"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \\sim \\mathcal{U}(0,1)$ et $Y \\sim \\mathcal{U}(0,1)$ alors $P[X^2 + Y^2 \\le 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). Le code suivant illustre ce fait :"
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2 + Y^2 \\le 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). Le code suivant illustre ce fait :"