Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
d3ffe1dda057aedb6d37daa14d4dce86
mooc-rr
Commits
eb9d3c55
Commit
eb9d3c55
authored
Apr 26, 2020
by
d3ffe1dda057aedb6d37daa14d4dce86
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
005bdd99
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
63 additions
and
0 deletions
+63
-0
README.md
module4/Exercice 1/README.md
+63
-0
No files found.
module4/Exercice 1/README.md
0 → 100644
View file @
eb9d3c55
In this project, we gather reproduction attempts from the Challenger
study. In particular, we try to reperform some of the analysis provided
in
*
Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of
Failure
* by *
Siddhartha R. Dalal, Edward B. Fowlkes, Bruce Hoadley
*
published in
*Journal of the American Statistical Association*
, Vol. 84,
No. 408 (Dec., 1989), pp. 945-957 and available at
[
here
](
https://studies2.hec.fr/jahia/webdav/site/hec/shared/sites/czellarv/acces_anonyme/OringJASA_1989.pdf
)
(here is
[
the official JASA
webpage](http://www.jstor.org/stable/2290069)).
On the fourth page of this article, they indicate that the maximum
likelihood estimates of the logistic regression using only temperature
are: $
`\hat{\alpha}=5.085`
$ and $
`\hat{\beta}=-0.1156`
$ and their
asymptotic standard errors are $
`s_{\hat{\alpha}}=3.052`
$ and
$
`s_{\hat{\beta}}=0.047`
$. The Goodness of fit indicated for this model
was $
`G^{2} = 18.086`
$ with 21 degrees of freedom. Our goal is to
reproduce the computation behind these values and the Figure 4 of this
article, possibly in a nicer looking way.
[*
Here is our successful replication of Dalal et al. results using
R
*
](challenger.pdf).
1.
Try to
**replicate the computation**
from Dalal et al. In case it
helps, we provide you with twoimplementations of this case study
but we encourage you to
**reimplement them by yourself**
using both
your favourite language and an other language you do not know yet.
-
A
[
Jupyter Python3 notebook
](
src/Python3/challenger.ipynb
)
-
An
[
Rmarkdown document
](
src/R/challenger.Rmd
)
2.
Then
**
update the following table with your own results by
indicating in each column:
**
-
Language: R, Python3, Julia, Perl, C...
-
Language version:
-
Main libraries: please indicate the versions of all the loaded
libraries
-
Tool: Jupyter, Rstudio, Emacs
-
Operating System: Linux, Mac OS X, Windows, Android, ... along with
its version
-
$
`\hat{\alpha}`
$ and $
`\hat{\beta}`
$: Identical, Similar, Different,
Non functional (expected values are $
`5.085`
$ and $
`-0.1156`
$)
-
$
`s_{\hat{\alpha}}`
$ and $
`s_{\hat{\beta}}`
$: Identical, Similar,
Different, Non functional (expected values are $
`3.052`
$ and $
`0.047`
$)
-
$
`G^2`
$ and degree of freedom: Identical, Similar, Different, Non
functional (expected values are $
`18.086`
$ and $
`21`
$).
-
Figure: Similar, Different, Non functional, Did not succeed
-
Confidence region: Identical (to
[
the one obtained with R
](
challenger.pdf
)
), Similar, Quite Different, Did not succeed
| Language | Language version | Main libraries | Tool | Operating System | $
`\hat{\alpha}= 5.085`
$ $
`\hat{\beta} = -0.1156`
$ | $
`s_{\hat{\alpha}} = 3.052`
$ $
`s_{\hat{\beta}} = 0.047`
$ | $
`G^{2} = 18.086`
$ $
`dof = 21`
$ | Figure | Confidence Region | Link to the document | Author |
| -------- | ---------------- | ------------------------------------------------------------- | ------- | ---------------------------- | ------------- | ---------- | ---------- | --------- | ---------- | ----------------------------------------------------------------- | ----------- |
| R | 3.5.1 | ggplot2 3.0.0 | RStudio | Debian GNU/Linux buster/sid | Identical | Identical | Identical | Identical | Identical |
[
Rmd
](
src/R/challenger.Rmd
)
,
[
pdf
](
src/R/challenger_debian_alegrand.pdf
)
| A. Legrand |
| Python | 3.6.4 | statsmodels 0.9.0 numpy 1.13.3 pandas 0.22.0 matplotlib 2.2.2 | Jupyter | Linux Ubuntu 4.4.0-116-generic | Identical | Identical | Identical | Identical | Similar |
[
ipynb
](
src/Python3/challenger.ipynb
)
,
[
pdf
](
src/Python3/challenger_ubuntuMOOC_alegrand.pdf
)
| A. Legrand |
| R | 3.5.1 | ggplot2 3.0.0 | RSrudio | Windows >= 8 x64 (build 9200) | Identical | Identical | Identical | Identical | Similar |
[
Rmd
](
https://app-learninglab.inria.fr/moocrr/gitlab/8517fa92e97b3a318e653caefbfde6b5/mooc-rr/blob/master/module4/MOOC_exercice_module4.Rmd
)
,
[
Pdf
](
https://app-learninglab.inria.fr/moocrr/gitlab/8517fa92e97b3a318e653caefbfde6b5/mooc-rr/blob/master/module4/MOOC_exercice_module4.pdf
)
| M. Saubin |
| Python | 3.6.4 | statsmodels 0.9.0 numpy 1.15.2 pandas 0.22.0 matplotlib 2.2.3 | Jupyter | Linux Ubuntu 4.4.0-164-generic | Identical | Identical | Identical | Identical | Similar |
[
ipynb
](
module4/challenger_Python_ipynb.ipynb
)
,
[
pdf
](
module4/challenger_Python_ipynb.pdf
)
|2992438755465b7fe3afd7856bde0599|
| R | 3.4.4 | ggplot2_3.3.0 | RStudio | Linux Mint 19 | Identical | Identical | Identical | Identical | Identical |
[
Rmd
](
https://app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module4/challenger_reexecuted.Rmd
)
,
[
html
](
https://app-learninglab.inria.fr/moocrr/gitlab/b2c48a7ab4afbff5f4d26650b09eb6b4/mooc-rr/blob/master/module4/challenger_reexecuted.html
)
| b2c48a7ab4afbff5f4d26650b09eb6b4 |
| Python | 3.6.4 | statsmodels 0.9.0 numpy 1.15.2 pandas 0.22.0 matplotlib 2.2.3 | Jupyter | Linux Ubuntu 4.4.0-164-generic | Identical | Identical | Identical | Identical | Similar |
[
ipynb
](
https://app-learninglab.inria.fr/moocrr/gitlab/34ea1ee296fc8711adf020d9cc2cb571/mooc-rr/blob/master/module4/challenger.ipynb
)
,
[
pdf
](
https://app-learninglab.inria.fr/moocrr/gitlab/34ea1ee296fc8711adf020d9cc2cb571/mooc-rr/blob/master/module4/challenger.pdf
)
| 34ea1ee296fc8711adf020d9cc2cb571 |
| Matlab | 9.6.0.1072779 (R2019a) | | Matlab Live Script | Windows 10.0.18362 | Identical | Identical | Non Functionnal | Similar | Did not succeed |
[
mlx
](
https://app-learninglab.inria.fr/moocrr/gitlab/34ea1ee296fc8711adf020d9cc2cb571/mooc-rr/blob/master/module4/challenger.mlx
)
,
[
pdf
](
https://app-learninglab.inria.fr/moocrr/gitlab/34ea1ee296fc8711adf020d9cc2cb571/mooc-rr/blob/master/module4/challenger_matlab.pdf
)
| 34ea1ee296fc8711adf020d9cc2cb571 |
| R | 3.6.1 | ggplot2 3.1.1 | RSrudio | Ubuntu 18.04.4 LTS | Identical | Identical | Identical | Identical | Identical |
[
Rmd
](
https://app-learninglab.inria.fr/moocrr/gitlab/a308dc99373eb1db581156a44d010769/mooc-rr/blob/master/module4/challenger_aschmide.Rmd
)
,
[
pdf
](
https://app-learninglab.inria.fr/moocrr/gitlab/a308dc99373eb1db581156a44d010769/mooc-rr/blob/master/module4/challenger_aschmide.pdf
)
| a308dc99373eb1db581156a44d010769 |
| R | 3.5.3 | ggplot2_3.1.1 | RStudio | Windows 10 x64 (build 18363) | Identical | Identical | Identical | Identical | Identical |
[
Rmd
](
https://app-learninglab.inria.fr/moocrr/gitlab/84848da3cce8d6b635b2e7c1749f3f0a/mooc-rr/blob/master/module4/challenger_CL.Rmd
)
,
[
pdf
](
https://app-learninglab.inria.fr/moocrr/gitlab/84848da3cce8d6b635b2e7c1749f3f0a/mooc-rr/blob/master/module4/challenger_CL.pdf
)
| 84848da3cce8d6b635b2e7c1749f3f0a |
| Python | 3.7.6 | statsmodel 0.11.1 scipy 1.4.1 pandas 1.0.3 seaborn 0.10.0 | Jupyter | Ubuntu 18.04.4 LTS | Identical | Identitcal | Identical | Non functionnal | Non functionnal |
[
ipynb
](
https://app-learninglab.inria.fr/moocrr/gitlab/a308dc99373eb1db581156a44d010769/mooc-rr/blob/master/module4/challenger.ipynb
)
[
html
]
| a308dc99373eb1db581156a44d010769 |
| Python | 3.7.4 | statsmodel 0.10.1 scipy 1.3.1 pandas 0.25.1 seaborn 0.9.0 | Jupyter | Windows 10 x64 | Identical | Identical | Identical | Identical | Identical |
[
ipynb
](
https://app-learninglab.inria.fr/moocrr/gitlab/e33eb88ad13e77fcab40e23aa5b9eb7e/mooc-rr/blob/master/module4/src_Python3_challenger.ipynb
)
) | e33eb88ad13e77fcab40e23aa5b9eb7e |
| Julia | 1.4.0 | CSV v0.6.1 DataFrames v0.20.2 GLM v1.3.9 | Weave.jl | Linux Debian 4.14.17-1 x86_64 | Identical | Identical | Similar | Identical | Did not succeed |
[
jmd
](
https://app-learninglab.inria.fr/moocrr/gitlab/3e6bf7b47a05a05ae3d6af86121dcb5d/mooc-rr/blob/master/module4/challenger.jmd
)
,
[
pdf
](
https://app-learninglab.inria.fr/moocrr/gitlab/3e6bf7b47a05a05ae3d6af86121dcb5d/mooc-rr/blob/master/module4/challenger.pdf
)
,
[
html
](
https://app-learninglab.inria.fr/moocrr/gitlab/3e6bf7b47a05a05ae3d6af86121dcb5d/mooc-rr/blob/master/module4/challenger.html
)
| 3e6bf7b47a05a05ae3d6af86121dcb5d |
| R | 3.6.3 | ggplot2 3.3.0 | RStudio | Windows 10 x64 (build 18363) | Similar $
`\hat{\alpha}=5.08498`
$ $
`\hat{\beta}=-0.11560`
$ | Similar $
`s_{\hat{\alpha}} = 3.05247`
$ $
`s_{\hat{\beta}} = 0.04702`
$ | Identical | Identical | Identical |
[
Rmd
]
(
https://app-learninglab.inria.fr/moocrr/gitlab/d581efc242e1e06dfa8d0dea8ee470e0/mooc-rr/blob/master/module4/Exo1_Module4.Rmd
)
,
[
pdf
]
(
https://app-learninglab.inria.fr/moocrr/gitlab/d581efc242e1e06dfa8d0dea8ee470e0/mooc-rr/blob/master/module4/Exo1_Module4.pdf
)
| d581efc242e1e06dfa8d0dea8ee470e0 |
| Python | 3.7.7 | statsmodel 0.11.1 scipy 1.4.1 pandas 1.0.3 seaborn 0.10.0 | Jupyter | Linux Mint 19.1 Cinnamon | Identical | Identitcal | Identical | Similar | Similar |
[
ipynb
](
https://app-learninglab.inria.fr/moocrr/gitlab/1affb6a270b94ae1aa2914210661b070/mooc-rr/blob/master/module4/exo/challenger.ipynb
)
[
pdf
]
(https://app-learninglab.inria.fr/moocrr/gitlab/1affb6a270b94ae1aa2914210661b070/mooc-rr/blob/master/module4/exo/challenger.pdf) | 1affb6a270b94ae1aa2914210661b070 |
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment