mortality rate

parent a2f55884
...@@ -71,7 +71,7 @@ ...@@ -71,7 +71,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -539,7 +539,7 @@ ...@@ -539,7 +539,7 @@
"[1314 rows x 3 columns]" "[1314 rows x 3 columns]"
] ]
}, },
"execution_count": 6, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -558,7 +558,7 @@ ...@@ -558,7 +558,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -598,7 +598,7 @@ ...@@ -598,7 +598,7 @@
"Index: []" "Index: []"
] ]
}, },
"execution_count": 8, "execution_count": 5,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -616,7 +616,7 @@ ...@@ -616,7 +616,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 23, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -646,7 +646,7 @@ ...@@ -646,7 +646,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 24, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -695,7 +695,7 @@ ...@@ -695,7 +695,7 @@
"Dead 139 230" "Dead 139 230"
] ]
}, },
"execution_count": 24, "execution_count": 7,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -706,6 +706,79 @@ ...@@ -706,6 +706,79 @@
"pd.DataFrame(data, columns=[\"Smoker\", \"Non-Smoker\"], index = [\"Alive\", \"Dead\"])" "pd.DataFrame(data, columns=[\"Smoker\", \"Non-Smoker\"], index = [\"Alive\", \"Dead\"])"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A present, nous allons calculer le taux de mortalite dans chacun de ces deux groupes. Pour cela, nous allons determiner le rapport entre le nombre de femmes décédées dans un groupe et le nombre total de femmes dans ce groupe. Dans le groupe des femmes fumeuses, le taux de mortalite est 0,24 tandis que dans le groupe des femmes non fumeuses, le taux de mortalite est 0,31."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Taux de mortalite fumeuses : 0.23883161512027493\n",
"Taux de mortalite non-fumeuses : 0.31420765027322406\n"
]
}
],
"source": [
"mortality_rate_smoker = dead_and_smoker/(alive_and_smoker+dead_and_smoker)\n",
"mortality_rate_non_smoker = dead_and_non_smoker /(alive_and_non_smoker + dead_and_non_smoker)\n",
"print(\"Taux de mortalite fumeuses :\", mortality_rate_smoker)\n",
"print(\"Taux de mortalite non-fumeuses :\", mortality_rate_non_smoker)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous representons les taux de mortalite calcules precedemment dans un diagramme de barres afin d'illustrer visuellement nos resultats."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0,0.5,'Mortality Rate')"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEKCAYAAADNSVhkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE3BJREFUeJzt3XvUZFV95vHvw/0mEqFFEJrGGwmooHQQjEbFG6DAjGhQgyIaGbNGXZrMYnAcE5EZk6CJEycaghdsdaKjIhEwgEbFJAhId4Cm2wtB5GZrFK+gA3L5zR9nN1TafquLpmu/UP39rFXrrbPPPqd+1av6fd59zql9UlVIktTTJvNdgCRp42P4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqTvDR5LUneEjSerO8JEkdbfZfBdwf7XTTjvVokWL5rsMSXpAWbZs2U1VtWBd/QyfOSxatIilS5fOdxmS9ICS5LpJ+nnYTZLUneEjSerO8JEkdWf4SJK6M3wkSd1NNXySHJLkm0muTnLiWtYfmWR5ksuTLE3ylJF1H0zy/SQr5tj3f0lSSXZqy89OsizJle3nwSN9/2eSG5LcMo33KUm6d6YWPkk2Bd4DHArsDbwkyd5rdPsCsG9V7Qe8Enj/yLoPAYfMse/dgWcD14803wQcXlWPA44FPjKy7mzggPV+M5KkDWqaI58DgKur6pqq+iXwceDI0Q5VdUvdcx/vbYEaWfePwI/m2Pe7gBPW6H9ZVa1qiyuBrZJs2dZdXFXf3QDvSZK0AUwzfB4O3DCyfGNr+3eS/Mck3wA+yzD6GSvJEcB3quqKMd2OAi6rqtvuXcmSpB6mOcNB1tJWv9JQdSZwZpLfBk4GnjXnDpNtgDcDzxnTZx/gz8b1GbPt8cDxAAsXLry3m0sPGDlpbf89Jag//pVf01MxzZHPjcDuI8u7Aavm6Lv6MNsjV19AMIdHAnsCVyS5tu3zX5I8DCDJbsCZwMur6lv3tuCqOq2qFlfV4gUL1jk1kSRpPU1z5HMp8OgkewLfAV4MvHS0Q5JHAd+qqkryRGAL4Idz7bCqrgQeOrL9tcDiqropyQ4Mh+7eVFUXbug3I0nacKY28qmqO4DXAucDXwc+UVUrk7wmyWtat6OAFUkuZ7gy7ujVFyAk+RhwEbBXkhuTvGodL/la4FHAW9ql25cneWjb1ylJbgS2aft66wZ+u5KkeyH3XGymUYsXLy5ntdas8pyP5nJfz/kkWVZVi9fVzxkOJEndGT6SpO4MH0lSd4aPJKk7w0eS1J3hI0nqzvCRJHVn+EiSujN8JEndGT6SpO4MH0lSd4aPJKk7w0eS1J3hI0nqzvCRJHVn+EiSujN8JEndGT6SpO4MH0lSd4aPJKk7w0eS1J3hI0nqzvCRJHVn+EiSujN8JEndGT6SpO4MH0lSd4aPJKk7w0eS1J3hI0nqzvCRJHVn+EiSujN8JEndGT6SpO4MH0lSd4aPJKk7w0eS1J3hI0nqzvCRJHVn+EiSujN8JEndTTV8khyS5JtJrk5y4lrW/26S5e3xlST7tvatknw1yRVJViY5aWSb/ZJcnOTyJEuTHNDaN0+yJMmVSb6e5E0j25w3sq9Tk2w6zfctSRpvauHTfsG/BzgU2Bt4SZK91+j2beBpVfV44GTgtNZ+G3BwVe0L7AcckuTAtu4U4KSq2g/4o7YM8CJgy6p6HLA/8J+SLGrrfqft67HAgtZXkjRPpjnyOQC4uqquqapfAh8HjhztUFVfqaoft8WLgd1ae1XVLa198/ao1ZsB27fnDwZWjbRvm2QzYGvgl8DP2v5+1vpsBmwxsi9J0jzYbIr7fjhww8jyjcCTxvR/FXDu6oU2cloGPAp4T1Vd0la9ATg/yTsZwvPJrf1TDOH2XWAb4I1V9aOR/Z3PEIjntr6/IsnxwPEACxcunOhNrn0/672pZlz5Z48ETHfks7ZfwWv9r5fkGQzh81/v7lh1Zzu0thtwQJLHtlW/zxAsuwNvBD7Q2g8A7gR2BfYE/jDJI0b291xgF2BL4OC11VFVp1XV4qpavGDBgonfqCTp3plm+NwI7D6yvBv3HCK7W5LHA+8HjqyqH665vqp+AlwAHNKajgU+3Z5/kiF0AF4KnFdVt1fV94ELgcVr7OtW4CzWOPwnSeprmuFzKfDoJHsm2QJ4McMv/rslWcgQJC+rqqtG2hck2aE93xp4FvCNtnoV8LT2/GDgX9vz64GDM9gWOBD4RpLtkuzS9rUZcNjIviRJ82Bq53yq6o4krwXOBzYFPlhVK5O8pq0/leFqtR2B92Y4UXJHVS1mODy2pJ332QT4RFWd03b9auAvW5DcSjtHw3Bl3enACoZDfqdX1fIkOwNnJdmy1fFF4NRpvW9J0rqlPAO6VosXL66lS5eu17ZecKC53F/+u+UkP6Rau/rj+/YhTbKsDSLGcoYDSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqbt1hk+SnZN8IMm5bXnvJK+afmmSpFk1ycjnQwyTg+7alq9iuKGbJEnrZZLw2amqPgHcBcNs1Qw3bZMkab1MEj4/T7Ij7S6kSQ4EfjrVqiRJM22S+/n8AcNN4B6Z5EJgAfCiqVYlSZppk4TPSoY7h+7FcJO2b+JVcpKk+2CSELmoqu6oqpVVtaKqbgcumnZhkqTZNefIJ8nDgIcDWyd5AsOoB2B7YJsOtUmSZtS4w27PBV4B7Ab8xUj7zcB/m2JNkqQZN2f4VNUSYEmSo6rqjI41SZJm3DovOKiqM5I8D9gH2Gqk/W3TLEySNLsmmV7nVOBo4HUM531eBOwx5bokSTNskqvdnlxVLwd+XFUnAQcBu0+3LEnSLJskfP5f+/mLJLsCtwN7Tq8kSdKsm+RLpuck2QF4B/AvDNPsvH+qVUmSZtokFxyc3J6ekeQcYKuqcm43SdJ6u1fT5FTVbcABST4/pXokSRuBOcMnycFJrkpyS5KPtpvILQX+FPjrfiVKkmbNuJHPnwPHAzsCnwIuBj5SVftX1ad7FCdJmk3jzvlUVV3Qnv9dkh9U1V92qEmSNOPGhc8OSV4wspzRZUc/kqT1NS58vgwcPsdyAYaPJGm9jJtY9LiehUiSNh7ekVSS1J3hI0nqzvCRJHU3yS0Vlib5z0l+rUdBkqTZN8nI58XArsClST6e5LlJMuW6JEkzbJ3hU1VXV9WbgccAfwt8ELg+yUlJHjLtAiVJs2eicz5JHs8w3c47gDOAFwI/A744vdIkSbNqnbdUSLIM+AnwAeDENrM1wCVJfmuaxUmSZtMkN5N7UVVdM9qQZM+q+nZVvWCujSRJmsskh90+NWGbJEkTmXPkk+TXgX2AB68xwej2wFbTLkySNLvGHXbbC3g+sAP/foLRm4FXT7MoSdJsGzex6GeAzyQ5qKou6liTJGnGjTvsdkJVnQK8NMlL1lxfVa+famWSpJk17rDb19vPpT0KkSRtPMYddju7/VzSrxxJ0sZg3GG3sxnuWLpWVXXEVCqSJM28cYfd3tmtCknSRmXcYbcv9yxEkrTxmGRut0cDfwLszciXS6vqEVOsS5I0wyaZXud04K+BO4BnAB8GPjLNoiRJs22S8Nm6qr4ApKquq6q3AgdPtyxJ0iybZFbrW5NsAvxrktcC3wEeOt2yJEmzbJKRzxuAbYDXA/sDxwAvn2ZRkqTZNkn4LKqqW6rqxqo6rqqOAhZOuzBJ0uyaJHzeNGGbJEkTGTfDwaHAYcDDk7x7ZNX2DFe+SZK0XsZdcLCKYVLRI4BlI+03A2+cZlGSpNk2boaDK5KsAJ7j5KKSpA1p7DmfqroT2DHJFp3qkSRtBCb5ns91wIVJzgJ+vrqxqv5ialVJkmbaJOGzqj02AR403XIkSRuDdYZPVZ0EkORBw2LdMvWqJEkzbZ3f80ny2CSXASuAlUmWJdln+qVJkmbVJF8yPQ34g6rao6r2AP4QeN90y5IkzbJJwmfbqvrS6oWqugDYdmoVSZJm3iQXHFyT5C3ccw+fY4BvT68kSdKsm2Tk80pgAfBp4Mz2/LhpFiVJmm2TXO32Y4bbKUiStEGMm1j0rHEbVtURG74cSdLGYNzI5yDgBuBjwCVAulQkSZp548LnYcCzgZcALwU+C3ysqlb2KEySNLvmvOCgqu6sqvOq6ljgQOBq4IIkr+tWnSRpJo294CDJlsDzGEY/i4B3M1z1JknSeht3wcES4LHAucBJVbWiW1WSpJk2buTzMoZbKDwGeH1y9/UGYZhgdPsp1yZJmlHj7mQ6yRdQJUm61wwYSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7gwfSVJ3ho8kqTvDR5LUneEjSerO8JEkdWf4SJK6M3wkSd0ZPpKk7lJV813D/VKSHwDXzXcdM2In4Kb5LkIaw8/ohrNHVS1YVyfDR1OXZGlVLZ7vOqS5+Bntz8NukqTuDB9JUneGj3o4bb4LkNbBz2hnnvORJHXnyEeS1J3ho26SPD3JOfNdh7ShJLk2yU7zXccDkeGjB4Qkm813DdKGlGTT+a5hPhk+mlOSbZN8NskVSVYkObr9pff2JBclWZrkiUnOT/KtJK9p2yXJO9o2VyY5ei37/s0klyV5RHudDya5tLUd2fq8Isknk5wNfK7z29c8SbIoydeTvC/JyiSfS7J1kv2SXJxkeZIzk/xa639Bkj9L8tUkVyV56hz7fX2Sr7XtP97a3ppkSXuNa5O8IMkp7XN7XpLNW79nts/mle2zuuUa+9669X91Wz6m1XN5kr9ZHTRJbknytiSXAAdN8Z/x/q+qfPhY6wM4CnjfyPKDgWuB32/L7wKWAw8CFgDfH9nu88CmwM7A9cAuwNOBc4AnA8uAha3/24Fj2vMdgKuAbYFXADcCD5nvfwsfXT93i4A7gP3a8ieAY9pn7Wmt7W3A/2rPLwD+vD0/DPiHOfa7CtiyPd+h/Xwr8M/A5sC+wC+AQ9u6M4H/AGwF3AA8prV/GHhDe35tq/cfgJe3tt8AzgY2b8vvHVlXwO/M97/x/eHhyEfjXAk8q/1V+dSq+mlrP2tk/SVVdXNV/QC4NckOwFOAj1XVnVX1b8CXgd9s2/wGw2Wth1fV9a3tOcCJSS5n+EWyFbCwrft8Vf1oiu9R90/frqrL2/NlwCMZAuPLrW0J8Nsj/T890nfRHPtcDvyfJMcwhNtq51bV7Qyf502B81r7lW1fe7V6rprjtT8DnF5VH27LzwT2By5tn+lnAo9o6+4Ezpj7bW88PI6uOVXVVUn2Z/hr8k+SrD70dVv7edfI89XLmwEZs9vvMoTLExj+EqX1P6qqvjnaMcmTgJ/fpzehB6rRz9WdDCPiSfrfSfu9luR02uesqg4DnscQGkcAb0myz+i2VXVXkturDVGY7PMMcCFwaJK/bdsGWFJVb1pL31ur6s517G+j4MhHc0qyK/CLqvoo8E7giRNu+o/A0Uk2TbKA4T/8V9u6nzD8Enh7kqe3tvOB1yVJe90nbKC3oNnxU+DHI+dzXsYwop5TVR1XVftV1WFJNgF2r6ovAScwhNl2E772N4BFSR41x2v/EfBDhsNrAF8AXpjkoQBJHpJkjwlfa6Nh+GicxwFfbYcO3gz8jwm3O5PhEMcVwBeBE6rqe6tXtkNxhwPvaaObkxmOuS9PsqItS2s6FnhHkuXAfgznfSa1KfDRJFcClwHvqqqfTLJhVd0KHAd8sm1/F3DqGt3eAGyV5JSq+hrw34HPtVo/z3DOUyOc4UCS1J0jH0lSd4aPJKk7w0eS1J3hI0nqzvCRJHVn+EhTluTNbY6y5W2uryfdx/2tdXbwJEckOfG+7FvqxRkOpClKchDwfOCJVXVbm35/i2m8VlWdxT1TH0n3a458pOnaBbipqlZP4XJTVa2a0uzgr0jyV639Q0neneQrSa5J8sLWvkmS97aR2DlJ/n71Oqknw0ears8Bu7ep/t+b5Gkj626oqoOAfwI+BLwQOJB7vrn/AoZv8u8LPIvh2/13f1M+yZMZvml/ZFVds5bX3oVhktfnA386ss9FDLNX/B4b+7T+mjcedpOmqKpuaZOzPhV4BvB/R87LjM4Ovl1V3QzcnORXZgcH/i3J6tnBf8Y9s4M/p6pWsXZ/V1V3AV9LsnNrewrwydb+vSRf2rDvWJqM4SNNWQuPC4AL2txgx7ZVG3p28DWN7jNr/JTmlYfdpClKsleSR4807QdcN+Hm93Z28En8M3BUO/ezM8MN/qTuHPlI07Ud8L/bYbQ7gKuB4xnOw6zLmQznZK5guAPmCVX1vSS/DsPs4EkOB85N8soJ6zmD4eZmKxjuGHsJw+0KpK6c1VrayCTZrp2L2pFhJPVbo7e8kHpw5CNtfM5pI7EtgJMNHs0HRz6SpO684ECS1J3hI0nqzvCRJHVn+EiSujN8JEndGT6SpO7+P1C47Up+gYJ4AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"mortality_rate = [mortality_rate_smoker,mortality_rate_non_smoker]\n",
"smoking = ['smoker', 'non-smoker']\n",
"plt.bar(smoking, mortality_rate,color=['blue', 'green'])\n",
"plt.xticks(smoking)\n",
"plt.yticks(mortality_rate)\n",
"plt.xlabel('Smoking')\n",
"plt.ylabel('Mortality Rate')"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment