{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Autour du Paradoxe de Simpson"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import numpy as np\n",
"import seaborn as sns\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn import metrics\n",
"from sklearn.metrics import accuracy_score"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"En 1972-1974, à Whickham, une ville du nord-est de l'Angleterre, située à environ 6,5 kilomètres au sud-ouest de Newcastle upon Tyne, un sondage d'un sixième des électeurs a été effectué afin d'éclairer des travaux sur les maladies thyroïdiennes et cardiaques (Tunbridge et al. 1977). Une suite de cette étude a été menée vingt ans plus tard (Vanderpump et al. 1995). Certains des résultats avaient trait au tabagisme et cherchaient à savoir si les individus étaient toujours en vie lors de la seconde étude. Par simplicité, nous nous restreindrons aux femmes et parmi celles-ci aux 1314 qui ont été catégorisées comme \"fumant actuellement\" ou \"n'ayant jamais fumé\". Il y avait relativement peu de femmes dans le sondage initial ayant fumé et ayant arrêté depuis (162) et très peu pour lesquelles l'information n'était pas disponible (18). La survie à 20 ans a été déterminée pour l'ensemble des femmes du premier sondage."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les données de ces études sont disponibles sur le gitlab de l'inria dans un [document csv](https://gitlab.inria.fr/learninglab/mooc-rr/mooc-rr-ressources/-/blob/master/module3/Practical_session/Subject6_smoking.csv). Dans ce document, chaque ligne indique si la personne fume ou non, si elle est vivante ou décédée au moment de la seconde étude, et son âge lors du premier sondage. Nous téléchargeons toujours l'ensemble complet des données du document.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data_url = \"https://gitlab.inria.fr/learninglab/mooc-rr/mooc-rr-ressources/-/raw/master/module3/Practical_session/Subject6_smoking.csv\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pour nous protéger contre une éventuelle disparition ou modification du serveur du gitlab, nous faisons une copie locale de ce jeux de données que nous préservons avec notre analyse. Il est inutile et même risquée de télécharger les données à chaque exécution, car dans le cas d'une panne nous pourrions remplacer nos données par un fichier défectueux. Pour cette raison, nous téléchargeons les données seulement si la copie locale n'existe pas."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"data_file = \"survey-data-subject6.csv\"\n",
"\n",
"import os\n",
"import urllib.request\n",
"if not os.path.exists(data_file):\n",
" urllib.request.urlretrieve(data_url, data_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le document comporte trois colonnes : la première colonne indique leur habitude de tabagisme, la deuxième renseigne si la personne est vivante ou décédée au moment de la seconde étude et enfin, la troisième colonne indique leur âge lors de la première étude"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Smoker \n",
" Status \n",
" Age \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Yes \n",
" Alive \n",
" 21.0 \n",
" \n",
" \n",
" 1 \n",
" Yes \n",
" Alive \n",
" 19.3 \n",
" \n",
" \n",
" 2 \n",
" No \n",
" Dead \n",
" 57.5 \n",
" \n",
" \n",
" 3 \n",
" No \n",
" Alive \n",
" 47.1 \n",
" \n",
" \n",
" 4 \n",
" Yes \n",
" Alive \n",
" 81.4 \n",
" \n",
" \n",
" 5 \n",
" No \n",
" Alive \n",
" 36.8 \n",
" \n",
" \n",
" 6 \n",
" No \n",
" Alive \n",
" 23.8 \n",
" \n",
" \n",
" 7 \n",
" Yes \n",
" Dead \n",
" 57.5 \n",
" \n",
" \n",
" 8 \n",
" Yes \n",
" Alive \n",
" 24.8 \n",
" \n",
" \n",
" 9 \n",
" Yes \n",
" Alive \n",
" 49.5 \n",
" \n",
" \n",
" 10 \n",
" Yes \n",
" Alive \n",
" 30.0 \n",
" \n",
" \n",
" 11 \n",
" No \n",
" Dead \n",
" 66.0 \n",
" \n",
" \n",
" 12 \n",
" Yes \n",
" Alive \n",
" 49.2 \n",
" \n",
" \n",
" 13 \n",
" No \n",
" Alive \n",
" 58.4 \n",
" \n",
" \n",
" 14 \n",
" No \n",
" Dead \n",
" 60.6 \n",
" \n",
" \n",
" 15 \n",
" No \n",
" Alive \n",
" 25.1 \n",
" \n",
" \n",
" 16 \n",
" No \n",
" Alive \n",
" 43.5 \n",
" \n",
" \n",
" 17 \n",
" No \n",
" Alive \n",
" 27.1 \n",
" \n",
" \n",
" 18 \n",
" No \n",
" Alive \n",
" 58.3 \n",
" \n",
" \n",
" 19 \n",
" Yes \n",
" Alive \n",
" 65.7 \n",
" \n",
" \n",
" 20 \n",
" No \n",
" Dead \n",
" 73.2 \n",
" \n",
" \n",
" 21 \n",
" Yes \n",
" Alive \n",
" 38.3 \n",
" \n",
" \n",
" 22 \n",
" No \n",
" Alive \n",
" 33.4 \n",
" \n",
" \n",
" 23 \n",
" Yes \n",
" Dead \n",
" 62.3 \n",
" \n",
" \n",
" 24 \n",
" No \n",
" Alive \n",
" 18.0 \n",
" \n",
" \n",
" 25 \n",
" No \n",
" Alive \n",
" 56.2 \n",
" \n",
" \n",
" 26 \n",
" Yes \n",
" Alive \n",
" 59.2 \n",
" \n",
" \n",
" 27 \n",
" No \n",
" Alive \n",
" 25.8 \n",
" \n",
" \n",
" 28 \n",
" No \n",
" Dead \n",
" 36.9 \n",
" \n",
" \n",
" 29 \n",
" No \n",
" Alive \n",
" 20.2 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1284 \n",
" Yes \n",
" Dead \n",
" 36.0 \n",
" \n",
" \n",
" 1285 \n",
" Yes \n",
" Alive \n",
" 48.3 \n",
" \n",
" \n",
" 1286 \n",
" No \n",
" Alive \n",
" 63.1 \n",
" \n",
" \n",
" 1287 \n",
" No \n",
" Alive \n",
" 60.8 \n",
" \n",
" \n",
" 1288 \n",
" Yes \n",
" Dead \n",
" 39.3 \n",
" \n",
" \n",
" 1289 \n",
" No \n",
" Alive \n",
" 36.7 \n",
" \n",
" \n",
" 1290 \n",
" No \n",
" Alive \n",
" 63.8 \n",
" \n",
" \n",
" 1291 \n",
" No \n",
" Dead \n",
" 71.3 \n",
" \n",
" \n",
" 1292 \n",
" No \n",
" Alive \n",
" 57.7 \n",
" \n",
" \n",
" 1293 \n",
" No \n",
" Alive \n",
" 63.2 \n",
" \n",
" \n",
" 1294 \n",
" No \n",
" Alive \n",
" 46.6 \n",
" \n",
" \n",
" 1295 \n",
" Yes \n",
" Dead \n",
" 82.4 \n",
" \n",
" \n",
" 1296 \n",
" Yes \n",
" Alive \n",
" 38.3 \n",
" \n",
" \n",
" 1297 \n",
" Yes \n",
" Alive \n",
" 32.7 \n",
" \n",
" \n",
" 1298 \n",
" No \n",
" Alive \n",
" 39.7 \n",
" \n",
" \n",
" 1299 \n",
" Yes \n",
" Dead \n",
" 60.0 \n",
" \n",
" \n",
" 1300 \n",
" No \n",
" Dead \n",
" 71.0 \n",
" \n",
" \n",
" 1301 \n",
" No \n",
" Alive \n",
" 20.5 \n",
" \n",
" \n",
" 1302 \n",
" No \n",
" Alive \n",
" 44.4 \n",
" \n",
" \n",
" 1303 \n",
" Yes \n",
" Alive \n",
" 31.2 \n",
" \n",
" \n",
" 1304 \n",
" Yes \n",
" Alive \n",
" 47.8 \n",
" \n",
" \n",
" 1305 \n",
" Yes \n",
" Alive \n",
" 60.9 \n",
" \n",
" \n",
" 1306 \n",
" No \n",
" Dead \n",
" 61.4 \n",
" \n",
" \n",
" 1307 \n",
" Yes \n",
" Alive \n",
" 43.0 \n",
" \n",
" \n",
" 1308 \n",
" No \n",
" Alive \n",
" 42.1 \n",
" \n",
" \n",
" 1309 \n",
" Yes \n",
" Alive \n",
" 35.9 \n",
" \n",
" \n",
" 1310 \n",
" No \n",
" Alive \n",
" 22.3 \n",
" \n",
" \n",
" 1311 \n",
" Yes \n",
" Dead \n",
" 62.1 \n",
" \n",
" \n",
" 1312 \n",
" No \n",
" Dead \n",
" 88.6 \n",
" \n",
" \n",
" 1313 \n",
" No \n",
" Alive \n",
" 39.1 \n",
" \n",
" \n",
"
\n",
"
1314 rows × 3 columns
\n",
"
"
],
"text/plain": [
" Smoker Status Age\n",
"0 Yes Alive 21.0\n",
"1 Yes Alive 19.3\n",
"2 No Dead 57.5\n",
"3 No Alive 47.1\n",
"4 Yes Alive 81.4\n",
"5 No Alive 36.8\n",
"6 No Alive 23.8\n",
"7 Yes Dead 57.5\n",
"8 Yes Alive 24.8\n",
"9 Yes Alive 49.5\n",
"10 Yes Alive 30.0\n",
"11 No Dead 66.0\n",
"12 Yes Alive 49.2\n",
"13 No Alive 58.4\n",
"14 No Dead 60.6\n",
"15 No Alive 25.1\n",
"16 No Alive 43.5\n",
"17 No Alive 27.1\n",
"18 No Alive 58.3\n",
"19 Yes Alive 65.7\n",
"20 No Dead 73.2\n",
"21 Yes Alive 38.3\n",
"22 No Alive 33.4\n",
"23 Yes Dead 62.3\n",
"24 No Alive 18.0\n",
"25 No Alive 56.2\n",
"26 Yes Alive 59.2\n",
"27 No Alive 25.8\n",
"28 No Dead 36.9\n",
"29 No Alive 20.2\n",
"... ... ... ...\n",
"1284 Yes Dead 36.0\n",
"1285 Yes Alive 48.3\n",
"1286 No Alive 63.1\n",
"1287 No Alive 60.8\n",
"1288 Yes Dead 39.3\n",
"1289 No Alive 36.7\n",
"1290 No Alive 63.8\n",
"1291 No Dead 71.3\n",
"1292 No Alive 57.7\n",
"1293 No Alive 63.2\n",
"1294 No Alive 46.6\n",
"1295 Yes Dead 82.4\n",
"1296 Yes Alive 38.3\n",
"1297 Yes Alive 32.7\n",
"1298 No Alive 39.7\n",
"1299 Yes Dead 60.0\n",
"1300 No Dead 71.0\n",
"1301 No Alive 20.5\n",
"1302 No Alive 44.4\n",
"1303 Yes Alive 31.2\n",
"1304 Yes Alive 47.8\n",
"1305 Yes Alive 60.9\n",
"1306 No Dead 61.4\n",
"1307 Yes Alive 43.0\n",
"1308 No Alive 42.1\n",
"1309 Yes Alive 35.9\n",
"1310 No Alive 22.3\n",
"1311 Yes Dead 62.1\n",
"1312 No Dead 88.6\n",
"1313 No Alive 39.1\n",
"\n",
"[1314 rows x 3 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = pd.read_csv(data_file)\n",
"raw_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pour nous assurer que le jeu de données est complet, nous vérifions qu'il n'y a pas d'informations manquantes conernant l'une des personnes du sondage. Après vérification, il n'y a pas de données manquantes."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Smoker \n",
" Status \n",
" Age \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [Smoker, Status, Age]\n",
"Index: []"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Effectif et taux de mortalite"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous calculons le nombre total de femmes vivantes et décédées sur la période en fonction de leur habitude de tabagisme"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"alive_and_smoker = 0\n",
"alive_and_non_smoker = 0\n",
"dead_and_smoker = 0\n",
"dead_and_non_smoker = 0\n",
"for i in range(len(raw_data)):\n",
" if raw_data.iloc[i][0] == \"Yes\":\n",
" if raw_data.iloc[i][1] == \"Alive\":\n",
" alive_and_smoker += 1\n",
" else :\n",
" dead_and_smoker += 1\n",
" else :\n",
" if raw_data.iloc[i][1] == \"Alive\":\n",
" alive_and_non_smoker += 1\n",
" else :\n",
" dead_and_non_smoker += 1\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"D'apres nos calculs, dans l'etude il y avait 582 fumeuses dont 139 sont mortes et 732 non-fumeuses dont 230 sont decedees. Nous représentons ensuite ces données sous la forme d'un tableau."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Smoker \n",
" Non-Smoker \n",
" Total \n",
" \n",
" \n",
" \n",
" \n",
" Alive \n",
" 443 \n",
" 502 \n",
" 945 \n",
" \n",
" \n",
" Dead \n",
" 139 \n",
" 230 \n",
" 369 \n",
" \n",
" \n",
" Total \n",
" 582 \n",
" 732 \n",
" 1314 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Smoker Non-Smoker Total\n",
"Alive 443 502 945\n",
"Dead 139 230 369\n",
"Total 582 732 1314"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = [[alive_and_smoker,alive_and_non_smoker,(alive_and_smoker+alive_and_non_smoker)],[dead_and_smoker, dead_and_non_smoker,(dead_and_non_smoker+dead_and_smoker)], [(dead_and_smoker+alive_and_smoker),(dead_and_non_smoker+alive_and_non_smoker),(alive_and_smoker+alive_and_non_smoker + dead_and_non_smoker+dead_and_smoker)]]\n",
"\n",
"pd.DataFrame(data, columns=[\"Smoker\", \"Non-Smoker\", \"Total\"], index = [\"Alive\", \"Dead\",\"Total\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A present, nous allons calculer le taux de mortalite dans chacun de ces deux groupes. Pour cela, nous allons determiner le rapport entre le nombre de femmes décédées dans un groupe et le nombre total de femmes dans ce groupe.\n",
"\n",
"Le taux de mortalite chez les fumeuses etait de 24% tandis que celui des non-fumeuses etait de 31%. Nous obtenons un resultat assez surprenant car d'apres ces etudes, les femmes non-fumeuses meurent plus que les femmes qui fument, ce qui est contraire aux campagnes de prevention que l'on peut croiser un peu partout."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"mortality_rate_smoker = dead_and_smoker/(alive_and_smoker+dead_and_smoker)\n",
"mortality_rate_non_smoker = dead_and_non_smoker /(alive_and_non_smoker + dead_and_non_smoker)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous representons les taux de mortalite calcules precedemment dans un diagramme de barres afin d'illustrer visuellement nos resultats et le fait que, d'apres ces sondages, les femmes qui fument meurent moins que celle qui ne fument pas."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0,0.5,'Mortality Rate')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEKCAYAAADNSVhkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE3hJREFUeJzt3XvUXXV95/H3h/tNpEJAEELwRgsqUSKC1ap4AxSYES3qoIAXxq5Rl7ZdFMexS6S1LdraOqNl8AJRp1oVqYACWhU7IiBJgZB4oYjcjDe8Eh0Qwnf+2DtwjHlOTkL27wkn79daZz1n//Zv7/M9WTnP5/ntvc9vp6qQJKmlzWa7AEnSpsfwkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJam6L2S5gY7XLLrvUvHnzZrsMSXpAWbx48W1VNWdt/QyfGcybN49FixbNdhmS9ICS5KZJ+nnYTZLUnOEjSWrO8JEkNWf4SJKaM3wkSc0NGj5JDkvyrSTXJzllDeuPTrIkydVJFiV5ysi6Dyb5YZKlM+z7T5NUkl365WcnWZzk2v7noSN9/zLJLUlWDPE+JUnrZrDwSbI58B7gcGA/4CVJ9lut2xeAA6pqPvAK4P0j684GDpth33sBzwZuHmm+DTiyqh4LHA98eGTd+cBB6/1mJEkb1JAjn4OA66vqhqr6NfAx4OjRDlW1ou67j/f2QI2s+zfgJzPs+13Ayav1v6qqlveLy4Btkmzdr7u8qr63Ad6TJGkDGDJ8HgbcMrJ8a9/2G5L85yTfBD5DN/oZK8lRwHer6pox3Y4BrqqqO9etZElSC0POcJA1tNVvNVSdC5yb5A+A04BnzbjDZDvgzcBzxvTZH/ibcX3GbHsScBLA3Llz13VzSVPm2M/8cLZLaO6fn7drk9cZcuRzK7DXyPKewPIZ+q46zPaIVRcQzOARwD7ANUlu7Pf570keCpBkT+Bc4OVV9e11LbiqzqyqBVW1YM6ctU5NJElaT0OOfK4EHpVkH+C7wIuBl452SPJI4NtVVUmeAGwF/HimHVbVtcCuI9vfCCyoqtuS7ER36O5NVXXphn4zkqQNZ7CRT1XdDbwWuBj4BvDxqlqW5DVJXtN3OwZYmuRquivjjl11AUKSjwKXAfsmuTXJK9fykq8FHgm8pb90++oku/b7Oj3JrcB2/b7euoHfriRpHeS+i800asGCBeWs1tKmzXM+6y7J4qpasLZ+znAgSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LUnOEjSWpu0PBJcliSbyW5Pskpa1j/X5Is6R9fTXJA375Nkq8luSbJsiSnjmwzP8nlSa5OsijJQX37lkkWJrk2yTeSvGlkm4tG9nVGks2HfN+SpPEGC5/+F/x7gMOB/YCXJNlvtW7fAZ5WVY8DTgPO7NvvBA6tqgOA+cBhSQ7u150OnFpV84E/75cBXgRsXVWPBQ4E/muSef26P+z39RhgTt9XkjRLhhz5HARcX1U3VNWvgY8BR492qKqvVtVP+8XLgT379qqqFX37lv2jVm0G7Ng/fzCwfKR9+yRbANsCvwZ+0e/vF32fLYCtRvYlSZoFWwy474cBt4ws3wo8aUz/VwIXrlroR06LgUcC76mqK/pVbwAuTvJOuvB8ct/+Sbpw+x6wHfDGqvrJyP4upgvEC/u+vyXJScBJAHPnzp3oTa7J987Oem/7QLX7Cea5pMkNOfJZ02/gNf6GSvIMuvD5s3s7Vq3sD63tCRyU5DH9qj+iC5a9gDcCH+jbDwJWAnsA+wB/kuThI/t7LrA7sDVw6JrqqKozq2pBVS2YM2fOxG9UkrRuhgyfW4G9Rpb35L5DZPdK8jjg/cDRVfXj1ddX1c+AS4DD+qbjgU/1zz9BFzoALwUuqqq7quqHwKXAgtX2dQdwHqsd/pMktTVk+FwJPCrJPkm2Al5M94v/Xknm0gXJy6rqupH2OUl26p9vCzwL+Ga/ejnwtP75ocB/9M9vBg5NZ3vgYOCbSXZIsnu/ry2AI0b2JUmaBYOd86mqu5O8FrgY2Bz4YFUtS/Kafv0ZdFer7Qy8NwnA3VW1gO7w2ML+vM9mwMer6oJ+168G/qEPkjvoz9HQXVl3FrCU7pDfWVW1JMluwHlJtu7r+CJwxlDvW5K0dkNecEBVfRb47GptZ4w8fxXwqjVstwR4/Az7/ArdpdSrt69gDZdQV9UPgCeua+2SpOE4w4EkqTnDR5LUnOEjSWrO8JEkNWf4SJKaM3wkSc0ZPpKk5gwfSVJzho8kqTnDR5LU3FrDJ8luST6Q5MJ+eb8krxy+NEnStJpk5HM23eSge/TL19Hd0E2SpPUySfjsUlUfB+6BbrZqupu2SZK0XiYJn18m2Zn+LqRJDgZ+PmhVkqSpNsktFf6Y7iZwj0hyKTCHNdy6QJKkSU0SPsvo7hy6L91N2r6FV8lJku6HSULksqq6u6qWVdXSqroLuGzowiRJ02vGkU+ShwIPA7ZN8ni6UQ/AjsB2DWqTJE2pcYfdngucAOwJ/N1I++3Afx+wJknSlJsxfKpqIbAwyTFVdU7DmiRJU26tFxxU1TlJngfsD2wz0v62IQuTJE2vSabXOQM4Fngd3XmfFwF7D1yXJGmKTXK125Or6uXAT6vqVOAQYK9hy5IkTbNJwuf/9T9/lWQP4C5gn+FKkiRNu0m+ZHpBkp2AdwD/TjfNzvsHrUqSNNUmueDgtP7pOUkuALapKud2kyStt3WaJqeq7gQOSvL5geqRJG0CZgyfJIcmuS7JiiQf6W8itwj4a+Af25UoSZo240Y+fwucBOwMfBK4HPhwVR1YVZ9qUZwkaTqNO+dTVXVJ//xfkvyoqv6hQU2SpCk3Lnx2SvKCkeWMLjv6kSStr3Hh82XgyBmWCzB8JEnrZdzEoie2LESStOnwjqSSpOYMH0lSc4aPJKm5SW6psCjJf0vyOy0KkiRNv0lGPi8G9gCuTPKxJM9NkoHrkiRNsbWGT1VdX1VvBh4N/BPwQeDmJKcmecjQBUqSps9E53ySPI5uup13AOcALwR+AXxxuNIkSdNqrbdUSLIY+BnwAeCUfmZrgCuS/P6QxUmSptMkN5N7UVXdMNqQZJ+q+k5VvWCmjSRJmskkh90+OWGbJEkTmXHkk+R3gf2BB682weiOwDZDFyZJml7jDrvtCzwf2InfnGD0duDVQxYlSZpu4yYW/TTw6SSHVNVlDWuSJE25cYfdTq6q04GXJnnJ6uur6vWDViZJmlrjDrt9o/+5qEUhkqRNx7jDbuf3Pxe2K0eStCkYd9jtfLo7lq5RVR01SEWSpKk37rDbO5tVIUnapIw77PblloVIkjYdk8zt9ijgr4D9GPlyaVU9fMC6JElTbJLpdc4C/hG4G3gG8CHgw0MWJUmabpOEz7ZV9QUgVXVTVb0VOHTYsiRJ02ySWa3vSLIZ8B9JXgt8F9h12LIkSdNskpHPG4DtgNcDBwLHAS8fsihJ0nSbJHzmVdWKqrq1qk6sqmOAuUMXJkmaXpOEz5smbJMkaSLjZjg4HDgCeFiSd4+s2pHuyjdJktbLuAsOltNNKnoUsHik/XbgjUMWJUmabuNmOLgmyVLgOU4uKknakMae86mqlcDOSbZqVI8kaRMwyfd8bgIuTXIe8MtVjVX1d4NVJUmaapOEz/L+sRnwoGHLkSRtCtYaPlV1KkCSB3WLtWLwqiRJU22t3/NJ8pgkVwFLgWVJFifZf/jSJEnTapIvmZ4J/HFV7V1VewN/Arxv2LIkSdNskvDZvqq+tGqhqi4Bth+sIknS1JvkgoMbkryF++7hcxzwneFKkiRNu0lGPq8A5gCfAs7tn584ZFGSpOk2ydVuP6W7nYIkSRvEuIlFzxu3YVUdteHLkSRtCsaNfA4BbgE+ClwBpElFkqSpNy58Hgo8G3gJ8FLgM8BHq2pZi8IkSdNrxgsOqmplVV1UVccDBwPXA5ckeV2z6iRJU2nsBQdJtgaeRzf6mQe8m+6qN0mS1tu4Cw4WAo8BLgROraqlzaqSJE21cSOfl9HdQuHRwOuTe683CN0EozsOXJskaUqNu5PpJF9AlSRpnRkwkqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzaWqZruGjVKSHwE3zXYd62gX4LbZLkLSBvFA/TzvXVVz1tbJ8JkiSRZV1YLZrkPS/Tftn2cPu0mSmjN8JEnNGT7T5czZLkDSBjPVn2fP+UiSmnPkI0lqzvCZUkmenuSC2a5DUltJbkyyy2zXsTaGj35Lki1muwZJ7SXZvNVrGT4biSTbJ/lMkmuSLE1ybP8XzNuTXJZkUZInJLk4ybeTvKbfLkne0W9zbZJj17DvJya5KsnD+9f5YJIr+7aj+z4nJPlEkvOBzzV++9JGLcm8JN9I8r4ky5J8Lsm2SeYnuTzJkiTnJvmdvv8lSf4mydeSXJfkqTPs9/VJvt5v/7G+7a1JFvavcWOSFyQ5vf98X5Rky77fM/vP8LX9Z3rr1fa9bd//1f3ycX09Vyf536uCJsmKJG9LcgVwyID/jL+pqnxsBA/gGOB9I8sPBm4E/qhffhewBHgQMAf44ch2nwc2B3YDbgZ2B54OXAA8GVgMzO37vx04rn++E3AdsD1wAnAr8JDZ/rfw4WNjewDzgLuB+f3yx4Hj+s/k0/q2twF/3z+/BPjb/vkRwL/OsN/lwNb98536n28FvgJsCRwA/Ao4vF93LvCfgG2AW4BH9+0fAt7QP7+xr/dfgZf3bb8HnA9s2S+/d2RdAX/Y+t/Ukc/G41rgWf1fS0+tqp/37eeNrL+iqm6vqh8BdyTZCXgK8NGqWllVPwC+DDyx3+b36C7XPLKqbu7bngOckuRqug/INsDcft3nq+onA75H6YHsO1V1df98MfAIusD4ct+2EPiDkf6fGuk7b4Z9LgH+T5Lj6MJtlQur6i66z/3mwEV9+7X9vvbt67luhtf+NHBWVX2oX34mcCBwZf/Zfybw8H7dSuCcmd/2MDy2v5GoquuSHEj3V9JfJVl16OvO/uc9I89XLW8BZMxuv0cXLo+n+wuLvv8xVfWt0Y5JngT88n69CWm6jX7+VtIdOZik/0r637VJzqL/PFbVEcDz6ELjKOAtSfYf3baq7klyV/VDFCb73ANcChye5J/6bQMsrKo3raHvHVW1ci372+Ac+WwkkuwB/KqqPgK8E3jChJv+G3Bsks2TzKH7j/y1ft3P6P5zvz3J0/u2i4HXJUn/uo/fQG9B2tT8HPjpyPmcl9EdeZhRVZ1YVfOr6ogkmwF7VdWXgJPpwmyHCV/7m8C8JI+c4bX/HPgx3eE1gC8AL0yyK0CShyTZe8LXGoThs/F4LPC1fkj8ZuAvJtzuXLqh+zXAF4GTq+r7q1b2h+KOBN7Tj25OozuWvCTJ0n5Z0vo5HnhHkiXAfLrzPpPaHPhIkmuBq4B3VdXPJtmwqu4ATgQ+0W9/D3DGat3eAGyT5PSq+jrwP4DP9bV+nu7c8KxxhgNJUnOOfCRJzRk+kqTmDB9JUnOGjySpOcNHktSc4SMNLMmb+/nAlvTzaj3pfu5vjTOWJzkqySn3Z99SK85wIA0oySHA84EnVNWd/VT3Ww3xWlV1HvdNxyRt1Bz5SMPaHbitqlZNl3JbVS0faMbyE5L8r7797CTvTvLVJDckeWHfvlmS9/YjsQuSfHbVOqklw0ca1ueAvfpp9d+b5Gkj626pqkOA/wucDbwQOJj7viX/ArpvzR8APIvum/T3fis9yZPpvtV+dFXdsIbX3p1u4tnnA389ss95dDNqvIqWU+hLIzzsJg2oqlb0E8Y+FXgG8M8j52VGZyzfoapuB25P8lszlgM/SLJqxvJfcN+M5c+pquWs2b9U1T3A15Ps1rc9BfhE3/79JF/asO9YmozhIw2sD49LgEv6ebiO71dt6BnLVze6z6z2U5pVHnaTBpRk3ySPGmmaD9w04ebrOmP5JL4CHNOf+9mN7qaDUnOOfKRh7QD8z/4w2t3A9cBJdOdh1uZcunMy19DdbfLkqvp+kt+FbsbyJEcCFyZ5xYT1nEN3I7GldHexvYLu1gBSU85qLW1ikuzQn4vamW4k9fujt+GQWnDkI216LuhHYlsBpxk8mg2OfCRJzXnBgSSpOcNHktSc4SNJas7wkSQ1Z/hIkpozfCRJzf1/LKn6aLjRV9QAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"mortality_rate = [mortality_rate_smoker,mortality_rate_non_smoker]\n",
"smoking = ['smoker', 'non-smoker']\n",
"plt.bar(smoking, mortality_rate,color=['#E69F00', '#56B4E9'],width = 0.25)\n",
"plt.xticks(smoking)\n",
"plt.yticks(mortality_rate)\n",
"plt.xlabel('Smoking')\n",
"plt.ylabel('Mortality Rate')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Enfin, nous allons estimer le taux de mortalite chez les femmes du au tabagisme a cette epoque sur la population anglaise d'apres les resultats de ces deux etudes. \n",
"\n",
"Pour faire cela, nous allons calculer des intervalles de confiance a 95% pour chaque categorie (fumeuses et non-fumeuses). La formule generale pour calculer un intervalle de\n",
"confiance au niveau de confiance 0,95 est : $ [f-1/\\sqrt{n} ; f+1/\\sqrt{n}]$ si $n\\le30$ et si $nf\\le5$ et $n(1-f)\\le5$ avec $f$ la fréquence observée dans un échantillon de taille $n$. \n",
"\n",
"Dans notre cas, la frequence observee $f$ correspond au taux de mortalite et la taille $n$ de l'echantillon correspond au nombre de femmes ayant repondu aux sondages soit 1314."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Apres avoir verifie que les conditions pour calculer les intervalles de confiance de chacune des deux categories etaient respectees, nous effectuons les calculs.\n",
"\n",
"Pour les fumeuses, l'intervalle de confiance a 95% du taux de mortalite chez les femmes est $[0.21 ; 0.27]$. Pour les non-fumeuses, l'intervalle de confiance a 95% du taux de mortalite chez les femmes est $[0.29 ; 0.34]$. "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"n = 1314\n",
"if (n*mortality_rate_smoker <= 5) and (n*(1-mortality_rate_smoker)<=5):\n",
" confidence_interval_smoker_low = mortality_rate_smoker-(1/math.sqrt(n))\n",
" confidence_interval_smoker_high = mortality_rate_smoker+(1/math.sqrt(n))\n",
"if (n*mortality_rate_non_smoker <= 5) and (n*(1-mortality_rate_non_smoker)<=5):\n",
" confidence_interval_non_smoker_low = mortality_rate_non_smoker-(1/math.sqrt(n))\n",
" confidence_interval_non_smoker_high = mortality_rate_non_smoker+(1/math.sqrt(n))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Effectif et taux de mortalite par tranches d'age"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous allons reprendre les calculs d'effectif et de taux de mortalite calcules precedemment, mais nous allons les categoriser par tranche d'age. Les femmes ayant participe a ces etudes seront reparties dans quatre categories en fonction de leur age : 18-35 ans, 35-55 ans, 55-64 ans, plus de 65 ans."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"582 732\n"
]
}
],
"source": [
"#class_18_to_35 = []\n",
"#class_35_to_55 = []\n",
"#class_55_to_64 = []\n",
"#class_over_65 = []\n",
"\n",
"smoker = []\n",
"non_smoker = []\n",
"\n",
"raw_data[\"Status\"].replace({\"Dead\": \"1\", \"Alive\": \"0\"}, inplace=True)\n",
"#raw_data[\"Age\"] = raw_data[\"Age\"].astype(str)\n",
"\n",
"#raw_data\n",
"\n",
"for i in range(len(raw_data)):\n",
" if raw_data.iloc[i][0] == \"Yes\":\n",
" smoker.append(raw_data.iloc[i])\n",
" else :\n",
" non_smoker.append(raw_data.iloc[i])\n",
" #if raw_data.iloc[i][2] < 35:\n",
" # class_18_to_35.append(raw_data.iloc[i])\n",
" #elif 35 <= raw_data.iloc[i][2] < 55:\n",
" # class_35_to_55.append(raw_data.iloc[i])\n",
" #elif 55 <= raw_data.iloc[i][2] < 65 :\n",
" # class_55_to_64.append(raw_data.iloc[i])\n",
" #else :\n",
" # class_over_65.append(raw_data.iloc[i])\n",
"print(len(smoker), len(non_smoker))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"alive_and_smoker_18to35 = 0\n",
"dead_and_smoker_18to35 = 0\n",
"alive_and_smoker_35to55 = 0\n",
"dead_and_smoker_35to55 = 0\n",
"alive_and_smoker_55to64 = 0\n",
"dead_and_smoker_55to64 = 0\n",
"alive_and_smoker_over65 = 0\n",
"dead_and_smoker_over65 = 0\n",
"\n",
"for i in range(len(smoker)):\n",
" if smoker[i][1] == \"0\" :\n",
" if smoker[i][2] < 35:\n",
" alive_and_smoker_18to35 += 1\n",
" elif 35 <= smoker[i][2] < 55:\n",
" alive_and_smoker_35to55 += 1\n",
" elif 55 <= smoker[i][2] < 65 :\n",
" alive_and_smoker_55to64 += 1\n",
" else :\n",
" alive_and_smoker_over65 += 1\n",
" else :\n",
" if smoker[i][2] < 35:\n",
" dead_and_smoker_18to35 += 1\n",
" elif 35 <= smoker[i][2] < 55:\n",
" dead_and_smoker_35to55 += 1\n",
" elif 55 <= smoker[i][2] < 65 :\n",
" dead_and_smoker_55to64 += 1\n",
" else :\n",
" dead_and_smoker_over65 += 1\n",
" \n",
"alive_and_non_smoker_18to35 = 0\n",
"dead_and_non_smoker_18to35 = 0\n",
"alive_and_non_smoker_35to55 = 0\n",
"dead_and_non_smoker_35to55 = 0\n",
"alive_and_non_smoker_55to64 = 0\n",
"dead_and_non_smoker_55to64 = 0\n",
"alive_and_non_smoker_over65 = 0\n",
"dead_and_non_smoker_over65 = 0\n",
" \n",
"for i in range(len(non_smoker)):\n",
" if non_smoker[i][1] == \"0\" :\n",
" if non_smoker[i][2] < 35:\n",
" alive_and_non_smoker_18to35 += 1\n",
" elif 35 <= non_smoker[i][2] < 55:\n",
" alive_and_non_smoker_35to55 += 1\n",
" elif 55 <= non_smoker[i][2] < 65 :\n",
" alive_and_non_smoker_55to64 += 1\n",
" else :\n",
" alive_and_non_smoker_over65 += 1\n",
" else :\n",
" if non_smoker[i][2] < 35:\n",
" dead_and_non_smoker_18to35 += 1\n",
" elif 35 <= non_smoker[i][2] < 55:\n",
" dead_and_non_smoker_35to55 += 1\n",
" elif 55 <= non_smoker[i][2] < 65 :\n",
" dead_and_non_smoker_55to64 += 1\n",
" else :\n",
" dead_and_non_smoker_over65 += 1\n",
" \n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Smoker [18-35] \n",
" Non-Smoker [18-35] \n",
" Smoker [35-55] \n",
" Non-Smoker [35-55] \n",
" Smoker [55-64] \n",
" Non-Smoker [55-64] \n",
" Smoker [65+] \n",
" Non-Smoker [65+] \n",
" \n",
" \n",
" \n",
" \n",
" Alive \n",
" 182 \n",
" 221 \n",
" 190 \n",
" 172 \n",
" 64 \n",
" 81 \n",
" 7 \n",
" 28 \n",
" \n",
" \n",
" Dead \n",
" 7 \n",
" 6 \n",
" 39 \n",
" 19 \n",
" 51 \n",
" 40 \n",
" 42 \n",
" 165 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Smoker [18-35] Non-Smoker [18-35] Smoker [35-55] Non-Smoker [35-55] \\\n",
"Alive 182 221 190 172 \n",
"Dead 7 6 39 19 \n",
"\n",
" Smoker [55-64] Non-Smoker [55-64] Smoker [65+] Non-Smoker [65+] \n",
"Alive 64 81 7 28 \n",
"Dead 51 40 42 165 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_18to35 = [[alive_and_smoker_18to35,alive_and_non_smoker_18to35],[dead_and_smoker_18to35, dead_and_non_smoker_18to35]]\n",
"data_35to55 = [[alive_and_smoker_35to55,alive_and_non_smoker_35to55],[dead_and_smoker_35to55, dead_and_non_smoker_35to55]]\n",
"data_55to64 = [[alive_and_smoker_55to64,alive_and_non_smoker_55to64],[dead_and_smoker_55to64, dead_and_non_smoker_55to64]]\n",
"data_over65 = [[alive_and_smoker_over65,alive_and_non_smoker_over65],[dead_and_smoker_over65, dead_and_non_smoker_over65]]\n",
"\n",
"df1 = pd.DataFrame(data_18to35, columns=[\"Smoker [18-35]\", \"Non-Smoker [18-35]\"], index = [\"Alive\", \"Dead\"])\n",
"df2 = pd.DataFrame(data_35to55, columns=[\"Smoker [35-55]\", \"Non-Smoker [35-55]\"], index = [\"Alive\", \"Dead\"])\n",
"df3 = pd.DataFrame(data_55to64, columns=[\"Smoker [55-64]\", \"Non-Smoker [55-64]\"], index = [\"Alive\", \"Dead\"])\n",
"df4 = pd.DataFrame(data_over65, columns=[\"Smoker [65+]\", \"Non-Smoker [65+]\"], index = [\"Alive\", \"Dead\"])\n",
"\n",
"df_total = pd.concat([df1,df2,df3,df4],axis=1)\n",
"df_total"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.037037037037037035 0.02643171806167401\n",
"0.1703056768558952 0.09947643979057591\n",
"0.4434782608695652 0.3305785123966942\n",
"0.8571428571428571 0.8549222797927462\n"
]
}
],
"source": [
"mortality_rate_smoker_18to35 = dead_and_smoker_18to35/(alive_and_smoker_18to35 + dead_and_smoker_18to35)\n",
"mortality_rate_non_smoker_18to35 = dead_and_non_smoker_18to35/(alive_and_non_smoker_18to35 + dead_and_non_smoker_18to35)\n",
"\n",
"mortality_rate_smoker_35to55 = dead_and_smoker_35to55/(alive_and_smoker_35to55 + dead_and_smoker_35to55)\n",
"mortality_rate_non_smoker_35to55 = dead_and_non_smoker_35to55/(alive_and_non_smoker_35to55 + dead_and_non_smoker_35to55)\n",
"\n",
"mortality_rate_smoker_55to64 = dead_and_smoker_55to64/(alive_and_smoker_55to64 + dead_and_smoker_55to64)\n",
"mortality_rate_non_smoker_55to64 = dead_and_non_smoker_55to64/(alive_and_non_smoker_55to64 + dead_and_non_smoker_55to64)\n",
"\n",
"mortality_rate_smoker_over65 = dead_and_smoker_over65/(alive_and_smoker_over65 + dead_and_smoker_over65)\n",
"mortality_rate_non_smoker_over65 = dead_and_non_smoker_over65/(alive_and_non_smoker_over65 + dead_and_non_smoker_over65)\n",
"\n",
"print(mortality_rate_smoker_18to35,mortality_rate_non_smoker_18to35)\n",
"print(mortality_rate_smoker_35to55,mortality_rate_non_smoker_35to55)\n",
"print(mortality_rate_smoker_55to64,mortality_rate_non_smoker_55to64)\n",
"print(mortality_rate_smoker_over65,mortality_rate_non_smoker_over65)\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGsNJREFUeJzt3X+UVXW9//Hni0ElTfzF+INfMhZoJKg1opg/8CegX0PvvQhcl4jWRe4KSO0XafVV07U0SW+m94usRKylFyspCEm5tTTF0AZlIH5IzZdK5oI5YOAXDXHw/f3jbKfj4QyzZzgzZ9i8Hmud5f7xOfu8z2fGlx/37P3ZigjMzCxbupS7ADMzKz2Hu5lZBjnczcwyyOFuZpZBDnczswxyuJuZZVCqcJc0QtJaSXWSphXZf5ikn0laIel3kk4sfalmZpZWi+EuqQJ4ABgJDATGSRpY0OwmoDYiBgPjge+VulAzM0svzch9CFAXEesiYgcwBxhV0GYg8GuAiHgV6CfpqJJWamZmqXVN0aYXsD5vvR44raDNcuCfgMWShgDHAr2Bv+Y3kjQRmAhw0EEHffqEE05oY9lmZvuml19+eVNEVLbULk24q8i2wjkL7gS+J6kW+D2wDGjc5U0RM4GZANXV1bF06dIUH29mZh+Q9Jc07dKEez3QJ2+9N7Ahv0FEvAVck3ywgD8lLzMzK4M059xrgP6SqiTtD4wF5uc3kHRosg/g88BzSeCbmVkZtDhyj4hGSZOBp4EKYFZErJI0Kdk/A/gE8ENJO4HVwOfasWYzM2tBmtMyRMRCYGHBthl5y0uA/ntazHvvvUd9fT3bt2/f00NZG3Xr1o3evXuz3377lbsUM9sDqcK9o9TX13PwwQfTr18/cqfurSNFBJs3b6a+vp6qqqpyl2Nme6BTTT+wfft2jjjiCAd7mUjiiCOO8P85mWVApwp3wMFeZu5/s2zodOFuZmZ7rlOdcy+0cXZpR5HHTEj3vNg77riDxx57jIqKCrp06cKDDz7IaacV3pSb3rPPPsv06dNZsGBBm49hZtYanTrcy2HJkiUsWLCAV155hQMOOIBNmzaxY8eOstXT2NhI167+Mdm+pdQDu5ZcX/nXlhuV0OOXHNnun+HTMgU2btxIjx49OOCAAwDo0aMHPXv2pF+/ftx0000MHTqU6upqXnnlFYYPH87HPvYxZszIXRUaEXzlK1/hxBNPZNCgQTz++OO7HL+mpoZTTjmFdevW8fbbb3Pttddy6qmncsoppzBv3jwAZs+ezejRo7n00ku56KKLOu7Lm1lmeEhY4KKLLuK2225jwIABXHDBBYwZM4ZzzjkHgD59+rBkyRJuuOEGJkyYwAsvvMD27dv55Cc/yaRJk5g7dy61tbUsX76cTZs2ceqpp3L22Wc3Hfu3v/0tU6ZMYd68efTt25ebbrqJ8847j1mzZrFlyxaGDBnCBRdcAOT+D2LFihUcfvjhZekHM9u7OdwLfPSjH+Xll1/m+eef55lnnmHMmDHceeedAHz2s58FYNCgQWzbto2DDz6Ygw8+mG7durFlyxYWL17MuHHjqKio4KijjuKcc86hpqaG7t27s2bNGiZOnMiiRYvo2bMnAIsWLWL+/PlMnz4dyF0K+tprrwFw4YUXOtjNrM0c7kVUVFQwbNgwhg0bxqBBg3jkkUcAmk7VdOnSpWn5g/XGxkYimv+D7THHHMP27dtZtmxZU7hHBE888QTHH3/8h9q+9NJLHHTQQaX+Wma2D/E59wJr167lj3/8Y9N6bW0txx57bKr3nn322Tz++OPs3LmThoYGnnvuOYYMGQLAoYceypNPPslNN93Es88+C8Dw4cP5/ve/3/QfhWXLlpX2y5jZPqtTj9zTXrpYStu2bWPKlCls2bKFrl278vGPf5yZM2emuozx8ssvZ8mSJZx00klI4jvf+Q5HH300r776KgBHHXUUv/jFLxg5ciSzZs3im9/8Jtdffz2DBw8mIujXr58vlzSzktDuTiW0p2IP61izZg2f+MQnylKP/YN/DlZuvhSyeZJejojqltr5tIyZWQY53M3MMihVuEsaIWmtpDpJ04rsP0TSLyQtl7RK0jWlL9XMzNJqMdwlVQAPACOBgcA4SQMLmn0BWB0RJwHDgO/mPXbPzMw6WJqR+xCgLiLWRcQOYA4wqqBNAAcnD8f+KPAm0FjSSs3MLLU04d4LWJ+3Xp9sy3c/ueeobgB+D3wxIt4vSYVmZtZqaa5zL3ZNUuH1k8OBWuA84GPAf0t6PiLe+tCBpInARIC+ffu2+MFjnnwjRXnppbn8SBI33ngj3/3udwGYPn0627Zt45Zbbtnjz1+7di3XXXcdW7Zs4d133+Wss85i5syZe3zcYcOGMX36dKqrW7w6ysz2EWlG7vVAn7z13uRG6PmuAeZGTh3wJ+CEwgNFxMyIqI6I6srKyrbW3K4OOOAA5s6dy6ZNm0p+7KlTp3LDDTdQW1vLmjVrmDJlSsk/o7V27txZ7hLMrB2kCfcaoL+kquSPpGOB+QVtXgPOB5B0FHA8sK6UhXaUrl27MnHiRO69995d9v3lL3/h/PPPZ/DgwZx//vlNk3xNmDCBqVOncsYZZ3Dcccfx05/+tOixN27cSO/evZvWBw0aBOSm+L3sssu49NJLqaqq4v777+eee+7hlFNO4fTTT+fNN98EclMhnH766QwePJjLL7+cv/3tbx86/vvvv8/VV1/NN77xDSA3MdnQoUP51Kc+xejRo9m2bRsA/fr147bbbuPMM8/kJz/5yR72mJl1Ri2Ge0Q0ApOBp4E1wI8jYpWkSZImJc2+DZwh6ffAr4GvRUTph74d5Atf+AKPPvooW7du/dD2yZMnM378eFasWMGVV17J1KlTm/Zt3LiRxYsXs2DBAqZN2+VqUQBuuOEGzjvvPEaOHMm9997Lli1bmvatXLmSxx57jN/97nfcfPPNHHjggSxbtoyhQ4fywx/+EIDx48dz1113sWLFCgYNGsStt97a9P7GxkauvPJKBgwYwO23386mTZu4/fbb+dWvfsUrr7xCdXU199xzT1P7bt26sXjxYsaOHVuSPjOzziXV3DIRsRBYWLBtRt7yBiAzT5Xo3r0748eP57777uMjH/lI0/YlS5Ywd+5cAK666iq++tWvNu277LLL6NKlCwMHDuSvfy1+K/M111zD8OHDeeqpp5g3bx4PPvggy5cvB+Dcc89tmkL4kEMO4dJLLwVyo/sVK1awdetWtmzZ0jS3/NVXX83o0aObjn3ddddxxRVXcPPNNwPw4osvsnr1aj7zmc8AsGPHDoYOHdrUfsyYMXvcT2bWefkO1WZcf/31PPTQQ7z99tvNtsld+ZmTPwXwB/P13HzzzZx88smcfPLJTft69uzJtddey7x58+jatSsrV67c5f35Uwp/MJ1wS8444wyeeeYZtm/f3lTDhRdeSG1tLbW1taxevZqHHnqoqb2nFDbLNod7Mw4//HCuuOKKDwXiGWecwZw5cwB49NFHOfPMM3d7jDvuuKMpXAGeeuop3nvvPQBef/11Nm/eTK9ehVeVFnfIIYdw2GGH8fzzzwPwox/9qGkUD/C5z32Oiy++mNGjR9PY2Mjpp5/OCy+8QF1dHQDvvPMOf/jDH1J+ezPb23XqKX874iGyu/OlL32J+++/v2n9vvvu49prr+Xuu++msrKShx9+uFXHW7RoEV/84hfp1q0bAHfffTdHH3106vc/8sgjTJo0iXfeeYfjjjtul8+/8cYb2bp1K1dddRWPPvoos2fPZty4cbz77rsA3H777QwYMKBVNZvZ3slT/tou/HOwcvOUv83zlL9mZvswh7uZWQZ1unAv12kiy3H/m2VDpwr3bt26sXnzZgdMmUQEmzdvbvqDr5ntvTrV1TK9e/emvr6ehoaGcpeyz+rWrduHpkgws71Tpwr3/fbbj6qqqnKXYWa21+tUp2XMzKw0HO5mZhnkcDczyyCHu5lZBjnczcwyyOFuZpZBqcJd0ghJayXVSdrlMUOSviKpNnmtlLRT0uGlL9fMzNJoMdwlVQAPACOBgcA4SQPz20TE3RFxckScDHwd+E1EvNkeBZuZWcvSjNyHAHURsS4idgBzgFG7aT8O+K9SFGdmZm2TJtx7Aevz1uuTbbuQdCAwAniimf0TJS2VtNRTDJiZtZ804V5s1vzmZva6FHihuVMyETEzIqojorqysjJtjWZm1kppwr0e6JO33hvY0EzbsfiUjJlZ2aUJ9xqgv6QqSfuTC/D5hY0kHQKcA8wrbYlmZtZaLc4KGRGNkiYDTwMVwKyIWCVpUrJ/RtL0cmBRRLzdbtWamVkqqab8jYiFwMKCbTMK1mcDs0tVmJmZtZ3vUDUzyyCHu5lZBjnczcwyyOFuZpZBDnczswxyuJuZZZDD3cwsgxzuZmYZ5HA3M8sgh7uZWQY53M3MMsjhbmaWQQ53M7MMcribmWWQw93MLINShbukEZLWSqqTNK2ZNsMk1UpaJek3pS3TzMxao8WHdUiqAB4ALiT3PNUaSfMjYnVem0OB/wRGRMRrko5sr4LNzKxlaUbuQ4C6iFgXETuAOcCogjb/CsyNiNcAIuKN0pZpZmatkSbcewHr89brk235BgCHSXpW0suSxhc7kKSJkpZKWtrQ0NC2is3MrEVpwl1FtkXBelfg08AlwHDgm5IG7PKmiJkRUR0R1ZWVla0u1szM0knzgOx6oE/eem9gQ5E2myLibeBtSc8BJwF/KEmVZmbWKmlG7jVAf0lVkvYHxgLzC9rMA86S1FXSgcBpwJrSlmpmZmm1OHKPiEZJk4GngQpgVkSskjQp2T8jItZIegpYAbwP/CAiVrZn4WZm1rw0p2WIiIXAwoJtMwrW7wbuLl1pZmbWVr5D1cwsgxzuZmYZ5HA3M8sgh7uZWQY53M3MMsjhbmaWQQ53M7MMcribmWWQw93MLIMc7mZmGeRwNzPLIIe7mVkGOdzNzDLI4W5mlkEOdzOzDEoV7pJGSForqU7StCL7h0naKqk2eX2r9KWamVlaLT6sQ1IF8ABwIblnpdZImh8RqwuaPh8R/6sdajQzs1ZKM3IfAtRFxLqI2AHMAUa1b1lmZrYn0oR7L2B93np9sq3QUEnLJf1S0ieLHUjSRElLJS1taGhoQ7lmZpZGmnBXkW1RsP4KcGxEnAR8H/h5sQNFxMyIqI6I6srKytZVamZmqaUJ93qgT956b2BDfoOIeCsitiXLC4H9JPUoWZVmZtYqacK9BugvqUrS/sBYYH5+A0lHS1KyPCQ57uZSF2tmZum0eLVMRDRKmgw8DVQAsyJilaRJyf4ZwL8A/y6pEfg7MDYiCk/dmJlZB2kx3KHpVMvCgm0z8pbvB+4vbWlmZtZWvkPVzCyDHO5mZhnkcDczyyCHu5lZBjnczcwyyOFuZpZBDnczswxyuJuZZVCqm5jMrGUbZxebY6/9HDPBN4Fb8zxyNzPLIIe7mVkGOdzNzDLI4W5mlkEOdzOzDHK4m5llUKpwlzRC0lpJdZKm7abdqZJ2SvqX0pVoZmat1WK4S6oAHgBGAgOBcZIGNtPuLnJPbDIzszJKM3IfAtRFxLqI2AHMAUYVaTcFeAJ4o4T1mZlZG6QJ917A+rz1+mRbE0m9gMuBGeyGpImSlkpa2tDQ0NpazcwspTThXuye6sL7nv8D+FpE7NzdgSJiZkRUR0R1ZWVl2hrNzKyV0swtUw/0yVvvDWwoaFMNzJEE0AO4WFJjRPy8JFWamVmrpAn3GqC/pCrgf4CxwL/mN4iIqg+WJc0GFjjYzczKp8Vwj4hGSZPJXQVTAcyKiFWSJiX7d3ue3czMOl6qKX8jYiGwsGBb0VCPiAl7XpaZme0J36FqZpZBDnczswxyuJuZZZDD3cwsgxzuZmYZ5HA3M8sgh7uZWQY53M3MMsjhbmaWQQ53M7MMcribmWVQqrllzKzzGfNkxz707PFLjuzQz7M945G7mVkGOdzNzDLI4W5mlkGpwl3SCElrJdVJmlZk/yhJKyTVJg/APrP0pZqZWVot/kFVUgXwAHAhueep1kiaHxGr85r9GpgfESFpMPBj4IT2KNjMzFqWZuQ+BKiLiHURsQOYA4zKbxAR2yIiktWDgMDMzMomTbj3Atbnrdcn2z5E0uWSXgWeBK4tdiBJE5PTNksbGhraUq+ZmaWQJtxVZNsuI/OI+FlEnABcBny72IEiYmZEVEdEdWVlZesqNTOz1NKEez3QJ2+9N7ChucYR8RzwMUk99rA2MzNrozThXgP0l1QlaX9gLDA/v4Gkj0tSsvwpYH9gc6mLNTOzdFq8WiYiGiVNBp4GKoBZEbFK0qRk/wzgn4Hxkt4D/g6MyfsDq5mZdbBUc8tExEJgYcG2GXnLdwF3lbY0MzNrK9+hamaWQQ53M7MMcribmWWQw93MLIMc7mZmGeRwNzPLIIe7mVkGOdzNzDLI4W5mlkEOdzOzDHK4m5llkMPdzCyDHO5mZhnkcDczyyCHu5lZBqUKd0kjJK2VVCdpWpH9V0pakbx+K+mk0pdqZmZptRjukiqAB4CRwEBgnKSBBc3+BJwTEYPJPRx7ZqkLNTOz9NKM3IcAdRGxLiJ2AHOAUfkNIuK3EfG3ZPVFcg/RNjOzMkkT7r2A9Xnr9cm25nwO+GWxHZImSloqaWlDQ0P6Ks3MrFXShLuKbCv68GtJ55IL968V2x8RMyOiOiKqKysr01dpZmatkuYB2fVAn7z13sCGwkaSBgM/AEZGxObSlGdmZm2RZuReA/SXVCVpf2AsMD+/gaS+wFzgqoj4Q+nLNDOz1mhx5B4RjZImA08DFcCsiFglaVKyfwbwLeAI4D8lATRGRHX7lW1mZruT5rQMEbEQWFiwbUbe8ueBz5e2NDMzayvfoWpmlkEOdzOzDEp1Wsaya+PsYle6tp9jJhS9itbMSswjdzOzDHK4m5llkMPdzCyDHO5mZhnkcDczyyCHu5lZBjnczcwyyOFuZpZBDnczswxyuJuZZZDD3cwsgxzuZmYZlCrcJY2QtFZSnaRpRfafIGmJpHclfbn0ZZqZWWu0OCukpArgAeBCcs9TrZE0PyJW5zV7E5gKXNYuVZqZWaukGbkPAeoiYl1E7ADmAKPyG0TEGxFRA7zXDjWamVkrpQn3XsD6vPX6ZJuZmXVSaR7WUexpDm164oKkicBEgL59+7blELaXG/PkGx36eY9fcmSHfp5ZZ5Fm5F4P9Mlb7w1saMuHRcTMiKiOiOrKysq2HMLMzFJIE+41QH9JVZL2B8YC89u3LDMz2xMtnpaJiEZJk4GngQpgVkSskjQp2T9D0tHAUqA78L6k64GBEfFWO9ZuZmbNSPWA7IhYCCws2DYjb/l1cqdrzMysE/AdqmZmGeRwNzPLIIe7mVkGOdzNzDLI4W5mlkEOdzOzDHK4m5llkMPdzCyDHO5mZhnkcDczy6BU0w90NhtnF5uFuP0cM6FNMxybmZWNR+5mZhm0V47cO5ofMGFmexuP3M3MMsjhbmaWQQ53M7MMShXukkZIWiupTtK0Ivsl6b5k/wpJnyp9qWZmllaL4S6pAngAGAkMBMZJGljQbCTQP3lNBP5Pies0M7NWSDNyHwLURcS6iNgBzAFGFbQZBfwwcl4EDpV0TIlrNTOzlNJcCtkLWJ+3Xg+clqJNL2BjfiNJE8mN7AG2SVrbqmrL5qi2vrEHsKm1b/pxWz9tr+C+LB33ZensVX15bJpGacK92O2ghbdspmlDRMwEZqb4zEyQtDQiqstdRxa4L0vHfVk6nbkv05yWqQf65K33Bja0oY2ZmXWQNOFeA/SXVCVpf2AsML+gzXxgfHLVzOnA1ojYWHggMzPrGC2elomIRkmTgaeBCmBWRKySNCnZPwNYCFwM1AHvANe0X8l7lX3mFFQHcF+WjvuydDptXyrCMx6amWWN71A1M8sgh7uZWQY53FOQNEvSG5JW5m07WdKLkmolLZU0pJn3fjuZkqFW0iJJPZPt/ST9PdleK2lGR32fcpLUTdLvJC2XtErSrcn2WyT9T15/XNzM+4u224f788+Sfv/B72GyLVVfJm2nJFOLrJL0nYJ9fSVtk/Tl9v4enZGkQyX9VNKrktZIGtqavi03n3NPQdLZwDZyd+GemGxbBNwbEb9MfsBfjYhhRd7bPSLeSpanAgMjYpKkfsCCD463r5Ak4KCI2CZpP2Ax8EVgBLAtIqa38P5birXbh/vzz0B1RGzK23YL6fryXOBm4JKIeFfSkRHxRt7+J4D3gZdaOlYWSXoEeD4ifpBcKXggcD0t9G3S/3+OiNkdUmgz/LCOFCLiuSQ8PrQZ6J4sH0Iz1/V/EOyJgyhyc9e+JHKjiW3J6n7Ja5/ukzL6d+DOiHgXoCDYLwPWAW+XqbayktQdOBuYAJBMvbIjNzbZO/i0TNtdD9wtaT0wHfh6cw0l3ZG0uxL4Vt6uKknLJP1G0lntW27nIalCUi3wBvDfEfFSsmtycgprlqTDdnOI5trti/0ZwCJJLyfTe3wgTV8OAM6S9FLSZ6cCSDoI+Bpwa/uW3qkdBzQADye/Uz9I+gXS/56WV0T4leIF9ANW5q3fB/xzsnwF8KsUx/g6cGuyfABwRLL8aXJz83Qv9/fs4D49FHgGOJHc5B4V5AYcd5C7n6LYe4q221f7E+iZ/PNIYDm50WbavlyZ/B6L3ASBf0qWpwNXJG1uAb5c7u9Zhn6tBhqB05L17wHf3s3v3yCgNnm9DryWt35EWb5DuTtxb3kVCfet/ONvFgLeSpYfTn6gC4sc49j8YxTse5bcudOyf9cO7tf/XRge+X3dQn/2c39+6DvvEsS760vgKWBYXtv/C1QCzwN/Tl5bgDeByeX+fh3cl0eTO2/+wfpZwJPN9W2Rn8OEcn8Hn3Nvuw3AOeRC5DzgjwAR8aG7cyX1j4g/JqufBV5NtlcCb0bETknHkZsLf13HlF4+yfd+LyK2SPoIcAFwl6Rj4h9TVlxOblRZrD+LttsX+zM5TdAlIv5fsnwRcFvavgR+Tu5391lJA4D9gU0R0XRKK++Ps/e377fpXCLidUnrJR0fEWuB84HVzfVtZ+RwT0HSfwHDgB6S6smNNv8N+J6krsB2/jGVcaE7JR1P7qqDvwCTku1nk/sXsRHYCUyKiDfb71t0GscAjyj3EJguwI8jYoGkH0k6mdw55D8D1zXz/u80025f7M+jgJ8lf+TrCjwWEU+1oi9nAbOUu8R3B3B1JENPA2AK8Ghypcw6ctOq3Jeyb8vOl0KamWWQr5YxM8sgh7uZWQY53M3MMsjhbmaWQQ53M7MMcribmWWQw93MLIP+P0fdiOEAK6slAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"mortality_rate_smoker = (mortality_rate_smoker_18to35,mortality_rate_smoker_35to55,mortality_rate_smoker_55to64,mortality_rate_smoker_over65)\n",
"mortality_rate_non_smoker = (mortality_rate_non_smoker_18to35,mortality_rate_non_smoker_35to55,mortality_rate_non_smoker_55to64,mortality_rate_non_smoker_over65)\n",
"age = ['18-35','35-55','55-64','65+']\n",
"indices = range(len(mortality_rate_smoker))\n",
"width = np.min(np.diff(indices))/3.\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"ax.bar(indices-width/2.,mortality_rate_smoker,width,color='#E69F00',label='Smoker')\n",
"ax.bar(indices+width/2.,mortality_rate_non_smoker,width,color='#56B4E9',label='Non-Smoker')\n",
"#tiks = ax.get_xticks().tolist()\n",
"plt.xticks(indices + width / 2, age)\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Regression logistique"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Status Smoker\n",
"0 No 502\n",
" Yes 443\n",
"1 No 230\n",
" Yes 139\n",
"dtype: int64\n"
]
}
],
"source": [
"#raw_data[\"Status\"].replace({\"Dead\": \"1\", \"Alive\": \"0\"}, inplace=True)\n",
"#raw_data\n",
"\n",
"count = raw_data.groupby(['Status', 'Smoker']).size() \n",
"print(count)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFfBJREFUeJzt3XuQVvWd5/H3F0TYeCmDdAgKBkIRIwJitkMmFxMUI5qJ0UwFRRPF1Vo2kWxiJeuWlzLGSlGluUxmNBeXWhVm1x2kogY1k6yKEsuVIIh4JZSURuyVlYaMmUCCEfzuH30gT+DX0NE+/TzS71dV13PO7/md099TdvHxd37nEpmJJEm7G9DsAiRJrcmAkCQVGRCSpCIDQpJUZEBIkooMCElSkQEhSSoyICRJRQaEJKnogGYX8FYMGzYsR48e3ewyJOlt5bHHHtuUmW376ve2DojRo0ezcuXKZpchSW8rEfFiT/p5ikmSVGRASJKKDAhJUtHbeg5CknrT66+/TkdHB9u2bWt2Kb1iyJAhjBw5kkGDBr2p7Q0ISap0dHRwyCGHMHr0aCKi2eW8JZnJ5s2b6ejoYMyYMW9qH55ikqTKtm3bOPzww9/24QAQERx++OFvaTRUa0BExG8i4qmIWB0RK6u2oRFxX0Q8V32+s6H/5RGxLiLWRsT0OmuTpJL9IRx2eqvH0hcjiBMzc3JmtlfrlwFLMnMcsKRaJyLGAzOBY4FTgR9FxMA+qE+SVNCMU0xnAAuq5QXAmQ3tCzPztcx8AVgHTGlCfZLUrblz53LssccyadIkJk+ezPLly9/S/pYuXcqnP/3pXqqud9U9SZ3AvRGRwH/LzHnA8MzcAJCZGyLiXVXfI4FfNWzbUbWpj3zpp79udgkt48dnvr/ZJagFLVu2jHvuuYdVq1YxePBgNm3axJ/+9Kem1bN9+3YOOKC+f8brHkF8NDM/AJwGzImIj++lb+lkWe7RKWJ2RKyMiJWdnZ29Vack7dOGDRsYNmwYgwcPBmDYsGEcccQRjB49miuuuIIPf/jDtLe3s2rVKqZPn87YsWO58cYbga6rii699FImTJjAxIkTue222/bY/4oVKzj++ON5/vnn2bp1KxdeeCEf/OAHOf7441m8eDEA8+fPZ8aMGZx++umccsoptR5vrQGRmS9XnxuBO+k6ZfRKRIwAqD43Vt07gFENm48EXi7sc15mtmdme1vbPp81JUm95pRTTuGll17ife97HxdffDG//OUvd303atQoli1bxgknnMAFF1zAT37yE371q1/xjW98A4A77riD1atX88QTT3D//fdz6aWXsmHDhl3bP/LII3zxi19k8eLFvPe972Xu3LmcdNJJrFixggcffJBLL72UrVu3Al0jmQULFvDAAw/Uery1BUREHBQRh+xcBk4BngbuAmZV3WYBi6vlu4CZETE4IsYA44BH66pPkv5aBx98MI899hjz5s2jra2Ns88+m/nz5wPwmc98BoCJEyfyoQ99iEMOOYS2tjaGDBnCq6++ysMPP8w555zDwIEDGT58OJ/4xCdYsWIFAGvWrGH27NncfffdHHXUUQDce++9XHvttUyePJmpU6eybds21q9fD8AnP/lJhg4dWvvx1jkHMRy4s7rM6gDgf2XmLyJiBbAoIi4C1gMzADLzmYhYBDwLbAfmZOaOGuuTpL/awIEDmTp1KlOnTmXixIksWNB1zc3O004DBgzYtbxzffv27WTuccZ8lxEjRrBt2zYef/xxjjjiCKDrlNTtt9/O0Ucf/Rd9ly9fzkEHHdTbh1VU2wgiM5/PzOOqn2Mzc27Vvjkzp2XmuOrztw3bzM3MsZl5dGb+vK7aJOnNWLt2Lc8999yu9dWrV/Oe97ynR9t+/OMf57bbbmPHjh10dnby0EMPMWVK14Wahx12GD/72c+44oorWLp0KQDTp0/nhhtu2BUsjz/+eO8eTA94J7Uk9dCWLVuYNWsW48ePZ9KkSTz77LN885vf7NG2n/3sZ5k0aRLHHXccJ510Et/+9rd597vfvev74cOHc/fddzNnzhyWL1/OVVddxeuvv86kSZOYMGECV111VU1H1b3Y27Cn1bW3t6cvDOo9Xub6Z17m2j+tWbOGY445ptll9KrSMUXEYw03L3fLEYQkqciAkCQVGRCSpCIDQpJUZEBIkooMCElSka8claRuPPrDo3p1f1PmrN/r95nJCSecwJVXXslpp50GwKJFi7j55pv5xS9+0au19IQBIUktIiK48cYbmTFjBieeeCI7duzgyiuvbEo4gKeYJKmlTJgwgdNPP53rrruOa665hvPPP5+xY8eyYMECpkyZwuTJk7n44ot544032L59O+eddx4TJ05kwoQJXH/99b1aiyMISWoxV199NR/4wAc48MADWblyJU8//TR33nknjzzyCAcccACzZ89m4cKFjB07lk2bNvHUU08B8Oqrr/ZqHQaEJLWYgw46iLPPPpuDDz6YwYMHc//997NixQra27uejvHHP/6RUaNGMX36dNauXctXv/pVPvWpT/X6C4QMCElqQQMGDGDAgK5ZgMzkwgsv5Fvf+tYe/Z588kl+/vOfc/3113P77bczb9683quh1/YkSarFySefzKJFi9i0aRMAmzdvZv369XR2dpKZzJgxg2uuuYZVq1b16u91BCFJ3djXZal9ZeLEiVx99dWcfPLJvPHGGwwaNIgbb7yRgQMHctFFF5GZRATXXXddr/5eA0KSWtDu75k499xzOffcc/foV+eLhDzFJEkq6vcjiN6+U/Jt7ch7m12BpBbiCEKSVGRASJKKDAhJUpEBIUkq6veT1JLUnS/99Ne9ur8fn/n+ffaJCL72ta/xve99D4Dvfve7bNmyZY/LXvuCIwhJaiGDBw/mjjvu2HXXdDMZEJLUQnY+rfX73//+Ht+9+OKLTJs2jUmTJjFt2jTWr6/3Tm8DQpJazJw5c7j11lv53e9+9xftX/7ylzn//PN58skn+fznP89XvvKVWuswICSpxRx66KGcf/75e7wAaNmyZbset3Heeefx8MMP11qHASFJLeiSSy7hpptuYuvWrd32iYhaazAgJKkFDR06lLPOOoubbrppV9tHPvIRFi5cCMCtt97Kxz72sVpr8DJXSepGTy5LrdPXv/51fvCDH+xav/7667nwwgv5zne+Q1tbG7fcckutv9+AkKQWsmXLll3Lw4cP5w9/+MOu9dGjR/PAAw/0WS21n2KKiIER8XhE3FOtD42I+yLiuerznQ19L4+IdRGxNiKm112bJKl7fTEH8VVgTcP6ZcCSzBwHLKnWiYjxwEzgWOBU4EcRMbAP6pMkFdQaEBExEvhb4L83NJ8BLKiWFwBnNrQvzMzXMvMFYB0wpc76JGl3mdnsEnrNWz2WukcQ/wD8V+CNhrbhmbkBoPp8V9V+JPBSQ7+Oqk2S+sSQIUPYvHnzfhESmcnmzZsZMmTIm95HbZPUEfFpYGNmPhYRU3uySaFtj/9KETEbmA1w1FG+DU5S7xk5ciQdHR10dnY2u5ReMWTIEEaOHPmmt6/zKqaPAp+JiE8BQ4BDI+J/Aq9ExIjM3BARI4CNVf8OYFTD9iOBl3ffaWbOA+YBtLe3v/1jXlLLGDRoEGPGjGl2GS2jtlNMmXl5Zo7MzNF0TT4/kJlfAO4CZlXdZgGLq+W7gJkRMTgixgDjgEfrqk+StHfNuA/iWmBRRFwErAdmAGTmMxGxCHgW2A7MycwdTahPkkQfBURmLgWWVsubgWnd9JsLzO2LmiRJe+ezmCRJRQaEJKnIgJAkFRkQkqQiA0KSVGRASJKKDAhJUpEBIUkqMiAkSUUGhCSpyICQJBUZEJKkIgNCklRkQEiSigwISVKRASFJKjIgJElFBoQkqciAkCQVGRCSpCIDQpJUZEBIkooMCElSkQEhSSoyICRJRQaEJKnIgJAkFRkQkqQiA0KSVGRASJKKDAhJUpEBIUkqqi0gImJIRDwaEU9ExDMRcU3VPjQi7ouI56rPdzZsc3lErIuItRExva7aJEn7VucI4jXgpMw8DpgMnBoRfwNcBizJzHHAkmqdiBgPzASOBU4FfhQRA2usT5K0F7UFRHbZUq0Oqn4SOANYULUvAM6sls8AFmbma5n5ArAOmFJXfZKkvat1DiIiBkbEamAjcF9mLgeGZ+YGgOrzXVX3I4GXGjbvqNokSU1Qa0Bk5o7MnAyMBKZExIS9dI/SLvboFDE7IlZGxMrOzs7eKlWStJs+uYopM18FltI1t/BKRIwAqD43Vt06gFENm40EXi7sa15mtmdme1tbW611S1J/VudVTG0RcVi1/O+Ak4FfA3cBs6pus4DF1fJdwMyIGBwRY4BxwKN11SdJ2rsDetIpIpZk5rR9te1mBLCguhJpALAoM++JiGXAooi4CFgPzADIzGciYhHwLLAdmJOZO/76Q5Ik9Ya9BkREDAHeAQyr7lfYOU9wKHDE3rbNzCeB4wvtm4FisGTmXGDuvsuWJNVtXyOI/wRcQlcYPMafA+LfgB/WWJckqcn2GhCZ+Y/AP0bEf87MG/qoJklSC+jRHERm3hARHwFGN26Tmf9UU12SpCbr6ST1/wDGAquBnRPHCRgQkrSf6lFAAO3A+Mzc48Y1SdL+qaf3QTwNvLvOQiRJraWnI4hhwLMR8ShdT2kFIDM/U0tVkqSm62lAfLPOIiRJraenVzH9su5CJEmtpadXMf2ePz9Z9UC63u2wNTMPraswSVJz9XQEcUjjekSciS/zkaT92pt6mmtm/hQ4qZdrkSS1kJ6eYvq7htUBdN0X4T0RkrQf6+lVTKc3LG8HfkPXO6QlSfupns5B/Ie6C5EktZYezUFExMiIuDMiNkbEKxFxe0SMrLs4SVLz9HSS+ha6Xgl6BHAkcHfVJknaT/U0INoy85bM3F79zAfaaqxLktRkPQ2ITRHxhYgYWP18AdhcZ2GSpObqaUBcCJwF/D9gA/A5wIlrSdqP9fQy128BszLzXwEiYijwXbqCQ5K0H+rpCGLSznAAyMzfAsfXU5IkqRX0NCAGRMQ7d65UI4iejj4kSW9DPf1H/nvAIxHxE7oesXEWMLe2qiRJTdfTO6n/KSJW0vWAvgD+LjOfrbUySap86ae/bnYJLePHZ76/z35Xj08TVYFgKEhSP/GmHvctSdr/GRCSpCIDQpJUZEBIkooMCElSkQEhSSoyICRJRbUFRESMiogHI2JNRDwTEV+t2odGxH0R8Vz12fgIj8sjYl1ErI2I6XXVJknatzpHENuBr2fmMcDfAHMiYjxwGbAkM8cBS6p1qu9mAscCpwI/ioiBNdYnSdqL2gIiMzdk5qpq+ffAGrpeV3oGsKDqtgA4s1o+A1iYma9l5gvAOmBKXfVJkvauT+YgImI0XY8HXw4Mz8wN0BUiwLuqbkcCLzVs1lG17b6v2RGxMiJWdnZ21lm2JPVrtQdERBwM3A5ckpn/treuhbbcoyFzXma2Z2Z7W5uvxZakutQaEBExiK5wuDUz76iaX4mIEdX3I4CNVXsHMKph85HAy3XWJ0nqXp1XMQVwE7AmM/++4au7gFnV8ixgcUP7zIgYHBFjgHHAo3XVJ0nauzrfCvdR4DzgqYhYXbVdAVwLLIqIi4D1wAyAzHwmIhbR9Ujx7cCczNxRY32SpL2oLSAy82HK8woA07rZZi6+qU6SWoJ3UkuSigwISVKRASFJKjIgJElFBoQkqciAkCQVGRCSpCIDQpJUZEBIkooMCElSkQEhSSoyICRJRQaEJKnIgJAkFRkQkqQiA0KSVGRASJKKDAhJUpEBIUkqqu2d1JLemkd/eFSzS2gdR97b7Ar6JUcQkqQiA0KSVGRASJKKDAhJUpEBIUkqMiAkSUUGhCSpyICQJBUZEJKkIgNCklRkQEiSigwISVJRbQERETdHxMaIeLqhbWhE3BcRz1Wf72z47vKIWBcRayNiel11SZJ6ps4RxHzg1N3aLgOWZOY4YEm1TkSMB2YCx1bb/CgiBtZYmyRpH2oLiMx8CPjtbs1nAAuq5QXAmQ3tCzPztcx8AVgHTKmrNknSvvX1HMTwzNwAUH2+q2o/EnipoV9H1SZJapJWmaSOQlsWO0bMjoiVEbGys7Oz5rIkqf/q64B4JSJGAFSfG6v2DmBUQ7+RwMulHWTmvMxsz8z2tra2WouVpP6srwPiLmBWtTwLWNzQPjMiBkfEGGAc8Ggf1yZJalDbO6kj4p+BqcCwiOgArgauBRZFxEXAemAGQGY+ExGLgGeB7cCczNxRV22SpH2rLSAy85xuvprWTf+5wNy66pEk/XVaZZJaktRiDAhJUpEBIUkqMiAkSUUGhCSpyICQJBUZEJKkIgNCklRkQEiSigwISVKRASFJKjIgJElFBoQkqciAkCQVGRCSpCIDQpJUZEBIkooMCElSkQEhSSoyICRJRQaEJKnIgJAkFRkQkqQiA0KSVGRASJKKDAhJUpEBIUkqMiAkSUUGhCSpyICQJBUZEJKkIgNCklTUcgEREadGxNqIWBcRlzW7Hknqr1oqICJiIPBD4DRgPHBORIxvblWS1D+1VEAAU4B1mfl8Zv4JWAic0eSaJKlfarWAOBJ4qWG9o2qTJPWxA5pdwG6i0JZ/0SFiNjC7Wt0SEWtrr6rfOGYYsKnZVbSCG5tdgHbj3+ZOvfS3+Z6edGq1gOgARjWsjwRebuyQmfOAeX1ZVH8RESszs73ZdUi782+zOVrtFNMKYFxEjImIA4GZwF1NrkmS+qWWGkFk5vaI+DLwv4GBwM2Z+UyTy5KkfqmlAgIgM/8F+Jdm19FPeepOrcq/zSaIzNx3L0lSv9NqcxCSpBZhQMjHm6hlRcTNEbExIp5udi39kQHRz/l4E7W4+cCpzS6ivzIg5ONN1LIy8yHgt82uo78yIOTjTSQVGRDa5+NNJPVPBoT2+XgTSf2TASEfbyKpyIDo5zJzO7Dz8SZrgEU+3kStIiL+GVgGHB0RHRFxUbNr6k+8k1qSVOQIQpJUZEBIkooMCElSkQEhSSoyICRJRQaEtBcRcWVEPBMRT0bE6oj4UERcEhHv6MG2PeontSovc5W6EREfBv4emJqZr0XEMOBA4BGgPTM37WP73/Skn9SqHEFI3RsBbMrM1wCqf+g/BxwBPBgRDwJExI8jYmU10rimavtKod+WnTuOiM9FxPxqeUZEPB0RT0TEQ314fNJeOYKQuhERBwMPA+8A7gduy8xf7j4yiIihmfnb6t0aS4CvZOaThX5bMvPgavlzwKcz84KIeAo4NTP/b0Qclpmv9vWxSiWOIKRuZOYW4N8Ds4FO4LaIuKDQ9ayIWAU8DhxL14uX/hr/B5gfEf8RGPjmK5Z61wHNLkBqZZm5A1gKLK3+T39W4/cRMQb4L8AHM/Nfq9NGQ7rbXcPyrj6Z+cWI+BDwt8DqiJicmZt77yikN8cRhNSNiDg6IsY1NE0GXgR+DxxStR0KbAV+FxHD6Xp1606N/QBeiYhjImIA8NmG3zM2M5dn5jeATfzl49elpnEEIXXvYOCGiDgM2A6so+t00znAzyNiQ2aeGBGPA88Az9N1umineY39gMuAe+h6g9/T1f4BvlMFUdA1h/FE/Ycm7ZuT1JKkIk8xSZKKDAhJUpEBIUkqMiAkSUUGhCSpyICQJBUZEJKkIgNCklT0/wGKghGUX0VeFwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x='Status',hue='Smoker',data=raw_data, palette=[\"#E69F00\",\"#56B4E9\"])"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG25JREFUeJzt3Xt0nPV95/H3R6ORJdv4gi0cwCaGxtzCJRjVITFJSGgIUNokLd2FJNskZZdmN2STPd3T0LNn283m5PTknG5P05CUsMEk6e6ac8itxIcSyI1tIFmQE0wAY3DAYMXGlm2Qb7rOfPePGf08Go2kka3HM8Kf1zk60nOZ5/no0SN99FxmRhGBmZkZQEujA5iZWfNwKZiZWeJSMDOzxKVgZmaJS8HMzBKXgpmZJS4FMzNLXApmZpa4FMzMLGltdIDpWrp0aaxcubLRMczMZpWNGzfuiYjOqeabdaWwcuVKuru7Gx3DzGxWkfRiPfP59JGZmSUuBTMzS1wKZmaWuBTMzCxxKZiZWeJSMDOzxKVgZmZJZs9TkLQOuA7YHREX1Jgu4AvAtcBh4CMR8Yus8sy0wkAvhYPbyM1fSa59yueDHJflT/SY0fFqnU+MHBwzvTDQy/DeXwKQX3IJAIM7f8zw3k0AtJ50JmpbMGY9LW2LyC+5ZNw6Rpej1nkUDmwlv3QN+UXnTZqxMtvwK7+i2L+L/JLVKNeGWudTOLQ9ZRvpe5bBHQ+QO+lsYngfLe3LyC++sOb3VL0dJtsG05lenbtyvuFXNzO859Fx3/fwq5sZ3PEDyHXQUrEtC4d6KOzfSsuCVbQtfiNqncfgrocoHt6NWueRX3Ix+cUXpu2Sm38mMbSX3ElvKK1r3y/In7yaOcvWMvzKrxjetwm1zqPj9e8HoP/F7zDS9wzFwX20LV1D2ymXMbT3cQZ7NjBn+XW0n/bOCfev0Z/nyMGXoNBPfslqYuQQALl5K8b8XCbaHhOpnBeY8nG19tHqn1X1ciZax+g+NOe0q5izbO2EuUd/lrmT3oBybWk5ozkqt0Fu3gpi5OCYPMWBPWP2hal+NyvHD+56mMEdD5Bf8tso10Zx6FVa2hal9WT1N2eUsnqPZklvBw4C35igFK4FPkGpFN4MfCEi3jzVcru6uqLRT147/Ov19D1yE2ppI4pDLFx7J3PPurGhy5/oMaPjASj0Q0sHCBauvRMC+n76YYjh0nS1QhSAOvaJljYWXv61I+uoXE6FjnNvYdFlX6yZsWPVTfQ/d+eRbJWUK2epQ/X3VLUdRsfV2gZTbaPK6dW5K9cxtOsR+rfcNu77fvVnnxgzvunkOsbtX4d/vZ6+hz8CxaGpH688HWf/Kf1b76xrfx2zLQv9EIFa5074uPFZWqCltbR/jP6sKIxZzpifT+U6hvdTuW+3LLyQ4sGt43KP+5kpX/ocxdK6asoDw5DrgMLQmPnyp76b4d0/nfB3s3L84efuYnjngxNv76p9czokbYyIrinny6oUyiFWAhsmKIWvAD+JiPXl4S3AFRGxc7JlNroUCgO97L7n9WP/iOU6OOWPXpyR9j6a5U/0mKW/t5E937t0/B9cgJb20ufiwNGHHV3HvasnXc7S9z1NS/vS8RlnWks7SOO2AxG18021jaaanuZrh8L45S961/d49Ue/dxTfyHFWsX/V3JeOYXmVplx21eNmJMt05Do4+aoH2ffPl2e+npr7leZADNa9jOn+zam3FBp5TeF0YHvFcE953DiSbpbULam7t7f3uISbSOHgNtTSNmacWvIUDm5r2PIneszwnkfHjT8yQw50jGHVwvCeR0vLmsTwnkdrZpxxyoGqdmm1TJhvqm005TY8MmfNsQPbvztV4qZQuX8VDm4bvw2PYXmVptoHqh83E1mmQy15Bnc8cFzWU3O/Uv3/oM/k35xqjSyFWr9JNbdKRNwREV0R0dXZmd25tHrk5q8kqg6roziczjk2YvkTPSa/dM248UdmKNR1lmhSUSS/dM2Up3nyS9fUzDjjolA+xK8cV5ww31TbaMpteGTOmmPbV7xvqsRNoXL/ys1fOX4bHsPyKk21D1Q/biayTEcUh5lz2lXHZT0196uo/7+0mfybU62RpdADrKgYXg7saFCWuuXaO0vnqXMdKL8gnZOdqQs/R7P8iR6TX3ReGk+uozRzS3tp+uXrWHj5uiPnS6F0TaHew4eWtiPrqF5OhY5zbyG/6LyaGTvOvWVstkpTHH2MzVLxPdXYDgsvX1d7G0y1jaqmV+c+so51pXFV33fHGdeNG990qvav9HOq96hO+Rrbo/b+Om4faGkD5Sd8XO0sLaXhyp9V1XLG5KmcVrVvtyy8cFzuOcvWjv+ZKV/evyfbJ1vT9qyeL3/qVZP+bqbxb7urNO9kKvbNrC42N/Kawu8Ct3DkQvPfR8SaqZbZ6GsKo3z3ke8+8t1Hvvto9OvZcPdRwy80S1oPXAEsBXYBf0XpEj0RcXv5ltTbgKsp3ZL60YiY8q99s5SCmdlsUm8pZPY8hYiY9H6pKLXRx7Nav5mZTZ+f0WxmZolLwczMEpeCmZklLgUzM0tcCmZmlrgUzMwscSmYmVniUjAzs8SlYGZmiUvBzMwSl4KZmSUuBTMzS1wKZmaWuBTMzCxxKZiZWeJSMDOzxKVgZmaJS8HMzBKXgpmZJS4FMzNLXApmZpa4FMzMLHEpmJlZ4lIwM7PEpWBmZolLwczMEpeCmZklLgUzM0tcCmZmlmRaCpKulrRF0lZJt9aYvlDS9yRtkvSUpI9mmcfMzCaXWSlIygFfAq4BzgdulHR+1WwfB56OiIuBK4D/Iaktq0xmZja5LI8U1gBbI+L5iBgC7gbeWzVPACdJEjAf2AeMZJjJzMwmkWUpnA5srxjuKY+rdBtwHrAD+BXwyYgoZpjJzMwmkWUpqMa4qBp+D/A4cBrwJuA2SQvGLUi6WVK3pO7e3t6ZT2pmZkC2pdADrKgYXk7piKDSR4FvR8lW4AXg3OoFRcQdEdEVEV2dnZ2ZBTYzO9FlWQqPAasknVm+eHwDcG/VPC8BVwJIWgacAzyfYSYzM5tEa1YLjogRSbcA3wdywLqIeErSx8rTbwc+C3xN0q8onW76dETsySqTmZlNLrNSAIiI+4D7qsbdXvH1DuCqLDOYmVn9/IxmMzNLXApmZpa4FMzMLHEpmJlZ4lIwM7PEpWBmZolLwczMEpeCmZklLgUzM0tcCmZmlrgUzMwscSmYmVniUjAzs8SlYGZmiUvBzMwSl4KZmSUuBTMzS1wKZmaWuBTMzCxxKZiZWeJSMDOzxKVgZmaJS8HMzBKXgpmZJS4FMzNLXApmZpa4FMzMLHEpmJlZ4lIwM7PEpWBmZkmmpSDpaklbJG2VdOsE81wh6XFJT0l6KMs8ZmY2udasFiwpB3wJeDfQAzwm6d6IeLpinkXAl4GrI+IlSadklcfMzKaW5ZHCGmBrRDwfEUPA3cB7q+b5APDtiHgJICJ2Z5jHzMymkGUpnA5srxjuKY+rdDawWNJPJG2U9McZ5jEzsylkdvoIUI1xUWP9lwJXAh3AzyT9PCKeHbMg6WbgZoAzzjgjg6hmZgbZHin0ACsqhpcDO2rMc39EHIqIPcD/BS6uXlBE3BERXRHR1dnZmVlgM7MTXZal8BiwStKZktqAG4B7q+b5J+BtklolzQXeDGzOMJOZmU0is9NHETEi6Rbg+0AOWBcRT0n6WHn67RGxWdL9wBNAEfhqRDyZVSYzM5ucIqpP8ze3rq6u6O7ubnQMM7NZRdLGiOiaar5pnz6StFjSRUcXy8zMmlldpVC+ZXSBpJOBTcBdkv4222hmZna81XuksDAi9gN/ANwVEZcCv5NdLDMza4R6S6FV0qnAvwI2ZJjHzMwaqN5S+O+U7iLaGhGPSToLeC67WGZm1gh13ZIaEfcA91QMPw/8YVahzMysMeoqBUl3Mf4lKoiIP5nxRGZm1jD1Pnmt8jpCO/B+xr9khZmZzXL1nj76VuWwpPXADzJJZGZmDXO0r320CvDLlZqZvcbUe03hAGOvKbwMfDqTRGZm1jD1nj46KesgZmbWePW+zMUP6xlnZmaz26RHCpLagbnAUkmLOfJuaguA0zLOZmZmx9lUp4/+FPgUpQLYyJFS2A98KcNcZmbWAJOWQkR8AfiCpE9ExBePUyYzM2uQei80f1HSBcD5lJ68Njr+G1kFMzOz46/eW1L/CriCUincB1wD/BRwKZiZvYbU++S164ErgZcj4qPAxcCczFKZmVlD1FsK/RFRBEYkLQB2A2dlF8vMzBqh3hfE65a0CPiflO5COgg8mlkqMzNriHovNP+H8pe3S7ofWBART2QXy8zMGmHaz2iOiG0R8YSf0Wxm9trjZzSbmVky3Wc0jzqAn9FsZvaaM9Xpo0eAtwL/OSLOAj4DPAk8BPyfjLOZmdlxNlUpfAUYLD+j+e3AXwNfB/qAO7IOZ2Zmx9dUp49yEbGv/PW/Bu4ovzXntyQ9nm00MzM73qY6UshJGi2OK4EfVUyr9zkOZmY2S0z1h3098JCkPUA/8C8Akt5A6RSSmZm9hkx6pBARnwP+DPgacHlEjL5PcwvwiakWLulqSVskbZV06yTz/bakgqTr649uZmYzbcpTQBHx8xrjnp3qcZJylG5bfTfQAzwm6d6IeLrGfJ8Hvl9vaDMzy0a9L4h3NNYAWyPi+YgYAu4G3ltjvk8A36L0IntmZtZAWZbC6cD2iuGe8rhE0unA+4HbJ1uQpJsldUvq7u3tnfGgZmZWkmUpqMa4qBr+O+DTEVGYbEERcUdEdEVEV2dn54wFNDOzsbK8rbQHWFExvBzYUTVPF3C3JIClwLWSRiLiuxnmMjOzCWRZCo8BqySdCfwGuAH4QOUMEXHm6NeSvgZscCGYmTVOZqUQESOSbqF0V1EOWBcRT0n6WHn6pNcRzMzs+Mv0WckRcR9wX9W4mmUQER/JMouZmU0tywvNZmY2y7gUzMwscSmYmVniUjAzs8SlYGZmiUvBzMwSl4KZmSUuBTMzS1wKZmaWuBTMzCxxKZiZWeJSMDOzxKVgZmaJS8HMzBKXgpmZJS4FMzNLXApmZpa4FMzMLHEpmJlZ4lIwM7PEpWBmZolLwczMEpeCmZklLgUzM0tcCmZmlrgUzMwscSmYmVniUjAzs8SlYGZmiUvBzMySTEtB0tWStkjaKunWGtM/KOmJ8scjki7OMo+ZmU0us1KQlAO+BFwDnA/cKOn8qtleAN4RERcBnwXuyCqPmZlNLcsjhTXA1oh4PiKGgLuB91bOEBGPRMQr5cGfA8szzGNmZlPIshROB7ZXDPeUx03kJuCfa02QdLOkbkndvb29MxjRzMwqZVkKqjEuas4ovZNSKXy61vSIuCMiuiKiq7OzcwYjmplZpdYMl90DrKgYXg7sqJ5J0kXAV4FrImJvhnnMzGwKWR4pPAasknSmpDbgBuDeyhkknQF8G/g3EfFshlnMzKwOmR0pRMSIpFuA7wM5YF1EPCXpY+XptwN/CSwBviwJYCQiurLKZGZmk1NEzdP8Taurqyu6u7sbHcPMbFaRtLGef7r9jGYzM0tcCmZmlrgUzMwscSmYmVniUjAzs8SlYGZmiUvBzMwSl4KZmSUuBTMzS1wKZmaWuBTMzCxxKZiZWeJSMDOzxKVgZmaJS8HMzBKXgpmZJS4FMzNLXApmZpa4FMzMLHEpmJlZ4lIwM7PEpWBmZolLwczMEpeCmZklLgUzM0tcCmZmlrgUzMwscSmYmVniUjAzsyTTUpB0taQtkrZKurXGdEn6+/L0JyStzjKPmZlNrjWrBUvKAV8C3g30AI9Jujcinq6Y7RpgVfnjzcA/lD/PuP6XNnDoma+g/HzySy6hcOBZ2le8D4CB7d+lbdk7US7P4I4fMtK3BbXOQ61zKQ71IXIUhl+hdcHZ5BesojCwk/zJq8kvOo/BXQ9ROLCNKA6Taz+FGDlAcbCP4f3P0LrgXIgixeE+WnJtqPUklD+J3PyVFA48S0v7aRQOPo/aTiYGd1MY3A/FQWJ4P0WgbcFv0XHWhxje+0sGX/4Jc173DgqHdzLw4jchv5DWBasoDuwi1/E68osvZKRvC4WhV8l1LCM3Zwlzll/LyP7nGNr5IzRnMYXDuxnZv5lcx2m0LngDMXwA5dppXfRGojBAcXAPtORoP/1aonCY4X2bKA7sodC/GwoD0NqOWhdAcQjl2ojCEDH0CiP7t6G2+ZBroyXXUd7iOdqWXkJu/nKUP5nBnu8xcvhlWtqXEYN7iOIg887598x7wwcZfnUzgzt/QBSGKQ7sJQqHUOs8olig/zf3w0AvrYsuIoqDFF59ErWfwtyzb2JO5xoOP/d1hvs2M+eUteSXrqalbRFqnUf/tnsoHuohf+qVpYwHX4TCEKiVYn8Pba97J61zlxG0MrB9A4X+neQXnE3LvBUw3IfaT2Gg5z6Kg3uZc8pa2ldcx+DOHzC893EKwwdQFOg46wO0nrSS4b2bUH4e+cUXMbT7ZxSHXmHub32QOcvWAjC462EGXvoOkGPk0EtQGKB10fm0db6F4VeeAEF+0UUUDr4A5e1XOPACxcJhCod2UOzfQeuCc1AUiNwcWuefwZzXvYMYOURx6FWKQ/spHHgBCZizFAr9kOtgZN/jjBz4NXNOew9zz7yewV0PU+h7htaTL0GMkF+6hvyi82r+vhQGeikc3EZu/kpy7Z1Z/EqOWQcw4foKA70M7/0lAPkll2SWp56c01338diOM00Rkc2CpbcA/y0i3lMe/guAiPjrinm+AvwkItaXh7cAV0TEzomW29XVFd3d3dPKsus7F1Lse3L634Rlr2UeFA81OkUm8qdeBQTDOx9sdJQJdZx7C4su++KYcYd/vZ6+R25CLW1EcYiFa+9k7lk3zuh6x6yj0A8RqHXuuPUd/vV6+h7+CBSHSg9UnoVv+/qM56kr5zS3xfHYjtMhaWNEdE01X5anj04HtlcM95THTXeeY9L/0gYXQjN7jRYCwPDOB5q6EAD6n7mN4Vc3p+HCQC99j9wEhX5iuA8K/fQ9fBOFgd4ZW+e4dRSHIIbHrS/NN1oIADFM30//ZEbz1J1zGtvieGzHrGRZCqoxrvqwpJ55kHSzpG5J3b2909uoA9u/O635zU40w3seTV8XDm5DLW1jpqslT+HgthlbX6111Fpf4eA2UI0/UcrNaJ6JHMu2OB7bMStZlkIPsKJieDmw4yjmISLuiIiuiOjq7JzeebnR6wZmVlt+6Zr0dW7+SqLyP3MoXS8rn/efCbXWUWt9ufkrIYo1ZijMaJ6JHMu2OB7bMStZlsJjwCpJZ0pqA24A7q2a517gj8t3IV0G9E12PeFodJxxHS0LL5zJRdpMapnX6ASZyZ96Vfm6QvPqOPeWMRebc+2dLFx7J+Q6UH4B5DpYuPbOGb1IOm4dLW2g/Lj1pfkq/+NWnoWXrzsuF22PZVscj+2YlcwuNANIuhb4OyAHrIuIz0n6GEBE3C5JwG3A1cBh4KMRMelV5KO50Ay++8h3H/nuI999dOw5Z/PdR/VeaM60FLJwtKVgZnYia4a7j8zMbJZxKZiZWeJSMDOzxKVgZmaJS8HMzBKXgpmZJS4FMzNLZt3zFCT1Ai9muIqlwJ4Mlz+TZkvW2ZITnDUrsyXrbMkJ08/6+oiY8hl0s64Usiapu54neDSD2ZJ1tuQEZ83KbMk6W3JCdll9+sjMzBKXgpmZJS6F8e5odIBpmC1ZZ0tOcNaszJassyUnZJTV1xTMzCzxkYKZmSUnbClIWiHpx5I2S3pK0ifL40+W9KCk58qfFzdB1nZJj0raVM76mWbNOkpSTtIvJW0oDzdlVknbJP1K0uOSusvjmi6rpEWSvinpmfI++5YmzXlOeVuOfuyX9KlmzAog6T+Vf6eelLS+/LvWdFklfbKc8SlJnyqPyyTnCVsKwAjwZxFxHnAZ8HFJ5wO3Aj+MiFXAD8vDjTYIvCsiLgbeBFxdfqe6Zsw66pPA5orhZs76zoh4U8Xtfc2Y9QvA/RFxLnAxpW3bdDkjYkt5W74JuJTSm2d9hybMKul04D8CXRFxAaU3A7uBJssq6QLg3wFrKP3sr5O0iqxyRoQ/StdV/gl4N7AFOLU87lRgS6OzVeWcC/wCeHOzZqX0Xts/BN4FbCiPa9as24ClVeOaKiuwAHiB8jXAZs1ZI/dVwMPNmhU4HdgOnAy0AhvKmZsqK/BHwFcrhv8r8OdZ5TyRjxQSSSuBS4D/ByyL8vtElz+f0rhkR5RPxzwO7AYejIimzUrpLVj/HKh81/VmzRrAA5I2Srq5PK7Zsp4F9AJ3lU/JfVXSPJovZ7UbgPXlr5sua0T8Bvgb4CVgJ6X3iH+A5sv6JPB2SUskzQWuBVaQUc4TvhQkzQe+BXwqIvY3Os9EIqIQpUPy5cCa8iFl05F0HbA7IjY2Okud1kbEauAaSqcQ397oQDW0AquBf4iIS4BDNMHpl8lIagN+H7in0VkmUj4H/17gTOA0YJ6kDzU21XgRsRn4PPAgcD+widLp70yc0KUgKU+pEP53RHy7PHqXpFPL00+l9J9504iIV4GfAFfTnFnXAr8vaRtwN/AuSf+L5sxKROwof95N6dz3Gpovaw/QUz46BPgmpZJotpyVrgF+ERG7ysPNmPV3gBciojcihoFvA2+lCbNGxJ0RsToi3g7sA54jo5wnbClIEnAnsDki/rZi0r3Ah8tff5jStYaGktQpaVH56w5KO/MzNGHWiPiLiFgeESspnT74UUR8iCbMKmmepJNGv6Z0PvlJmixrRLwMbJd0TnnUlcDTNFnOKjdy5NQRNGfWl4DLJM0t/z24ktIF/KbLKumU8uczgD+gtG2zydnoiz0NvHhzOaXzyU8Aj5c/rgWWULpI+lz588lNkPUi4JflrE8Cf1ke33RZq3JfwZELzU2XldK5+k3lj6eA/9LEWd8EdJf3ge8Ci5sxZznrXGAvsLBiXLNm/Qylf7CeBP4RmNOMWYF/ofSPwCbgyiy3qZ/RbGZmyQl7+sjMzMZzKZiZWeJSMDOzxKVgZmaJS8HMzBKXgtk0SHq/pJB0bqOzmGXBpWA2PTcCP6X0xDyz1xyXglmdyq+TtRa4iXIpSGqR9OXy69xvkHSfpOvL0y6V9FD5xfa+P/qSBGbNzKVgVr/3UXpPg2eBfZJWU3rJgZXAhcC/Bd4C6XW1vghcHxGXAuuAzzUitNl0tDY6gNksciOllwWH0ov93QjkgXsiogi8LOnH5ennABcAD5ZeVoccpZdnNmtqLgWzOkhaQulNgy6QFJT+yAelV1at+RDgqYh4y3GKaDYjfPrIrD7XA9+IiNdHxMqIWEHp3dD2AH9YvrawjNKLAELpXbE6JaXTSZLe2IjgZtPhUjCrz42MPyr4FqU3Z+mh9CqbX6H07n19ETFEqUg+L2kTpVfhfevxi2t2dPwqqWbHSNL8iDhYPsX0KKV3c3u50bnMjoavKZgduw3lN0FqAz7rQrDZzEcKZmaW+JqCmZklLgUzM0tcCmZmlrgUzMwscSmYmVniUjAzs+T/A5M6wRxlyc64AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHClJREFUeJzt3XlwnId93vHvsxcAkgBFEqAig6RJTRjJskzKMirZVqrKVhxKqieuE7eV0jSJk1YVJbl2J51amU6Tup5MxjNtxo4tiVYd2XUPacaxm6ga1bLjM7HrWqAj0rposaJNgjoIigd44Njj1z928XIJLrALCC93IT6fGQzwHvu+z7vY3Wff991DEYGZmRlApt0BzMysc7gUzMws4VIwM7OES8HMzBIuBTMzS7gUzMws4VIwM7OES8HMzBIuBTMzS+TaHWC++vv7Y+PGje2OYWa2pOzcufNwRAw0m2/JlcLGjRsZHh5udwwzsyVF0s9amc+Hj8zMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSqb1PQdKDwHuBQxFxZYPpAj4F3AKcBn47In6UVp5WjU1WODReZm1Plr6uxenMRstsZT318wAcGi/TkxXj5VjUfHPlbGXaXPMdPFHi+WNFNl+UZ7A3d848J6YqyfTeQuas7d13vAiCTX35eW3r2GSFp16d5JWTZX5uRY4NvbmWrrOZ2Rf6f6tf3r6xIgT092T52ViRnxyd4lQRLlud402ruzg8XgZBf3eWwxNlTheDw+MlDoyVWNWd5eq1XWSzOivTU4cnOT5V4eKeLGPF4JJlWSYqAQHdWfHCWJFCRvTkhRDL8qI7I555dYpjU2W6Mxk2XpTnzWsKyTYcPFHihy9PMnKiyKlShfUr8pwsVhg9XWZgWZYtA11s6M3x7JFJfjxaRAqu7C/wptVdjJcjuV2Wy8Ezr04Rgmt/rpvB3lxyG8gRDB+a5ESxwtUD3Vy19sxlfzZW5PhUhWIpeO5Ykbf2F1i7IsfpYhAEQgTBSyfKPH98it5chuWFavapclCswMouEQFvXlPgyGSZn46VWVkQOYlKwNGpMpv68qxbkeOZI0UmihVyWZgoRfW66M4mt70nXp5g31iRDHBovMKargyru7McnaqwLAtHpyrkJFYWMmQzMFEO3ry6QDYr9o8Vee5IkYlScPnqPFNleO7oFKsLGVb1ZOjKir5ClkwGtvR3cXKqwg9fmWRZFiYrMFkOurPijStzrOnKnvX/XJ7LsGnl/O4P86W0vqNZ0vXASeCLs5TCLcCHqJbCtcCnIuLaZssdGhqKtN689r2D4+zYfYJsRpQrwR1berlusGfRlwk0XU/95YrlIAKyGZiqQF4gsSj55so5vexWr5eZ812+KsvuV8vJ9G0burhsdSGZZ6IU1N/6BHTnxFQpCEGlNjEL3HVVa9v6vYPjfPrJE8y8VTe7zmZmf9e6Lr41Mjnv/1v98u598gTlhlPnJ0v1f/+udV18bf/kOdu2UBnB3Vt72XNkisf3Ty58OUCl7ne99cvFgVOzJ87ColxHi0FUt6FT8swmJ7hz6/zv+5J2RsRQ0/nSKoVaiI3Ao7OUwmeBb0fEQ7XhPcANEfHSXMtMqxTGJivc9c3DTNXdqgsZuPfd/Qtu5UbLzGeAgGLd1T5zPY0u18hrzTdXzullAy1dL61mzmeg2GSehpcT3Hfj3Ns6Nllh+18dpjTHchaavZX/W/3y7vzG4bPm7VSd9KBsrctn4L553vdbLYV2nlMYBA7UDY/Uxp1D0u2ShiUNj46OphLm0HiZbEZnjctmxKHxhd9lGi0zI8jMuNZnrqfR5Rp5rfnmWt/0slu9XlrN3HyOxjIZmm7rofEyanKLXmj2Vv5v9cubOa/ZYsqo+f1hwctOZamtaXQvbPjcKiIeiIihiBgaGGj6eU4LsrYnS7ly9urLlUiOMS7WMisBlRnPSGeup9HlGnmt+eZa3/SyW71eWs280CfPlQpNt3VtT5Zoshey0Oyt/N/qlzdzXrPFVInm94eFamcpjADr64bXAS+2KQt9XRnu2NJLIQM9OVHIVI8/v5ZDM42WuX1LL9u3zr2emZfLqbqbXzuvRl4sSr65ck4vu9XrpdF8W9acfaPdtqGL7XXzzHxWIKrjs1SfCU3LAtu3Nt/Wvq4Md17V2/DZxlzXWaPs2zZ0zfv/Vr+87Vt7Way77PT/ftuGrgXvaTWSUfVczbYNXa9tOTN+11u/fO7E6TysLYzorDyzyal6e0zrZHM7zyn8feBuzpxo/tOIuKbZMtM80Qx+9ZFffeRXH/nVR6/PVx+1/USzpIeAG4B+4BXgD4E8QETsqL0k9TPATVRfkvrBiGj6aJ92KZiZvR61WgqpvU8hIm5rMj2Au9Jav5mZzZ9fI2FmZgmXgpmZJVwKZmaWcCmYmVnCpWBmZgmXgpmZJVwKZmaWcCmYmVnCpWBmZgmXgpmZJVwKZmaWcCmYmVnCpWBmZgmXgpmZJVwKZmaWcCmYmVnCpWBmZgmXgpmZJVwKZmaWcCmYmVnCpWBmZgmXgpmZJVwKZmaWcCmYmVnCpWBmZgmXgpmZJVwKZmaWcCmYmVnCpWBmZolUS0HSTZL2SNor6Z4G01dK+l+Sdkl6WtIH08xjZmZzS60UJGWBe4GbgSuA2yRdMWO2u4BnImIrcAPwnyQV0spkZmZzS3NP4Rpgb0S8EBFTwMPA+2bME0CvJAErgCNAKcVMZmY2hzRLYRA4UDc8UhtX7zPAm4AXgR8DH46ISoqZzMxsDmmWghqMixnD24AngTcAVwGfkdR3zoKk2yUNSxoeHR1d/KRmZgakWwojwPq64XVU9wjqfRD4SlTtBfYBl89cUEQ8EBFDETE0MDCQWmAzswtdmqXwBLBZ0qbayeNbgUdmzLMfuBFA0sXAZcALKWYyM7M55NJacESUJN0NPA5kgQcj4mlJd9Sm7wA+DnxB0o+pHm76aEQcTiuTmZnNLbVSAIiIx4DHZozbUff3i8Avp5nBzMxa53c0m5lZwqVgZmYJl4KZmSVcCmZmlnApmJlZwqVgZmYJl4KZmSVcCmZmlnApmJlZwqVgZmYJl4KZmSVcCmZmlnApmJlZwqVgZmYJl4KZmSVcCmZmlnApmJlZwqVgZmYJl4KZmSVcCmZmlnApmJlZwqVgZmYJl4KZmSVcCmZmlnApmJlZwqVgZmYJl4KZmSVcCmZmlnApmJlZwqVgZmaJVEtB0k2S9kjaK+meWea5QdKTkp6W9J0085iZ2dxyaS1YUha4F3gPMAI8IemRiHimbp6LgPuAmyJiv6S1aeUxM7Pm0txTuAbYGxEvRMQU8DDwvhnz/DrwlYjYDxARh1LMY2ZmTaRZCoPAgbrhkdq4er8ArJL0bUk7Jf1minnMzKyJ1A4fAWowLhqs/23AjUAP8H8k/SAifnLWgqTbgdsBNmzYkEJUMzODdPcURoD1dcPrgBcbzPPViDgVEYeB7wJbZy4oIh6IiKGIGBoYGEgtsJnZhS7NUngC2Cxpk6QCcCvwyIx5/hL4u5JykpYB1wLPppjJzMzmkNrho4goSbobeBzIAg9GxNOS7qhN3xERz0r6KrAbqACfi4in0spkZmZzU8TMw/ydbWhoKIaHh9sdw8xsSZG0MyKGms0378NHklZJ2rKwWGZm1slaKoXaS0b7JK0GdgGfl/Qn6UYzM7PzrdU9hZURMQb8KvD5iHgb8EvpxTIzs3ZotRRyki4B/hHwaIp5zMysjVothf9A9VVEeyPiCUmXAs+nF8vMzNqhpZekRsSXgC/VDb8A/FpaoczMrD1aKgVJn+fcj6ggIn5n0ROZmVnbtPrmtfrzCN3A+zn3IyvMzGyJa/Xw0ZfrhyU9BPxVKonMzKxtFvrZR5sBf1ypmdnrTKvnFE5w9jmFl4GPppLIzMzaptXDR71pBzEzs/Zr9WMuvtHKODMzW9rm3FOQ1A0sA/olreLMt6n1AW9IOZuZmZ1nzQ4f/QvgI1QLYCdnSmEMuDfFXGZm1gZzlkJEfAr4lKQPRcSnz1MmMzNrk1ZPNH9a0pXAFVTfvDY9/otpBTMzs/Ov1Zek/iFwA9VSeAy4GfgbwKVgZvY60uqb1z4A3Ai8HBEfBLYCXamlMjOztmi1FMYjogKUJPUBh4BL04tlZmbt0OoH4g1Lugj4z1RfhXQS+GFqqczMrC1aPdF8Z+3PHZK+CvRFxO70YpmZWTvM+x3NEfHTiNjtdzSbmb3++B3NZmaWmO87mqedwO9oNjN73Wl2+Oj7wDuBfx0RlwIfA54CvgP8j5SzmZnZedasFD4LTNbe0Xw98MfAfwGOAw+kHc7MzM6vZoePshFxpPb3PwYeqH0155clPZluNDMzO9+a7SlkJU0Xx43AN+umtfoeBzMzWyKaPbA/BHxH0mFgHPhrAEk/T/UQkpmZvY7MuacQEX8E/B7wBeAXI2L6e5ozwIeaLVzSTZL2SNor6Z455vs7ksqSPtB6dDMzW2xNDwFFxA8ajPtJs8tJylJ92ep7gBHgCUmPRMQzDeb7BPB4q6HNzCwdrX4g3kJcA+yNiBciYgp4GHhfg/k+BHyZ6ofsmZlZG6VZCoPAgbrhkdq4hKRB4P3AjrkWJOl2ScOShkdHRxc9qJmZVaVZCmowLmYMfxL4aESU51pQRDwQEUMRMTQwMLBoAc3M7Gxpvqx0BFhfN7wOeHHGPEPAw5IA+oFbJJUi4i9SzGVmZrNIsxSeADZL2gQcBG4Ffr1+hojYNP23pC8Aj7oQzMzaJ7VSiIiSpLupvqooCzwYEU9LuqM2fc7zCGZmdv6l+q7kiHgMeGzGuIZlEBG/nWYWMzNrLs0TzWZmtsS4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLJFqKUi6SdIeSXsl3dNg+j+RtLv2831JW9PMY2Zmc0utFCRlgXuBm4ErgNskXTFjtn3A34uILcDHgQfSymNmZs2luadwDbA3Il6IiCngYeB99TNExPcj4mht8AfAuhTzmJlZE2mWwiBwoG54pDZuNr8L/O9GEyTdLmlY0vDo6OgiRjQzs3pploIajIuGM0rvoloKH200PSIeiIihiBgaGBhYxIhmZlYvl+KyR4D1dcPrgBdnziRpC/A54OaIeDXFPGZm1kSaewpPAJslbZJUAG4FHqmfQdIG4CvAP42In6SYxczMWpDankJElCTdDTwOZIEHI+JpSXfUpu8A/gBYA9wnCaAUEUNpZTIzs7kpouFh/o41NDQUw8PD7Y5hZrakSNrZypNuv6PZzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSLgUzM0u4FMzMLOFSMDOzhEvBzMwSqZaCpJsk7ZG0V9I9DaZL0p/Wpu+WdHWaeczMbG65tBYsKQvcC7wHGAGekPRIRDxTN9vNwObaz7XA/bXfi25sssKh8TJjE2W+OzLBK+NFSuWgjChWgixQCZBgsgylCqzpzrCyW+Qzor8ny9qeHFPl4FSpwvNHi0yVg4lyhWMTkM/CpStzTFaC1YUMx6YqdOcy9OXFyKkyK/LiyESZQ6eD3gJsWdPF/pNFhCiWK5wqBoO9edYuy7KyK8tAt3juWJG8xGBvloGeHOVK8J2RCV6dKLEsl2FwRY41PVn2HS/y0qky/d0ZVvdkOFmEk8Uyy7NidKJCIStOTpUoVTL0FeBUMVheyLAil2Eqgs0r81SAF46VWJYXhayYKAXdWTGwPMva7gzfPDDOodNlNq/K8wurCvTmxa7DRYrloDsHB0+VuHhZjstX58kgXjldBqAcwSunK1y8LENWojuX4Y29Wb7/0iTPvjpJBCzPw6qeLGu6c6xdluWK1QUOnKxu06beHKMTwfGJMidLFU4WK6xfkUMSCrh4eZZTpQr/71iR08VgeT7DpRfl6O/JcXi8xIGxMj150ZfPcHSqTE82w/GpMnmJiXKF41PBQE+Gt/R38ca+PM8emWTP0SKruzJctqrAz06UODZZ5uRUcHyqAhFMluENK7KcLFZz9S/Lcf1gN33dWdb2ZOnrqj7XOniixHdHxnnm1UlOFIP+7gwZwdhUhRX5LFv6CxyaKJNVNd+RqTKrC1kOT5Q5Ollm88oCP786T393lueOTLFvrEgGcfBkkd58ljevyfPyeIXVXRlWdWc4XapQLMOWgS6eOTzJ1/efpjuXYXB5jr6uLH0FMVUJChmRycCW/i4Ge3PJfaM+e/19picrDo+XOVWssLyQYVNf/qxtfP5Ykc0X5Rnsbf3hZLbL1WcB2He8COKsdTa7n+8bK0LAppXVy8y2fbOtc+a8jTKdKlVYnsuwaWW+4WWaXS9nXbcT5bPyzrZdc23DYlJEpLNg6R3Av4+IbbXh3weIiD+um+ezwLcj4qHa8B7ghoh4abblDg0NxfDw8LyyfO/gODt2n2CqMv/tMGuVgHwG7tjSy54jUzy+f7LdkZrasibLc0fLZDOiXAnu2NLLdYM9yX0GOOd+kwXuuurcbdy2oYvfecvKput88MfHG15uep3ZjCiWg3LA9KPT9DqvG+yZdbnfOzjOvU+eoFwbzgluXN/Ft0Ymz9m++stMr3OqFEiQz56ZFzhreqj65HFaRqCAQu7MZZpdL9PrjIBi3bJygju3nruN9RkbbUOrJO2MiKFm86W2pwAMAgfqhkc4dy+g0TyDwKylMF9jkxUXgp0XQfUB9P7dJygukdvb7ldrD6G1R7odu0+wsS8/532mDGc9+E57fP8k2zaW5txjOHiidE5ZPr5/kuveMHVmnZVzn6iWgft3neAt/V2zPtu/f9fZmUrBmXXVbd/0Ms56bJheZ0CpVP37/t0nYPqBu256venR47XL3PfkCUpzXC9zPR6VorrO+m1slHHH7tmvh8WQ5n6IGoyb+d9uZR4k3S5pWNLw6OjovEIcGq8+CzI7X5byrS2bEc8fKza/z8wy+fljxTkvNtv0XYenmq4zk6nenxs5NF4m08KjWTajZBnNHhsyoqVl1tMs809vdyvrrN/GRvPXb0Ma0iyFEWB93fA64MUFzENEPBARQxExNDAwMK8Qa3uylBs88zBLy1K+tZUrweaL8s3vM7NM3nxRfs6LzTZ9a3+h6TorFZLj+jOt7clSaWHvrFyJZBnNHhsqQUvLrBezzD+93a2ss34bG81fvw1pSLMUngA2S9okqQDcCjwyY55HgN+svQrp7cDxuc4nLERfV4Y7tvRS8ItvLWUCChnYvqWXbRu62h2nJVvWZClkoCcnCrXzIYO9ueQ+0+h+M318f+Y2btvQ1fRk82BvruHlLltTSNbZkxM5nb0zkgW2b+2d9ZBJX1eG7Vt7qX+ozKm67JnbN72M+seGnpzI1i4zPe/2Lb1s33r29JlP8jOqZpu+zJ1Nrpf6deZnLCun6jrrt3FmxpnbkIbUTjQDSLoF+CTV6+3BiPgjSXcARMQOSQI+A9wEnAY+GBFznkVeyIlm8KuP/Oojv/rIrz66sF991OqJ5lRLIQ0LLQUzswtZq6XggypmZpZwKZiZWcKlYGZmCZeCmZklXApmZpZwKZiZWcKlYGZmiSX3PgVJo8DPUlxFP3A4xeUvlqWSE5ZOVudcfEsl64WQ840R0fRzgpZcKaRN0nArb/Bot6WSE5ZOVudcfEslq3Oe4cNHZmaWcCmYmVnCpXCuB9odoEVLJScsnazOufiWSlbnrPE5BTMzS3hPwczMEhdsKUhaL+lbkp6V9LSkD9fGr5b0dUnP136v6oCs3ZJ+KGlXLevHOjUrgKSspL+V9GhtuONySvqppB9LelLScKfmBJB0kaQ/l/Rc7fb6jk7LKumy2nU5/TMm6SOdlrOW9V/V7kdPSXqodv/qxJwfrmV8WtJHauNSz3nBlgJQAn4vIt4EvB24S9IVwD3ANyJiM/CN2nC7TQLvjoitwFXATbVvquvErAAfBp6tG+7UnO+KiKvqXuLXqTk/BXw1Ii4HtlK9bjsqa0TsqV2XVwFvo/qlWf+TDsspaRD4l8BQRFxJ9QvAbqXzcl4J/HPgGqr/8/dK2sz5yBkR/qmeV/lL4D3AHuCS2rhLgD3tzjYj5zLgR8C1nZiV6vdsfwN4N/BobVwn5vwp0D9jXCfm7AP2UTv/18lZ67L9MvC9TswJDAIHgNVADni0lrfTcv5D4HN1w/8O+DfnI+eFvKeQkLQReCvwf4GLo/Y90bXfa9uX7IzaIZkngUPA1yOiU7N+kuqNt/4rzDsxZwBfk7RT0u21cZ2Y81JgFPh87ZDc5yQtpzOzTrsVeKj2d0fljIiDwH8E9gMvUf1e+K/RYTmBp4DrJa2RtAy4BVjPech5wZeCpBXAl4GPRMRYu/PMJiLKUd01XwdcU9u97CiS3gscioid7c7Sgusi4mrgZqqHDq9vd6BZ5ICrgfsj4q3AKTrnsNY5JBWAXwG+1O4sjdSOwb8P2AS8AVgu6Tfam+pcEfEs8Ang68BXgV1UD3mn7oIuBUl5qoXw3yPiK7XRr0i6pDb9EqrPzDtGRBwDvg3cROdlvQ74FUk/BR4G3i3pv9F5OYmIF2u/D1E99n0NHZgTGAFGanuGAH9OtSQ6MStUS/ZHEfFKbbjTcv4SsC8iRiOiCHwFeCedl5OI+LOIuDoirgeOAM9zHnJesKUgScCfAc9GxJ/UTXoE+K3a379F9VxDW0kakHRR7e8eqjfs5+iwrBHx+xGxLiI2Uj2E8M2I+A06LKek5ZJ6p/+mekz5KTosJ0BEvAwckHRZbdSNwDN0YNaa2zhz6Ag6L+d+4O2SltUeA26keuK+03IiaW3t9wbgV6ler+nnbOfJlHb+AL9I9bjybuDJ2s8twBqqJ0qfr/1e3QFZtwB/W8v6FPAHtfEdl7Uu8w2cOdHcUTmpHqffVft5Gvi3nZizLu9VwHDt//8XwKpOzEr1RRCvAivrxnVizo9RfVL1FPBfga4OzfnXVJ8A7AJuPF/Xp9/RbGZmiQv28JGZmZ3LpWBmZgmXgpmZJVwKZmaWcCmYmVnCpWA2D5LeLykkXd7uLGZpcCmYzc9twN9QfXOe2euOS8GsRbXPyboO+F1qpSApI+m+2mfePyrpMUkfqE17m6Tv1D507/Hpjycw62QuBbPW/QOq32vwE+CIpKupfvzARuAtwD8D3gHJ52p9GvhARLwNeBD4o3aENpuPXLsDmC0ht1H9aHCofuDfbUAe+FJEVICXJX2rNv0y4Erg69WP2CFL9aOazTqaS8GsBZLWUP3ioCslBdUH+aD6CasNLwI8HRHvOE8RzRaFDx+ZteYDwBcj4o0RsTEi1lP9RrTDwK/Vzi1cTPWDAKH6DVkDkpLDSZLe3I7gZvPhUjBrzW2cu1fwZapf1DJC9RM3P0v12/uOR8QU1SL5hKRdVD+F953nL67ZwvhTUs1eI0krIuJk7RDTD6l+q9vL7c5lthA+p2D22j1a+xKkAvBxF4ItZd5TMDOzhM8pmJlZwqVgZmYJl4KZmSVcCmZmlnApmJlZwqVgZmaJ/w903QNVQrkCpQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"raw_data[\"Status\"] = raw_data[\"Status\"].astype(int)\n",
"\n",
"df_smoker = raw_data[raw_data['Smoker'] == 'Yes']\n",
"df_non_smoker = raw_data[raw_data['Smoker'] == 'No']\n",
" \n",
"df_smoker.plot(kind='scatter',x='Age',y='Status',color='#E69F00')\n",
"df_non_smoker.plot(kind='scatter',x='Age',y='Status',color='#56B4E9')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcZHV56P/Pc2rvrt6X2VcYGGBmWBxWcZBVwAUlgGhiojdcMD9NNL9AkLgrXiHRRJNogBBjzM3VGxZ1RARRQUTWYZl9BoYZmOnZel9rPed87x+nqqiZ6a6q7q6arp5+3q9Xv7rr1Klznj516jx1vqsYY1BKKaUArKkOQCmlVPXQpKCUUipHk4JSSqkcTQpKKaVyNCkopZTK0aSglFIqR5OCUkqpHE0KSimlcjQpKKWUyvFPdQDj1draahYvXjzVYSil1LTy4osvdhtj2oqtN+2SwuLFi1m3bt1Uh6GUUtOKiLxZynpafKSUUipHk4JSSqkcTQpKKaVyNCkopZTK0aSglFIqp2Ktj0Tke8B7gE5jzIpRnhfg28CVQAz4qDHmpUrFU05PbOvk7id3sqcvxoKmGm5as5R3Lm+f0n2MtX52+WudQ6Rsl4BPOGFWPTetWQrAHb/Yyq6eGADtdSFiSZueWHrM/Qjgt4Tj26Pcevny3D6y23FcF0sEA1giLG2tPWS9/BjPXdrMMzt7ea1ziKF4mqTjTfhkCYQDPgBStoPPsgj6YCTl4ppDYwn6hGjYf8j/dPhxyC4b7RgUO0aF4s7fx4aOfu59ahcjKYfaoI8bzl/CX1xyAv/4q1e567c7iaWdCZ0HPgGnyDxYFuAe9pjDlo3l3KUtR5xbT2zr5M5HtrH9wFBuG5L5sSzwWRaua7AsYUlLDVeunHPE8RjrXM0/lnUhP8YYhlPOmK/LxrKzewSAttoAdZEgXcPJ3HvVXhc+ZDv570/+PuJJm754Gtd451hTJEAk5D/i85Ldn+MaAj6hNuSntTbIcNKmazhF2na9g4F3njZH/MRtl7RjCPotwn6L3pE0ScelNujj4uVtHBhMjfnZzF/+01c6WLvhAI576Jse8lu01QbAsip2zcmSSs28JiJrgGHgB2MkhSuBP8dLCmcD3zbGnF1su6tXrzZT2ST1iW2dfGHtZgI+IRLwEU87pB3DV953StnepPHuY6z1rzljHve/tJe049A9lMqdyC21QWzXkEo7xNIuloBrDHYpV5EMn0BzbZCPnLOIHzz7Jv2xNMaYQy5gfgtAaKoJ8JFzFnH/S3tzMXYPJ+kaTtEQ9tMXSzOZs9ASL6HZrkGA+kggdxwG4962Az454hgE/b6Cxyj/+cPjbq8L0lIbIp526B5OMhi38fskcyy9n7MWNfLcG324VTy5oQALmmty59YT2zq55f71dA+nir4nfgtM5n+dVR+iNRoqeK7mn6e247K3PwHAvMYwfp91xOuysfTF0lgCjuudX4L3nluW4BqDcb2/5zWGSdpu7v0J+qzcPgKWIW4f+T/Uhyza6iO5z8t/Pvumdz4edi4LYPJ+j3Yc/T7Bdkzu+YDlJXTXQHNNgLmNkSM+m/mf2X19MeJ24aPeFg1QHwlO6JojIi8aY1YXW69ixUfGmCeB3gKrXIWXMIwx5lmgUUTmVCqecrn7yZ0EfEJN0I+I9zvgE+5+cueU7WOs9e99ahcBnzAYt7EswW9ZWAhDCZvhpM1wysEn4n3zG+eFyzUwlLC596ldDCdtfJm7g8PX8VmSWy8/xqGEjSXQH59cQsiPZThpM5SwDzkO2eWjHYNixyj/+cPjHozbuX0MZq42fsvCEivzG57ZVd0JAcglzOy5dfeTOxlK2CW9J9nkB97xL3au5p+n3cMpfJbgE6F7ODXq67Kx+CzvHM3GZDL79lsWrgtGyG0n//3J38doCQFgMOke8nnJ7i+bAPKPU/7v0Y6jPy9G4dA7vP54etTPZv65WiwhAPSMpCtyzck3lXUK84A9eY87MsuOICI3isg6EVnX1dV1VIIby56+GJFM0UZWJOCjoy82ZfsYa/2RlEMk4CPluEjmDBeBlOPiuAbXkFs+3htGA9iuy0jKwXENIkduw2S2n10vP8aU4+a+VZdD9n+y3UNvd2zXWz7aMSh2jPKfPzzulPPWfgxHXiwsYdrIP7f29MWOOIZjMeat/z3/eIx1ruafp9njLXnH8vDXZWMZ7RzNv0hnz7OU4x7y/uTvo5RjMJJycvsrRwGKMW9tJ/88H+28KlV2O+W+5uSbyqQw2ls16lthjLnHGLPaGLO6ra1oL+2KWtBUQ/yw8uF42mF+U82U7WOs9WuD3m1p0GflTk5jIOiz8FleUUd2eSkfnHxe3YJFbdDnfbMyR24j++HKrpcfY9Bn5cp2yyH7P/mtQ09pv+UtH+0YFDtG+c8fHnfQ99Z+suXt+ar9DiFf/rm1oKnmiGM4FpG3/vf84zHWuZp/nmaPt8k7loe/LhvLaOeo5P3OnmdBn3XI+5O/j1KOQW3Ql9vfeD8Po8lPSPnn+WjnVamy2yn3NeeQfVRkq6XpABbkPZ4P7JuiWEp205qlpB1DLGVjjPc77ZhcheZU7GOs9W84fwlpx1Af8eNmvkW7GOrCfqIhP9GgD8eYTOXw+GK0BOrCfm44fwnRkB/HmCMujNly4Ox6+THWhf24BhojgVG/HUwklmjIT13Yf8hxyC4f7RgUO0b5zx8ed33En9tHfcRrr2G7Lq5xM7/h3CVNVX/HIHDIuXXTmqXUhf0lvSeWvHWRqgv7i56r+edpazSYqSMwtEaDo74uG4vjeudofiKwMneglgViyG0n//3J30dkjCY19SHrkM9Ldn+H1x3IYb9HO452XowGr94tqzESGPWzmX+uRvzFj3pLbaAi15x8FatoBhCRxcBDY1Q0vxv4JG9VNP+jMeasYtuc6opmeKsFRUdfjPkVbn1U6j7GWv/wljVBn7BsilsfZWMsV+ujurD/kP/p8OOQXTbaMSh2jArFnb8PbX3UW9K5mn8so5mWQSMpZ8zXFWt9FPQJbZnWR9nt5L8/+fuIjdL6qCbkP+Lzkt2f6xr8JbY+StguqSKtj8b6bOYvL9b6SCxrwtecUiuaK9n66IfAO4FW4CDwRSAAYIy5K9Mk9Z+By/GapH7MGFP0al8NSUEppaabUpNCxfopGGM+VOR5A3yiUvtXSikFrmtIl9h4AKbh0NlKKaWOlLJd0o73k3K8znR2plXeeGhSUEqpacRxDUnbIWV7F/9Upjd1uaoCNCkopVSVsjPf+pNpl6TtJYBS+5FMlCYFpZSqAsYYkrZLIu2QtL1EUOkEMBpNCkopNQVc15CwHRJpl3jaKw6qZBeBUmlSUEqpoySRdoinHOKZu4FKJQFjDPsHEmzoGGDjXu+nVJoUlFKqQlzXEEs7xFI28cw4YZXSNZTkpd19vLKnn5d399M5lJzQdjQpKKVUGdmONwBkLGWTSFfubiCRdnhlTz/r3ujjxTf7eLP3yAHyoiE/K+bVs3JeA5+7s7TtalJQSqlJsh2XkaTDcMomOcEhTUqxfyDOM6/38vyuHl7e00/6sDFQaoM+Vs5v4PQFjZy2oJHj2qNYmVH5PlfiPjQpKKXUBLiuYSTlzdcRT1UmERhj2HZgiKdf7+Hp13vYlRkDKssSOGlOPasXNfG2RU2cNKce3yRHYdSkoJRS4xBPOQwl04wknYoUDbnGsGnvAE++1s1Tr3UfUTfQGAlw9tJmzlrczOrFTdSFA2XdvyYFpZQqwnENQ4k0QwmbtFP+vgPZO4LHt3fyxPYuuodThzy/sLmG845r4bzjWspyN1CIJgWllBpDIjPP90iqMncFe/vj/GrLQX61tZO9/fFDnju+Lco7TmhlzbJWFrXUln3fY9GkoJRSeYwxDCVtBuNpUnb57wriKYcnXu3ikU372bh38JDnFrfUcOHydi48sa1iM6sVo0lBKaXwiogG42kGE+my9yfIFg/9fMN+Ht/edchUnC3RIJcsb+fSk2extC1a1v1OhCYFpdSMZjsuA3GvvsAtcxFRPOXw620HWbt+Pzs6h3PLAz5hzbI23nXKLE5f2FSxOgJLhJqgj5pQ6Zd6TQpKqRnJcQ39sRSDCbvs9QV7++L85JW9PLLpACN5zVWPa6vlPavmcNHy9rK3GsqSTCKIhvzUBH2IjC/haFJQSs0ojmsYiKcZjKfLemdgjOGVPf3c92IHz+3sJbvloN/iwhPbeN+pc1k+u27cF+lShQI+6sJ+aoP+Sd15aFJQSs0IxhgG4zb98VRZ6wwc1/DE9i7+e90eXssrImqvC/H+0+Zyxco5NEQqc1fgtyyiYT/RkJ+g3yrPNsuyFaWUqmLDSZu+kVRZ+xikbJdHNh/gR8/v4cBgIrd8xdx6rnnbfN5+fGtF6gosEWpCPupCASJBX9m3r0lBKXXMStoOPcMpEmUcjyiedvjZ+n3897oOeke8TmYCvGNZK9euns8pcxvKtq98AZ9FfSRAXciPpZ3XlFKqdI5r6B1JMZRIl22bibTD2vX7+L8v7KEv5m3XbwmXnTyLD565gAXNlelXUBP0Ux/xUxM8OpdrTQpKqWNGtt6gL5YqWyVyynZ5aMM+/uu53blkEPAJ71k1lw+unk97fbgs+8nns4S6cIC6sJ+Arzx1BaXSpKCUOibEUw7dw8my1Rs4ruGxLQf5j2fe4OCgNyhdwCe8d9Vcrj9rAa3RUFn2ky8U8FGfqTiuVCulYjQpKKWmNdtx6R1JMZy0y7I9YwzP7erlnid38kaPN3GNzxKuXDmbPzp7EW115U8GtSE/DZEA4UD5K47HS5OCUmraGoin6RspX1HRjs5h7vrt67y0ux/wKpAvWt7OR89bzLymSFn2kSUi1IW9ZHC0i4gK0aSglJp2UrZL13CybLOc9cVS/NtTu/jFxgO5TmdnLGzkpjVLWTarriz7yLIyyaCxJljRIbAnSpOCUmraMMbQH0vTH0+XZWgK23H58Sv7+MEzbzCS9BLMopYaPn7BUs5a3FzWcn1LhPpIgIZIoCqTQZYmBaXUtJC0HbqGkmUbznr9nn6+9evXeDNTb1AX9vOx8xbz3lPnlvWinS0maqrSO4PDaVJQSlW9/liKvlh57g56R1Lc/eROHttyEPDmOX7vqrl89O2Lyz4cRTTkp6k2WFV1BsVUNCmIyOXAtwEfcK8x5o7Dnm8A/jewMBPLN4wx/17JmJRS04ftuHQOJcvSI9kYw8MbD3D3kztzLZVOmlPHpy9eVvZ6g0jQR1NNsCpaE41XxZKCiPiA7wCXAh3ACyKy1hizJW+1TwBbjDHvFZE2YLuI/JcxJjXKJpVSM0g85dA5lCjL4HW7e2P8w2Ovsr5jAID6sJ8b3rGUK1fOxipjvUHQb9FcGzxqvY8roZKRnwXsMMbsBBCRHwFXAflJwQB14tXmRIFeoDyNjZVS01bfSIq+2OS/Gzqu4b/X7eH7T79B2vGSyyUntfNn7zyOpprgpLefFfBZNNUGiY5jMptqVcn/YB6wJ+9xB3D2Yev8M7AW2AfUAR80xpR/UlSl1LTguobOoSSx1OS/G+7qHuFvH93O9gNDAMyuD/PpS5Zx1pLmSW87y29ZNNYGqK/QhDlToZJJYbR7ssPvA98FvAJcBBwHPCYivzPGHDKbtYjcCNwIsHDhwgqEqpSaaknboXNw8sNUOK7h/76wh/945q27gw+cPo8bzl9StqGmLREaMs1LKzli6VSoZFLoABbkPZ6Pd0eQ72PAHcZrUrBDRHYBy4Hn81cyxtwD3AOwevXq8s6bp5SacsNJm+6h5KR7Ju/ti3PHI9vYvM/7Xjm3Mcwtl53IqQsayxEmANGwn+aaIP5p1KJoPCqZFF4AlonIEmAvcD3w4cPW2Q1cDPxORGYBJwI7KxiTUqqKGGPoGUkxGJ/cENfGGH6+cT/ffeJ1EmnvTuOq0+Zy45qlRMrUAigU8NFSOz1bFI1HxZKCMcYWkU8Cj+I1Sf2eMWaziHw88/xdwFeB74vIRrzipluNMd2VikkpVT1sx+Xg0OSHqhiIpfnGL7fz+9d7AGiNBrnlXSdy5uLy1B1YIjTVBis2pWa1qWhVuTHmYeDhw5bdlff3PuCySsaglKo+5Wpu+tLuPr7+i230DHstlS48sY1PX7KMujJV/EbDflpqQ9OiJ3K5TP/2U0qpaWUglqY3lppU72THNXz/6Tf4P8/txgCRgI9PXXw8l548qyzjFQV8Fq3RUEXmQK52mhSUUkeFMYau4STDick1N+0aSnL7z7eyca/XEe3E2XV87sqTyjK0tYjQGAnQWBOYskluppomBaVUxbmu4eBQgnhqcvUHz+/q5eu/2MZApmL62rfN54Z3LCnL2EKhgI+2aIig/9hsVVQqTQpKqYpyXMP+gfikRjd1XMN/PvMm//nsmxi8YSpuvXw55x7XMun4LBGaaoI01MyMiuRiNCkopSom7bgcGEhMqkPaQCzN1x7eyro3+wA4eU4dX3jPybTXhycdXzjgo60uNK1GMa00TQpKqYpI2V5CsN2JJ4RXDw7xhZ9upnMoCcDVp8/jpguWTvoiLiI0693BqDQpKKXKLmk7HBiYXJPTX24+wDcfe5W0YwgHLG6+7EQuWt4+6di07qAwTQpKqbJKpL2EMNEhK2zH5a4nd/LgS3sBmNcY4StXncKS1tpJxaUti0qjSUEpVTaTTQiD8TRffmgLL+/uB+CsJc189srlk+6MFvBZtNWFjvkhKspBk4JSqiwmmxDe7Bnhsz/ZxL7+BAB/ePZCPnre4kn3Jq4LB2iNBvXuoESaFJRSk5a0HQ4OTjwhPLuzh6/9fCsjKYeg3+LWd53IhZOsP/BZQms0RO0xMPHN0aRHSyk1KZOtVH7wpQ6++8TruAZaokFuv2oFJ86e3JzJ4YCP9rrQMTu8dSVpUlBKTdhkEoLjGr7z+A5+8oo3zcqJs+r46vtPoTUamlRMjTVBmrQyecI0KSilJmQyCSGWsvnKQ1t5flcvAGuWtfKZK5ZPqiLYZwntdeEZOYhdOWlSUEqN22QSQvdwkr95cBM7uoYBuP7MBdzwjiVYk/hmr8VF5aNJQSk1LpNpZbSre4TbHtxI51ASS+AvLzmBd6+aM6l4GiIBmmu1dVG5aFJQSpUsnpp4K6OXd/fxhbWbGUk6RAI+vvS+kyc1O5olQludti4qNz2aSqmSjCRtOoeSE5oc5/FtnXz9F9uwXUNLbZCvX72S49ujE44l6LeYVR/WgewqQJOCUqoob/rMiSWEB1/q4DuPv44BFjXXcMcfrGTWJEY4jYb9tEVDWlxUIZoUlFIFJdJekdF4E4Ixhnuf2sUPn98DwIq59dz+/hXURyY2ZIWObHp0aFJQSo0pZbsTqkNwXMM/PPYqD286AMB5x7Xw+XefRGiCTU59ljCrPqxjFx0FmhSUUqOyHS8hjLfZacp2uf3nW3lqRzcAV66czV9ecsKExzAKBXzM0uamR40mBaXUEVzXcGBw/DOmjSRtPv/Tzbyyxxvl9MNnLeBPz18y4fJ/rT84+jQpKKUOYYzh4FBi3HMqD8TTfOaBjWw/OATAxy9YynWrF0w4jpbakNYfTAFNCkqpQ3QNJ4mnnHG9pns4yS33b+DNnhiWwM2XncjlK2ZPaP+WCO31IWqCenmaCnrUlVI5PcNJhhP2uF6zfyDOzfdtYP9AAr8lfO49J7FmWduE9h/wef0PdKrMqaNJQSkFQN9IioF4elyv2d0T4+b719M9nCLkt/jKVadMuJdyJOijvS486Ul11ORoUlBK0R9L0RdLjes1O7uGueX+DfTF0tQGfXz96pWsmNcwof3XRwK06PhFVUGTglIz3EA8Te/I+BLC9gND3PrABgYTNvVhP397zSpOmDWxiXFaoiEaJtihTZWfJgWlZrDhpE3PcHJcr9m8b4DPPLCRkZRDU02Av7tmFUvbxj+OkVYoVyd9N5SaoeIph66h8SWE9R39/M2Dm4inHVqjQb5x7aksbK4Z9761Qrl6VfQdEZHLRWS7iOwQkc+Msc47ReQVEdksIr+tZDxKKc9ExjN6aXcftz2wkXjaob0uxLc+eNqEEkI44GNuY0QTQpWq2J2CiPiA7wCXAh3ACyKy1hizJW+dRuC7wOXGmN0i0l6peJRSnomMZ/TCG718/qebSdkucxrCfPO6U5k9gZFOtYdy9atkqj4L2GGM2WmMSQE/Aq46bJ0PAw8aY3YDGGM6KxiPUjOe45pxj2f0/K5ePveTTaRsl/lNEb71wdMmlBBaakO014U1IVS5SiaFecCevMcdmWX5TgCaROQJEXlRRP54tA2JyI0isk5E1nV1dVUoXKWObcaMfzyjZ3f28PmfbiLtGBY0Rfj7606lrS40rv36LGFOQ0SHrJgmKlnRPNrXgcO/nviBtwEXAxHgGRF51hjz6iEvMuYe4B6A1atXj3+WD6UUBweTJNOlD1/x7M4evrh2M2nHsLC5hm9eu4qW6PgSgs6QNv1UMil0APmjYc0H9o2yTrcxZgQYEZEngVOBV1FKlU33cJJYqvThK555vYcv/cxLCItaavjmtafSXBsc1z5rgn7a60JY2kN5Wqlk+n4BWCYiS0QkCFwPrD1snZ8C7xARv4jUAGcDWysYk1IzTn8sxeA4hq94dufkE0JDJMDshrAmhGmoYncKxhhbRD4JPAr4gO8ZYzaLyMczz99ljNkqIo8AGwAXuNcYs6lSMSk10wwlxtdbOb/IaFFLDX9/3ak01YwvIWgP5elNJjIR91RavXq1Wbdu3VSHoVTVi6VsDg4mS+6L8NyuHr7w04nfIYgI7XUhakPaJ7YaiciLxpjVxdYbd/GRiDSJyKqJhaWUOhqStkPnOBLCC2/0vpUQmsefELwWRmFNCMeAkpJCpslovYg0A+uBfxeRv69saEqpibAdl4MDyZI7p734Zh+f/2leK6PrxpcQAj6LOQ0RwgHfRENWVaTUO4UGY8wgcDXw78aYtwGXVC4spdREeFNpJrHd0voivLy7j8/mdUz75rWrxpUQgn6LOQ06htGxpNR30i8ic4DrgIcqGI9SahI6h0rvi7C+o5/P/thLCPMaI3zz2lPH1Q8hEvQxtyGCX/sgHFNKfTe/gteKaIcx5gURWQq8VrmwlFLj1TuSYiRZWl+ETXsHuO3BjSSyYxldu2pcPZWjIT+z67XJ6bGopFohY8x9wH15j3cCf1CpoJRS4zMQT9Nf4sxpW/YN8pkHN5JIu8yqD/HN606lfRxjGdVHArSOs2ezmj5KSgoi8u8cOUQFxpj/UfaIlFLjMjKOiXK2Hxji1gc3EEs5tEVDfPPa8Y122lwbpHGc/RbU9FJq+7H8eoQw8AGOHLJCKXWUJdIOnSVOlLOjc5i/fmADI0mHlmiQv7/uVOY2RkreV2tdiPqwdko71pVafPRA/mMR+SHwq4pEpJQqSdpxS54oZ1f3CLfcv4GhhE1TTYBvXnsq85pKTwhtdSHqNCHMCBNtNrAMWFjOQJRSpXNdw4GB0uZF2N0T4+b71jMQT9MQCYx7Ck1NCDNLqXUKQxxap3AAuLUiESmliuocSpY0L8Levjh/dd96+mJp6sJ+vnHNKpa01pa8H00IM0+pxUd1lQ5EKVWaUofBPjCQ4K/uW0/PSIrakI+/u2YVx7VHS9qHjmM0c5U6zMWvS1mmlKqsgVi6pGGwOwe9hNA5lCQS8HHn1as4YVZp3+10HKOZreC7LiJhoAZoFZEm3ppNrR6YW+HYlFJ5RpI2PSPFWxr1DCe5+f4N7B9IEPZb3HH1Sk6eW1/SPvyWxWwdtmJGK/ZV4Cbg03gJ4EXeSgqDwHcqGJdSKk+pTU/7Yiluvm8DHX1xgn6L2z+wgpXzG0rahzewXViHrZjhCiYFY8y3gW+LyJ8bY/7pKMWklMqTsktrejoQT3PLfRt4szdGwCd89apTOGNhU0n7CAV8zK4P49NhK2a8Uiua/0lEVgAn43Veyy7/QaUCU0plhsEeLN70dCiR5pb7N7CzewSfJXzpvadw5uLmkvYRCfqYVafjGClPqU1Svwi8Ey8pPAxcATwFaFJQqkIc17B/IFG06elI0ubWBzayo3MYS+Dz7zmJc49rKWkf0ZCftroQIpoQlKfUwsNrgIuBA8aYjwGnAjoillIV4rqGA4PFE0I85fCZBzey7cAQlsBtV5zEmmVtJe2jLhygvT6sCUEdotQ2Z3FjjCsitojUA53A0grGpdSMZYyXEIrNixBPO9z2441s3jeIAH/9rhO5+KT2kvbRWBMc12Q6auYoNSmsE5FG4F/xWiENA89XLCqlZrDOoSSJIgkhmXb4/E82saFjAIC/uuwELjtldknb15FOVSGlVjT/f5k/7xKRR4B6Y8yGyoWl1MzUNZQsOlFOynb5wtrNvLS7H4BPXXw8V66cU9L2W2pDNNTosBVqbOPu0WyMecMYs0F7NCtVXn0jKYYShXsrpx2XL/1sMy+80QfAJy88jqtOm1fS9luimhBUcdqjWakqMJhI01dk5jTbcfnKQ1t4dmcvAB+/YClXnzG/6LZFhNZoUAe2UyUZb4/mrCG0R7NSZTGStOku0lvZdlxu//lWfr+jB4Abzl/CdasXFN22iDCrPkRNUMcxUqUpVnz0NHAecLMxZinwZWAT8Fvg/1Q4NqWOeaUMX+G4hq89vI0nX+sG4GPnLebDZxefziQ7sJ0mBDUexZLC3UAy06N5DfB14D+AAeCeSgen1LEsaTscGCg8fIXjGv7Xw1v57atdAPzxuYv4yLmLim7bG8coQjjgK1u8amYo9hXCZ4zpzfz9QeCezNScD4jIK5UNTaljl+24HBxI4hZJCHf8YhuPb/cSwh+evZA/KSEhBP0Ws+t1YDs1McXOGp+IZBPHxcBv8p7Te1KlJsDNDF9hu2P3VnZcw52PbOPX2zoB+NBZC/gfb19ctPdxOOBjbkNEE4KasGIX9h8CvxWRbiAO/A5ARI7HK0JSSo1DtrdyoeErsgnhV1u9hHD9mQu44fwlRRNCTdDPrHodx0hNTsGvE8aYrwF/BXwfON+8VfhpAX9ebOMicrmIbBeRHSLymQLrnSkijohcU3roSk0/XUV6Kzuu4W8f3Z5LCB9cPZ//+Y7iCSGSRBA+AAAbyklEQVQa0oSgyqNoEZAx5tlRlr1a7HUi4sNrtnop0AG8ICJrjTFbRlnvTuDRUoNWajrqGkoyXKC38uF3CNetns+Na5YWvdDXhQO01en4lKo8KlnweBawwxiz0xiTAn4EXDXKen8OPIA3yJ5Sx6Se4WTB3sqOa/j6Lw5NCDeVkBAaIpoQVHlVMinMA/bkPe7ILMsRkXnAB4C7KhiHUlOqdyTFQLxwQvhfD2/lN9veqkMoJSE01wZpiWpCUOVVyRZEo53Rh7e/+xZwqzHGKfQBEJEbgRsBFi4s3mlHqWrRH0vRX2D4imxP5WzHtD88e2HRVkY6bIWqpEomhQ4gvx/+fGDfYeusBn6U+QC0AleKiG2M+Un+SsaYe8h0llu9enXheQmVqhJ9I6mC4xmlbJevPrSF37/uDV3xR+cs5GPnFU8IOmyFqqRKnlkvAMtEZAmwF7ge+HD+CsaYJdm/ReT7wEOHJwSlpqPekcJ3CCnb5YtrN/PcLq9v6MfOW1y0p7IlwuyGsPZSVhVVsaRgjLFF5JN4rYp8wPeMMZtF5OOZ57UeQR2TeoaTBesQEmmHz/90My++6Q1/fcP5S4qOZeSzvIQQ8mtCUJVV0XtQY8zDwMOHLRs1GRhjPlrJWJQ6GopVKsdSNrc9uImNe72+n392wVKuLTLaqd+ymN0QJujXXsqq8rRgUqky6StSZDSUSHPrAxvZdmAI8GZMKzZBjjewnY5jpI4eTQpKlcFArPAkOX2xFLfev5EdXcNYAjdfdiKXryg8p3LQ74106rO0l7I6ejQpKDVJA7E0PSNjz4nQOZjglvs3sKcvjiXwN1eexEXL2wtuMxTwMbs+rAlBHXWaFJSahGKtjPb2xbn5/vUcHEwS8AlffO/JnHdca8Ft1gT9tNeFsDQhqCmgSUGpCeoeTjJYoFJ5Z9cwf/3ARnpHUoQDFre/fwVnLGwquM1o2E9bVAe2U1NHk4JS42SMoWs4yXBi7MHtNu0d4G9+vInhpE005OeOq1dy8tz6gtttrAnSXBssd7hKjYsmBaXGwRjDwcEksdTYCeHZnT18+WdbSNouzbVB7vyDlRzXFi243ZZoiIaIDluhpp4mBaVK5LqGg0MJ4qmx50P49daD3PHIdhzXMKchzN9ds4q5jZEx17dEaNdhK1QV0TNRqRI4rjdjWrLABDn3rdvDv/x2JwBL22q58+qVBUcx9VnCrHodtkJVF00KShWRdlwODIw9haZrDPc8uZP/XtcBwMp5DXzt/SuIhsf+eAV8Xi/lgHZKU1VGk4JSBSRth4MDSWx39ISQdlz+Lm/6zPOPb+WzVy4nVODbfyToY1ZdWJucqqqkSUGpMcRTDgcHE7hm9NHah5M2X1q7mZd29wPw3lPn8BcXLSvY4UybnKpqp0lBqVEMJ226hpKYMRJC11CS2x7cyM7uEcAb+vqPzllY8GKvTU7VdKBJQanDFBu24vWuYW57cCPdwyl8lnDLZSdw2SmFxzFqrQtRrzOlqWlAk4JSeYrNhfDszh6++tBW4mmH2qCPL7/vFM5YNHYvZW1yqqYbPVOVwuuD0DlUuFPaj1/ey3ce34FroL0uxNc+sKJgpzS/ZTGrIaQT46hpRZOCmvFStsvBwbGbnDqu4btPvM6PX94LwImz6rj9/acU7IMQDviYpaOcqmlIk4Ka0WIpm87B5JgtjIYSab7y0Nbc1JnvWNbKbVcsL9jhrC4coDUa1BZGalrSpKBmrGLDXu/pjfHZn2yioy8OwPVnLuCGdyzBGuNiLyI01wZ1DCM1rWlSUDOO4xo6i4xh9PyuXm7/+VaGkzYBn3DzZSdy6cmzxlzfZwntdWEiQa0/UNObJgU1oyTSDp2DY/dQNsbww+f38G9P7cIAzbVBvnrVKZw0Z+xhrwM+i1n1YYJ+HbJCTX+aFNSM0TeSKjiPcjzlcOej23jy1W4Als+u48vvO4W2urErlHXICnWs0aSgjnm249I1nCxYXLS7N8aX1m7mjZ4YAFesmM2nLl5W8Nt/fSRAS61WKKtjiyYFdUyLpxw6hxI47uitiwCefLWLv310O7GUg88SPvHO47jqtLljXuy1QlkdyzQpqGNWseIi23H519/t4r4XvSGvW6NBvvjekzllbsOYr7HEmwNBK5TVsUqTgjrmlNK66MBggtsf2sKW/UMAnL6wkc+9+ySaasYesE4rlNVMoElBHVOKtS4C+P2Obv720e0MJbwhLf7w7IV89LzFBXsf14b8tEZD2kNZHfM0KahjRrHiopTtcs+TO3kwM1xFYyTAbVcu58zFzWO+xhKhORrUEU7VjKFJQU17tuPSOZQkUWD+5F3dI3zt51tz8x+smt/A5959Eq0Fxi8KBXy014V0ykw1o2hSUNPacNKme2jssYuMMaxdv49/+e1OUraLJfAn5y7mw2cvLFgUpM1N1UylSUFNS45r6BlOMpwce6jr7uEkf/fodl54wxvMbnZ9mL+5cjkr5hVuXdRaFyIa0o+GmpkqeuaLyOXAtwEfcK8x5o7Dnv9D4NbMw2Hgz4wx6ysZk5r+hhJpekdSBfsePLG9k3/41Wu5yuRLTmrnLy5eVvBir62LlKpgUhARH/Ad4FKgA3hBRNYaY7bkrbYLuMAY0yciVwD3AGdXKiY1vaUdl57hVMGJcPpiKf7x1zv47atdANSH/fzlpSdwwQltBbddG/LTFg3pcBVqxqvkncJZwA5jzE4AEfkRcBWQSwrGmKfz1n8WmF/BeNQ0ZYxhMG7TG0thxqg7AO/u4Nu/3pGbTvPsJc3cfNkJBSfDAW/Qu8YC/ROUmkkqmRTmAXvyHndQ+C7gT4FfjPaEiNwI3AiwcOHCcsWnpoFE2qF7OEnKHrvfQddQkn/6zQ6e2uENZFcb8vGJdx7Pu06ZVbCiOOCzaKsLFZwwR6mZppJJYbRP46hf80TkQrykcP5ozxtj7sErWmL16tVjf1VUxwzbcemNpRhOjF1U5BrDz9bv419/t4tYpvfy2Uua+f8vPaHgyKYiQkMkQFNNQFsXKXWYSiaFDmBB3uP5wL7DVxKRVcC9wBXGmJ4KxqOmAWMMA/E0/bH0mM1MAV7vHOYffvUaW/YPAl5HtE9ceBwXLW8veKEPBXy0RoOE/Hp3oNRoKpkUXgCWicgSYC9wPfDh/BVEZCHwIPARY8yrFYxFTQODiTT9I+mCQ1SMJG2+//Qb/PjlvWQbH73rlFl8/ILjCo5aKiI01wRpqNGeyUoVUrGkYIyxReSTwKN4TVK/Z4zZLCIfzzx/F/AFoAX4bubbnW2MWV2pmFR1Gkna9I6kSDtjJwNjDL/a2sk9T+6kZ8QbymJhcw2fuvh4Tl/YVHD74YCPNu2ZrFRJpFBrjmq0evVqs27duqkOQ5VBPOXQG0uRLDA8BcD2A0P802925IqKQn6Lj5yziGtXzy94odd5D5R6i4i8WMqXbu22qY66eMqhL5YqOFYReK2Kvvf7Xfxy88FcC4ULTmjjpguWMrs+XPC1kaCP1qjeHSg1XpoU1FFTajKIpWx+9MIe7lvXQTLTFHVpWy2fvPB4TlvQWPC1Psu7O6jTUU2VmhBNCqriSk0GKdvloQ37+K/ndtMX8zqgNdUE+Oh5i7ly5ZyicxnUhQM01wZ1zgOlJkGTgqqYkaTNQDxdNBk4ruFXWw/y/aff4OBgEvDqDa5bPZ8PnrmAmmDh07Q25KepJqhjFilVBpoUVFm5rmEoYTOYSBdsTQReMnh8eyc/eOZNOvrigFf8c+XK2XzknEUF5zoAr1VRc21QeyQrVUaaFFRZpB2XgXia4YRdsNMZvJUM/vOZN9mTSQYCXLi8nY+dt5h5TZGCrw/4LJprg9Tq8NZKlZ1+qtSkxFI2g3G74MilWSnb5dHNB/jRC3vYP5DILb/ghDb++NxFLGmtLfh6nyU01gSpD/t1eAqlKkSTghq38RQRAQwnbH62YR8PvrQ31/FMgDUntPGRcxaytC1a8PXZsYoaIwEd2lqpCtOkoEqWsl0GE6UVEQHsH4jz4Et7eXjjAeKZymafJVx60iyuP2sBC5trim4jGvYqkbW/gVJHhyYFVZAxhpGUw1AiTTxVuBVRdv2X9/Tz45f28vTrPblOZ5GAj3evms3VZ8wv2vEMIBry06gtipQ66jQpqFEl0g7DSZuRpF1w2sus4aTNY1sO8rP1+3ijJ5Zb3hoNcvXp83jPqrlEw8VPt2jYT2NEk4FSU0WTgspJ2g4jSYeRpF1SXYExhm0Hhvj5xv38ZmsnibyJcFbMrefqM+Zx/vGt+IsU/YhI5s4goMVESk0xTQoznO24jCQdhpLpgrOb5euLpfjVloP8YtOBQ+4Kwn6Li0+axXtPncMJs+qKbsdnCfXhAPWRgPZCVqpKaFKYgdKOSyzpMJyyi45QmpVMOzz9eg+PbT3I87t6yS9ROq6tlitXzuHSk2cRLaHvQMBnUR8JaNNSpaqQJoUZImk7xJIOIym75DsC23F5cXcfj2/r4qkd3bkpL8GrCL54eTtXrJzNsvZoSRf3SNBHQyRQdNgKpdTU0U/nMcoYQzzt1RHEU07B2czypWyXl3b38bvXuvn9jm4G8+ZI9lnC2UuaufTkWZy7tKWkyuBsfUF9xK9TYCo1DWhSOIYk0g6JtEM87ZBIu5Q6gdJI0ub5Xb08/XoPz+7sYSTvjkCAVfMbuHB5O2uWtdJYEyxpm+GAj2jYT23Qr/UFSk0jmhSmMdtxiaUdEikvEZTSdBS8u4iOvjjP7erluV29rN/Tj533WgFWzm9gzbJW3rGsjba6wgPTZQX9FtGQn9qQX1sRKTVNaVKYRhzXKxKKp7w7glKajWaNJG1e2dPPujf6eOHNXvb1Jw55PuATTl/YxNuPa+Htx7fSXFvaHUE2EdQE/dq3QKljgCaFKpayXZK2VxQ03iSQTDts3j/Iy7v7eWVPP1v3D3L4jURTTYCzl7RwztJmzlzcTCRYWpl/KOCjNujTOwKljkGaFKqE6xqSmSSQtL0kUGpxEHg9irfsG2Tj3gE2dPSz7cAQaefQ1/ss4ZS59bxtURNnL2nm+PYoVgmthkSESMBHTchHTcBXtDOaUmr60qQwBYwxpBzXSwJpLxGU2kwUwDWGjt44Ww8MsmXfIJv3DbKre4TRUsjxbVFOW9jA6QuaOHVBQ8nNQQM+i5qgj0jQRyTg0/4ESs0QmhQqzHENKdv1fhwvAaQdU3LLIGMM+wcSvHpwmFcPDvHqwSG2Hxg6pIVQliWwrL2OlfPrWTmvkVXzG2iIlDaBvd+yCActIgEvCejdgFIzkyaFMnFd79t/2nkrAaRtU3L/APCalO7ujbGza4QdXcO83jnM610jDCdHn8AmGvJz0pw6Vsxt4JS59SyfUzeuO4FQwCKcSQJaN6CUAk0K42Y7LmnHkHZd0nbm70wyKFU87dDRG2N3b4w3emK82RPjjZ4R9vbFRy0CAm9coePbo5wwq47lc+pYPruOeY2Rkop1RISQ3yLk95JAyG/pnYBSalSaFEZhOy62m73YG2zH++ZvO6akyWXAazl0YDDBvv44HX1x9vbF6eiLsacvTudQsuBrGyMBjmuPcnxbLce3RzmuPcqCppqSOoFZIgT9FsFMEgj5fdpUVClVshmXFIwx2K7BdryiHcc13oXfdTPLSivvTzsu3cNJDg4m6RxMsH8gwYHBBAcHE+zrT9A1lBzzW39WNORncUsNi1pqWdRSw9LWWpa01dJUYq/hgM+7+Gd/BzO/lVJqoo6ppGCMwXG9C3v2t+1kLvyuwXGKl/EbY4ilHHpGUvSOpOgeTtI9lKR7OEXXcJKuIe+ndyRV9KIPXqewuQ0R5jZGmN8UYUFzhAXNNSxoqqGpJlC0+McSwe8Tgj7v4h/wWwQyj7VFkFKq3KZdUnCNoT+WwnENTjYJZIp1xmrXbzsugwmb/liKgXiagXiavliagViavliK3liKvhHv776R1CGTxZSiuTbI7PowsxvCzK4PMachwtzGMHMbI7RGQ0WLffyWhc8nBCzB77NyScCfeayUUkfLtEsK8ZTDM6/35KaKHErYDCe9n6GEzVAinfltM5hIMxhPj9p8s1RNNQFaoiFao0HaoiHa6t76mVUfpi0aGrPIRkTwW4Jleb99h/z2Lv5+S/Qbv1KqalQ0KYjI5cC3AR9wrzHmjsOel8zzVwIx4KPGmJcKbXNn9wh/9l8FVymqPuxNCt9YE6AxEqCpJkhzbZCmWu/vlmiQltrQEdNDigg+ESzL6x3s/Z33O3PRt/KSgVJKTScVSwoi4gO+A1wKdAAviMhaY8yWvNWuAJZlfs4G/iXzuyhLoCbopy7sJxryEw37qQv5qQsHqAt7y7NTPdZH/HzhxxsZSnnFQoMJm8GEze7eMv7DakJaavzE0i7x9PiK7MZiCUeM8TQVBHj/aXMA+Mkr+0uqfzra6sN+bjh/CX9xyQmHLH9iWyd3P7mTPX0xFjTVcNOapbxzeXtZ952/j7qQH2MMwynniP09sa2TOx/Zxs7uEQCWtNTwmStOKns8pcQ5nmNxNI5hpUipPWvHvWGRc4EvGWPelXl8G4Ax5ut569wNPGGM+WHm8XbgncaY/WNtd8WpZ5hHn3iK2qAfsQRLvG/wloAgiICIV0FriSDAmbf/kp7Y6B3AlJrJfJbwqYuOzyWGJ7Z18oW1mwn4vPGu4mmvB/5X3ndK2S5q+fuwHZe9mRF75zWG8fus3P4Abrl/PX2xNNmbbtdAY02Ab1xzasUvshM9FkfjGE6EiLxojFldbL1K1mLOA/bkPe7ILBvvOocIByzmNdXQWBukIRKgLhzIDd0cCfoynbO8Hrq+TBGOJgSlRmcJ3PvUrtzju5/cScAn1AS9+bNrgn4CPuHuJ3eWbZ/5++geTuWKYruHU4fs7+4ndzKUsL3nLcv7EWE4aZc1nlLiHM+xOBrHsJIqmRRGK1A//LaklHUQkRtFZJ2IrOvq6ipLcEopLynkN8TY0xcjEjh0CPVIwEdHX6xs+8zfR8pxc3f3qcyoANn97emLYbve81ki3nhi5YynlDizSjkWR+MYVlIlk0IHsCDv8Xxg3wTWwRhzjzFmtTFmdVtbW9kDVWqmcg3U5s2jsaCphnj60NZ68bTD/Kaasu0zfx9Bn4UxYIz3d/7+FjTV4Le857OM8Yq8yhlPKXFmlXIsjsYxrKRKJoUXgGUiskREgsD1wNrD1lkL/LF4zgEGCtUnTFRLzbRreavUUeEauOH8JbnHN61ZStoxxFJ2piOnTdox3LRmadn2mb+P1mgw1+eoNRo8ZH83rVlKXdjvPe+63o8xREP+ssZTSpzjORZH4xhWUsUqmgFE5ErgW3hNUr9njPmaiHwcwBhzV6ZJ6j8Dl+M1Sf2YMWZdoW2uXr3arFtXcJVRve0rj2rdQhXS1kdTp1jro46+GPMr3Pqooy9GNNP6aCTlHLG/aml9NN5jcTSO4XiVWtFc0aRQCRNNCkopNZNVQ+sjpZRS04wmBaWUUjmaFJRSSuVoUlBKKZWjSUEppVTOtGt9JCJdwJsV3EUr0F3B7ZeTxlp+0yVO0FgrYbrECeOPdZExpmjv32mXFCpNRNaV0myrGmis5Tdd4gSNtRKmS5xQuVi1+EgppVSOJgWllFI5mhSOdM9UBzAOGmv5TZc4QWOthOkSJ1QoVq1TUEoplaN3CkoppXJmdFIQkQUi8riIbBWRzSLyqczyZhF5TERey/xumuI4wyLyvIisz8T55WqMM5+I+ETkZRF5KPO4KmMVkTdEZKOIvCIi6zLLqi5WEWkUkftFZFvmfD23SuM8MXMssz+DIvLpaowVQET+MvOZ2iQiP8x81qouVhH5VCbGzSLy6cyyisQ5o5MCYAN/ZYw5CTgH+ISInAx8Bvi1MWYZ8OvM46mUBC4yxpwKnAZcnpl/otrizPcpYGve42qO9UJjzGl5zfuqMdZvA48YY5YDp+Id26qL0xizPXMsTwPehjck/o+pwlhFZB7wF8BqY8wKvCH+r6fKYhWRFcD/BM7Ce+/fIyLLqFScxhj9yfwAPwUuBbYDczLL5gDbpzq2vBhrgJeAs6s1TrwZ9H4NXAQ8lFlWrbG+AbQetqyqYgXqgV1k6gCrNc5R4r4M+H21xspbc8Q3A37goUzMVRUrcC1wb97jzwN/Xak4Z/qdQo6ILAZOB54DZpnMDHCZ31M7Owa54phXgE7gMWNMVcaZ8S28kzZ/5pxqjdUAvxSRF0Xkxsyyaot1KdAF/HumSO5eEaml+uI83PXADzN/V12sxpi9wDeA3cB+vJkff0n1xboJWCMiLSJSA1yJN41xReLUpACISBR4APi0MWZwquMZjTHGMd4t+XzgrMwtZdURkfcAncaYF6c6lhK93RhzBnAFXvHhmqkOaBR+4AzgX4wxpwMjVEHxSyGZKXjfB9w31bGMJVMGfxWwBJgL1IrIH01tVEcyxmwF7gQeAx4B1uMVfVfEjE8KIhLASwj/ZYx5MLP4oIjMyTw/B+/beVUwxvQDT+BNYVqNcb4deJ+IvAH8CLhIRP431Rkrxph9md+deGXfZ1F9sXYAHZm7Q4D78ZJEtcWZ7wrgJWPMwczjaoz1EmCXMabLGJMGHgTOowpjNcb8mzHmDGPMGqAXeI0KxTmjk4KICPBvwFZjzN/nPbUW+JPM33+CV9cwZUSkTUQaM39H8E7mbVRZnADGmNuMMfONMYvxig9+Y4z5I6owVhGpFZG67N945cmbqLJYjTEHgD0icmJm0cXAFqoszsN8iLeKjqA6Y90NnCMiNZlrwcV4FfhVF6uItGd+LwSuxju2lYlzqit7prgC53y8MuUNwCuZnyuBFryK0tcyv5unOM5VwMuZODcBX8gsr6o4R4n7nbxV0Vx1seKV1a/P/GwGPlvFsZ4GrMucAz8BmqoxzkysNUAP0JC3rFpj/TLeF6xNwH8CoWqMFfgd3heB9cDFlTym2qNZKaVUzowuPlJKKXUoTQpKKaVyNCkopZTK0aSglFIqR5OCUkqpHE0KSo2DiHxARIyILJ/qWJSqBE0KSo3Ph4Cn8DrmKXXM0aSgVIkyY2S9HfhTMklBRCwR+W5mnPuHRORhEbkm89zbROS3mcH2Hs0OSaBUNdOkoFTp3o83p8GrQK+InIE35MBiYCVwA3Au5MbU+ifgGmPM24DvAV+biqCVGg//VAeg1DTyIbxhwcEb7O9DQAC4zxjjAgdE5PHM8ycCK4DHvGF18OENz6xUVdOkoFQJRKQFb9KgFSJi8C7yBm9k1VFfAmw2xpx7lEJUqiy0+Eip0lwD/MAYs8gYs9gYswBvNrRu4A8ydQuz8AYBBG9WrDYRyRUnicgpUxG4UuOhSUGp0nyII+8KHsCbnKUDb5TNu/Fm7hswxqTwEsmdIrIebwTe845euEpNjI6SqtQkiUjUGDOcKWJ6Hm82twNTHZdSE6F1CkpN3kOZSZCCwFc1IajpTO8UlFJK5WidglJKqRxNCkoppXI0KSillMrRpKCUUipHk4JSSqkcTQpKKaVy/h+sorEP9mFuKAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x = df_smoker['Age']\n",
"y = df_smoker['Status']\n",
"\n",
"sns.regplot(x='Age', y='Status', data=df_smoker, logistic=True)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/sklearn/utils/validation.py:578: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" y = column_or_1d(y, warn=True)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAEKCAYAAAA/2c+EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFCtJREFUeJzt3Xm0XFWVgPFvJwhhkCFEIAwdARlEWwIIS1AUmURUFFkOCAiIPlADQjcKTgi0DVlAVGxACZNBFAERRUQUg2ESAgFiiIILRNBAmLExTMmrt/uPqtCPTFWPVNU97+X7uc5K3VtV525dWTvbfc89FZmJJKk8w6oOQJK0aCZoSSqUCVqSCmWClqRCmaAlqVAmaEkqlAlakgplgpakQpmgJalQy1UdwOLMe/IBH3HUQlZcd8eqQ1CBeuc+HEs7x0ByzmtGbbTU12uFFbQkFarYClqSuqqvVnUECzFBSxJArbfqCBZigpYkILOv6hAWYoKWJIC+9iToiNgMuKTfqY2A44DVgc8ATzTOfyUzr17SXCZoSQJoUwWdmX8BxgJExHDgYeAK4GDg25l5WqtzmaAlCTp1k3AX4K+Z+VDEwFfmucxOkqBeQbc6Wvdx4OJ+x+MiYkZEnB8RazT7sglakoCs9bY8IqInIqb1Gz0LzhcRywN7AZc1Tn0P2Jh6+2M2MKFZTLY4JAkGdJMwMycCE5t87L3AnZn5WOM7j81/IyLOAa5qdh0TtCRB224S9rMv/dobETE6M2c3DvcGZjabwAQtSdDWm4QRsRKwG3Bov9OnRMRYIIEHF3hvkUzQkgRtraAz83lgzQXOHTDQeUzQkgQ+6i1JxWrTk4TtZIKWJCDT3ewkqUxuliRJhbLFIUmFsoKWpELV5lUdwUJM0JIEtjgkqVi2OCSpUFbQklQoE7QklSm9SShJhbIHLUmFssUhSYWygpakQllBS1KhrKAlqVC9btgvSWWygpakQtmDlqRCWUFLUqGsoCWpUFbQklQoV3FIUqEyq45gISZoSQJ70JJULBO0JBXKm4SSVKhareoIFmKCliSwxSFJxTJBS1Kh7EFLUpmyz3XQklSmAlscw6oOQJKKUKu1PpqIiNUj4qcRcW9E3BMR20fEyIi4NiLua/y5RrN5TNCSBPUKutXR3OnANZm5ObAlcA9wLDA5MzcBJjeOl8gWR2H+9tAsjj7u5JePZz0ym3GfPoBtt3oLJ576P7w0dx7Dhw/n60d/nn/fYrMKI1VVzpk4gfftuSuPP/EkY7fapepwho42tTgiYlXgncBBAJk5F5gbER8Edmp8bBIwBThmSXNZQRdmwzHrc/mkM7l80plcev53GTFiBLu8awcmnHUen/3Uflw+6UzGfXp/Jpx1XtWhqiIXXngp73v/flWHMfRktjwioicipvUbPf1m2gh4ArggIu6KiHMjYmVg7cycXb9UzgbWahZSxyroiNgc+CCwHpDAI8CVmXlPp6451Nw6bTobrDeadddZm4hgznPPAzDnuedZa9SaFUenqtx401TGjFm/6jCGngFU0Jk5EZi4mLeXA7YGDs/MqRFxOi20MxalIxV0RBwD/AQI4Dbg9sbriyPiVQW6LPr15OvZc9d3AXDMFw5lwlnnscveB3DaGedy5GEHVRucNNT0ZetjyWYBszJzauP4p9QT9mMRMRqg8efjzSbqVIvjEGDbzByfmRc1xnhgu8Z7amLevHlMuWkqu++8IwCXXPErjjm8h8lX/JAvHdHDcSd/p+IIpSGmTas4MvNR4B8RMf8m0S7An4ErgQMb5w4EftEspE4l6D5g3UWcH914b5H693XOvfDiDoU2ONx46zTeuOnGjBpZX4lz5a9/x647vR2A9+y8I3f/+S9VhicNOdnX1/JoweHAjyJiBjAWOAkYD+wWEfcBuzWOl6hTPegjgcmNQP7ROPdvwBuAcYv7Uv++zrwnHyjvsZ4uuvraKey5204vH79u1JrcftfdbLf1W5h6x3TGbLBedcFJQ1EbnyTMzOnAWxfx1oCW3XQkQWfmNRGxKfWWxnrU+8+zgNszs7w9/Qrzwosvcsvtd/GNLx3x8rkTjjmC8aefTW+txgrLL/+K97RsueiHZ/Kud27PqFEjefCBaZxw4mlc8IOfVB3W4FfgXhyRBf4OF1hBa9FWXHfHqkNQgXrnPhxLO8dzJ+7Xcs5Z+bgfLfX1WuGDKpIE0Fve/7k3QUsSFNniMEFLErT1JmG7mKAlCVpdPtdVJmhJAitoSSqWCVqSCtXCRvzdZoKWJPxNQkkqlwlakgrlKg5JKpQVtCQVygQtSWXKmi0OSSqTFbQklclldpJUKhO0JBWqvBa0CVqSALK3vAxtgpYksIKWpFJ5k1CSSmUFLUllsoKWpFJZQUtSmbK36ggWZoKWJCCtoCWpUCZoSSqTFbQkFcoELUmFylpUHcJCTNCShBW0JBUr+8qroIdVHYAklSD7Wh+tiIjhEXFXRFzVOD4+Ih6OiOmNsWezOaygJQnIbHsF/QXgHmDVfue+nZmntTqBFbQk0d4KOiLWB94HnLs0MZmgJQnoq0XLowXfAb7Ewo+/jIuIGRFxfkSs0WwSE7QkUb9J2OqIiJ6ImNZv9MyfJyLeDzyemXcscInvARsDY4HZwIRmMdmDliQGtoojMycCExfz9tuBvRo3AUcAq0bERZm5//wPRMQ5wFXNrrPYBB0RvwQWu0FqZu7VbHJJGiyyTdtBZ+aXgS8DRMROwNGZuX9EjM7M2Y2P7Q3MbDbXkirolu80StJg14V10KdExFjqhe+DwKHNvrDYBJ2Z17cvLkkqWweW2ZGZU4ApjdcHDPT7TXvQEbEJcDKwBfV+yvwLbzTQi0lSqWoF7sXRyiqOC6jffewF3g1cCPywk0FJUrdlRsujW1pJ0Ctm5mQgMvOhzDwe2LmzYUlSdw1kmV23tLLM7sWIGAbcFxHjgIeBtTobliR1V7tWcbRTKxX0kcBKwBHANsABwIGdDEqSum1QVtCZeXvj5Rzg4M6GI0nVqPWV92B1K6s4fs8iHljJTPvQkoaMElscrfSgj+73egSwD/UVHZI0ZPR1cXVGq1ppcSy44cfNEeFDLJKGlG4un2tVKy2Okf0Oh1G/UbhOxyKSpAoM1hbHHdR70EG9tfE34JBOBgVw8jZf7/QlNAhtPeoNVYegIWpQtjiAN2bmi/1PRMQKHYpHkipR4iqOViL6wyLO3dLuQCSpSjmA0S1L2g96HWA9YMWI2Ip6iwPqP4C4Uhdik6SuGWwtjvcABwHrU/9plvnRPwt8pbNhSVJ3DapVHJk5CZgUEftk5uVdjEmSuq6FH+vuulZ60NtExOrzDyJijYj4ZgdjkqSuS6Ll0S2tJOj3ZuY/5x9k5jPAnp0LSZK6rzej5dEtrSyzGx4RK2TmSwARsSLgMjtJQ0o3K+NWtZKgLwImR8QFjeODgUmdC0mSuq/EHnQre3GcEhEzgF2pr+S4BhjT6cAkqZsGawUN8Cj1f2A+Sv1Rb1d1SBpSBlUFHRGbAh8H9gWeAi6h/ruE7+5SbJLUNbVBVkHfC9wIfCAz7weIiKO6EpUkdVkXf8mqZUtaZrcP9dbG7yPinIjYBQr8J0aS2qCPaHl0y2ITdGZekZkfAzYHpgBHAWtHxPciYvcuxSdJXVHiZklNH1TJzOcy80eZ+X7q+3JMB47teGSS1EV9Axjd0uoqDgAy82ng7MaQpCGjL8rr4A4oQUvSUFWrOoBFMEFLEmWu4jBBSxJ0dXVGq0zQkkR3V2e0ygQtSZTZ4ijvZ2wlqQLtWmYXESMi4raI+GNE/CkiTmicHxkR10bEfY0/12gWkwlakoBatD6aeAnYOTO3BMYCe0TE26g/PzI5MzcBJtPC8yQmaEmifRV01s1pHL6mMRL4IP+/l/4k4EPNYjJBSxLtfZIwIoZHxHTgceDazJwKrJ2ZswEaf67VbB4TtCQBGa2PiOiJiGn9Rs8r5sqsZeZY6ttjbBcRb341MbmKQ5IY2B4bmTkRmNjC5/4ZEVOAPYDHImJ0Zs6OiNHUq+slsoKWJOqPerc6liQiXhcRqzder0j95wLvBa4EDmx87EDgF81isoKWJNq6Dno0MCkihlMvgi/NzKsi4hbg0og4BPg78JFmE5mgJYn2bSOamTOArRZx/ilgl4HMZYKWJAbZj8ZK0rLEvTgkqVAl7sVhgpYk3LBfkorVV2CTwwQtSXiTUJKKVV79bIKWJMAKWpKK1Rvl1dAmaEnCFockFcsWhyQVymV2klSo8tKzCVqSAFscklSsWoE1tAlakrCClqRipRW0JJXJClpNrTp6JB/69mdZ+XWrkX3JnT++jtsu+A0A2x60O9t+cjf6an3cf910fnfyxRVHq2752reO4R27bs8zTz7DvjsfDMDhXz+MHXfbgXlze3n4oUc48ajxzHl2TsWRDl4us1NTfbU+fvvNH/HozAdZfuURfOaqb/LATTNZZdRqbLbbNpy9x5epze1lpTVXrTpUddGvLvk1l13wM44//Ssvn7vthmmcddI51Go1xn31UA46fD/O+O+zK4xycCsvPdd/cVYFmfP4P3l05oMAzH3uRZ68/xFWXXsNttl/F24+60pqc3sBeP6pZyuMUt1219QZPPvMv15xbur106jV6tvMz7zjz6w1+nVVhDZk9JItj27peoKOiIO7fc3BarX1R7HOm8Ywa/pfWXPD0fzbdptzyM9P4MBLvsa6b9mo6vBUkA/suyd/uG5q1WEMajmA/3RLFRX0CYt7IyJ6ImJaREybNuf+bsZUnNestAIf+f6R/ObEHzJ3zgsMW24YI1ZbmfM+9A2uPenH7HPW4VWHqEIcfMT+1HprXPOza6sOZVDrG8Dolo70oCNixuLeAtZe3PcycyIwEeDEMfuV2BLqimHLDeej3z+SmT+/mXuvmQbAs7Of5t5rbgfgkT8+QPYlK418Lc8//a8lTaUh7n0feQ/v2HUHPvexo6oOZdBblpbZrQ28B3hmgfMB/KFD1xwyPnDKZ3ji/oe59dxfv3zuL7+9gw132IKHbr2HkRuuw/DXLGdyXsa9baftOODzn+CwDx/BSy+8VHU4g96ytMzuKmCVzJy+4BsRMaVD1xwSNnjrpmy5z448ds/f6bn6JACuO/US7rp0Cnud2sNhvx1PbV4vv/jP71ccqbrpv846jm22H8vqI1fjl9Mu45wJF3DguP1YfoXlOeOSCUD9RuH4Y79VcaSDVy3Lq6AjCwwKlu0Whxbvqnmzqg5BBbrtketjaef4xJi9W845P37oiqW+XitcBy1JLFs9aEkaVJalHrQkDSo+6i1JhbLFIUmFKnEVhwlakrDFIUnFKvEmobvZSRLt3SwpIs6PiMcjYma/c8dHxMMRMb0x9mw2jwlakqi3OFodLfgBsMcizn87M8c2xtXNJrHFIUlAO5+qzswbIuL1SzuPFbQkATWy5dF/a+TG6GnxMuMiYkajBbJGsw+boCWJgbU4MnNiZr6135jYwiW+B2wMjAVmAxOafcEWhyTR3hbHYuZ/bP7riDiH+q6fS2SCliQ6vw46IkZn5uzG4d7AzCV9HkzQkgS091HviLgY2AkYFRGzgG8AO0XEWOo/IP4gcGizeUzQkkR7H/XOzH0Xcfq8gc5jgpYkfNRbkoplgpakQpX4838maEnCClqSiuWG/ZJUqFqWt+GoCVqSsActScWyBy1JhbIHLUmF6rPFIUllsoKWpEK5ikOSCmWLQ5IKZYtDkgplBS1JhbKClqRC1bJWdQgLMUFLEj7qLUnF8lFvSSqUFbQkFcpVHJJUKFdxSFKhfNRbkgplD1qSCmUPWpIKZQUtSYVyHbQkFcoKWpIK5SoOSSqUNwklqVC2OCSpUD5JKEmFsoKWpEKV2IOOEv/V0CtFRE9mTqw6DpXFvxdD37CqA1BLeqoOQEXy78UQZ4KWpEKZoCWpUCbowcE+oxbFvxdDnDcJJalQVtCSVCgTdOEiYo+I+EtE3B8Rx1Ydj6oXEedHxOMRMbPqWNRZJuiCRcRw4EzgvcAWwL4RsUW1UakAPwD2qDoIdZ4JumzbAfdn5gOZORf4CfDBimNSxTLzBuDpquNQ55mgy7Ye8I9+x7Ma5yQtA0zQZYtFnHPZjbSMMEGXbRawQb/j9YFHKopFUpeZoMt2O7BJRGwYEcsDHweurDgmSV1igi5YZvYC44DfAPcAl2bmn6qNSlWLiIuBW4DNImJWRBxSdUzqDJ8klKRCWUFLUqFM0JJUKBO0JBXKBC1JhTJBS1KhTNBqu4ioRcT0iJgZEZdFxEpLMddOEXFV4/VeS9rRLyJWj4jPvYprHB8RR7/aGKVOMUGrE17IzLGZ+WZgLnBY/zejbsB/9zLzyswcv4SPrA4MOEFLpTJBq9NuBN4QEa+PiHsi4izgTmCDiNg9Im6JiDsblfYq8PIe2PdGxE3Ah+dPFBEHRcQZjddrR8QVEfHHxtgBGA9s3KjeT2187osRcXtEzIiIE/rN9dXGPtu/Azbr2v8a0gCYoNUxEbEc9b2s726c2gy4MDO3Ap4DvgbsmplbA9OA/4iIEcA5wAeAHYF1FjP9d4HrM3NLYGvgT8CxwF8b1fsXI2J3YBPq27aOBbaJiHdGxDbUH5vfivo/ANu2+b+61BbLVR2AhqQVI2J64/WNwHnAusBDmXlr4/zbqP8Iwc0RAbA89ceXNwf+lpn3AUTERUDPIq6xM/BJgMysAf8bEWss8JndG+OuxvEq1BP2a4ErMvP5xjXc30RFMkGrE17IzLH9TzSS8HP9TwHXZua+C3xuLO3bUjWAkzPz7AWucWQbryF1jC0OVeVW4O0R8QaAiFgpIjYF7gU2jIiNG5/bdzHfnwx8tvHd4RGxKvAv6tXxfL8BPtWvt71eRKwF3ADsHRErRsRrqbdTpOKYoFWJzHwCOAi4OCJmUE/Ym2fmi9RbGr9q3CR8aDFTfAF4d0TcDdwBvCkzn6LeMpkZEadm5m+BHwO3ND73U+C1mXkncAkwHbicehtGKo672UlSoaygJalQJmhJKpQJWpIKZYKWpEKZoCWpUCZoSSqUCVqSCmWClqRC/R98mF76Wgu7YQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"X = df_smoker['Age']\n",
"y = df_smoker['Status']\n",
"\n",
"X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=0)\n",
"\n",
"X_train= X_train.values.reshape(-1, 1)\n",
"y_train= y_train.values.reshape(-1, 1)\n",
"X_test = X_test.values.reshape(-1, 1)\n",
"\n",
"logistic_regression = LogisticRegression()\n",
"logistic_regression.fit(X_train,y_train)\n",
"y_pred = logistic_regression.predict(X_test)\n",
"confusion_matrix = pd.crosstab(y_test,y_pred, rownames=['Actual'],colnames=['Predicted'])\n",
"sns.heatmap(confusion_matrix, annot=True)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG79JREFUeJzt3X+QHPV55/H3s8MIj4SjlSyRiJU20rkUKQ4gMGOJHDmDrSMgDiOsAxv7uJhYZZ0ucDHWRcHUlXWAc4VdSxxIQazIgImTFGRjy0JWyVZcutiX8sVEKwMLAisoYKOVcBDBUsp4D1ar5/7omdXs7Pzome2Z6e75vKpUu9P9ne5ne3o/6v1297fN3RERkXTp6XQBIiISPYW7iEgKKdxFRFJI4S4ikkIKdxGRFFK4i4ikkMJdRCSFFO4iIimkcBcRSaEzOrXiefPm+eLFizu1ehGRRNq/f/9r7j6/XruOhfvixYsZGhrq1OpFRBLJzH4cpp26ZUREUkjhLiKSQgp3EZEUUriLiKSQwl1EJIUU7iIiKaRwFxFJobrhbmYPm9mrZvZslflmZn9sZofMbNjM3h19mSIi0ogwNzE9AtwPfKXK/DXA0sK/VcAXC18TZceTRxjYc5Cjx0c5pzfH5iuWce2FfR1bfrX2O548wp3fOMBPfz4GQG8uyx3X/NrEvDt2HuD4aDDPgDBPyM2Y8ZFVi/iDa8+bWO+R46NT3j9nZpb/+YHT6yqt733L5/O3PzxW8X1FxekzMsZb41NbFOf3lSyv9OcHJtbZOzOLO5wYHZsy/8jxUTJmjLvTV7btKtVcuo6hH7/Oo08cZtx9Yrvkf3nupO0aN9keGLj+gkn7U/l+Uq70M+rNZbl6xYIp26La/lm6j1TazpXal9ZiBu5MvHdO2WdZ+rmUfs5n9MDYqck/98lT1Pz9gGC//Q/nL2DX069M+QyL26FYS28uy9j4Kd54axyAXLaHt2UzHP/52JTtUr4/zZzRwwuvvlFze9faTlGzMA/INrPFwC53P7fCvD8FvuPujxZeHwQuc/dXai0zn897XO5Q3fHkEW7f/gyjY+MT03LZDHevOy+SD6HR5Vdr/x8v6uOv9h1mrCwYsz3Gh1cu4q/+4TBjp5p/4Pkl75zLD14+MWm95bIZ48PvWcTX9h+p2S5q2YyBU/Xny/YYGFO2DZzedvVqzvQY49PYfp1274cvmAi4zV99uuK2CKva/llp36z1nihqCVtvtd+PqNdz97rzAKpuh7DLaDZbzGy/u+frtYuiz70POFzyeqQwLTEG9hyc8iGNjo0zsOdgR5Zfrf2jT1TeccdOeTBvmsH0vX96ve7OOjYerKudwV5cb62fb+yUV/2lLm67ejUnOdiBif1pYM/BaQdctf2z0r5Z6z1R1BJGrd+PqNczsOdgze0QdhmtFsXYMlZhWsUtbGYbgA0A/f39Eaw6GkePjzY0vdXLrzZ9vMZfWbXmRa2d64pKEmtuVHG/aeV+W2/Z5fOjqiWMdn3GUfxM7dguURy5jwCLSl4vBI5Wauju29w97+75+fPrDmrWNuf05hqa3urlV5uesUr/j9afF7V2risqSay5UcX9ppX7bb1ll8+PqpYw2vUZn9Obm/bP1Y7tEkW47wR+q3DVzMXAiXr97XGz+Ypl5LKZSdNy2czESbp2L79a+4+sWhT0PZfJ9gQn/rI909u5L3nn3CnrnbKuTLCueu2ils1YzZ8v22MVtw2c3nb1as5Mc/t1WnF/2nzFsqrbIqxq+2elfbPWe6KoJYxavx9Rr2fzFctqboewy2i1MJdCPgr8PbDMzEbMbL2ZbTSzjYUmu4EXgUPAl4DfaVm1LXLthX3cve48+npzGMEZ7ahOpjaz/Grt/+Da8xi4bgVzZmYn2vbmsgxcvyKYd/0KenOn54XdzTNm3HhxP3/5iV+fWG+l98+ZmWXgumBd5fXdeHF/1feV1zOjyi9gcWrp8orLH7huBQPXr5iYNmdmlt5c9vT861cwcN2KiRqKR3Gl265azcXXf3j9Cm68uH/ivcXtcu+HL5i0XeMm23P6ZCoE+0/5flKu9BPozWWnbItq+2fpvglTt3P5eyrVUjzALr63/LMsraV0XrYsrbI91P39KC7/xov7K36Gxe1QrKU3l2XWjNOhncv2MGdmdsp2qfQ7uvTsWVOWX76eqLOlllBXy7RCnK6WERFJinZeLSMiIjGjcBcRSSGFu4hICincRURSSOEuIpJCCncRkRRSuIuIpJDCXUQkhRTuIiIppHAXEUkhhbuISAop3EVEUkjhLiKSQgp3EZEUUriLiKSQwl1EJIUU7iIiKaRwFxFJIYW7iEgKKdxFRFJI4S4ikkIKdxGRFFK4i4ikkMJdRCSFFO4iIimkcBcRSSGFu4hICincRURaaXgQ/uhcuKM3+Do82JbVntGWtYiIdJvhQfjmbTD6+ulpJw7DN343+P78D7V09Qp3EZEoDQ/CN26FsTcqzx8bhb13xSPczexK4D4gAzzo7p8rmz8b+Augv7DMe9z9yxHXKiISX392Dbz03XBtT4y0thZC9LmbWQZ4AFgDvAv4iJm9q6zZzcBz7r4CuAz4QzObEXGtIiLx1EiwA8xe2LpaCsIcua8EDrn7iwBm9hiwFniupI0DbzczA84CXgdORlyriEh8DA8G3SsnRggiMKRsDlZvaVlZRWGulukDDpe8HilMK3U/8KvAUeAZ4JPufqp8QWa2wcyGzGzo2LFjTZYsItJhw4PBidETh2ko2HNz4QN/3PL+dggX7lZhWvlPcwXwFHAOcAFwv5n9wpQ3uW9z97y75+fPn99wsSIisbD3ruDEaCPy6+G2l9oS7BAu3EeARSWvFxIcoZf6bWC7Bw4BLwHLoylRRCRmGjkhmpsL674EV3+hdfVUEKbPfR+w1MyWAEeAG4CPlrV5GVgN/J2Z/SKwDHgxykJFRNqutF999sKgr/z8DwXfnzhc+71LLoWP7WxPnRXUDXd3P2lmtwB7CC6FfNjdD5jZxsL8rcBngUfM7BmCbpzb3P21FtYtItIalW4+gsk3IK3eEnxf2jWTzbWtPz2MUNe5u/tuYHfZtK0l3x8FfjPa0kRE2mzXJhh6qPr84g1In3o2eF3pqD4mdIeqiHS3ia6XOt0sRcX+9vM/FKswL6dwF5HuVK37pZ423IAUBYW7iHSXZkMd2nYDUhQU7iLSPXZtgqGHaejGo6LcXFjz+Vh3xZRSuItI+tUbqbGW7Cz4wL2JCfUihbuIpFdTXTAGOMxeFLsrYBqhcBeR9Gm2Xz1hXS+1KNxFJF2a6VdPUagXKdxFJD3q3YRUSX5928d9aQc9IFtE0mF4sHDE3oCUBjvoyF1E0mLvXYTuiklhN0w5hbuIJE+l0RrrDcPbBYFeSuEuIslSfApScUTG4miNuTnVr45JcfdLNQp3EUmGXZtg/yPg41PnjY3CGblgeIBJT0gyyH+864IddEJVRJKgeBVMpWAvGv1pMJ767EWABV/XbevKYAcduYtInDUyHO/shbEfhredFO4iEk/lfeu1JGi0xnZRuItIvDT68IyEjwHTKgp3EYmPRo7WIRixsfjIO5lEJ1RFJD723hU+2C0TDMUrFenIXUQ6q/SGpLp3mKZjON52ULiLSOc00g2jQG+Iwl1E2q+Rk6bZXHD9ukK9IQp3EWmfhh6iYafHjVGwN0zhLiLt0WgXjK6CmRaFu4i0XiMP0dANSZFQuItI6wwPwuO3wPib4drrpGlkFO4i0hrDg/D4zTD+Vv22OmkaOd3EJCKtsfeucMGem6tgb4FQ4W5mV5rZQTM7ZGafrtLmMjN7yswOmNl3oy1TRBKn3pORANZ9CW57ScHeAnW7ZcwsAzwAXA6MAPvMbKe7P1fSphf4E+BKd3/ZzM5uVcEikhCzF9a+jj2/XqHeQmGO3FcCh9z9RXd/C3gMWFvW5qPAdnd/GcDdX422TBGJreFB+KNz4Y7e4OvwYDB99RbIzKj8niWXdu1DNNolzAnVPqD0v98RYFVZm18Bsmb2HeDtwH3u/pVIKhSReKp0Q1LxeaZw+qi8tE2XPaS6k8KEu1WYVj66zxnARcBqIAf8vZl9393/cdKCzDYAGwD6+/sbr1ZE4mF4EHb8DpwamzpvbDQ4mVp8KpKCvCPCdMuMAItKXi8EjlZo8y13f8PdXwP+D7CifEHuvs3d8+6enz9/frM1i0gnDQ/C1/9L5WAvCnMyVVoqTLjvA5aa2RIzmwHcAOwsa/M48O/M7Awzm0nQbfN8tKWKSMcVhxDwU7XbzV7YnnqkqrrdMu5+0sxuAfYAGeBhdz9gZhsL87e6+/Nm9i1gGDgFPOjuGhhCJG3CPExDwwfEQqg7VN19N7C7bNrWstcDwEB0pYlI7NTrbrEe3ZAUE7pDVUTCq9XdkpkBH/xTBXtMKNxFJLzVW4Jul3K5ubD2AQV7jGjgMBEJrxjexWee6mEasaVwF5HG6Nr1RFC3jIhUH0JAEktH7iLdrvzxd5WGEJDE0ZG7SLerdO16cQgBSSwduYt0o+HB0ydFpwwVVaAhBBJN4S7SbXZtgqGHqRrqRRpCINEU7iLdotIQvdVoCIHEU7iLdIOwR+uYrl1PCYW7SNoND4bshlkEn9J4f2mhcBdJs12bYOihEA1N3TApo3AXSaPQoQ5gkP+4umFSRuEukjaNBLueaZpaCneRtNn/SIhGhaP1q7/Q6mqkQxTuImnj4/XbrNumo/WU0/ADImljmdrz8+sV7F1A4S6SNhfdVH3ekkvVFdMl1C0jkkS7NgV96z4eHKlfdNPp0C5+3f9l8FPB99lZ8IF7dcTeRRTuIklS6UoYHz89rTTgdYTe1dQtI5IU9yyvfYljqKtkpFso3EWS4J7l8LNXarcJc5WMdA11y4jEWZhQL6p3lYx0FYW7SFzdMbux9rWukpGuo24ZkThqNNjPnK0TqDKJwl0kToYHGw/2sxbA7S+3ph5JLHXLiMTFZ38JxkfrtyuVX68jdqlI4S7SacODsP0Tjb1HNyVJHQp3kU5qJtjXfUmhLnWF6nM3syvN7KCZHTKzT9do9x4zGzez66IrUSSFdm0K+tYV7NIidY/czSwDPABcDowA+8xsp7s/V6Hd54E9rShUJDX+7Bp46buNvefM2TppKg0Jc+S+Ejjk7i+6+1vAY8DaCu3+G/A14NUI6xNJj+FBuHNu48GeX69gl4aF6XPvAw6XvB4BVpU2MLM+4IPA+4H3VFuQmW0ANgD09/c3WqtIcjVztJ7JwWd+0pp6JPXCHLlbhWle9vpe4Db32oNbuPs2d8+7e37+/PlhaxRJtvtXNR7s85Yr2GVawhy5jwCLSl4vBI6WtckDj5kZwDzgKjM76e47IqlSJImGB2H7BqYeC9Wx5FL42M6WlCTdI0y47wOWmtkS4AhwA/DR0gbuvqT4vZk9AuxSsEtXa2TAr6J5y+GWJ1pTj3Sdut0y7n4SuIXgKpjngUF3P2BmG81sY6sLFEmU4vABjQZ7fr2CXSIV6iYmd98N7C6btrVK25umX5ZIAjVzQxIG67bp2nWJnO5QFZmu4UH45m0w+npj7ztrAfzeD1tTk3Q9hbvIdDRziSMo2KXlFO4izRgehMdvgfE3G3+vRnKUNlC4izSq2UscFerSRgp3kUY0M+a6TppKByjcRcK4fxW81kQfua5dlw5RuIvU08wNST1nwLVf1NG6dIzCXaSW4cHGg11XwkgM6AHZIrXsvaux9vn1CnaJBR25i5RS37qkhMJdBILul69vhNqjVlemR99JDCncRXZtgqGHGn+frluXGFO4S/caHoRdt8Jbb4R8g8HshbB6i47UJfYU7tJ9mh0P5o7j0dci0iIKd+kud84DH2v8fUsujb4WkRbSpZDSPT77S80Hux57JwmjI3dJt2ZPloJOmEqiKdwlve7uhzdPNPFGg/zHFeySaAp3SZ9mb0QCDR0gqaFwl/Ro6hmmJXSXqaSIwl2Sr9lLGwEyOfjMT6KtRyQGdLWMJNt0gn3JpQp2SS0duUsyTecqGI21Ll1A4S7JMp0jddDljdI1FO6SDNM5WXrmbLj95WjrEYk5hbvEW8ODe5XR3aXSpRTuEk/TGV8d1K8uXU/hLvGjIQNEpk3hLvEw3ROloGAXKREq3M3sSuA+IAM86O6fK5v/n4DbCi9/BvxXd386ykIlxZoeA6ZAd5aKTFE33M0sAzwAXA6MAPvMbKe7P1fS7CXgUnf/qZmtAbYBq1pRsKTE8CA8fjOMv9X8MhTqIlWFOXJfCRxy9xcBzOwxYC0wEe7u/n9L2n8fWBhlkZIyd8ye3vszM2DtAzpZKlJDmHDvAw6XvB6h9lH5euCb0ylKUmY6J0jLqV9dJJQw4W4VpnnFhmbvIwj336gyfwOwAaC/vz9kiZJYUYR6bi6s+byO0kUaFCbcR4BFJa8XAkfLG5nZ+cCDwBp3/5dKC3L3bQT98eTz+Yr/QUgKTGc89VLqUxdpWphw3wcsNbMlwBHgBuCjpQ3MrB/YDvxnd//HyKuUZIiy+0V3lopMS91wd/eTZnYLsIfgUsiH3f2AmW0szN8KbAHeAfyJmQGcdPd868qW2IniOvXMmbD2fnXBiETA3DvTO5LP531oaKgj65YI3LMcfvZKdMu7YxrXuYt0ETPbH+bgWXeoSnhRHJ2XUp+6SMso3KW26Y7KWM4y8MGt6noRaTGFu1QW9VH6jFlw9b0KdZE2UbjLaVEHOuimI5EOUbh3u1YE+uxFsHqLjtJFOkjh3o2m88i6Ws5aAL8Xwc1LIjJtCvduEeUNRqV0glQklhTuaTY8CDtuhlPTGFa3Ej1wWiT2FO5pE9W4LtXo2nSRRFC4J12rulvKaawXkURRuCfRdB9LF5ZOkIoklsI9KYYH4esbwcdbtw5dky6SGgr3OGrFtefVaCRGkVRSuMdF1KMs1mSwbpsCXSTFFO7tNjwI37wNRl9v73p1lYtIV1G4t1qrL02syiD/cfWhi3QphXuUhgfhG7fCWETD4zYsA+t0t6iIKNybF/U4581Sd4uIVKBwr6edV67Uo3FcRCQkhXtRp0501pKZAWsfUJiLSMO6L9w7doKzAbqZSESmKX3hvmsT7H+ktXdyRkl95iLSAskN9yQcgZfTWC0i0ibJDPckBLuOyEWkg5IZ7nELdh2Ri0jMJDPcO8UycNFNOtkpIrGncK9k9iJYvUWXIIpIYiUz3Octj6ZrRv3iIpJSyQz3W54Id1JV3Sgi0qWSGe6gI24RkRpChbuZXQncB2SAB939c2XzrTD/KuDnwE3u/oOIa53k8i98hxde7fCgXTLJ2zLGm+OOd7qQiF3yzrkAfO+fYjQ0RYneXJY7rvk1rr2wb2LajiePMLDnIEePj3JOb47NVyybND8KxXUcOT5Kxoxxd/rK1hWmTSs1ux3asf1arW64m1kGeAC4HBgB9pnZTnd/rqTZGmBp4d8q4IuFry2hYI+n/zeetlgPxDXUi46PjrH5r58G4NoL+9jx5BFu3/4Mo2PBXdpHjo9y+/ZnJuZHoXwd4+5T1gXUbdPKwGx2O7Rj+7VDT4g2K4FD7v6iu78FPAasLWuzFviKB74P9JrZgohrnaBgF5ls7JQzsOcgAAN7Dk4EU9Ho2PjE/ChUWkf5usK0aaVmt0M7tl87hAn3PuBwyeuRwrRG22BmG8xsyMyGjh071mitIlLD0eOjk75Wmx/lumrND9OmlZrdDu3Yfu0QJtytwrTyv7/DtMHdt7l73t3z8+fPD1OfiIR0Tm9u0tdq86NcV635Ydq0UrPboR3brx3ChPsIsKjk9ULgaBNtIrP07FmtWrRIImV7jM1XLANg8xXLyGUzk+bnspmJ+VGotI7ydYVp00rNbod2bL92CBPu+4ClZrbEzGYANwA7y9rsBH7LAhcDJ9z9lYhrnfDtTZcp4GPobRmr+Cdc0l3yzrkTV8zEUW8uy8D1KyZO9l17YR93rzuPvt4cBvT15rh73XmRngwsXQdAxoJPvnRdYdq0UrPboR3brx3Mvf4VDmZ2FXAvwaWQD7v7/zKzjQDuvrVwKeT9wJUEl0L+trsP1VpmPp/3oaGaTUREpIyZ7Xf3fL12oa5zd/fdwO6yaVtLvnfg5kaLFBGR1gjTLSMiIgmjcBcRSSGFu4hICincRURSSOEuIpJCCncRkRRSuIuIpFCom5hasmKzY8CP27S6ecBrbVrXdKjOaCWhziTUCKozatOp85fdve7gXB0L93Yys6Ewd3R1muqMVhLqTEKNoDqj1o461S0jIpJCCncRkRTqlnDf1ukCQlKd0UpCnUmoEVRn1FpeZ1f0uYuIdJtuOXIXEekqqQp3M1tkZn9rZs+b2QEz+2Rh+lwz+7aZvVD4OqfDdb7NzP7BzJ4u1HlnHOssMrOMmT1pZrsKr2NXp5n9yMyeMbOnzGwoxnX2mtlXzeyHhf301+NWp5ktK2zH4r9/NbNb41ZnodZPFX6HnjWzRwu/W7Gq08w+WajvgJndWpjW8hpTFe7ASeC/u/uvAhcDN5vZu4BPA3vdfSmwt/C6k94E3u/uK4ALgCsLT7CKW51FnwSeL3kd1zrf5+4XlFxiFsc67wO+5e7LgRUE2zVWdbr7wcJ2vAC4iOABPF8nZnWaWR/wu0De3c8leJjQDcSoTjM7F/gEsJLg877azJa2pUZ3T+0/4HHgcuAgsKAwbQFwsNO1ldQ4E/gBsCqOdRI8D3cv8H5gV2FaHOv8ETCvbFqs6gR+AXiJwrmuuNZZVttvAt+LY51AH3AYmEvw4KFdhXpjUydwPfBgyevPAL/fjhrTduQ+wcwWAxcCTwC/6IVnuha+nt25ygKFro6ngFeBb7t7LOskeLzi7wOnSqbFsU4H/sbM9pvZhsK0uNX5b4BjwJcL3VwPmtks4ldnqRuARwvfx6pOdz8C3AO8DLxC8OzmvyFedT4LvNfM3mFmM4GrgEXtqDGV4W5mZwFfA25193/tdD2VuPu4B3/2LgRWFv58ixUzuxp41d33d7qWEC5x93cDawi6497b6YIqOAN4N/BFd78QeIN4dBVVZGYzgGuAv+50LZUU+qnXAkuAc4BZZnZjZ6uazN2fBz4PfBv4FvA0Qfdxy6Uu3M0sSxDsf+nu2wuT/9nMFhTmLyA4Wo4Fdz8OfIfg4eJxq/MS4Boz+xHwGPB+M/sL4lcn7n608PVVgv7hlcSvzhFgpPBXGsBXCcI+bnUWrQF+4O7/XHgdtzr/PfCSux9z9zFgO/BviVmd7v6Qu7/b3d8LvA680I4aUxXuZmbAQ8Dz7v6Fklk7gY8Vvv8YQV98x5jZfDPrLXyfI9hJf0jM6nT32919obsvJvjz/H+7+43ErE4zm2Vmby9+T9Dv+iwxq9PdfwIcNrNlhUmrgeeIWZ0lPsLpLhmIX50vAxeb2czC7/5qghPUsarTzM4ufO0H1hFs09bX2KkTDS06efEbBH2vw8BThX9XAe8gOCn4QuHr3A7XeT7wZKHOZ4EthemxqrOs5ss4fUI1VnUS9GU/Xfh3APgfcayzUNMFwFDhs98BzIlpnTOBfwFml0yLY513EhwYPQv8OXBm3OoE/o7gP/GngdXt2pa6Q1VEJIVS1S0jIiIBhbuISAop3EVEUkjhLiKSQgp3EZEUUriLiKSQwl1EJIUU7iIiKfT/ATbi+NcwRewoAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X,y)\n",
"plt.scatter(X.values.reshape(-1, 1),logistic_regression.predict_proba(X.values.reshape(-1, 1))[:,1])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}