyqD6Rn5kCONAU84YF+IZ33vqZr1s0lLp2rjOOSYujrSo/oo4nzPwJRrH8PwAdUn0Imtqipvo1Hl3DURVbn0Y/kty6pKzsGddXaK3OKQOviHjy3Fxra9uO6D70j9ZuY4qh6aRw3gRVXgF3ytg/Mu37QT//vIkkSZTfksF0h3BgnWn8vmnfv4igweW7SB/8Fl4Wfc8uOL6h/qQke1ugcVNs/xal93vabLlp3t2NvhznlPufaxzDo3PPY6fjv7TfY3kzjPh1VvDHjCga6ZjD96fGmqzBa1tStlueoJnhO31FIZXe2Jcc6qt/HjJ5c51+/Xxy5ec0UtX8ejrxmIqiNsYynWiXJMufYx/MMvZltnwuW/noN3/OcjNenPdI/7s6jqmaU9J3CrJxzomk16D3Nac+I46jUgBertc4/C+fG4yOdRnajqE798IVf9ajfSfFZVbjd1/UOLbT1m92PZvpuK/PVbdrYn/IZMY7Xdw9w3tlrZqscXb6woLtjUax9LrQXTYW5/Vo5//NZ8c7s74XUc6BpvVE7Bbjs8RTqOLpZU1XtZynuulIvJe+As1NuxQUHdn11ZZN5P0RDufMq1j+H8Y0ajbwYHlhWLqh6m0Jt3tmPrrn0YqYQmMREIH6uqMeA5DnTNKYab8LbTnWTJu8JuPuvua/l4qlVs56UDXUg3agLbQUF6TdseYZPlhh9a8JbSD1/vZ08tt46vXktF5zBMIilPNxoDnnAgv45DZpbLA87axdZttEC6muOo88LM4wDI1cnr4GY6gdcDlTw73frI1oZL/hZOVMURaxMBf2uHPUJ03QiHRhFMBII75L2+oQ2/eGZFPYblYYAnHAAEI6qy7U9z39iauw9uw7NyHN1kjsvBVTzhZEpa7caT84HUMCK8A/Lf3JRrH8ODr7pl93PJtd7MEEr1sk1tdjPZrC7qda7Q54XRqoop/8CPZ+LaBxbVxEx7Z3tnl6dX6Ino9YTjq394Ff98x9xc11SymXMch13HEfbVBZQjoRznrKpqKaqSyvEKr8/7OGoVgqNWsn0ua96cVXGyS9twZRIla6wqZkWrp/Rnlm4O+wk6atvbgftfWafUztBx1InlSHMc7spxGdW6FvqPC388Eyd9u7KIvr0JvZ5w/O6FN/HCylSWWisq2YtYjsNSvyvjMSX64qyqathXpByvcAPK69dSdUa9HKTK5ZZeq0DMKeHCcfCcbbqefP5X3/sqPvu7lyLxa5ahSL1mpU4QKgk58u2HFjuF/Ldh+abqrq8WjZhqgUOvJxyVoJLNiNNZ2kVVwd96K8d3tnfiR0/EfhHqiGzEa8lbbRX1V+2JNe+jrzY/RR4C/lfGP0O/X90JVIdttHFIevOYeM7WXH/ttj0AYqu/LEOReuk40oTDUM+yr946cyWuuH1eDUfV9cgSJTYKPOGoAJVsRbzS0lzfNVbVL55ZgfFXP4DvWjakDTv24u1dvNf3dx9ZkmDxF67bzowzPdC123anylw29dgc14xakkreKKE+ux9HFNQNcMWmdCpUIHk4cOFCbcNvZeKJ5bndbKamXqIq/btBx8HcjDrvenq+jm4MFJELnnBUgFqJqmynu0jHYWnzzS27ce0DiwAAN/3N7E39rm89jhO/+Sj72y7NYUuNbrv67eA0yo2yck6oOgfAvNdx7ypPG673+fTrvNevSqT+6ddz+D4cH6WLCJ+7Nxdz8zguWVz3Ty+tdWq/FkhblxlEVcxDUB/fVsMByaO2yCQcRHQQET1JRIuIaCERfS4sP4CIHiWipeHfoco1XyWiZUS0hIjOU8qnENGr4W83UiiwJqIWIrorLJ9NRONrf6v5YFvLlWyanGzetgYjPw7LrqJuCLWMaXXXnGT8IHYNV9hdV9vhc1ZGpiG8uSXNRUXXWMa9btseXGrwaFfv10VHYRdVuRgWpH+1HlAs319evQ1CiIT4pF6v77JfJZ+fiePIeoTb93TUakgeFrhwHJ0A/lUIcTSAkwBcRUSTAFwN4HEhxEQAj4ffEf42A8BkANMB3EREkn++GcAVACaG/6aH5ZcD2CqEmADgBgDfqcG91Q812qNtC9ol5Igqhqnu/J/Ebc+9kXldxf3JDivcgS6eMi5X/T5NDOEwPPf33fiMsR3bcK2ZHJUrmw22weqztIqqHAwLWEW4pU19DMnDSKA3eOd1ccBCF46jEusm3WPd1AQnqlK5+Z7mILhgbVo03BOQSTiEEOuFEC+Gn9sALAIwFsCFAG4Lq90G4KLw84UA7hRCtAshVgJYBmAaEY0BMEgIMUsEM/927RrZ1j0AzqZaHqFrjQomJ3czLjoO2w6tPqFaPq10W2437DKEahM5jRzYkqs+SzgMdW2hxm3WOrb3qP62cjPfhuu7c8sJwpTlEPvrfTylieBc3htncpwXeVLHNvBOkQn9WXVVhsVqkUvHEYqQTgAwG8AoIcR6ICAuAEaG1cYCWK1ctiYsGxt+1ssT1wghOgFsBzCM6f8KIppLRHM3bapvJMlaH1x4Wbvt5JitRU7kzqjjhKtl2PmujlHXhznl5xnDhtCT+nN3vmys48IluMLlMGHvL5+oSu8wwXEwc0pviuvvh1okaK7OnozkaHliVfWUzZYDF/y0J8CZcBDRAAD3Avi8EMJmjM4eri3ltmuSBULcIoSYKoSYOmLEiKwhVwVr+OYK5ml+jiOsY2mzqwK+1VDFUXUip7yXtTRzHId7Ky6KZZcIADa4EuFIypfzIeSJxabWLFB6bCmdCNP0q5r4hZum+ywpBYB8nuM9mG6kCEdP4Z6cCAcRNSMgGr8VQvwhLN4Qip8Q/pU81xoABymXjwOwLiwfx5QnriGiJgCDAeTzyqsxKt2T3/+jZ3Dmd/9WdR/xBmuuVEqyHDVDpZM3Dxfi8nhr4cXu6hAHVG6BZeUAsi+HfWuOkUUAjh03mBdVOYwhqqvpOPT5p3+vlLBW6i/Ccr+ZI2hc6AS0qznySuFiVUUAbgWwSAjxfeWn+wFcFn6+DMB9SvmM0FLqUARK8BdCcVYbEZ0Utnmpdo1s62IAT4g65gc9/4fP4NaZK611Oiu0B1+wdgcry+atqrKV47aHoHJFeRePECL8l/5N1/XyoqqcHYaoNhJxXt1IHk9cJ7aXq1PlAcC1rSzxJRmuz8P1ZE37ZRuTvihOJsKOZcl24xofPGFs9DnLj6N/jRJ3LVi7vUuSRuld9JR8Iy4cx7sBfBzAWUT0cvjvfQCuB3AuES0FcG74HUKIhQDuBvAagIcBXCWEkPzYlQB+gUBhvhzAQ2H5rQCGEdEyAF9EaKFVD3SUyli0fge++ZfXrPVsYqBK9kzuGjeOw1ynpJ0Odeze14mHDAH0Lv3lCzj0qw+yG7FuC//im+mgji5yZT4qq/k3HX94Me1HkBcHHdDPOAYdHHFXF/L0HzyNd1//BHOlTVcV/LXll3dFpuc4Eb9J24iR9l038dafiRplwDoWQ5vxmOzXqetPDRXPtaXOxQuOHZM5Hhe8/0czcXNGiPlaQCdOPYNsOCRyEkLMhHmvPNtwzXUArmPK5wI4hinfC+CSrLHUAlt3uzkIudjc61hu8AwGkFvJIUNo2xZmlo7j3+6Zj7/M5wmHDHbHQfe25sKLuISiLwtAd5ivmuNQLr/g2DF4wHB/EkP6NqfbyLE81f4WVxBmRW6Qe/dZCIfyjKwcZsawCfyG7MRxMP3XKtoxzwXZr1F/V6MucFyAOl1rySRUE1fMFa55SBoNvc5zXG62WaIWfbKPG9o38iFQs6h1lMrRYj37e0/lGottjpQckvZkiRVe31BZPCmdcPyR8SDO8uAFDByH9jcL469+AM+v2ML+9slTD3VsRR8XX85zhS4y/OzfdneYTX0TIUcsbclcGXl0NAA/z6L3oP2WeGcOlKNyIwf7hepzb1KcODnGTeWKTON5bvlmnPY/T2Rac6nIOpTUAj1FNKWj1xGOWFSS77oCET55WrBRyTzWnaUyJn79IXzrwUWZ17OmjZbFIzke2zDV0wp3Py6Jfzi4TGYXiy52w3IQwenikRm3PO9Uj6/DjEH5vHLzLkz6j4fx5pbd/MZboQxfQj7LPBuWCZdl5Fs3PY086sIde2MCRw4CSZe5wtbJ5DgUwlHMElWpzfINX/fAIqx+e09KR9Pd0A9gPYWQ9D7CUeF1BYotdOS7lqZ0v3thtemyCHktdqIJZOVK7ISj0oBvLnPXTVSVrvOnl9bhnnlrKnYATFj9ONTnfRHiNu6Ztxq795Vw/yu8PqVqjiP8a7PXp4SoyqG/nGPJY4m0QckA6GIA4fIWKxFV5dFx7O1Unq2hXbl2N7Y1VpIm/Tn0ELrRCwlHhW+mUKBIlionr0wg09JUyGw3r3LcRcdxz7yYYHH1Si4cB7uoHYiCA8exl9ks73j+DXzp96/gwQrFAAlJisPGlsVxZPbHlM1d9TYu+smzaA83LLt1XPCbzW+hEos4th0idiyscjp1bfC3QxlnnkgANnA1sgik2myT4sTJ9aeGKzGNR67dy2/Ll7St3kjpOHoI5eiFhKOy64ITi+Q4JOEINo6WpkJFSjl98dwxaxUuvvk5APGJyzTeclkkOB2u/0oU/LY+E/1zp1htp7HFvFJFInmQVN7W1nvdxVMaAL7+xwV4efW2yOza+ryyGUensbnAbI5r6S8c2TV/WoCr752PdTnTprrNFY6YcW3FhSrHUVQmVpZxmuleGzWCUcpPppvGkReZVlUeAQJRVfBZvmt54mxpLmaeFFxEVdfctzD6nKXjuOWZFVpbDMfhQDi4Gm6nyHSdOavcc7HXYhk7cRxcYTj019btwE+eXG6tzDohamV2kSNfZ/iAFmwOQ4knRVXZMNUJHPaY+hl6AQB4Zc12vLIm6fHtkrDMhYN3HVOpLCJ9hjoH1eedNTdNItQq83nVDe0dugNgzyAdnuNwRIEoWkhyIktRVXORMjdp7jR75wtvMjUDxBz0/1yhAAAgAElEQVQH3+7CdUlTQa5WpWkoyyJ7ArswM81N5tVa6QEw9/uz+Gao0XCJkm/IpsTXI7naxC5x8qVknSmHDIn7NpDRb144mW/TwjHxoipuXPa2AEcdR4WULoszShAOtTxj4tnEeI2IVs1hsYfQjd5HOCqFSjikzjnK0geq6IXbxDXSc70aEUfF4iDBe5TrdbKgBhjUT3wVB0nMycwTgDGDWxNlJSGwjfHnaVfk+zbru3ZNd+PEcWjlptO8+lzPnTSarfPLZ1fynRkeacX53R3qVGpVxROOuFC1QlNpRZZRhskepFE5DiEEJowcEH3vIW4cvY9wVGrNUyjEJzA5waOcGeQQeydnv5JZyLPmt+3eh/99ZDE6c3AaJl+LWijpBrbGktAmLaFSLXIru9IePW1vqSwyg+zJu+eeQ3vGtSrkBqg3U3DYyYb0a8aNHz0hVf7IwrdSZXdcPo3tp7NUNhOaDJRF9jOuPOSIXbSqhrgXBu6Dg4mwNCrH0VESiTwtle5PXY3eRzgqfC+dJREt9phwuMte8/ZbyjCl5ZbBN/+yCD95cjkefW0DvvHnhUwNN5SFcPDszb6h0YP7Rp/1zfvXz62qZGhJqyqHMzG3X3SUytknVymqYn7TrcVsTZ3z/afCOslKzWoSLsttcPSF6++0iSMC5bhW/tvZbzqZi3No78z2PXnzbXPWRAnemz1dT30nbQq3rFbNEgmbuCsXjuODNz3r3F6t0FEqo0/CM76u3dUMvY9wVHjd4rfaosUuFddS3rr4rTbcPXeN8dq8/W7e2Z6wiHKdvHJDa+8s41fPrnK6hj0NitoQQrWNYo1OfGq3bsrxdKVSWaQ2oHXb9iT7CX/m/Qbyr269laLCgSV1K/FnIl6kZbpvYijHjoxUqrb36JIr4vN3vZRZJ8uCKqqnVFS5OrU8i+CbCItN0V8uC7Tt7cBLb25L/1ZnBqCjVPYcR09A1iZs8/BtaQoUWdISQp1UWUET8xxcpl77GOYrFi6sA5e2DvQwIa4wyZpfWZ1eRMk6Lo3HH11EMxLWmsqAK6VFnWWR8qr/7Wwtz3qk1E5fr29O+mI/oH+f1DUpUZXj2Ll6JiJsUo5L5A3RcvSYQZk8nW1ef+bMCUEd1jItDfWxqus0zyHKbI4bf9aNRr736BK847/+yl5XaZRsV3R0aqKqnkE3eiHhUD6Pv/qB1O+2wGYyDak8DdnY5lTUy5wzYrtyUnS5sqg4f5m4hS0703oFrm7b3k58xBDmIxqTw/2s2RqLMZrqoJ10eaTcHlsqi0yLszyvS6/7hXMmputobzFB6NVYS0o9Qjo6rVY9Va6PRa171lEjocN2mwEhssP2nMYMaTV2kmU+rv46pF8zW4eD2QEwfhCnfefJxPp8eEFaZyRRadgeV+wrldHcVMB3PvwOAJ5wNCyyXoyceKdNHJ76LSYcUuFpIRwOjj2tTHY6Di6btLoRmapPufaxVFmlSnCXq1S/lDwchw5187tRCevtsqi5XjtLImVSq0M+lg+dONZYR4rBUi05uKurBMEkqgJ4EYtJ7JLlK5SXK61WbCKfDy+qSpfpJrhD+zXjtn+ahk+fcbhSx97nM0s3834rysN5a8de/G5OzGEOZiIoc2OqB6SOY/iAFgBeVNXAcJORjhzYmvqtWCA0FynmOKyEQ+vV0SSRw/JN6cRQ3NhscnkTKuXE83JQ1TAcpo3SJccFd2lnuZzJcchnaNtUJJyc4LTvTCr0FIj452azELKNpMmlU7UtUZ2jphymq2+JXHs72ztxx/NvYOvuDpxxxAi0Nhfxx385JbiOuVAniJsYzlp/jtt2xxy97R3XexuXOo7YYrPOHdYIvc5zPGuNS6JgovwtTUVWx6HDheNwnSPPLtuMI0cPjL7v2VfCTC2fhrow8sy9ijmOnJdVGh4kuJaHq9mx1E1F15Ud/FScWjbUtRwSfn7pVBwxagBrUstdynMc/DgCfyLzyPOKC928ws119EgLiessMbWu+u2Lqd9OOHgoDhnWjz2sFQhQNZO720vAQL2O+d6thKPOVk7SHFceBrzneIMi67VEZrAGWXGxQKw5rg79t2pOEi2aSOvrf3wVW7QsfccfPDT+kqOvSseV97o8imy9aVPMLZdYXEQUpRP9l/cEIo/gZJslqjIrx+NxZtfR6w7p14xDhvXH5acepowx+NtRKuNPL8dRein6LwmbqMrOceQVVVVXJxZVuXHbsmz+Gt4wo0BkiJGWvK+8GQcHtto4jjrrODpDjiP83lM4jt5HOLJOmuHvejW5WAuKs58t/IGLqMp1TvbRRAxLmZwCA1uaKhJVPbZog3NdFa4LamMYptsl7pGE6/hdQ6qMCf1JRg0KxI+dpWyOI98CtmikZY2wivyF0zfc8vSKVGZG/bmVysKaU0K/L/VrMyOqsm2oQlTpOGfhONR3rEedNqFABlFVinCkr31yyabEd/W+bbqfrjDH7dNEynvuGZQjk3AQ0S+JaCMRLVDK/ouI1mo5yOVvXyWiZUS0hIjOU8qnENGr4W83UjgjiaiFiO4Ky2cT0fja3mISruGc9QVVjAiHynGY23ETVblNktZmLZ5NRuC9q//wqlO7JriINFxpUyXpVl19PkYPTuuhOPzvJcfixo+eEIn7hMuTd7i/SDnuxHGE17Cxs4K/mzXZPBGlxFI3PPq60b+CDDnHJeojqjL/Jt+juhYCwtcWXfeDjxyP/734uLCevS+V29fLbeOuNBMm11at0VN1HC4cx68BTGfKbxBCHB/+exAAiGgSgBkAJofX3EREcte7GcAVACaG/2SblwPYKoSYAOAGAN+p8F6c4CLbfmThW/jTy+sS5YeN6A8gWJzy5b6xxay03qnFiVq0Lm3m6zonhzF+ATrK5dqw1X2aCjh23ODMeq4LSi6IPAdXF5HKE/96Bo4aPcip/4GtzfjAcQfGQSqFu3Wd9UQuRVVaObc/R3HNWMun4Dd9YyekOY65b7xtHA/31NSyfn0UlabD63MLJ2LRqYTvUbVg+95fl+Cc7z+N5ZsCrql/S1MqIq6p3wLxwUT15/1zLXL0h296LnXNs8vidMS2uVnvjbw9FFXJkDwdjHPprvZOvMbsH92JTMIhhHgagHm2JnEhgDuFEO1CiJUAlgGYRkRjAAwSQswSwSq5HcBFyjW3hZ/vAXA2VcUf2+Gy3/2f5gwGBKHTgWCSyoV+7QPmlLHf++vr0eeOUhkrNqeJjOucdMkSJpAtfnGB62nftSt5Kq/2jeob+GEjBhhq8v2rYygLkUn45K+rtphDasTcabL8wyeOw9ghfbXKcjzmdoqF9HLUn1umFZyF0+2rRWLNQrXTSYrGVCe6uWHofRmrTCWOUgxl8/52EWPqURza2tPBPmcpeexthhv11HEIIbCno4R+fYpRXLedzFg//Zt5eN+Nz2TGV+tKVKPj+AwRzQ9FWVIzOxaAGhhnTVg2NvyslyeuEUJ0AtgOYFgV47IiW1QlEieYX33inQDi2EIFIicT1l3KBJAL4bKTD8k52gAuivayAP76WmX6ChWu0gyXDIBA9QQj6q/C9av2H8vSszdFERKXp17fZKkT11XR2lzEtz70jmRdSI6DE1UZOA5Kcxy2jTNLOd5PJRwO74UjrgNbm3DM2EFKHfP18n5Ufxt9/RUKsahJvmOTt3ahYA8RXylsc7Sekqq9HWUIEXCCA1oCwrFrX5pwzFkVnNsrTZNQD1RKOG4GcDiA4wGsB/C9sJw9UFnKbdekQERXENFcIpq7aZN5QVcDgXixDmxpQkvo9CfZaZdIuLJe1GZYfYx2Ck1G/bQp2l1kzbWZ4a7MnjPHYVGQ5kEtHLFUk0cX5bhuuZZnTDoR0JXjel8Ar6TNRThgf84J5XilhDijD64/dcPTE1sR0imZTc6ZRUZUtbO9MxEQ0Qa5OedBPQnH7pBI9OtTRL+WgKjvak/rr6QUoMdzHEKIDUKIkhCiDODnAKaFP60BcJBSdRyAdWH5OKY8cQ0RNQEYDINoTAhxixBiqhBi6ogRIyoZupNVldxg+jQV0BFOVLkITCaBOtT1LheEvi+ozeRStFfhTJgFyhhL3v7yKJBr0V+6/xgJHUcW5wlhjVuWrJuGkXBwOg6YOA7CiIEtiTLbuzHlHLfB9lw5IkWUzD1j600SwkQokfDi6x9eHLYXrzfZn1FUxSjHv3LvfMsIkjg81FPmQT09x2WwzNbmWMfB9SfnrYvDa1ehIsIR6iwkPghAWlzdD2BGaCl1KAIl+AtCiPUA2ojopFB/cSmA+5RrLgs/XwzgCdGtXjACb+8K5K99mgqRD8DBB/QDIMUBDhyHsmWpCZ8SPSnN2IKpuYjGajbBHTkq1/5iJzD38WWZb+YBL6rKllW5KNA5HYfc/HXOLWavzaa6RcYo4NDh/XHDR46LvufhON7Ysgu/ef4Nc+UMCJGupovDrKKq8H7+RXHok9UlcSA1s2bG8+Z0HGu27jHUZq43yGFtj6KeG1Ep5KyKBcWPg1P+FxqP48jk3YjodwDeA2A4Ea0B8J8A3kNExyN4rqsAfAoAhBALiehuAK8B6ARwlRBCHtuuRGCh1RfAQ+E/ALgVwB1EtAwBpzGjFjdmQtbkfHLxJrwYhlduaSpg6vgD8OOPnYBzjh4FIJi8TntYguMIiywz1Bow0UVU5TAkF5gsVyoFEaGzVMa67XuraqcWdFGNnZSt48g+IMQ5O4K//37B0bjg2DHh9TyXyM0BuVk0M8pxIIhSq/fJQW/7wzfPSpn4xgOSf8ztcb8E819k1AogufSNStIuffiBcjz4nDXPOVGVvOWjxwzC5aceii/9/hXj9XlifEm46vLyYM++EvZ0lCIv+KKSJI5/5sHfPAnE6o1MwiGE+ChTfKul/nUArmPK5wI4hinfC+CSrHHUClmbwctKOHEZ1PD9xx4YlakOgAf074O3DXLwhFWNkNeaZ6jNC9rFqqpW85soOwJp0J9bh0TA00vz6aOy/FTygLOqckqNi+xkVkL7cMzYwZGzYeqdWdqRdU0nYnXeLFhrN8tU78tINBzBPSOCux6M8xvRm1QNALLmXbFAKQWxHEq/PsWUWE+HadTW2F91YDku/MlMvL5hJz54QmAfVCBSxHXp+pGoqoEIh/cct0CPcQQkdRw28cu4oTHhMOk41DZKlmitqdMrt7HWSjkON8Khd8eFbJft1WJotbGqUjmOLG4i+5lGYUlkX+pvWvsuOg5zDCpXZIdB18HNcYmyEKnx6k6Jm3fyB6eHPndaIl1w9Cy1Z9onh/PbwNamlLlqLOYSzhaBOlx8dWqJ1zcEPix/fCkIL1MsUOJQo0MSlXrnBsmD3kc4Mn5XF4q0qNJ/d/EcV00QI8LBncDCaj9SwoXrqKWyOgtElJllDUg/x6/cy3urEwHPKzbzHFRC1VEqs+HSa6HDkfuYa/C+rFopCyFl8qS7CEVVFh2HWZTitiMS5T9AcEmnuLGpfbiEjzl6zCCokjep2NVH19JcjJToWWMf2NqcymgY6dCQPS5T63bDlOT3HXs78MeX7Nk+gXR6YRuKRBljDw+XZYFy+K+70fsIR46F1YchHKqM17aZqZthmdlYovGEf3/57EpzWyl5ebpOrU5GejyggQYTRv3ebTGvfv6M+d4AYMuumFuZ+PWH8OV70pYytYhSmuA4ssRQDnXk24t9NOJf9Ddt4zhsHKmtXEclB27peKbiwycGBpDs6RfuuVVU8+IodqjWZGtzIfFebBjQUsQuzdKNE0WaYOKk9TH9z8XHKr8lf7z63vn4wl2vWD25H16wHkdd8zCWOIbbIYrvwhYQsiwEJnz9QUz/4dNO7dYTvY9w5KjLcRyqA6BtY+HSXarrbcohQxO/2ZAWVaVh4mK/9r6jMttPghJj/8g7D2JrudJfl8ORHsSR7a9SHYeym6iL09SaFDEKB1FV2ichxrsOC3xY5Yk+EmcplZ75tzMT15t2viyO45yjR0aX52XMdN+Rof2a8e3QebEs0kPa2NbuTMjUKATy8LNWy+3e0lRMePTbQCnFPBIPPYvjMAWHtEe5Tn5fty0w8rDlY5dpiNduM0cdUFEgu7+TLOosBXo3KerqTvQ+wpGxsNRF+vULJjG/BxOtXBZseACJTsbpSZ3YLptlfH1y0NzJyZY/JA+IkmI201p05dxc2GqXpirlzheujXO3Rw6AMI8/kpk7kKpIbB+1H/9WLBDeO2kURoYK25iriCsddEA/DB/QpyqO41f/+E785O9PDPqvKu1SgL4J0ZFpPG79qJyJnLO6MUmS48gvIlVzfpjGJQ1VTjrMMSCFAD571gS2xwwaDwBRvp6+zW4Oh3s6SlauS3blIkLuKvQ6wpHFc6jzYQwTfVUqx3/7QjqelYrdyomE2xhMMl8OOjfBhR4wbaz6BM/a8AlBas0suM5hp/urod+Ijj+8FOe3UH1KTK2pitpscZZI/NWFRSoHwHElQZ3Y2MK08dsIwuhBrYnDQV7OzLZRmdpy5TjUjdx0gGhpKjr7cRAhNaHUZ2Mb1+lHjMCPP3YC+xs3t44IIymnhi3Nqi3jlBu86fnp1l8J3Rhzjfy5lmby1aLXEY48+w+bfa0QbBQbMvwS7lM2rDgyKuG7lwTOXIcN7585nhMOHpK4XoJTHpsIgi7myEp+5HqadH2MbkShNu1weM+RcYSBxMnWgShk9RmJqsLvKQskxJ7c5jq8KDNRx/JKVJPXSkRVnBg0K0yMq7KeE1XpaGkqRPedtTESYzWW0CsZxiWEwMiBLan0BPHv2ncIIzGL36P5Gcj7MN0P6+RnJZ5kba870PtSx+aoy80N6b2adepat30vOktlNBULCauZi6eMw/uPHYNbZ64Mx5Mc0WfOnIBLTz4Eb+3Yi/4tTTj7e0+lJhMXesC4yLXvMoyzCZz5JQd1U51tsZpy2cicxF4Vrpkrzzg8+hxxE5YQ9PFp24HjCNvYHuav1p9UcMgI6xq4EtWhtBIHtYJOOOTYHCmIXm1Xe2ciphd3tmbDxrMez/Fn06bX0lSI7iFbx5G+r1i0aBGrws4h3KF51x80tB+2h9ZbpjFZOY4swqG1WS4LhVhzRCX4+1smand3wXMcGji7/+TvoWjB4dQl540uqlJPPvp4hvRrxshBrTh23JAomql+WuMcgYwTXBtmu0WpVyBGlGKoq3bHhYzPGleyTmaVinUc6saqbjKmYUn5/ua2dtz4+FJ742Ebn7/rZQBpbo4Qh8h4eEGQY1x/H6pDqfrbc1efFbdjmWvqqV7NOW7KaR4PnRen7AgDBqpESIe+LjbvbMeit9JWRkVGx6GjqVhInbZVT3kVjKQqseGaCK9N/8HhlAnDFeKZbisLWYRDLy+VhV3HEQ790RpEv64Veh3HkQfcyUoudNs0/NQZh+FnT61I+Xsk2ers/rkMakCScAxqbcJxBw0xKupPm5AMBtneWcaOvR1s3cARKTkw0zpRT0Y2m/VaiaEqjlWlflasd0zNSae1r/9pgTVFa9BO8nsqCY+y+T4kCYc+PuKDZqpycNtUSTwXpT+TY17qeoM1XiBCc2oCp//Pk9jNBIRUN2ubmEUPOXLwAX2xaH2aEHGiODVAokkKwDkymiDNz7MsvWztyXs1iYX1JtX9hOsuD9HrKvRCjsNdxs/qOELRgvrTHZdPS9QZ3LeZ7TPvBDCFIdinWWyZNh8AOHhYv8T39s4y/vvPr7F1g9AHyTJOBKGfRm0xdGoVZ0vAbE5pA8dB2pTjkkNxyX2gt9KR4jiQVuZqDzh4lkk9COCeUEvdkPPMrihqsVEBzkfafcfYZHbIsUP6poiG9H9KKMct80A/bZsNPdJjkj2UymYjAkcBAQB+7Mm2Qu7Q0NdfF76FJWGq2nJZYNvuffjUHXOxbXdMyDm/rIhz4pTjbkPvUvQ+wpHxexZXoIoW4jJtM9BCib8UBk1M+hTYlGFxX0Edc6Wd7Z1BPcfjYXtnKZXWNu4vTTgunjqOrad2J80PObjI2m0muzKNbbksoqxxeUDMQcAWTkSqfzhzaT32UhbHweUAT+lB1GepVNZ1FyaklM4i8SfCF845QquW5IZ1BGbn6fJjFMLR0lTA0P7JQ9J5k0fh8S+eAcBNVCX7CsYSjslQl5vmsd5KGFMOB9e4bb+yPVk7rY9I1tNxxR3zos+dZYFbZ67EIws34LbnYj1KOjGbsMaqqmNC1IrR+wgH82JmfuVMPPbF01Pl3AtT5dZxWRJxGISg3r+GETsLDFGymU/qKTU5HDi41TmHBhBs8qrS8rzJo6LPxQKlTlKHDU+naA36izvkLGZ++g8nhmPPHpO8fOG67anf+od5soXgEx1xeHjB+sRYo8+qqCos+zuNMMr0rS3N6aXx0OdO08atiRD1AHxMHU7HITfVvKa0E0YOwPhhcY4JjlBJfOqMw9hys1FFQNBK2gvU57D+ft87aTQOClMQJKyqrKKqmBMELP4KjN5F3eCPHjMIR4wawCRsco9jFRkqFGS7btdxUAmC+m71NkcOCsSSZDgANiDd6IWEg1lag/o2R7bwWe+IO4lx4geAqaeGRzC0r1o8uYRiuPvTJxvFChKqvLy9s5wYx1emH4X7P/PusD/OqirdXkHZoFZu3oU1W5Mesgf074NxQ/uFY4/H9YlTxrPjk3UuuHFm6jd1s3f1mbxSyf+Q4PIiDi5en+dNHp24Vh5aOY5DF/vpT5yL3Jre6JIPtFiIY4PZNnEOj33xjIShBUeoJExcsZEHD0VoTy5JRjYuasYG+iFKDdNDqlWVg6hKPj4jF8RRDq39Uw4fnpiz67fvwead+5x1ZLIWacRM/90Fn7vz5SiFtLynIBZbcp6cdVScssGmHG8k9DrCwb35JiU6ZdZbKoS7gTqf9NNMLIZKdsZFt5RVTp0wHEAyxAdFp54g//Urq7dhsWa9MmZwX/bkp+KxL56BGz8aOD+1d5YSVKtAFG3yhUI62Br7NEJxXdveDpz53b/hDy+uTfwsFGWkGmLCZEfvkmPijuffiLiBLCQtjWIkT7b8Zi2V4xy3qXvh6+93WP+kYxeXu0VvtqlQiCIjuzpxmiAJlRACtzy9PPGbzq1liaoC8SdXHq8Vblgq4XDlOIrKPAfcog1IRCKe8BrSxv13P5sFIBYXc1DjdcVJ1+R3/hpXw4EoTUN4wZqteyyEkT/YeuV4A4B7Z5w1kQmFQnqjk9cO698Hv/vnkxQxVBKqNZRep6WpgMkHDkpsrqpV1Z/nr8eFP3kWf/fTWcm+IZXj5pk8uG8zxoen5faOcmIiFgtxcpwipc+2rElyOPBvPbjY2Ke87sFXY7FRm8Gay7ZPyHZunbnSWWHMmeCqn9X+9OdmkpNzkJd+8tRDAQCnThye+F0X6XEoFig6UFQbqFJKOpZu3InVbydjQplENUbHUUYkCwCHKelXsziOpOe4Zdya9aCJyKiGBDpU73tZY2Pb3tRz4DC0XxwhWN6O5Px17sAlwKmKeW9sDa4Lv+vtqTDplRqPbPRGwsG8GHXDzHpJcrFw0+aQYf1w8uHDjDbgqgxc50o6ywJNmnhE3ehWbgp8JXZoim0iXmGvI8r/rJktBiaOwbUFxpHDJqraZYnVxXnCmk9v5rHrntEuSHAcCe5KjiM2x9V7dtWjBO3EfUifmwQoPQf0yLLNxTio5KzlvCOl64jkvOP8fMyOnKa2+LXy8ZMOSQxMr9OizGG1SxddnmzL5nRnmiolheOQ80k1AuHMhTkiIMuknsRk5p7XPFxWt4ns9HzuEp7jaABwE1hNpJL1jqTpq+ocJk/zh48IFMmR9FibBZMPjC1SdI6jVBYpqx1Vvm86CQchmYkNQ5KopxAqtSVVxs46AIaDmKQ4ZQWiMfv5uKDdHwCccvgw/PhjJ+AbH5icqGtrR0YRBoCbn1puqRnDtPlzqWP1hZqHcMQbj4kzM3BrWn+lssBzyzbjL/MD7uwnHzvReQypMSE7uyEAI+GUUPVYKuR8A3iOqlnhOFqaCjjKFPMp0RfCOgIdpbLRvJvTGUmCoYqYZB01kRR30tejG0O5dkArTziynpsJkWjQxnnBcIhqPLqRTTiI6JdEtJGIFihlBxDRo0S0NPw7VPntq0S0jIiWENF5SvkUIno1/O1GCnckImohorvC8tlENL62t5gE+14obU1kQoGSL5cIGDmoFX/5f6fiGxdOjsrUvk48eAhOOXwYjj9oiLHdjlI5tWmpJzFuQ/vVJ94Z1CsAHRnmS3ESI2CLEqF09KBWjBrYiouOPxA/v3QquwG+8PWzce+Vp2DGOw/CrZdNjTYVE6cgwCsXiYI0vAcfkFQy205vJyqE44H56431VHDWa0CsM0qmjk32faCa8jcD8kqTgxlR+hnpAe6aCgV0lgQ2tMWxz6YdeoDWkNt45Ik8j8jLLKoyv5dJBwaHiBEDW1I99UlwHISvnH+UtR8gyVmf+d2/JdI3J8eUDqueIhwKF6S+E0kkRg9qVcpEamzyo4njiHxuKuQ4svxZuF97KsfxawDTtbKrATwuhJgI4PHwO4hoEoAZACaH19xERJKHvxnAFQAmhv9km5cD2CqEmADgBgDfqfRmXGB6bTaFnwqT5cMxYwejX2g6GnEc4d/2zjIvyoDCwpYFmos64Qj+lsuCle+feVSYh8GB41AX5zNLNwMAJo4cACJCoUD4wYwTcOy4IewGOHJgK/r2KeL6Dx+Ls48eFW0qeTkOea99tWdho3l5w8IDacsf/bO6uerr+NxJgYWLy1KNo+OadUEqgf3c2RNTccKkjsOWkKjJ0ShAio5cdMtZlly6GErVXXz5vCPxh385BZMOHJy6Xk9+Jm/FNiaVs16z1ayT4DgOqR+KxYaxhWFCBMXM1pjoxGXyXUkCmIoGADlW4zCt9bMMQUzJsxoNmTNSCPE0gLe14gsB3BZ+vg3ARUr5nUKIdiHESgDLAEwjojEABgkhZongydyuXSPbuqMeN5wAACAASURBVAfA2ZIbqQdsJyzALAuW0PUJXG0pxxYiyNuxZee+1AYY9RM21VEWKauhyExRCKsI5bX1O7A+I1pvvIDjses6laCew6OXm4pV/MDreYCkMlIfk45Wxp9CxQtfOzv6LN+tqgfK0nEcdEA/TBw5QKnD3/+08QEX8J//36SII4jEFoL3E5CnX1mPa3v11t2Ys2orlm+KveL1WlnpXePr0lyeCdIKyeQhr4/hyS+9B3decRKAQHF84sFDU9w3kCYc8T07cByZ0XHT80l+l/NEraMq2blHwnEBcixSNNyhHcikPkrN8+ICSbh0xf8Fx46JPgcHsvS1DchwVKzjGCWEWA8A4d+RYflYAKuVemvCsrHhZ708cY0QohPAdgCOGVfywzg1XcUBGsdxgGaCqTZVFsB3Hl6Mt3bsTZnixstJTqgymo06DrvsfaUlyKA67qC/GH0YvYnLJHVhnbk67w5NjieMTDoVBptr+s3M/trZrD+FzFAHBGJCHckwHJT6rOo4WpsLeDT0dA7qpPHdS47D78JN8x/ffSi+eeExwbjD3006jrIIcpvYEjXJE/bTIRcI8IeXM48ckSrTIU+stu23b2i1VyoLLFq/A7NXBmfCe688JVGvUEiKhcYO6ZtKhMRtdM3a4UedwybIuZ15iteey/bdHREn/5vL3xUNSjbDp2+GUpbmOH5/5cnBfUiOQ1u3W0Mx738ZwvYYYeA4+ivcN2e+LcsbDbVWjnN3KCzltmvSjRNdQURziWjupk2buCrZMEzOSnUcN/09o8iMNmmBP4Z5OfSTi64H6SyluQoiivqz5XnWw0mYxh30F4+DI0YuzB6RFFWlH+ZRowfixhknsCbJ8uSs91sWAvfMWwMdowa1svdtOoHz+qv0ZwGB38+V5xter6ReVywkx6yKVuRf7rFJU+Q2JeKsCUP7xaE7uGpO7yX8a+M4fv/pYGMsFAh/eDF+5qoRgmwrayPnHE91qZrKeXLWXkD6eUrInDXqmIK2Ar+m4/77r3hyySYcd9AQHBJ60KtOgqoFE/dM4t/j344aHehvIsLRGf92x/NvYOtu3qQ8C3GY9mR5Ylhk574bCZUSjg2h+Anh341h+RoAapLqcQDWheXjmPLENUTUBGAw0qIxAIAQ4hYhxFQhxNQRI7JPYHlAzMbKQbdd15WdQDzBb3x8KTaG8ZX0zU7fBjoNsXY4W3kdJv1Joj/NVh7gZecu5FOejLhh3f3pk3H6ESPiTdJFbCKEMZorp9vJOoEddECs4Fbpjrxu8fq2SM+jNyW/q+ab+i2o6UqD8fMb+99NDZaCzAbJ1fniuUek+mAV7ekiFoIZrwqZRrWkiEZ5MVv2vAOl9VOpw0/4d8WmnTji3x9im9FDjgBBKJwnvvQebUwI6yUDa6qcs+rrkRBVIb42KrN4qktLS1VScM2fFqQrOuLOOatTYwKAfzjpkOgzN69ffHOrU0bOrkalhON+AJeFny8DcJ9SPiO0lDoUgRL8hVCc1UZEJ4X6i0u1a2RbFwN4QuQ1WciBrAQ+LqcstQ5/Ogz+/ub5OPEKR2CC8QQIzHHTr0P2p8t/xyvhL7iN5rZ/mpYQ6eibHQB8JsqrnB67DcFplDf7lJeruS+yIADcM281+xvLFVnaAeJTo16byzSntyW/L1wXe+in7zNJhE06DimSk57h3MbwwRPGpsrYGGku70XqVLTy//nwsdFnycGpz8B0gMjKOGeKHp1qCGDDpMsQ5pxjJv/e4zmlBtZU9YeqjkMlanJLGTs0PlSoHCOH5mKBTZpWDW57blXi+3GKpaXk5FV86KbnsK1CLqeecDHH/R2AWQCOJKI1RHQ5gOsBnEtESwGcG36HEGIhgLsBvAbgYQBXCSHk0e1KAL9AoDBfDkAeP24FMIyIlgH4IkILrXpBfS/nTR6FV/7jvQB481EO+st1WjxAyppG7e+7jyzBys27Un4can96/nNVts/1d8YRI/DRaQen6qiLU6am1fvLAmfdosM1j3RQR2D5Jl5Pk0e8y1qkMBxHc+KEmhYP6khHCkj/zr0DufnJUyub36UQb4am9sNSrlCrEYiOdAu792qBLOWY5X1xm/S2PR1YrcUgS42d2ej052CLt/bAZ0+L2pFjiu7FQjzXbduDHz2xNFUuP8tWVG5B9n/Lx6dEh7hnlwdcp0kp31zItlbMg22790V5WTiYdByNiMxETkKIjxp+OpsrFEJcB+A6pnwugGOY8r0ALskaR62gvpi+zUUMDmXLeTiOSsQKushFfl2zdQ9+/OQyAHy4i0gspJX/4CPHK3XsY1aRtThdFHEUjSn9sOTz0yME28eULrs6tP/nNrU8a0u92uVdcXX0/tKezqYDRPBXWuLY6qhmn+z8cZANSI7ju39dkigfolixyXlYKse567kDS6ks8Owyc0rgYJxpcVY6blvYHrMjyqCRFI1J0b8ZzJsB4PLb5uD1DbEV2jOqYYHi66GOTX4eNqAFw/r3waa2dtz/8jq8/9gDjZt1c1PBKS+LK7L0qJKT7wnodRkA1dfCLeSsjc4lvAe3+ZgWlNoSF8RPht3Wu1Qd1Vy8nQvxTm4ckzouGwJxAC+qGtQqM6i5cxxsvupwINwGYuIKH1+8MRXtVn3HckxqZjb583cvOc4sTtQ5DjluxReCf+dhf+EGbauTCEdjsNDKgjxty/hIHOJw4QLDBgQERfqu5IWaUz0q0zkOxTTd2A4jRuUNN4K/NgV1sD6Dz4k9X2lbEgMpBTCNrKlQSBm1SPQ1BOy0ImNx2RKyNRp6X8gRVczEWcpkHDB0ZTVn9cOGmjAcbdXLuZNfoSD7S2928XcHwsGIA1juwtHUVueC5v77OXj92vOjsXCbgQncYpFj456vqUku1pN+OwVCQvwg39XFU8bhjCNGWO399bGpfhxWwhGJqsyn6I6SneNwyzed/e5ijkNgxICAUH7h3GyrPFN/+rvT31dEZC3rShWfRdexUzPNmQDAO8cPVStFH19VfC3UK+TBoalIePS1DcZ4VH2KZAxKeNEJB7LlEqccPiyVLTFLZ9RUIKPY7H3vGI0vn3ek9fquRK/mOBJiDKQnLwtKLgJuqdomfbq5uNwmqrIp5J3ES4oPg71eNqTeRX1UwwekQ4oH/WVTDu40GhGOHBxHe2c6kJ1OxAtExlzQprb1Et18NFvHIUVV6f64wIR59DqpsWY8bnWTluPSnfZcETSVIapymAesctzyEPTN/O5PnRz3F/4VQmBpmMJV7z8W0RXwz7fPNfbTVDSLqrJ0H03FQupZ2CLjAjKKAN9uS1MRkw8cxP7WHeiFHEf8ObHYHU/IwUZuP7XnsrlXFh7LcYSb9P/Nji209PZddByczsEmc7eB4K4cdyEcPMcR/HUNpQ7wKWzT3FlSaerSvEkUKIdtDHIYFslNhuOeZFEtrHeKTMj/9JjC91IWUXa/PIEdk22l313aFyn46xJy5OnXY98sm6jKlkiNlHV8qOIHoj6Xfz7tUABIbcSPKY6gQGBEoeeRl7AdPoBwLWtzQr9G9RoHgoOjnnFRgqjy91QP9DrCoW55qkpBP0WaUKBsCxjXUzuQZF9VhV/cXyCqmrlMVQCm62T3lz7V2U7AWW0Fj8m2GwR/uHvSYYpYDKQdygAzcd/LcBypYRFZRQb6L9PGH5AymdX1RSYHQHkPz68IRGg8dxqUqifbLJGGCX2KxZSTHae/kBGR5UaWRZx//Y/vZMv1Q5Qs477r9T539sRUnZdWx7oZ2zy05i9XTHaTDoBxHZlxb1DfZL50PaJBc7FgjFXlQjj0O1C5lFsvm5qKgqxzHM8tj9d8gcgTju6EieOIZLE5HQA5uJxiOdHYU6+nveE5hVlKbu8woeKTWAa3lNmStN4RTqGyXcByHGEDeayqXEwndR1Hqm3tp9svn5Y2pQ7/JpTjbF9B6fcffT24zmpVFXdckeIVQZ709s5SFFcLAH444/hUvSIRSuV4Ay5mJK8a0o/31Cek350pg6Q6z796/lEJvQonquIPZLyOI1FHmeeqvkC9QjUQkOC4/eZiwUggOLGTuraaipS6B5XTPfPIkdDRVEgeaj7289nxmCnpb/PqmnyxsmqN3kc4lM/HJ5xv5MnIfr2+kXP13TiA4K/a1jcvnJyqV6Ds4G9uoqpYRKGPgRtXVlsCwJad7Zn9Sdg2Q44Q23Ucye8yV4jLOb2gcRx63y7mw9HmFH7vLJeNzpu270FboY4j3Ihev/Z8NvikC1qaAiugo8YMjMpamejCMoulfA7cppkcN19OIccxalCLsW6UCVLxX0g/l/BDxrqKRH8WTbvalLpsrr0o9gTg1sItl05JtdVUJLOOg1mTalFToZC6T/m8r73oGPawt2zjTqOfh85xSC62u9D7CEf4cm/5+BRcPCWOguLOcUA7yaTr51FuqpvYQVqeCiA4cetj0k0E3YIOBn+Tp7r0dXNWmU054+vsYUK4Md36iamJ789dfVZ0GuYU0jK7oIvJdJxrhFFsMydiNXCdvgFkcXfqmGTbnSVTuJjkd5MOC4iV43po/TyQSm41XAq3QRVD4hmJqjIIh8n/IOA8k7+bdBw25T8RJUKFBGDWVfjXRV8iRLy2Vn77fVH4F3WMqihrQEtSbAWEoqqQcOzel7S84rgelaBdcfphbFghdYw6ZJPcPC6LdKK37kTvIxzhhBw/vD+rVHNxAFRPIa7+OqnFEv5VJ6AuEpH9ZVpC5RCN2U5rOv79gqMNbSUXJhd0UB+TbnV14JC+OGx4IFPmhiTfDSuq0jd3zWLM9jgIyWeepU+wZfGTBL2zzC9qfey2oJL7wkRe1WQUkKE39E1ORyEUicQch30bMA1Jcp4JGxND5bGK35HJ8VR9rzaOQ4WuJ4ijQItI95Q2JklzHBzBblI8xyf9xyNReWszb20l5/FXph+FY8YOTouqLKFnVHBpbvUgqNXmp68WvY9wGDYXF/kpEJzq9hoUZlFbOURVCW9ZS8gRG9SJ+OXzjsS9V56cqiOz35kcmnRMHDkAnzztMPa33ftKmPfG1sj8dSTjOGeSdSfKImLNnLAsJqx6bdnOE4s3orNUti6ptvZOzFfkw7q+I+Xsx4rz5OYUtlEus+Il/RnYuBIuA2ReyGB/3Majj0soynHZ7dRDhkZBF7/2vqMS9TkEOg5hJdSuerQCJbk/Ln0sR8Tfo4WblwR8X2c5CORo0SupS90kLuXmUmtzkd0nJAcjx6CPV3K6WW952560g2OHIQhqd6H3EY7wrz6f9LhCJvRpKiTYbm5i8R7Z/KlH7Y879bjEr1E3nPccOQJTDjkgVUf2JxekNEk0wXYq2tjWjrXb9kQevDynlPxuiz3E0eo4FSjHceibe1znkYVJR7msk9nA1qQrU5qbSUN2J6OldpR4jkMXE3GEQRV76flY8qKgbJo2SKuqUrkcWP+EY7jnylPw2dDaSY1iYOQ4ChR6zZvHzeklXKz5ZDoCri0VLZoPypiQs1m3bS9Kgk9HEImqlIm3s53xASL+INnSVGANLEqa2bVuYv2bWW8Ev2ccLEtM252lckXZMOuFXkc4YminwfBlZ53I9YnKp3rM3gDk5PmLkkfbZHXjoneRMJ1adVn6mMF8bm3pncrFFjLBRPBU2HQFa5hgeoePiE0jDxmW1v2YcNX/vZjwss66DV2vlNKfOJyYS4bToH7azZJR51GKHzducKpM9pdFOAqhVVVn2ZxZUr0dI8eRgxtOeOtbuIC80J/ZQCVX+M+eWsE+C7mxq2M/YtSAdD1KmxsDgUiQO2DKNSOf3d6OJDFa9FbgkJglkOCeaUdJRHnQAXcReb3Q6wiHyeu4UAiSJmUFNdOpPrcBu1gryZPMH16MT1bsJCe730HQdty4aXOSxKxtr+QS+HqyPE+wNZbj0MZhiyI8Z1Uy/cr3LjkO5yj+B0ePTjpq6UOrZRT+FMdhIXgSnSWTVVXyOx+LLK6URzEu89sn2jKcdHUUC8Fc+9lTK1iREAAUi9kcRxBQ0D7OSDlesnMcbrG4HA5kYeOcabuEJLBlIdC3uYgrTj+MXceBYUr6+tbmArsmN4dWhpKY6c/24DBPjOk+ZIgS7lEIIVLccXei1xEOCe7d2UIMSKjhGf77wsm58kWo4EQo3CKW4gAb1M2H25yA+H5/G3qgm063kghkmQCrcAlZYZJrA8COPUll7iTNo1e/Jf3Z2Z6P7S5++g9pE8w04TCL2CQ6SoLnurS5YbOqAvJ5BtvEXpmiKiI8vtge+0odq2lYgTMs7/yoX9um5IHnLtDHzKXK1a8a2JLeSONYXOZnUIjqmJ03g3r8AaqlqchKJj79m3kAgI1h4iX9niaNGRy1y+GTofi4LETC+Q8I5nFrhf499UCvIxwm5TgQyJhNJzAJVVRlWuiVWsYcPqJ/qiyvqMrEceinZI5LUMtdRFXyWVyvJAoywaZk1vtKK9btz9OmxxjAbC4Sowen85W7kEv9tGlLwqUiK1WvzbpJd+Tjnqd8pZmiqgJleosnU+XaRFVZYpNsER6Hv3/XIWx/tu9AfMiw6RFUB0AhbKK4gOPY2JbMwGfiOFZt3hW2G7evQoq3jBxcpO8SuGduMpVyo4Vb732EA2ala1E53b90zbns9eqCMoqFmGJ9o+bmwbihaVl+VlA+IHmyNXmR62MyiUX6SMJh0fWcdVTg9VoqC/zd1HEJU0vjGC1ybV3UpOsL9Ev1Z2ezZ9BDpR81OnaOYy22HBaoPnc6ymXW+1qnzTyXEH+2iapGDUoSORvHkXX4KRYo8/Sqbu6mUUkdgEvI9GT/1q4x450H4cyj0p7VelN87K+gzHZ4UyMEBwEq+XoFCubDtOseT5S3NBUTvkAScplyyncg1p+aCFW8HrL9i7obvY9w2DiOcEaPGdyKoYxvApBcUEaxEFP29+86OPHddR4QUaSXMKGQOLW6cRym021zE88FqDjn6ED/0FkWRs7FBabscHoOdX0TSOk4cvR5jBLqmlvApx+Rncte+q1Igrmvs5wymgDS4+ZOjZSYT5ZTss69GA4+QLaOY1d7J9Zu22OtoxJvuzlulkOeeXM34esXHJ3JnZnaiWKcWbpQIwSXBB/ZWLbPvbPmol3vGOsJk+VZ0XHV9XD/K+sSv9Uxm3ZF6L2Egz0JUeIvB/U6056pT8QL3jGmYvlkgYDnVySVx6O102ceqyoJk014JKqy5k+IP7uG5GbzloRF+uLs15wUL+lXpsKE5FhUSdl9ekytzcVEeAoTzjl6VBQkr91AOPTNfYvB014OyUaE9aHaTtub2syhYABYPf4lihnPKRhT9iGD5zjshMM0p1LPgBNVMVZc6XbCDTpMkGbiTkzOt4P7NjumlNVFVXaOQ5Zec9+C1G9eVNXNiPw4GL5ALlzXk5+J49DFFtym4joP9En2yOdPx6NfPN1Yxyw+03UcfD3JibjkTwBi0VYWuN5MHEdfjePI0hnnWVPquzWaojooqYligtXeUWJt7PV3d9rE4Ya2gno2By99SLZNsxZQ55FZJh/8tRlScM6ImYTDMKf0q0ziZsDFsiwOmW4aDmduPO/fzzGa40rIS/THIseUpeN4YeXbqd9yBHzoElRFOIhoFRG9SkQvE9HcsOwAInqUiJaGf4cq9b9KRMuIaAkRnaeUTwnbWUZEN1I1cRcyIBe7leNwUKzZ6jUrlY4aPRDXvH9SehyOAhb9ZDlsQB8MbE3G1VGHYYuUq9Yziar6SFGVZTNIEA5HjsNmoqxbwOht6tNBD1+SJ/yCq7VQFgL5d/B5X6nMPgf1EV928iEYNoBPTesW+kMTVVkc2/LgzitOYsudHAAdOA6XqAI6jMs/ZTSRhqsvi4zXpV7DjVMnisMGtIR5M8z3LH9JKcdL5kyQQbl5vOlgnN2LWnAcZwohjhdCyCh2VwN4XAgxEcDj4XcQ0SQAMwBMBjAdwE1EJI9pNwO4AsDE8N/0GoyLhe2Bxzkg3DgO0/xWT47XvH+SUV/igpQHNlNHnfg2JzN17PqpXsLFHFfdoFx1HByHJ8ejhhRf+e33peptD0MwDGptwi8/MTUVZiIPx+FmSODAcYAgIPDM0k3Y21FGe0f6ZJ2cK9lt2t+duW1THReYuS57X0A8F7dZcoAPG9CSel+1yivBPgNpWZbBcRDFPlumeRBYNMbfT50QcIxNBbI6Csv5qM/LKPe8cUzm59Jgkqq6iKouBHBb+Pk2ABcp5XcKIdqFECsBLAMwjYjGABgkhJglAnbgduWa2sOi45BlrpuvCVlydMB9Iuhx91llo4P4BUhO2P6MAxngZo6r9mczd1XBnsgl4VDzbTP3d8rhw6J+zzpqlJPS2QSVgJnejYu5aKEQvEOZa2NFaIqZaMdhHqiwi6qyOQ6XvCxZ7cbtu4UcqaQP27OwPSb9JxvX5RJ2JdrILfenzi3pgNdU5M1xJSQHnIpqHUXHdec4pK/K/qbjEAD+SkTziOiKsGyUEGI9AIR/pV3dWACrlWvXhGVjw896eQpEdAURzSWiuZs2mT1D7QM2vzxZYrUBV34zvUvVuc51LXMRZoG0Wd6Qvunwz0k/DvMrVdsybfixctzCcSjP4GAmFDwHLh+HHHeW+WhkYpnxuwuKDqLGjGCx4ViCTUUSvSznPts8kJZcuZTjnHy/Agmv6ZDkcvjR8eBnT2PLXYiexDALd64PgxU3h4X3vrgm/aNWT+opbFZV6hrvjESKfJ6Ow0I/LJmkKc1x2HUc3Dhu+ocg+m+eEEBdgWoJx7uFECcCOB/AVUR0uqUu97iEpTxdKMQtQoipQoipI0Zkm03ybZgHI1+cXTme3UeTAwcg2V4gcCh60eA3omLRf083WCdly+11DO2fJkBArJi0K8fjzy3NblPIZq4qF+GTX3qPtT/TAv/Zx9Me4EBgSKCj2SGUhmsiLoFY/GAKiR99tryY1vDZuB5YTHX1ucY5lGZdw5W7Pifd4z+up7dtHo/pAAWkxZ186HVK/PbZsybwY1I4DpuuS10HkU6kwOs4jh4zCIeN6I/jwgRxerOSCzK+Z614+uTROGr0IAxsacJnz5qY+K276UhVhEMIsS78uxHAHwFMA7AhFD8h/LsxrL4GwEHK5eMArAvLxzHldUFkVcW8uzjrnPl6F/ZcFTmY2NLxw/vjvWE8JjXJjA7JHgdOW/zryitLHzmwJaVgl2h2UY47isZM10jIoUp59HhDMEN5renWDhuRDlD3+XMm4kjF2U9C5QbNpssuhCM4jUqi12wRxQX1zW1JjssWX0mHngdd7+Pkw4bhT1e9O7Mds6hKGbslkZML8oiqbL/pBIc73Ojv9APHH2joR0msZLg/3Y8jMmIIU8rqZuCdpXLCIuywMIf5rz7xTvTvU8TW3fvC/njo9z5sQB+MGNiCV79xHusQ2Z2omHAQUX8iGig/A3gvgAUA7gdwWVjtMgD3hZ/vBzCDiFqI6FAESvAXQnFWGxGdFFpTXapcUzdwk2X5pp0AgFcs+XwToiqDql0VF9k21vXbg1AGeyz5E2TohaH9mo1EIa+I4thxQ4y/Rcpxy4lG7a8WDoAdncnw3jricvf7NIni+jg4trkQDulVvHxToNvgQqK76jhkXhN7f/H1L//HuTiVMe3VRYimw4FpjKbyaqzPuD4qNRvW55qLuM5GGCUHYNIt6Wmi9VS76uFq2cY2PLJwAxaHEXABoH9ogNKnqYAh/frgxTe3AQDWb+edL/Xn2Wje4iqqCbc4CsAfw0XdBOD/hBAPE9EcAHcT0eUA3gRwCQAIIRYS0d0AXgPQCeAqIYRcMVcC+DWAvgAeCv/VBTYWLyu0B5B8uUYdh8OiA4BX1wYE6sklG411ZFtD+7nLfrNgc5iTpsS2Nl18IVwQmU6Wyk4+DHm6MpkJJ/RPBprnQgsJyYXNEdCEmbRl7C7OoepYTSfkFqUdLgQKB9O9Jv04KiewwfXJ73myUKpIm2kzY9Lux6TzKxBFBNsU8LNAwA4lqZIct5yrnWUB6b7z4KvpXOFyvO2dJQzq2xx566/akk4jAKTfqy3gandnAKyYcAghVgA4jinfAuBswzXXAbiOKZ8LINtdtwaIleOVXb+z3Z6WE3AL16DCqlNxIBx5T3A2/YUUVdm4GPWnZgdNskmBrmYltCWpieMPZXYVwfRMXZS+TuG7iRKL9x1cfgylr/kWLtYF6qZChkc+SAm77Zqfuk+Rf+4uHIc6ja4683BjH/q72LjD7tlugk6cudekOw+aCGhAOEIxo0VkqRpu6ByHetB8e1faG1/q9do7yhjcN343pkONPoysUEPdid7nOW5RjrvAJdRAs4McXYVtk5a/DWKsqSRycxyW3+TY7bLmfBzHXZ/incwSHu8OHIdLgiwJU93Eu6nmJE1Jb96Pn3SItR1uY5FwUXQmDBIMG49KoLPyiEdtGfRmLr46q5UEXF8+7yi2DpB+nrssollV1KND33A5D3P9AGIioG/t2Itnlgahy02pdvVLY+V4OhDo6rfTXMT5x4wBAEwcNQCDlfX7yVMPZfvTDyzbmRSyEj1aOd4TET3vCimHy/vKa79vU7jLDdWkGAfyTyJ7gLaQcFhmRlLHkX1/Jll70ozYxuFQqn4WTI+9OWEqbZJ/O7SvTaCsYH62+5NvQ/qrsP0pl5tCcjQVC/hIaGjhmp/aRIR2KalUTYTDFHtLh/6cLzIorLPQR7OIu+XSqak6OiF0Odhs2LGXLdffqVw3cs6rEXLlO1QjRV90wlgs+u/pmDByYEIcySXhCvpLft/bYRZVucXKqh96HeGQu2ye06sKNTzGyYaF3pxQjme36RIby0aA8so7bYQmji6aLT5T69tgVq6qG6v5QbmEytahR9iN+lHFiIYu3URV2bL6hB+Hw3O69OQ01xK3la1zCPoJ/rrqnkxiEzXbnOlwsIfxlmfHpF1uCr2SBXWs11wwKZFeOKqji6qqOLjpGfc6FXNcIHkA6ywHZ7ALMQAAEPRJREFU2QQf+ULSBFxGaFDXnKs1n556Foj9oY4Zy5s+dxV6HeGwm+NmX6/KNfWYSRIu5rgqbItcrgPb2PLqGtdZQmr3ay7inKNH4efMaU7CdcOXcDHnrNZ3RocUE+iQIeGD/vmG3zQoL1UQZZ/6nDkOkR2rylX0JENh9HOMxmziXo4YFZsym56T3Nj+n8FXQqJWwRdVJ1Lj5quVuxgJmF6Nnssl4jjCd6HuBZ2lMiYfOMhozScNYQBb6oPkd877/aTDDgAATD3kAH7QXYTGSWLbRbDpOFzM37LyfwOaDsBh0dg2FSlPtS2+vOEIuPAYEoUC4ReXmYlGMCbls8PCdHEgs4m8Iq7L8ZhDZD5JH9C/Dwa0NGFne6fRuiwrfbAcU1ZYC1Uv5bLx256lq+hJ6lL0TU+FvP+g3crPjpJwnJGRw6SSUCgc1IyNrm26GAmYlo8elqekcRxqfo3AwsoiblU+uyZb4yIq/OhjJ2LJWzswuF+2qXU90fs4jig6rvklf/PCycbfbMHNJFzk6CqsiujwJ9tC6eo4Nup4TTJyFS6suUsOFFfx4q0ZhO+6Dx6DkQNbjLLmj7zT7JCpjskldLeEy8ZvmweuVlK7QoJg8+G44/JpTm1lQYZK4TJXquhvEBuqOHR4tpf7IOWebCbl754Qi5BN80qNWG2y+tMPH7EDYEg4NI7DejhwsbfQ3v9Xzk8bHAxoacKUbuY2gN5IOMK/tvdoWwhHjwlY+MEWK6ekbDt7TMMGmE1tXTKa5XUU+tr7zBYwLlAXoxPhMFovxZ9tjoRyQ5Wet1nIOt1fePxYvPD1c4ybikuoeCKKCMfRY7LlzTbCKDck2zt25QzkfmojVK6h8LPw2bMmYs7Xz2Fzt6vI+h0A/vz/Ts2so3KlNrP4KQdHmRyMc0F9PKaDQopwaCLFzpJAqSzw0KvrMzkOF6hX33nFSfjAcZUZEXQFeq+oyroRm3fiUw4fjue/erZ1MSRjR9nEUEHMm+s/dKyxTiEiHOZ2xoRjOW/yKGMdFVecbra5d0GS43BxXjOx5m4ch/Tob9ub7UOjj68SuPimEOK5xJni6vg3i7mqNE81cUCAu7K7HG1uNu6lNoSjUCCrSEzCdl8SLhyVOl9spqpJjp+vk4zF5XaAkKGBIlFVuYxbZ67Atx5cDAA452hzWBCXt+fKgTcCeh/hCP/axB5ZJ3iXE5SES5hzG8chORubPP3AIX3x0jXnYkgXyT1ddRN5YDtR5zU9rFYX6yI/d/VBkTjMEnBwd3h67t9iJsKuoipJOFwMLrLw5fOOrPpZAvHzef+xY/DDGSfwdXJulBNHpuOQSbQp3IjR6z3sTzWf1aFy08uuOz96pnLOl8oC67bFpry2Z+4ygwuOB85GQO8TVTl4ANZSZ+Dy/m2T5F2HDsO4oX3x/uN4KyGJof375DJXrQYup7W8yJPEKAtd8RTU23bZ9GybypfOOxIDW5swfpiZuLiKQeShxyb6kwYXtk0TAK46cwL+5T12iykXqIeLatL1qvgQE+RR4oH56zOvd3GsVQlHU7EQzXU5Vl3f+cjCDca2XA4/ieyinuNoTFhFVTWMLmZLdDSgtQnbdndYCceIgS2Y+ZWzajaeWqAKQxwjXBwAXeESc6xaJDmOyvU8AHDe5NE4b/Jo6/Wu4iUnjqOLT7OSUNneSt53bOMKRw5qwdpte/Dl847MvL6PTRdkCMfikrNGh0tdda/Iy4F1NXohxxH8tb2WWiZN4RIYSdzz6VPw7xccXTNlZVdBLvJDDGHQK4GLVZUNz10dE9csM9lawxTrSEW1Jqmul7voOLpaChJ110XGf1KpfMnUccY6knjaODPTulTNcW3WXSqks+g3LzKH5FMJh4vuqDvRazkOG2pxYP3GBybj4QVvWU9SE0YOwIT/v70zD5KjruL457EbgjmWhZBjE7KZWEZCSAg5MRcoZZAENYUIJIXkslAsLI5/lHiUVlFYAQXkqoKUbhRFtCyvoByiJZSCCIkQIAkhgCkJRBMUyIGCgecf/Wu2szvd0z3T08fmfaqmpvc3v/nNt9/O9Ovf9d6w3rtfi47GuKtNSvRihdrvD/7Qai2TjUvUnNFBQ1XN6IL1+jzvA2ut4PI3gxZpqMO3VZwIB1ETzHFZPrvCkpmdkVGHu+crkjuOYJDDuN81f6jqjIie5aDATvWhde6uz4pDznFEpY71CdtNm4Rlsyssm11puJ0i4v9WsupOvx1ja3xw+CWNHsdvLz8lMo1p3Mnxa84+kdsf2d6wHoB7L5vHyBrzEv58QpFSOfgLUWrdnD/59dMje+gAMytHH3SBrfp5IjVD1fs9wGoJuHxqheY/8M47bHwxWdTjqMUkwRWKaW2abBaHnuOIMVTlZ+YzquPvrG5JaVknwKv7w5dXxsqTcli6jiMYcqMawe/P/og9BefOGM25MTYUxmH8iNr7RfwL5n8jItBmjZ/3otaQbFuMxFNhkZaT4t9oRM9x1OhxvK1s3rmnV3k17rjwZH75+MuR+7/KRLkG11MgKlaVT9G9fb1cueiEyBhUcfFXm9RalZOE4A+wJwtd3KmolTTQPQyQ1lBVFM/u2vfu8Z7/xNtfkgV+cMeoAIR+Xu8VcypZSHp3z0UaF02R8EyR9VDXUFVgOW5QSlRvafyINq5YMD6zlY/N5pDrcSyYOIL3Dx8Ua+NaX+OCWZVU2hk3fDDXnzeZ08Zn0zObPLqd7avPrFlv7rhjuHfTPxjZHn+fTb28FMhFkXek0iBXnTWJb963tWpqWZ+B/Vtj2TMtFk7qoOuhv7FyztjMPrMWfq85an4qLCqC37P43B1/Pai8a8WMhnWt/sQkhifYJ5YXh5zjGDNkIGNC1suPGzaIbYE7SSOcs6aEr1iphwvnNX5ROf/kTk4Y2caUQMiJZhEcQ4/K4Z41I9vfw/XnnZS3jIMY3nYEf/xCsZaUvxtvKqJ3ekS/Fq49ZzKTRx+c3bHa0uipne3MqDQeQ2rxzM6G28iCwjgOETkDuAFoAb6jqquz1nDPpfMKnSC+bNx9yTxe2RcvTeic94XfIcdFRDJxGtB91zmirfh3h0Zv/EUG7REpmQHOntb7Bqnn5PzaFTP40HGNrwYrE4VwHCLSAtwCzAd2AI+JyDpV3ZyljiyWVR5KTBhZewhn+ewK33t4e2huk8LixqpvWFysu3sjHlM7j+KmJVM4bXzyC37PuZppY7K5WSkShXAcwEzgOVV9AUBEfgwsAjJ1HEb2rFo4ng8fP5yJo46sXblAjGjrz0aymYg3msPH6ow+23NCfXBEdIi+SlHOeBTwYuDvHcDJOWkxMqR/a0vkRG5R+cZZk6gcM5BZ7w3PE270XbavPpM33jrArj1v9pmVUkkoythMNcv3mm0Qkc+IyHoRWb979+4MZBlGdYYM6s+qBcfb8OYhzIDDW6nESEDVFynKt34HENwldSzwcs9KqrpGVaer6vShQ6PTVRqGYRjNoSiO4zFgnIiMFZHDgcXAupw1GYZhGFUoxByHqh4Qkc8D9+Etx+1S1U05yzIMwzCqUAjHAaCqdwN3563DMAzDiKYoQ1WGYRhGSTDHYRiGYSTCHIdhGIaRCHMchmEYRiIkbs7coiEie4GtIS93An+v0cSRQK30XXHqpNlWHN1pfl6aNjCbZ39+ZnOzeZK2fO3HqWp0prJaqGopH8D6iNd2x3j/mjTqpNlWHN0pf16aNjCbZ39+ZnOzeeLfaNS1M+6jrw5VvRajzl0p1UmzrTi60/y8NG1gNs/+/MzmZvMkbcW1e03KPFS1XlWr5kGNeq3IlFU3lFd7WXVDebWXVTf0De1pnEOZexxr6nytyJRVN5RXe1l1Q3m1l1U39A3tDZ9DaXschmEYRj6UucdhGIZh5EApHIeIdInILhF5OlA2WUT+LCJPichdItLmyg8XkbWufKOIfDDwnmmu/DkRuVGanIElRd0PiMhWEXnCPZqe4FhERovIH0Rki4hsEpFLXfnRInK/iGxzz0cF3rPK2XariHwkUJ6Z3VPWnandk2oXkSGu/j4RublHW4W1eQ3dRbf5fBHZ4Gy7QUROC7SV9fUlTe3J7N7osqwsHsApwFTg6UDZY8Cp7nglcKU7vhhY646HARuAw9zfjwKz8BJH3QMsKInuB4DpGdu8A5jqjgcDzwITgGuAK1z5FcDV7ngCsBHoD4wFngdasrZ7yroztXsd2gcCc4GLgJt7tFVkm0fpLrrNpwAj3fFE4KU8bN4E7Ynsnsk/JyUjVTj4AryH7jma0cBmd3wL8KlAvd/j5TTvAJ4JlC8Bbiu67nr+qU06j18B8/E2XXa4sg5gqzteBawK1L/P/YhysXujuotg91raA/WWE7gAF93mYbrLZHNXLsC/8G46crV5I9rrsXsphqpCeBr4uDs+h+4MghuBRSLSKiJjgWnutVF4mQZ9driyrEmq22et60J+tdld4J6ISAXvbuUvwHBV3Qngnv0ubbW88aPI0e4N6vbJxe4xtYdRdJvXoiw2Pxt4XFXfJOfrS4PafWLbvcyOYyVwsYhswOumveXKu/D+aeuBbwMPAweImdc8A5LqBjhfVScB89zjgqzEisgg4GfAZaq6J6pqlTKNKG8qKeiGnOyeQHtoE1XKimTzKEphcxE5Abga+KxfVKVaJteXFLRDQruX1nGo6jOqerqqTgPuxBubRlUPqOrlqnqSqi4C2oFteBflYwNNVM1rXkDdqOpL7nkv8CO8obemIyL98L6Qd6jqz13xP0Wkw73eAexy5WF54zO3e0q6c7F7Qu1hFN3moZTB5iJyLPALYKmqPu+Kc7m+pKQ9sd1L6zj8WX8ROQz4CnCr+3uAiAx0x/OBA6q62XXZ9orIB1w3bCnemGChdbuhq2NceT/go3jDXc3WKcB3gS2qel3gpXXAMne8jG4brgMWi0h/N9Q2Dng0a7unpTsPu9ehvSolsHlYO4W3uYi0A7/Bmxd7yK+cx/UlLe112T3LyZsGJn3uBHYC/8Pz7J8GLsVbRfAssJruCecK3uTQFuB3wJhAO9OdQZ4HbvbfU2TdeCtQNgBPApuAG3CrfpqsfS5eV/tJ4An3WAgMwZu43+aejw6858vOtlsJrCjJ0u5p6c7D7nVq3w78G9jnvmMTSmLzXrrLYHO8m739gbpPAMOytnma2uuxu+0cNwzDMBJR2qEqwzAMIx/McRiGYRiJMMdhGIZhJMIch2EYhpEIcxyGYRhGIsxxGEYTEJGLRGRpgvoVCURRNowi05q3AMPoa4hIq6remrcOw2gW5jgMowouaNy9eEHjpuBt2FwKHA9cBwwCXgGWq+pOEXkAL77YHGCdiAwG9qnqt0TkJLwIAQPwNoetVNVXRWQaXoyyN4A/ZXd2htEYNlRlGOEcB6xR1RPxwuFfDNwEfFK9WGNdwFWB+u2qeqqqXtujnduBL7p2ngK+5srXApeo6qxmnoRhpI31OAwjnBe1O6bPD4Ev4SXAud9FnW7BCynj85OeDYjIkXgO5UFX9H3gp1XKfwAsSP8UDCN9zHEYRjg94/HsBTZF9BD2J2hbqrRvGKXAhqoMI5xOEfGdxBLgEWCoXyYi/Vxug1BU9XXgVRGZ54ouAB5U1deA10Vkris/P335htEcrMdhGOFsAZaJyG14kUZvwkste6MbamrFS7q1qUY7y4BbRWQA8AKwwpWvALpE5A3XrmGUAouOaxhVcKuqfq2qE3OWYhiFw4aqDMMwjERYj8MwDMNIhPU4DMMwjESY4zAMwzASYY7DMAzDSIQ5DsMwDCMR5jgMwzCMRJjjMAzDMBLxf43P02juX/T6AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de l'incidence, du 1er septembre de l'année 𝑁 au 1er spetembre de l'année 𝑁+1\n",
+ "\n",
+ ".\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte pas un nombre entier de semaines. Nous modifions donc un peu nos périodes de référence: à la place du 1er septembre de chaque année, nous utilisons le premier jour de la semaine qui contient le 1er septembre.\n",
+ "on commencera l'analyse en 1991\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1991,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG+dJREFUeJzt3X+QldWd5/H3B5t0qwOm0cbwS2EqxAqaDIZbwGyys2OYAdxMCdZo0hsndq1UMVE3Y6a2SiG6Za0yVTq1tZmhUnGl4ihq/MGyY8nOypoWNzXsLgGaaEbRMN2JBAnEbreJYqroseG7f9zTw+22+/Zzm+77qz+vqlv3uec+5/Q5PN187/nxnKuIwMzMLIspla6AmZnVDgcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLLOGSldgvF1yySUxf/78SlfDzKymHDhw4N2IaBntvLoLGvPnz6ejo6PS1TAzqymSfpHlPA9PmZlZZg4aZmaWmYOGmZll5qBhZmaZOWiYmVlmDhpmNar7/VN8+eE9dJ88Vemq2CTioGFWozbv6mT/4V42v9RZ6arYJFJ392mY1bsr7tlJX/+Zf3795N4jPLn3CI0NUzi06doK1swmA/c0Cri7b7Vg953XcN3i2TRNzf/5Nk2dwprFs9l91zUVrplNBg4aBdzdt1owc3oT0xob6Os/Q2PDFPr6zzCtsYGZ05qGPd8fhmw8eXgKd/et9rz7QR83Lbucry69jKf2HaGnSEAo/DC06frPlLGWVo8UEZWuw7jK5XJR6t5T3e+fYtMLb/KDg7/i1IdnaJo6hVVXfoK7v/TpET+9mVW7oR+GBvjDkA1H0oGIyI12noenKL27b1YLPPdhE8HDU0kp3X2zWuAPQzYRHDSSh792tle2ae1VFayJ2fjxhyEbb57TMDMzz2mYmdn4c9AwM7PMMgUNSX8u6aCk1yU9LalJ0gxJ7ZI603NzwfkbJXVJOiRpVUH6Ekmvpfc2S1JKb5T0bErfK2l+QZ629DM6JbWNX9PNzKxUowYNSXOAPwNyEXEVcB7QCmwAdkXEQmBXeo2kRen9K4HVwHclnZeKewhYDyxMj9UpfR1wIiI+CXwbeDCVNQO4F1gGLAXuLQxOZmZWXlmHpxqA8yU1ABcAx4A1wNb0/lZgbTpeAzwTEX0R8RbQBSyVNAuYHhF7Ij/7/viQPANlbQdWpF7IKqA9Inoj4gTQztlAY2ZmZTZq0IiIXwL/CTgCHAfei4gfAJdGxPF0znFgZsoyB3i7oIijKW1OOh6aPihPRPQD7wEXFynLzMwqIMvwVDP5nsACYDZwoaQ/KZZlmLQokj7WPIV1XC+pQ1JHT09PkaqZmdm5yDI89QfAWxHRExEfAn8L/AvgnTTkRHruTucfBeYV5J9LfjjraDoemj4oTxoCuwjoLVLWIBGxJSJyEZFraWnJ0CQzMxuLLEHjCLBc0gVpnmEF8CawAxhYzdQGPJ+OdwCtaUXUAvIT3vvSENZJSctTOTcPyTNQ1g3Ay2ne40VgpaTm1ONZmdLMzEbk7eAnzqjbiETEXknbgR8D/cArwBbgt4BtktaRDyw3pvMPStoGvJHOvz0iTqfibgUeA84HdqYHwCPAE5K6yPcwWlNZvZLuB/an8+6LiN5zarGZ1T1vBz9xvI2ITSrd75/i3z39Ct/56tXeuK8OeTv4sfM2ImbD8Lcz1jdvBz/xvMutTQr+dsbJwdvBTzz3NGxS8CfQyWNgO/jnbvs8Ny27nJ4P+ipdpbrinoZNCv4EOnn4u3EmloOGTRr+QiKzc+fVU1YXvCrK7Nx49ZSNq2q/WcqroszKw8NTlkm13izlVVFm5eXhKSuq2m+W6n7/FJteeJMfHPwVpz48Q9PUKay68hPc/aVP1+wwlYfarBI8PGXjotqXqtbjqigPtVk18/CUFVUL/ynXy6ooD7VZLXDQsFFV+3/K9bIuf/ed14w41GZWLRw0bFT18p9ytauFXp2Zg4ZZFan2Xp2ZV0+ZmZlXT5mZ2fhz0DAzs8wcNMzMLDMHDbMyqfb9u8yycNAwKxPf6W31wEtuzSaY7/S2euKehtkEq/b9u8xK4aBhNsF8p7fVk1GDhqQrJL1a8Hhf0jclzZDULqkzPTcX5NkoqUvSIUmrCtKXSHotvbdZklJ6o6RnU/peSfML8rSln9EpqW18m29WHgN3ej932+e5adnl9HzQV+kqmY1JSXeESzoP+CWwDLgd6I2IByRtAJoj4i5Ji4CngaXAbOAl4FMRcVrSPuAO4EfAC8DmiNgp6TbgsxHxdUmtwPUR8RVJM4AOIAcEcABYEhEnRqqj7wg3qx7+bpDaMVF3hK8AfhYRvwDWAFtT+lZgbTpeAzwTEX0R8RbQBSyVNAuYHhF7Ih+pHh+SZ6Cs7cCK1AtZBbRHRG8KFO3A6hLrbGYV4hVj9afU1VOt5HsRAJdGxHGAiDguaWZKn0O+JzHgaEr7MB0PTR/I83Yqq1/Se8DFhenD5DGzKuUVY/Urc09D0seA64D/Otqpw6RFkfSx5ims23pJHZI6enp6RqmemU00rxirX6UMT10L/Dgi3kmv30lDTqTn7pR+FJhXkG8ucCylzx0mfVAeSQ3ARUBvkbIGiYgtEZGLiFxLS0sJTTKziVDqijHfLV87Sgka/4azQ1MAO4CB1UxtwPMF6a1pRdQCYCGwLw1lnZS0PM1X3Dwkz0BZNwAvp3mPF4GVkprT6qyVKc2K8B+gVYNSVox57qN2ZFo9JekC8nMLvx0R76W0i4FtwGXAEeDGiOhN790N3AL0A9+MiJ0pPQc8BpwP7AS+EREhqQl4AriafA+jNSJ+nvLcAnwrVeUvIuLRYnX16im457nX+P6+I9y09DI2Xf+ZSlfHbERD5z4GeO6j/LKunvKXMNWRsfwBekmkVVL3+6dG/F50/z6Wl7+EaRIay+SjhwWskny3fO3xhoV1pJQ/QC+JtGrh70WvLQ4adSbrH+DuO68ZcVjArJwe/trZEZFNa6+qYE0sCweNOpP1D9DDAmY2Fp7TmEDVvvTVm+iZWam8emoCeemrmdWKrKunPDw1ATzJbGb1ysNTE6DUpa/VPoxlZjbAQWMClDrJ7HslzKxWeHhqgmRZ+uphLDOrNe5pjEGW4aSHv5Zj09qrWDR7OpvWXjVoKewAbx9t1cTDpLWtXNfPQWMMxms4yfdKWDXxMGltK9f185LbEkzEjpx/+kQHLdOaBg1jDdcrMZso3mm2to3X9fMutxPAO3LacGp9p2D/Xte28bp+3uV2Ang4aXLJOkZc68M6/r2ubeW+fl49VSLvyDl5FAaD4e7or6fVb/69rm3lvH4enjIbIusY8WQe1qn1ITn7KA9PWVWr5uWdWZdCT+ZhnVofkrOx8/CUjausn0BHG/qppFKCwWQb1qmnITkbGw9P2bgabWffWlne6aXQw5vMQ3L1zrvcWlll/QRaK98Y6G+TG95kHpKzPM9p2LjwPMDk4S/vmtzc07Bx4XmAyaOSvTCv2qq8TD0NSR+XtF3STyW9Kel3Jc2Q1C6pMz03F5y/UVKXpEOSVhWkL5H0WnpvsySl9EZJz6b0vZLmF+RpSz+jU1Lb+DXdxlvWT6BZNnM0G45XbVVepolwSVuB3RHxPUkfAy4AvgX0RsQDkjYAzRFxl6RFwNPAUmA28BLwqYg4LWkfcAfwI+AFYHNE7JR0G/DZiPi6pFbg+oj4iqQZQAeQAwI4ACyJiBMj1dUT4Wb1p1YWUNSycbtPQ9J04PeARwAi4p8i4tfAGmBrOm0rsDYdrwGeiYi+iHgL6AKWSpoFTI+IPZGPVI8PyTNQ1nZgReqFrALaI6I3BYp2YPVodTaz+uKvEageWYanfhvoAR6V9Iqk70m6ELg0Io4DpOeZ6fw5wNsF+Y+mtDnpeGj6oDwR0Q+8B1xcpKxBJK2X1CGpo6enJ0OTzKyWeAFF9cgSNBqAzwEPRcTVwG+ADUXO1zBpUSR9rHnOJkRsiYhcRORaWlqKVM3MapVXbVWHLKunjgJHI2Jver2dfNB4R9KsiDiehp66C86fV5B/LnAspc8dJr0wz1FJDcBFQG9K//0heX6YqWVmVldq5d6Zel/hNWpPIyJ+Bbwt6YqUtAJ4A9gBDKxmagOeT8c7gNa0ImoBsBDYl4awTkpanuYrbh6SZ6CsG4CX07zHi8BKSc1pddbKlGZmVpXqfYVX1vs0vgF8P62c+jnwb8kHnG2S1gFHgBsBIuKgpG3kA0s/cHtEnE7l3Ao8BpwP7EwPyE+yPyGpi3wPozWV1SvpfmB/Ou++iOgdY1vNzCbMZNmXy3tPmZmNg1rfl8tbo5uZldFkWeHlbUTMzMbJZNgix8NTZmbm4al6VM3fdmdmk4ODRg2p96V8Zlb9PKdRAybLUj4zq37uadQAb9ZmZtXCQaMGTJalfGbl5nnC0jlo1Ahv1mY2/jxPWDovuTWzScdf6vRRXnJrZjaCUucJPYx1loOGmU06pc4TehjrLC+5NbNJKcuWH17u/lGe0zAzG0Gt71xbCs9pmJmdIy93/ygPT5mZFTEZdq4thYenzMzMw1NmZjb+HDSsqnl9vFl1cdCwqub18WbVxRPhVpW8Pt6sOrmnYVXJ28GbVScHDatKXh9vVp0yBQ1JhyW9JulVSR0pbYakdkmd6bm54PyNkrokHZK0qiB9SSqnS9JmSUrpjZKeTel7Jc0vyNOWfkanpLbxarhVP28Hb1Z9Mt2nIekwkIuIdwvS/hLojYgHJG0AmiPiLkmLgKeBpcBs4CXgUxFxWtI+4A7gR8ALwOaI2CnpNuCzEfF1Sa3A9RHxFUkzgA4gBwRwAFgSESdGqqvv0zAzK1057tNYA2xNx1uBtQXpz0REX0S8BXQBSyXNAqZHxJ7IR6rHh+QZKGs7sCL1QlYB7RHRmwJFO7D6HOpsZmbnIGvQCOAHkg5IWp/SLo2I4wDpeWZKnwO8XZD3aEqbk46Hpg/KExH9wHvAxUXKGkTSekkdkjp6enoyNsnMzEqVdcnt5yPimKSZQLuknxY5V8OkRZH0seY5mxCxBdgC+eGpInUzM7NzkKmnERHH0nM38Bz5+Yp30pAT6bk7nX4UmFeQfS5wLKXPHSZ9UB5JDcBFQG+RsszMrAJGDRqSLpQ0beAYWAm8DuwABlYztQHPp+MdQGtaEbUAWAjsS0NYJyUtT/MVNw/JM1DWDcDLad7jRWClpOa0OmtlSjMzswrIMjx1KfBcWh3bADwVEf9T0n5gm6R1wBHgRoCIOChpG/AG0A/cHhGnU1m3Ao8B5wM70wPgEeAJSV3kexitqaxeSfcD+9N590VE7zm018zMzoG3RjczM2+NbmZm489Bw8zMMnPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLDMHDTMzy8xBw8zMMnPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDLLHDQknSfpFUl/l17PkNQuqTM9Nxecu1FSl6RDklYVpC+R9Fp6b7MkpfRGSc+m9L2S5hfkaUs/o1NS23g02szMxqaUnsYdwJsFrzcAuyJiIbArvUbSIqAVuBJYDXxX0nkpz0PAemBheqxO6euAExHxSeDbwIOprBnAvcAyYClwb2FwMjOz8soUNCTNBb4EfK8geQ2wNR1vBdYWpD8TEX0R8RbQBSyVNAuYHhF7IiKAx4fkGShrO7Ai9UJWAe0R0RsRJ4B2zgYaMzMrs6w9jb8C7gTOFKRdGhHHAdLzzJQ+B3i74LyjKW1OOh6aPihPRPQD7wEXFynLzMwqYNSgIemPgO6IOJCxTA2TFkXSx5qnsI7rJXVI6ujp6clYTTMzK1WWnsbngeskHQaeAb4o6UngnTTkRHruTucfBeYV5J8LHEvpc4dJH5RHUgNwEdBbpKxBImJLROQiItfS0pKhSWZmNhajBo2I2BgRcyNiPvkJ7pcj4k+AHcDAaqY24Pl0vANoTSuiFpCf8N6XhrBOSlqe5ituHpJnoKwb0s8I4EVgpaTmNAG+MqWZmVkFNJxD3geAbZLWAUeAGwEi4qCkbcAbQD9we0ScTnluBR4Dzgd2pgfAI8ATkrrI9zBaU1m9ku4H9qfz7ouI3nOos5mZnQPlP9DXj1wuFx0dHZWuhplZTZF0ICJyo53nO8LNzKpY9/un+PLDe+g+earSVQEcNMzMqtrmXZ3sP9zL5pc6K10V4NzmNMzMbIJccc9O+vrP3hr35N4jPLn3CI0NUzi06dqK1cs9DTOzKrT7zmu4bvFsmqbm/5tumjqFNYtns/uuaypaLwcNM7MqNHN6E9MaG+jrP0NjwxT6+s8wrbGBmdOaKlovD0+ZmVWpdz/o46Zll/PVpZfx1L4j9FTBZLiX3JqZmZfcmpnZ+HPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLDMHDTMzy8xBw8zMMnPQMDOzzBw0zMwsMwcNMzPLbNSgIalJ0j5JP5F0UNJ/TOkzJLVL6kzPzQV5NkrqknRI0qqC9CWSXkvvbZaklN4o6dmUvlfS/II8belndEpqG8/Gm5lZabL0NPqAL0bE7wCLgdWSlgMbgF0RsRDYlV4jaRHQClwJrAa+K+m8VNZDwHpgYXqsTunrgBMR8Ung28CDqawZwL3AMmApcG9hcDIzs/IaNWhE3gfp5dT0CGANsDWlbwXWpuM1wDMR0RcRbwFdwFJJs4DpEbEn8t8x+/iQPANlbQdWpF7IKqA9Inoj4gTQztlAY2ZmZZZpTkPSeZJeBbrJ/ye+F7g0Io4DpOeZ6fQ5wNsF2Y+mtDnpeGj6oDwR0Q+8B1xcpCwzM6uATEEjIk5HxGJgLvlew1VFTtdwRRRJH2uesz9QWi+pQ1JHT09PkaqZmdm5KGn1VET8Gvgh+SGid9KQE+m5O512FJhXkG0ucCylzx0mfVAeSQ3ARUBvkbKG1mtLROQiItfS0lJKk8zMrARZVk+1SPp4Oj4f+APgp8AOYGA1UxvwfDreAbSmFVELyE9470tDWCclLU/zFTcPyTNQ1g3Ay2ne40VgpaTmNAG+MqWZmVkFNGQ4ZxawNa2AmgJsi4i/k7QH2CZpHXAEuBEgIg5K2ga8AfQDt0fE6VTWrcBjwPnAzvQAeAR4QlIX+R5GayqrV9L9wP503n0R0XsuDTYzs7FT/gN9/cjlctHR0VHpapiZ1RRJByIiN9p5viPczMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLDMHDTMzy8xBw8zMMnPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzq4Du90/x5Yf30H3yVKWrUhIHDTOzCti8q5P9h3vZ/FJnpatSkoZKV8DMbDK54p6d9PWf+efXT+49wpN7j9DYMIVDm66tYM2ycU/DzKyMdt95Ddctnk3T1Px/v01Tp7Bm8Wx233VNhWuWjYOGmVkZzZzexLTGBvr6z9DYMIW+/jNMa2xg5rSmSlctEw9PmZmV2bsf9HHTssv56tLLeGrfEXpqaDJcEVH8BGke8DjwCeAMsCUi/lrSDOBZYD5wGPhyRJxIeTYC64DTwJ9FxIspfQnwGHA+8AJwR0SEpMb0M5YA/w/4SkQcTnnagHtSdTZFxNZi9c3lctHR0ZH9X8DMzJB0ICJyo52XZXiqH/j3EfFpYDlwu6RFwAZgV0QsBHal16T3WoErgdXAdyWdl8p6CFgPLEyP1Sl9HXAiIj4JfBt4MJU1A7gXWAYsBe6V1JyhzmZmNgFGDRoRcTwifpyOTwJvAnOANcDAp/6twNp0vAZ4JiL6IuItoAtYKmkWMD0i9kS+e/P4kDwDZW0HVkgSsApoj4je1Itp52ygMTOzMitpIlzSfOBqYC9waUQch3xgAWam0+YAbxdkO5rS5qTjoemD8kREP/AecHGRsszMrAIyBw1JvwX8N+CbEfF+sVOHSYsi6WPNU1i39ZI6JHX09PQUqZqZmZ2LTEFD0lTyAeP7EfG3KfmdNOREeu5O6UeBeQXZ5wLHUvrcYdIH5ZHUAFwE9BYpa5CI2BIRuYjItbS0ZGmSmZmNwahBI80tPAK8GRH/ueCtHUBbOm4Dni9Ib5XUKGkB+QnvfWkI66Sk5anMm4fkGSjrBuDlNO/xIrBSUnOaAF+Z0szMrAKyLLn9ArAbeI38kluAb5Gf19gGXAYcAW6MiN6U527gFvIrr74ZETtTeo6zS253At9IS26bgCfIz5f0Aq0R8fOU55b08wD+IiIeHaW+PcAvMra/mlwCvFvpSowTt6X61Es7wG2ZKJdHxKhDNaMGDSsPSR1Z1kjXArel+tRLO8BtqTRvI2JmZpk5aJiZWWYOGtVjS6UrMI7clupTL+0At6WiPKdhZmaZuadhZmaZOWhMEEl/I6lb0usFab8jaY+k1yT9d0nTU/rHJD2a0n8i6fcL8vxQ0iFJr6bHzGF+3ES3ZZ6k/yXpTUkHJd2R0mdIapfUmZ6bC/JslNSV6r6qIH1JameXpM3pnp1abUvFrk2p7ZB0cTr/A0nfGVJWTV2TUdpS0b+XMbTlDyUdSP/+ByR9saCsil6XEUWEHxPwAH4P+BzwekHafuBfpeNbgPvT8e3Ao+l4JnAAmJJe/xDIVbgts4DPpeNpwD8Ci4C/BDak9A3Ag+l4EfAToBFYAPwMOC+9tw/4XfJbxOwErq3htlTs2oyhHRcCXwC+DnxnSFm1dk2KtaWify9jaMvVwOx0fBXwy2q5LiM93NOYIBHx9+RvVCx0BfD36bgd+ON0vIj89vJERDfwa6Bq1m5HeXY6Lovxaks56zycUtsREb+JiP8NDPq2n1q8JiO1pRqMoS2vRMTA1kgHgSbld9Oo+HUZiYNGeb0OXJeOb+Tsvlo/AdZIalB+65UlDN5z69HU1f4Ple6iauJ2Oi67c2zLgIpfm4ztGEktXpPRVPyawJja8sfAKxHRR5Vdl0IOGuV1C/kvsTpAvuv6Tyn9b8j/UnQAfwX8X/JbsADcFBGfAf5lenytrDUuoInd6bisxqEtUAXXpoR2jFjEMGnVfk2Kqfg1gdLbIulK8l8+96cDScOcVhVLXR00yigifhoRKyNiCfA0+fFxIqI/Iv48IhZHxBrg40Bneu+X6fkk8BQVGhrRxO90XDbj1JaKX5sS2zGSWrwmI6r0NYHS2yJpLvAccHNE/CwlV8V1GY6DRhkNrOSQNIX8957/l/T6AkkXpuM/BPoj4o00XHVJSp8K/BH5Ia5y17scOx2XxXi1pdLXZgztGFaNXpORyqn430upbZH0ceB/ABsj4v8MnFwN12VElZ6Jr9cH+Z7EceBD8p8a1gF3kF9N8Y/AA5y9uXI+cIj8pNlL5HebhPwqkQPAP5CfJPtr0sqdMrflC+S7xv8AvJoe/5r8tyvuIt8r2gXMKMhzN/me1CEKVn2Qn+B/Pb33nYF/g1prS6WvzRjbcZj84owP0u/kohq+Jh9pS6WvyVjaQv7D428Kzn0VmFkN12Wkh+8INzOzzDw8ZWZmmTlomJlZZg4aZmaWmYOGmZll5qBhZmaZOWiYmVlmDhpmZpaZg4aZmWX2/wFIULHVnmtEQwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2020 221186\n",
+ "2021 376290\n",
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1996 564901\n",
+ "2019 584066\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2022 641397\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {