"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Logistic regression\n",
"\n",
"Let's assume O-rings independently fail with the same probability which solely depends on temperature. A logistic regression should allow us to estimate the influence of temperature."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
23
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
21
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-3.9210
\n",
"
\n",
"
\n",
"
Date:
Sun, 26 Apr 2020
Deviance:
3.0144
\n",
"
\n",
"
\n",
"
Time:
00:22:53
Pearson chi2:
5.00
\n",
"
\n",
"
\n",
"
No. Iterations:
6
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
5.0850
7.477
0.680
0.496
-9.570
19.740
\n",
"
\n",
"
\n",
"
Temperature
-0.1156
0.115
-1.004
0.316
-0.341
0.110
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Sun, 26 Apr 2020 Deviance: 3.0144\n",
"Time: 00:22:53 Pearson chi2: 5.00\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n",
" family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The maximum likelyhood estimator of the intercept and of Temperature are thus $\\hat{\\alpha}=5.0849$ and $\\hat{\\beta}=-0.1156$. This **corresponds** to the values from the article of Dalal *et al.* The standard errors are $s_{\\hat{\\alpha}} = 7.477$ and $s_{\\hat{\\beta}} = 0.115$, which is **different** from the $3.052$ and $0.04702$ reported by Dallal *et al.* The deviance is $3.01444$ with 21 degrees of freedom. I cannot find any value similar to the Goodness of fit ($G^2=18.086$) reported by Dalal *et al.* There seems to be something wrong. Oh I know, I haven't indicated that my observations are actually the result of 6 observations for each rocket launch. Let's indicate these weights (since the weights are always the same throughout all experiments, it does not change the estimates of the fit but it does influence the variance estimates)."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
23
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
21
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-23.526
\n",
"
\n",
"
\n",
"
Date:
Sun, 26 Apr 2020
Deviance:
18.086
\n",
"
\n",
"
\n",
"
Time:
00:22:53
Pearson chi2:
30.0
\n",
"
\n",
"
\n",
"
No. Iterations:
6
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
5.0850
3.052
1.666
0.096
-0.898
11.068
\n",
"
\n",
"
\n",
"
Temperature
-0.1156
0.047
-2.458
0.014
-0.208
-0.023
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -23.526\n",
"Date: Sun, 26 Apr 2020 Deviance: 18.086\n",
"Time: 00:22:53 Pearson chi2: 30.0\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068\n",
"Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n",
" family=sm.families.Binomial(sm.families.links.logit),\n",
" var_weights=data['Count']).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Good, now I have recovered the asymptotic standard errors $s_{\\hat{\\alpha}}=3.052$ and $s_{\\hat{\\beta}}=0.047$.\n",
"The Goodness of fit (Deviance) indicated for this model is $G^2=18.086$ with 21 degrees of freedom (Df Residuals).\n",
"\n",
"**I have therefore managed to fully replicate the results of the Dalal *et al.* article**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Predicting failure probability\n",
"The temperature when launching the shuttle was 31°F. Let's try to estimate the failure probability for such temperature using our model.:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred)\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"source": [
"This figure is very similar to the Figure 4 of Dalal *et al.* **I have managed to replicate the Figure 4 of the Dalal *et al.* article.**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Computing and plotting uncertainty"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Following the documentation of [Seaborn](https://seaborn.pydata.org/generated/seaborn.regplot.html), I use regplot."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VPW9+P/XmS3LZA9ZgIQAMeyIFkRREUVZZFekClStilVb7be13qveWq/aq9b767W3tr0taK1raQUXlihaQUBUENdIIOyBsGQSsmcy6znn98ckAyGBTEIms+T9fDyQzJkzJ++PIfOe81neH0XXdR0hhBDiNIZQByCEECI8SYIQQgjRLkkQQggh2iUJQgghRLskQQghhGiXJAghhBDtClqCePjhh5kwYQKzZs1q93ld1/mv//ovpkyZwuzZsykuLg5WKEIIIbogaAni+uuv54UXXjjj85s3b6a0tJQPPviAX//61zz22GPBCkUIIUQXBC1BXHTRRSQnJ5/x+fXr1zNv3jwUReGCCy6gvr6eioqKYIUjhBCik0yh+sY2m43s7Gz/4+zsbGw2G5mZmWd9nd3hQdd1UBQAlObjinLyHOXU5xTfY6XVOQqG5gMtx5VTLyCEECJ0CaK9Ch+BvEnbHR5slQ3dHo8/mTTHoSigoPiTh0EBxaBgaH7OoPi+Nhian29+7lxlZCRSGYT2hQtpX+SK5rZB72hfZ4UsQWRnZ1NeXu5/XF5e3uHdQzDpzf/x/a2fejRgLYnDaGhOGAYFk0HBaDBgNPqOy52KECJShCxBTJ48mddee42ZM2fy7bffkpiYGNIE0R10HVRdR9XOnFiMBgWT0ZcwzEYDJqMBk1EShxAi/AQtQdx///18/vnn1NTUcMUVV3Dffffh9XoBWLhwIZMmTWLTpk1MmTKFuLg4nnrqqWCFElZUTUfVVPCcPKYAJqMBs9lAgsuLpukYDJIwhBChpURaue+K6qagjEGEi7Q0K9XVdkxGBYvZSIzZiMVkiJo7jN7Qzxut7YvmtkHvaF9nhayLSZydV9Xxql6anF4MCsRYTMRZjFjMxlCHJoToJSRBRABNB4fLi8PlxWRQiI81ERdjipq7CiFEeJIEEWG8mk59k4dGh4e4GBPxsSaMBimpJYTofpIgIpSmg93p64KymI3Ex5qIke4nIUQ3kgQR4XTA5VFxeVRMRoXEOAsxFkkUQohzJwkiinhVnZpGF2ajgcR4swxoCyHOiXReRyGPqlHd4KLO7kaLrFnMQogwIgkiijlcXk7UOXG51VCHIoSIQJIgopym+bqd6u3udgskCiHEmUiC6CWaXF6q612omhbqUIQQEUISRC/iUTWq6py4PNLlJITomCSIXkbTobbBhcPlDXUoQogwJwmiF9KBOrubJqenw3OFEL2XJIherKVkhxBCtEcSRC/X6JAkIYRonyQIQaPDI91NQog2JEEIwNfdJAPXQohTSYIQfnV2tyQJIYSfJAjRiiQJIUQLSRCiDd8UWEkSQvR2kiBEu+qbJEkI0dtJghBnVN8k3U1C9GaSIMRZ1dvdUrtJiF5KEoQ4Kx2obXTh8UoVWCF6G0kQokO6DjUNTikVLkQvIwlCBETToa5RNh0SojeRBCEC5vZqNEjdJiF6DUkQolOanF6cbpnZJERvIAlCdFq93Y1XlfEIIaJdxCWIx1/Yyjd7T0hfeAhpOjQ0SVeTENHOFOoAOuuwrYHDtga+3lvJvImDSE2MDXVIvZLLo+LyqMSYjaEORQgRJBF3B2EyKgDsPVLH/64o4pPvjqPJ3URINDS5Qx2CECKIIi5BPLZkAgOzEwHweDUKPzvE82t2cqLOEeLIeh+vqstGQ0JEsYhLEH37WFkyewTzJg7yd28cKm/gDyu/k7uJEGh0eNA0+X8uRDSKuAQBYFAUxg/P4v8tOJ+CnGQAPKrvbuLFwl3UNrpCHGHvoenQKHcRQkSloCaIzZs3M23aNKZMmcKyZcvaPN/Q0MDdd9/NnDlzmDlzJm+++Wanrp+SEMMPrx3G9VcM9t9NHDhWz3Mri/hmn8x06ikOp1fuIoSIQkFLEKqq8sQTT/DCCy9QWFjI2rVr2bdvX6tzXn/9dfLz81m9ejWvvvoqzzzzDG535wY+FUVh3LBMfnrD+Qzs6xubcLpV3tiwjzc+2ieLunqADjRJWXAhok7QEkRRURF5eXnk5uZisViYOXMm69evb3WOoijY7XZ0Xcdut5OcnIzJ1LWZt6mJMSyZOYJrLx6A0eCb6fTtvir++OZ3lFU0nnN7xNk1OT1yxyZElAnaOgibzUZ2drb/cVZWFkVFRa3OWbx4Mffccw8TJ07Ebrfzu9/9DoOh45yVlmY943Nzrypg7IhsXli9g/KqJqobXCxdXcy8SflcM34ABkXpeqN6yNnaF87iE2JIiDN3eF5GRmIPRBM60dy+aG4bRH/7OitoCaK9T5PKaW/OW7ZsYfjw4bzyyiscPnyY2267jXHjxpGQkHDWa1dX28/6fLzZwN1zRlL42SG2l1SgaTpvfbSPnftPcMOV5xEfG77rA9PSrB22L1zV1TaRkRJ31nMyMhKprGzooYh6XjS3L5rbBr2jfZ0VtC6m7OxsysvL/Y9tNhuZmZmtznnrrbeYOnUqiqKQl5dHTk4OBw4c6JbvbzEbue6KwSy8psA/gF1yuJY/vlVEWUX0/iMIJVXTZYtSIaJI0BLE6NGjKS0tpaysDLfbTWFhIZMnT251Tt++ffnss88AOHHiBAcPHiQnJ6d74xiczr3zR9MvPR6A2kY3y1bvZGtxufSZB0GTUxKEENEiaH0tJpOJRx99lCVLlqCqKvPnz6egoIDly5cDsHDhQn784x/z8MMPM3v2bHRd54EHHiAtLa3bY0lPiuWuuaN4d+shtu20oWo6qz8ppayikXkTB2M2ReRykLDkUTXcHhWL1GgSIuIpeoR9jK6obsJ2Dv2E3+w9wdubD+BpLlfdLz2exVOHhE3Rv0geg2gRYzaSmhjT7nO9oZ83WtsXzW2D3tG+zup1H50vKOjD3fNGktb8Bnasqok/vbWDA8fqQhxZ9HB5VNkvQogo0OsSBEDfdCs/uX40Q3JTAN8irxcLS9i6s7yDV4pAyViEEJGvVyYIgLgYE7dMG8oVY/oBoOk6q7eU8s7HB1A1+fR7rhwuKb8hRKTrtQkCwGBQmH7xAL4/+Tz/PhOf76rgpfdKZLrmOZLyG0JEvl6dIFpccF4ffjRnJEnxvlXA+4/W8+d3dlBV7wxxZJGtyeWVqcRCRDBJEM1yMhK457qT6yVO1Dn589s7KC2vD3FkkUvTdBwuNdRhCCG6SBLEKZKtFn40ZyQjBqYCLYPXu/juQFWII4tcjQ63jEUIEaEkQZzGYjayaMoQJp7fF/Btq/mPD/eypei4dJd0gabL3tVCRCpJEO0wKArXXpLH7MsGoii+Add3tx6i8LNDsqVpFzjcKi6PdDUJEWkkQZzFhJHZLJ4yBLPR97/p0x3lvLFhnywC64IGu1vuwISIMJIgOjBiYBpLZg8nPsZXtqpofxWvrNuNyy2fiDvDq+k0OmTvaiEiiSSIAORmJnLX3JGkJFgA2He0jufX7pQ3vE5qksVzQkQUSRABykiJ4665o8hK9W2Ic+yEnWWri6ltdIU4ssih68gCRCEiiCSITmiZBpuX7auKeKLOydJVxZyodYQ4ssghNZqEiBySIDopLsbEbTOG+Qv91dndLF1dzLETkV2iu6e4vVLpVYhIIQmiCywmIz+YOoTRg9MBsDu9vLB2p2xlGiDpZhIiMkiC6CKT0cCNk8/jomG+fbadbpW/Fu7iwDEpzdERh8wAEyIiSII4BwaDwryJg7hsVDYAbo/Gy++VsKesNsSRhTdN02WasBARQBLEOVIUhRkT8rjywv6Ab0/mV9/fTcnhmhBHFt4cbulmEiLcSYLoBoqiMPWiXKZelAuAqum8/sEedpVWhziy8OVyq7ImQogwJwmiG115YX+uvXgA0Jwk/rWX4oOSJNqj4xu3EUKEL0kQ3WzimH7MnJAH+LYxXf7hXnZIufB2OaWbSYiwJgkiCC4b3ZfZlw4EfEniH+v3yZ1EO9xeTbqZhAhjkiCCZMKobOZcNhA4eSexU8Yk2pC7CCHClySIILpkZHarO4nlH+6VgevTyDiEEOFLEkSQTRiVzaxLfWMSqqbz9w/3yjqJU7i9GqompTeECEeSIHrApaP6+geuVU3ntQ92s+9oXYijCh+yaE6I8CQJoodcNrov08b71kl4VZ1X39/NweNSlgOkm0mIcCUJogdNuqA/V4/NAcDj1Xh5XYkU+EO6mYQIV5Igetjk7/Vn0gX9AF/tpr+9W8LxKikVLncRQoQfSRA9rKUsR0uBP6db5cXCXVT08k2HnC5JEEKEG0kQIdBS4G9cc6lwu9PLi4W7qK53hjiy0PGo0s0kRLiRBBEiiqIw7/JBnJ/v23So3u7mxcJd1PXiPa5lNpMQ4UUSRAgZDAoLrspneF4qANUNLn7/z6977b7NMg4hRHgJKEHccccdfPTRR+h65+rmbN68mWnTpjFlyhSWLVvW7jnbtm1j7ty5zJw5kx/84Aedun40MBoM3HR1AYP7JQFwrNLOS+/t6pWfpqU2kxDhJaAEceONN/Lyyy9zzTXXsGzZMmpqOt4MR1VVnnjiCV544QUKCwtZu3Yt+/bta3VOfX09jz/+OH/+858pLCzk97//fddaEeHMJgM3Tx1KbmYCAEcq7bz6wW483t7XJy93EUKEj4ASxNSpU3nppZd4/vnnqaioYNasWfz7v/87O3bsOONrioqKyMvLIzc3F4vFwsyZM1m/fn2rc9asWcOUKVPo18837TM9Pf0cmhLZYixGbp0+jH4ZVgAOHKvnjQ37et0napdHEoQQ4cLUlReZzWZiYmJ48MEHmThxIg899FCbc2w2G9nZ2f7HWVlZFBUVtTqntLQUr9fLzTffjN1u55ZbbmHevHkdfv+0NGtXwg57acD/u/FC/r/XvuRErYPi0mre217GD6YPQ1GUUIfXbc7281OA9HQrBkPktjcjIzHUIQRNNLcNor99nRVQgvjggw947bXXqKqqYtGiRRQWFmK1WvF6vUydOrXdBNHeeMXpb3KqqlJcXMxLL72E0+nkpptuYsyYMQwaNOis8VRXR+/CsrQ0K7dOH8rSVcU0Ojx88u0xjMD05p3qIl1amrXDn5/X5SEupkufXUIuIyORysroXB0fzW2D3tG+zgrot3DlypXceeedTJw4sfWLTSYeeeSRdl+TnZ1NeXm5/7HNZiMzM7PNOampqcTHxxMfH8+4ceMoKSnpMEFEu/SkWG6bMYzn1+zE6VbZ/O0xrHEmJp7fL9Sh9QinW43YBCFENAloDGLp0qVtkkOLyZMnt3t89OjRlJaWUlZWhtvtprCwsM25V199NV988QVerxeHw0FRURH5+fmdbEJ06ptu5ZbpQzEZfXdd7209zFd7KkMcVc9we9ReN/YiRDgKKEEsWrSIurqT5alra2tZvHjxWV9jMpl49NFHWbJkCTNmzODaa6+loKCA5cuXs3z5cgDy8/OZOHEic+bMYcGCBdxwww0MGTLkHJoTXQZmJ7HwmiG0dMe/tWk/uw93PIMs0ulAo9MT6jCE6PUUPYDFDXPnzmXVqlUdHusJFdVN2KK4n7C9Pvovd1fw5qYDAJiNBu6YNZwBWZE5mBbIGAT4Bqv7pMRiNETWWs5o7seO5rZB72hfZwX026dpGk1NTf7HdrsdVZXpiD1l7NBMpo/3DVJ7VI2X1+2moia6i/vpQGOT3EUIEUoBJYhZs2Zx++23s2rVKlatWsUdd9zBnDlzgh2bOMXEMX25fHRfABwuL397N/rrNjncKl619y0WFCJcBDRV5K677iIzM5MNGzag6zo33XRTQOsVRPdRFIXplwyg0eHhm30nqLO7+dt7Jdw1Z2RUz/hpaPKQmhgT6jCE6JUCfme57rrruO6664IZi+iAQVG4ftJg7E4Pe4/UUVHj4JX3d3P7jOGYTZHVVx8ol0fF41Uxm4yhDkWIXiegBFFVVcWrr75KWVkZXu/JSqO9tXZSKJmMBhZdM4QX1u7k6Ak7h8ob+OeGvSy6ZkhErz4+myanl+QESRBC9LSAEsR9991Hfn4+EyZMwGiUX9RQi7EYufXaYfxl1Q6q613sLK1hzaelzLlsYFSV5Gjh9Kgk6jqGKGybEOEsoARRX1/Pr3/962DHIjohIc7MbTOG85d3dmB3etm200ay1cKVF/YPdWjdTtd9mwlF81iLEOEooI7rgoICbDZbsGMRnZSeFMut1w7D0jz+8MH2Mr7cXRHiqILD4eqdmygJEUoB30HMmTOHCy+8kJiYkzNKZAwi9HIyElg0ZQivrNuNpuu8vfkACXFmhg5IDXVo3crt1fCqGiZjdA7GCxGOAkoQs2bNYtasWcGORXTRkNwUrp80mJUb96PpsPzDvSyZPYKcjIRQh9atHC4vifGWUIchRK8RUIKQ6a3h73tDMqi3u/lgexlur2+19d1zR5KeFBvq0LqNw62SGB/qKIToPQK6Xy8tLWXhwoX+aqzFxcX84Q9/CGpgovMmXdCPS0ZkAWB3eHjp3RIaHdFTrkLTdNlxTogeFFCCeOyxx7jnnntITPQVexo+fDjr1q0LamCi8xRFYdalAxkx0Df+UFXv5JV1Jbij6E1VBquF6DkBJYiGhgauuOIK/xx7g8GA2WwOamCiawwGhRsnF5DXXO31SKWd5ev3okbJ/gouj9ruboVCiO4XUIIwGo14PB5/grDZbBgirAxzb2I2Gbh52hD6JPvGH3YfrmX1loNR8caq674d54QQwRfwhkH33nsvNTU1/OEPf2DRokXcfvvtwY5NnIP4WDO3zRhGYpzvTm97SQUbvjoa4qi6h4xDCNEzAprFNG/ePHJycvjoo49wOBw888wzjBs3LtixiXOUmuhbSLdsTTFuj8b6L4+QbLUwblhmxy8OYy63r5spGsuKCBFOAq5dMG7cOEkKEahfHyuLpwzh5fd8C+ne+fgAifGRvZBOx9fNJKU3hAiugH7D5s+f3+6ntZUrV3Z7QKL7FeSkMH/SYFZE0UI6l0cShBDBFtBv2IMPPuj/2uVyUVhYSGZmZHdT9DYXDsmgLooW0rncKppUeBUiqAJKEOPHj2/1+PLLL5dB6gg06YJ+1NndbNtp8y+ku2vuSBLiIm/Kso5UeBUi2Lo0V7WxsZGysrLujkUEmaIozI6ihXQy3VWI4Or0GISmaRw5coTbbrstqIGJ4GhZSPfXwp0ctjX6F9L9YOpQjBG2I53bI91MQgRTp8cgjEYjOTk5ZGVlBS0oEVxmk4Fbpg1l6epiKmud7D5cy6qPD3DdFYMjauqodDMJEVxdGoMQkS8+1swPrx3OX1btoKHJwxe7K0myWrhmXG6oQ+sUh8srCUKIIAnoN+uSSy5p95Nly2Klzz77rNsDE8GXmhjDD68dxrLVO3F5VDZ8dZTEeAsXj4icu0O3V0PVNIxS+kWIbhdQgli4cCG1tbXceOON6LrOm2++SVZWFjNmzAh2fCLI+qZb+cHUIbz0XgmqprP6k4MkxpsZMTAt1KEFzOFSSYiTBCFEdwvot2r79u3853/+J8OGDWP48OE88sgjbNq0if79+9O/f/9gxyiCLL9/MjdcmQ/4iuH9Y/1eDpU3hDiqwDmlBLgQQRFQgqioqKC6utr/uLq6msrKyqAFJXremPP6MHNCHgBeVefldSXYqptCHFVgvJqOx6uFOgwhok5AXUy33norc+fO5aqrrgJg06ZN3HXXXUENTPS8y0b3pd7u5uOi4zjdKi+951tIl5IQE+rQOuRwezGbZL9qIbpTQAli8eLFjB07lu3bt6PrOosXL2bo0KHBjk2EwLSLB9Do8PD13hPU2d289F4JP5o9kvjY8J4p5HR5SYqXBCFEdwr4tz4nJwdVVRk5cmQw4xEhZlAUrp80mEaHh71H6qiocfDK+yXcPnM4FpMx1OGdkab71kTEWMI3RiEiTUBjEJs2bWLmzJncd999AHz33XfcfffdQQ1MhI7RYGDRlCHkZFgBOGxrZPmHe1G18O7nd7hlsFqI7hRQgnjuuedYuXIlSUlJAIwePZrDhw8HNTARWjFmI7deO6zVtqVvbz4Q1tuWtlR4FUJ0j4Anj2dkZLR6bLFIf2+0s8aauW3GcJKsvp/1V3tO8N62w2GbJHRkyqsQ3SmgBGG1Wjlx4oR/NfW2bdtITEzs8HWbN29m2rRpTJkyhWXLlp3xvKKiIoYPH866desCDFv0lJbV1nExvr79LUXH2fztsRBHdWYOl1R4FaK7BJQgfvGLX3DnnXdy5MgRbr75Zh544IFWBfzao6oqTzzxBC+88AKFhYWsXbuWffv2tXveb3/7Wy6//PKutUAEXXZaPLdMG4bZ6Pvn8v7nZWwvqQhxVO3zqBpeNbzHSoSIFAHNYhozZgyvvPIKX331FQAXXnihfzziTIqKisjLyyM311f8bebMmaxfv57zzjuv1Xmvvvoq06ZN47vvvutK/KKH5GUnsmhKAa++v8e/t3WcxciowemhDq2NJpnyKkS36DBBqKrK97//fd58800mTZoU8IVtNhvZ2dn+x1lZWRQVFbU558MPP+Tll1/uVIJIS7MGfG4kCtf2TUizYrKYeHF1MboOb3y0jz7pVkYM6lySCHb7jAaFjPTQ/T/MyOi4+zVSRXPbIPrb11kdJgij0Uhqaioul4uYmMBX1LY3kHl6Rdgnn3ySBx54AKOxc3PXq6vtnTo/kqSlWcO6ffnZicy6bCBrPinFq+r8+c0i7pg5nAFZgf1i9VT7vE5PSNZEZGQkUlkZOXWsOiOa2wa9o32dFVAX08CBA1m8eDHTpk0jPj7ef3zx4sVnfE12djbl5eX+xzabjczMzFbn7Nixg/vvvx+AmpoaNm3ahMlk4pprrulUI0TPmjAyG4fLy4dfHMHj1XjpvRLunD2CviH81H46h9sri+aEOEcBJQi73U5BQQEHDhwI+MKjR4+mtLSUsrIysrKyKCws5H/+539anbNhwwb/1w899BBXXnmlJIcIcdWF/XG6VLZ856vb9Ld3S/jR7BH0SYkLdWhA85oITccQYduoChFOzpogfvOb3/DQQw/x9NNP88knn3DZZZcFfmGTiUcffZQlS5agqirz58+noKCA5cuXA749JkTkUhSFay8ZgMPt5cvdlTQ6PPy1cBc/mjOS1MTQF/fT8d1FWGPNoQ5FiIil6GdZ9XTdddfx9ttvt/k6lCqqm7BFcT9huI9BnE7TdP65YS/fHfCVg09PiuXOOSPOOIuoJ9tnMig9fkcTzf3Y0dw26B3t66yzroM4NXeE6+pZEVoGg8KCq85j6IAUAKrqnbxYuAu70xPiyHz7RLg8snBOiK46a4Jwu93s37+fffv2tfq65Y8QACajgUXXDGFwP9/amIoaB38r3IUjDMpehEMMQkSqs3YxTZ48+cwvVBTWr18flKDORrqYwpfLo/K3d3dx2NYIQG5mArfPGN5qNlFPt08BMlLiemywOpq7KaK5bdA72tdZZx2kPnWWkRAdiTEb+eG1w/jr2l0cPWGnrKKRl9eV8MNrh2Exh2bKqQxWC9F1AVdzFSIQsRYTt80YRnaab71MaXkDr7y/G7c3dGMBDqd0MwnRFeG9j6SISPGxZm6fOZzn1+ykstbBgWP1vPb+Hm6edm7b1O49UssXJRXUNLhITYxh3LBMCnJSOnydV9Nxe9SQ3cWIztlxsIotRceprHWQkRLH5ef3ZVQny7mI7iF3ECIoEuLM3DFruH/DoX1H63jtg914ungnsfdILe9/XkZVvQtNh6p6F+9/XsbeI7UBvd7hltlMkWDHwSre3HQAW40DTQdbjYM3Nx1gx8GqUIfWK0mCEEGTFG9hyawRpDcnib1H6vjLW9/h8Xa+HPcXZygvfqbjp3O5vTJVOwJsKTreqeMiuCRBiKBKsvqSRFqSb3V18YGq5juJziWJmgZXp46fTtPB7ZF9IsJdZa3jDMedPRyJAEkQogckn5Yk9h6p49VODlyfqXxHZ8p6ONwyWB3uMs6w8j0jJbaHIxEgCUL0kJSEGO6cNYLMVN8bwL6jdbyybjfuAFc6jxuW2anj7XG5VTTpZgprl5/ft1PHRXBJghA9JjkhhvsXjfUPXB84Vs9L75XgCmAAuSAnhWnjc0lPisGgQHpSDNPG5wY0i6mFDgF9LxE6owalM3/SYLJS4zAoClmpccyfNFhmMYXIWVdShyNZSR3Z0tKslB6p4a9rd/r7lXMzE/jhtcOIiwn+rOsYszGo1WajeTVuNLcNekf7OkvuIESPS4q3cOfskf7FdGUVjbywdieNjuAX+HN7fPtECCE6JglChERCnJkls0bQP8O3C93xqiaeX7OTOrs7qN9XB5wyWC1EQCRBiJCJjzU172edAPimOC5bXUxVfXCnNDZJhVchAiIJQoSUr3bTcM7rnwz41jUsW1VMeXVT0L6nV9XlLkKIAEiCECEXYzZyy/ShjBiYCkCDw8Pza4o5bAvegGFPjHcIEekkQYiwYDIaWHjNEL43pA8ADpfKX9fuYvfhmqB8P7mLEKJjkiBE2DAaFK6flM9lo7MB8Kgar76/m6/3VAbl+9kdkiCEOBtJECKsGBSFGZfkMW18LuCrobRi4342f3Os24vteVRNFs4JcRaSIETYURSFSRf0Z/6kwbTsFLru88Os+aS029cwyFiEEGcmCUKErbFDM/nB1KGYTb5/plt32nj9X3u6dXc6j6pRH+S1F0JEKkkQIqwNy0tlyawRWGN9ZTh2Harhr2t30dDUfW/qTS5v0BfoCRGJJEGIsJebmcDd80b5Nx4qq2jkL6uKsXXjWgmHJAkh2pAEISJCelIsd88dSV6Wr+BYTYOLv6wqDnjL0UA4XF7pbhLiFJIgRMSwxvr2ub7gPN9aCZdH5eX3SvisuLzbZjg1ubw4pBSHEIAkCBFhTEYDC67K5+qxOYBvGuyaT0pZteUgXrV7thStt7u7tG+2ENFGEoSIOIqicPXYHG66+jxMRt882M93VfDiu7u6ZdqqDtQ2uqQsuOj1JEGIiHXikiqlAAAd00lEQVR+fh/umjOSJKsFgNLjDfzf299xtLLxnK+tajq1ja5zvo4QkUwShIho/TMS+Ml1o8jN9JUMr210s3R1MV91Q3kOt1ejvhun0woRaSRBiIiXGG/hztkjuGhYJuArxLdy4/5uGZdocnppcsqgteidJEGIqGAyGrjuisFcN3EQxub6HNt22li2upiahnPrKmpocuP2SM0m0ftIghBR5aLhWfxozgiSm8cljlTa+eNbRZScQ9nwlkHr7polJUSkCGqC2Lx5M9OmTWPKlCksW7aszfOrV69m9uzZzJ49m5tuuomSkpJghiN6idzMRO6dP5qCHN8udQ6XyivrdvPe1kNdfpPXdKiqd8oeEqJXCVqCUFWVJ554ghdeeIHCwkLWrl3Lvn37Wp2Tk5PDa6+9xpo1a7jnnnv41a9+FaxwRC9jjTVz6/RhXD02h+aCsHxcdJxlq4up7uKe17ruGwTvzjpQQoSzoCWIoqIi8vLyyM3NxWKxMHPmTNavX9/qnO9973skJ/s+5V1wwQWUl5cHKxzRCxkMvvUSt80cTmKcGfB1Of3hze/4Zt+JLl/X7vRS0+Dq9v0phAg3pmBd2GazkZ2d7X+clZVFUVHRGc9fuXIlV1xxRUDXTkuznnN84Uza173Gp1kZNrgPLxfupPhAFS6Pyhsb9nGwvIGFU4cSH2vu0nWNFiNpSbEoitLqeEZGYneEHZaiuW0Q/e3rrKAliPY+XZ3+i9Ri69atrFy5kr///e8BXbu62n5OsYWztDSrtC9IFl59Hp9mJvD+54dRNZ3tO23sOVTDgqvyGdwvuUvXrKqyk5Jg8f/bzshIpLKyoTvDDhvR3DboHe3rrKB1MWVnZ7fqMrLZbGRmZrY5r6SkhEceeYT/+7//IzU1NVjhCIFBUbj8/L78+LpRZKbGAVBnd/PXtbtY+2lplzYicnlUahvdaNLdJKJQ0BLE6NGjKS0tpaysDLfbTWFhIZMnT251zrFjx7jvvvv47//+bwYNGhSsUIRopW+6lZ9cN5pLR/m6QHXg0x3l/GHldxwq7/wnSJdH5UStA7vTI+MSIqoErYvJZDLx6KOPsmTJElRVZf78+RQUFLB8+XIAFi5cyJ/+9Cdqa2t5/PHHATAajbz11lvBCkkIP7PJwKxLBzIsL5W3Nu2nttFNVb2TZauLmTAqmykX5RJjNgZ8PU2HhiYPtuomXE4v8bFB+9USoscoeoR95KmobsIWxf2EMgbR84oPVvHe1sNUn7LiOiHORJ/kWLyqTmpiDOOGZVKQk9LhtVraZzIoJMZbiLEElmR2HKxiS9FxKmsdZKTEcfn5fRk1KL3LbepOaz8rZePXR7E7vVhjTVx5YX9mTRgY6rC6nYxBtCUfc0SvtvdILR99fYzYGBNpCtQ1ulE1nUaHl0ZHI3ExRjyqzvuflwEElCQAvJpOTaMLi8mANdZ81kSx42AVb2464H9sq3H4H4c6Saz9rJS1n5QCvkkmjU0e/+NoTBKiNSm1IXq1L0oq/F/HWkxkpMb5azmBbxV2RU0TdoeH7btsnb6+26tR0+jiRK2DJqe33TGKLUXH233tmY73pI1fH+3UcRFdJEGIXu30Qn4GRcFgAKPRVwAQfCuo6+xudpfVUVbRtS4Ir6ZT3+SmstZBQ5MbVTtZ8qOy1tHuaypru7biuzudaQMmezdszCTCnyQI0aulJsa0OWY0GDAbjWSkxJJktdCyfMfj1fjzO8Ws3Li/y+U2NN23Eruy1klNgwuXRyUjJa7dczNSYrv0PbpTQlz7iwitZzguooskCNGrjRvWdm1OfKwJa6wJRVFIiDOTmRJH7CljCF/tqeTZf37Lpm+OntPe1S6PSk2Di/Pz09E0vU330+Xn9+3ytbvLlRf279RxEV1kkFr0ai2Dzl+UVFDT4GqesZTb6lh6ahwzJuRhMCis/aQUW40Dl0fl/c/L2LbTxtTxAzg/Px3DGSoFdGRwv2SuGafz1e5KahvdZKWFzyymloHojV8fpcnpxRpnjtpZTKItmeYaZsJxGmh3ivT2qZrO5zttfPjlERyuk6W/+2dYmXbRAMaf3++c22cxGUiMN2M2Bb4Ooyf0hmmg0d6+zpIEEWYi/Q20I9HSPofLy8avj/LpjnJU7eSv0NC8VCZf2N+/R/a5sJgMxMeaiLWEx41+b3gDjfb2dVZ4/MsTIsLExZi49pI8Lh6Rxb++KOPbfVUA7D5Uw+5DNQwbkMrVY/vTP6PricLt1XA3ujEYPMSajcSYjVjMhjMWvRSiu0mCEOIcpCXFcuPkAq4Y048Ptpex+3AtACWHayg5XMPwvFSu+l5/cs4hUWiaTpPLS5PLiwJYzEZizAYsZqN/Kq4QwSAJQohu0Dfdyq3Th1Hd5OGtDXs5cKwegF2Hath1qIaCnGQmXdCfQX0Tz+kOQMc3+8nlUQEPJoOC2WzEYjJgMRswGiRhiO4jCUKIbnReTgpLZo3g4PF61n95xJ8o9h6pY++ROgZkJTDx/H4Mz0vFYDj3riKvpuN1eXE0r/czGRViLSZiLXJ3Ic6dJAghgmBQ3yR/otj0zTH2lPm6ng7bGnn9X3tIT4rlstHZfG9IBpZOVI3tiFfVaXR4aHR4MBqU5jsLI2aTQRKG6DRJEEIE0aC+SQzqm8SxE3Y2fXOUHQer0XWoqney+pNSPthexrhhmVwyIou0pO5dOa1qOg63isPt2wjJaFD8A91mk3RHiY5JghCiB/TrY2XhNUOornfyyY5yviypwO3VcLpVthQd55Oi4wwdkMr4EZkMyUnplu6n06n+wW7fY4PiqzdlMvoShtxliNNJghCiB6UlxTL70oFcMzaHL0oq+Ky4nNpGNzonZz6lJFgYNyyTsUMySE5oWyuqu2h681RarwbNSUNRwGQwYDIqGI0GzEYDZrOhy6vERWSThXJhJloWkp2JtK81TdMpOVzD1mIb+47WtXpOAc7LSWbs0EyG56ViNoXm072C706jb3YStTV2DAYFo0Fp/jt67jhkoVxbcgchRAgZDAojBqYxYmAaVXVOPt9l48s9lb69Izg5+ynWYmTU4HQuLOhDXnZij36i1wGPqtHo8FDf1LrMt4JvbMNo9N11tHRXSVdVcOm6jqbr6LrvQ4am62ga6DQf03XQfefp+ErWS4IQIoKlJ8dy7SV5TLkol12HavhydyV7j9Si6+B0q3xRUsEXJRUkWy2Mzk/n/Px0+vexhnRltU7zVFtNxXVK7lAAo1HBbDT4u6pMpui64+gOvjd535t7u183J4CWhKC1vOn3UL+PJAghwozJaGD04HRGD06nzu7mm72VfL33BBU1vo2F6uxuthQdZ0vRcdISYxg5KI1Rg9Pon5EQNmMFOr4pt15VBVT/cf8Yh8l3x6GgcGrIavOnYb2lvpWioDRfj+Y3yNO1vL7lMi2fmP2xnPZuenpCVZTm800mTtQ5mr9Z+wzNXWv+bjblZHcbrb6v701cx/cGr2o6qqr52qed/PQf7v37kiCECGPJVguTLujPFWP6cbyqiW/2nuC7A1XU2X0bFlU3uPi46DgfFx0nyWpheF4qw/NSGdwvKSy7eXTd113lUbu+j0awuL0qXrWDt+z2MlQUkwQhRARQFIV+faz062Nl+iUDKLM1UrS/ih0Hq2hoHheot7vZttPGtp02LCYD5+UkMzQ3hSG5KUGdDSWilyQIISKMQVHIy04kLzuRmZfmcaSikeKD1RQfrKa6eY9tt1djZ2kNO0trAMhKjaMgJ4XzcpIZmJ3Yrau3RfSSBCFEBDMoCgOyEhmQlcj0iwdQUeugpLlAYFlFo79P3FbjwFbjYMt3xzEaFHKzEhjcN4nB/ZLIzUwM2RRaEd4kQQgRJRRFISs1nqzUeCZd0J8mp5d9R2vZU1bL3rI6Ghy+rihV0yk93kDp8QY2fHUUk1EhJyOBvOxEBmb7kk1cjLw1CEkQUU3BN0NDUXwzRVpmjJw6i+NsMzx8r8E/k4RTZoucPhPk1PnWnPJ1y5S8ludPnfHRKs5W1289s6XdmAKI6+S5p1/P9z1av+7keafPgNE52Y6WWSiqpuP2qj023bAr4mNNnJ/fh/Pz+6DrOrYaB/uP1rHvSB2l5Q3NJcN9s41KyxsoLW9gU/NrM1LiGJCVwIDMBHIyE8hMjQ9dQ0TIRFyCMJsNWM5wO9zRfPD2nm5z6PQpcB284PTnzxbD6U+1951SEmLwOj1nfEM7+Wbme41/it8pb64nzwuPKY+nyki3YtTCbwZLV+i6jtur4fKouD0BzIAJIUVRyE6LJzstnstG90XVdI6dsHPgWB2lxxs4ZGvA6T45HbWy1kFlrYMvd1cCYDYaGNA3kcyUOPo3D5ZnpMRhDELNKBE+Iq7UBhD1y+GlfZFJ03SSUuI5Vl6Hqp6c9x4Jv2CarmOrbuJQeQOHbY0crmigut511teYjAqZqfH0TYsnOz2erLR4slLjSIgzh+WHk45EexmY0UOzOv2aiLuDECJcGQwKcTEmkuItbZ5r+RzmVTUcLhWn2xtWU+oNikLfdCt9061cMtJ3rNHh4WhlI2UVjRyttHOsyu6fUgu+rqljJ+wcO9H6TTU+1kRmahyZKXFk+P/EkpwQEzYL+URgJEEI0QNaPlGbTUbMJiOJ8WbcHt+CMY9Xw9t8txFOEuLMDB2QytABqQCkpsZTWlbDsRN2jp6wU17dxPGqJmoaWt9pNDm9/kHwU5mMCn2S40hPiiU9OYb0pFjSkmJJS4ohyRoj3VVhSBKEECGgKAoxFiMxnFyPoOm+bimPV8ej+sY2tDBKGoqikJwQQ3JCDMMHpvmPO91ebNUOyqubsNU0Yav2jV80OloX9vOqOuXVTZRXN7W5tkFRSEm0kJIQQ2pijP/v5ATfsWSrJSxXhkc7SRBChAmDomAwGTGf8lvpaR4E93h9dxvhlDBaxFpM/oV7p2pyev2D3SfqHFTWOjlR56S63tnmbknTdarrXWcd97DGmki2WkiyWkiM9/2dFG8mMd5CQsvfcSYpCNiNJEEIEcZadnproWk6Hq+G26vi9vi6psIvZfjEx7afODRNp77JzYk6JzUNLqrrfUmjttFNTYOrzZ1HC7vTi93p5VhV2zuQU8XFmEiIM5MQZ8YaZ8Ia6/s6PtaENdZEfKyZ+BgT8bG+P2ajISIH1XuCJAghIojB0Nw1ZfF1Tem63lw1VWv+E/6zpwwGhZQEXzdSe9xeldpGN3WNLuoa3dQ2uqizu6m3u6mzu6lrdPvXcLTH4fLicPnuXgJhMvomFyTEW7CYDMRZTMTFGIm1mIiNMRJraf7aYvT/iTGbiDEbiLEYsZiMQdkiNhxIghAigimKgtmktFsqw6tqqKqOVzuZOFoW+YVr8gCwmIxkpvhmQZ2J26PS0OShzu6m0eGmoclDQ5OHRkfrP3aHp8PBf6+q+1/fVWaTgRizEYu55W8jFpOhzd9mkwGLyei/Mzz1j39v8JZNl5q/NhkNGI1KSGaABTVBbN68mSeffBJN01iwYAE/+tGPWj2v6zpPPvkkmzZtIjY2lt/85jeMHDkymCEJEbV2HKxiS9FxKmsdZKTEcfn5fRk1KJ3XCnezfVcFHlXDbDRw0fBMLhqW6T+3T3Is40dkMTQ3lZ2Hqtm200ZVnZO0pBjGDs3kSGUjn++00eRWibcYGT8ii6suzDljHHuP1PJFSQU1DS5SE2MYNywToM2xgpyUgF9fkJPCR18f8cXh8hIfYzprHC3XqK53+gbV81LJSIlj39E6Sg7V0NDkwWI2kJYYi9lkwOH24vHqNDS5cbi8uNxqp5Kox+ubjUZgNy1dYjT4duxr2bnP2Py3qXlHP6NRwWTw/W1s3g7W1PK10dCldRBBWyinqirTpk3jb3/7G1lZWdxwww08++yznHfeef5zNm3axKuvvsrzzz/Pt99+y5NPPsmKFSs6vHa0LrSC6F5IBtK+YNlxsIo3Nx1oc9waa2JXc0XXFjq+8YGM0z6hjx2a4V853aKmwYnd4cGgKCiK4l/PMfXiAVwzNrfVbmfoUFJWw7ptZa2u4XR7UYAYS+vPo9PG57ZJEnuP1PL+561fD5CdFsd3+6vaHL/ye/3bJIkzXWPkoFSKD9a0Od4Sx6kL5fY0t+PUnd10TWfU4DRSEmJwulVcnuY/zV+3TChwuVXcXs33p/l4OFjzP3M7/Zqg3UEUFRWRl5dHbm4uADNnzmT9+vWtEsT69euZN28eiqJwwQUXUF9fT0VFBZmZmcEKS4iotKXoeLvHSw61fUMEcDi9bY5t/Pooiact8rM7vOg6KAal1UDuZzvKmX9Ffptr7Ni039/d1ZJMHC7f97LGmf3n6UDR/irGD8vy76MM8O2+E/71EKd+cm0vOQBs31XBzEsGtjr/672VnDokoJ9y7qkxtPh6TyWjBqU3jy34xna+2XvC90n8tII49XY3cy4b1G4sZ6LpzRMLPL7E4fE0TzJovuto80dVm9fG+MaWWmawqac89qoa3uZd6lq6D72a7u9WVFu6Fc9x1lvQEoTNZiM7O9v/OCsri6KiorOek52djc1m6zBBdGXz7Ugi7YtsoWhfTaO73XEITW+nBlnzVpenn293eklLij3t9b43mJbk0PJ3k9Pbbjvbi0PTAIU2e1A0ODzk9E857ZjXPwB/Kq+mYzG1Pe50q+QPTD+tHSqx7VSjPVHnpE874xpNbpUhg/sAkJ7se97uUtutaNvkVhman9HmeLQKWoJor+eqvQqgHZ0jhOjYsz+bFOoQgHOPozvaES7XiAZBW1GSnZ1NeXm5/3F7dwann1NeXi7dS0IIESaCliBGjx5NaWkpZWVluN1uCgsLmTx5cqtzJk+ezDvvvIOu63zzzTckJiZKghBCiDARtC4mk8nEo48+ypIlS1BVlfnz51NQUMDy5csBWLhwIZMmTWLTpk1MmTKFuLg4nnrqqWCFI4QQopMicj8IIYQQwSdVrYQQQrRLEoQQQoh2hXUtJpfLxeLFi3G73f6V2T/96U+pra3l5z//OUePHqV///787//+L8nJyaEOt0taxmeysrJYunRpVLVt8uTJWK1WDAYDRqORt956K6raV19fzyOPPMKePXtQFIWnnnqKQYMGRUX7Dhw4wM9//nP/47KyMn76058yb968qGjfSy+9xIoVK1AUhSFDhvD000/jcDiiom0AL7/8MitWrEDXdRYsWMAPf/jDLv3uhfUdhMVi4eWXX2b16tW88847fPzxx3zzzTcsW7aMCRMm8MEHHzBhwgSWLVsW6lC77JVXXiE//+SK1GhqG/j+oa5atYq33noLiK72Pfnkk0ycOJF169axatUq8vPzo6Z9gwcPZtWqVf6fXVxcHFOmTImK9tlsNl555RXefPNN1q5di6qqFBYWRkXbAPbs2cOKFStYsWIFq1atYuPGjZSWlnapfWGdIBRFwWq1AuD1evF6vSiK4i/RATBv3jw+/PDDUIbZZeXl5WzcuJEbbrjBfyxa2nYm0dK+xsZGtm/f7v/ZWSwWkpKSoqZ9p/rss8/Izc2lf//+UdM+VVVxOp14vV6cTieZmZlR07b9+/czZswY4uLiMJlMXHTRRfzrX//qUvvCOkGA7wc5d+5cLr30Ui699FLGjBlDVVWVf71EZmYm1dXVIY6ya5566in+7d/+DcMpO2BFS9ta3HHHHVx//fX885//BKKnfWVlZaSlpfHwww8zb948fvnLX9LU1BQ17TtVYWEhs2bNAqLj55eVlcXtt9/OVVddxeWXX05CQgKXX355VLQNYMiQIXzxxRfU1NTgcDjYvHkz5eXlXWpf2CcIo9HIqlWr2LRpE0VFRezZsyfUIXWLjz76iLS0NEaNGhXqUIJm+fLlvP322zz//PO8/vrrbN++PdQhdRuv18vOnTtZuHAh77zzDnFxcRHbJXE2brebDRs2MH369FCH0m3q6upYv34969ev5+OPP8bhcLBq1apQh9Vt8vPzWbJkCbfffjtLlixh6NChGI1t61gFIuwTRIukpCQuvvhiPv74Y9LT06moqACgoqKCtLS0Dl4dfr766is2bNjA5MmTuf/++9m6dSsPPPBAVLStRVaWr/58eno6U6ZMoaioKGral52dTXZ2NmPGjAFg+vTp7Ny5M2ra12Lz5s2MHDmSPn2ai9lFQfs+/fRTcnJySEtLw2w2M3XqVL7++uuoaFuLBQsW8Pbbb/P666+TkpJCXl5el9oX1gmiurqa+vp6AJxOJ59++imDBw/2l+gAeOedd7j66qtDGWaX/OIXv2Dz5s1s2LCBZ599lksuuYTf/va3UdE2gKamJhobG/1ff/LJJxQUFERN+zIyMsjOzubAAd8eDJ999hn5+flR074WhYWFzJw50/84GtrXr18/vv32WxwOB7quR+XPrqrKVx792LFjfPDBB8yaNatL7QvrldQlJSU89NBDqKqKrutMnz6de++9l5qaGn72s59x/Phx+vbty+9//3tSUtrfnSoSbNu2jRdffJGlS5dGTdvKysr4yU9+AvjGkWbNmsU999wTNe0D2LVrF7/85S/xeDzk5uby9NNPo2la1LTP4XBw5ZVX8uGHH5KY6CvtHS0/v+eee453330Xk8nE8OHDefLJJ7Hb7VHRNoBFixZRW1uLyWTi4YcfZsKECV362YV1ghBCCBE6Yd3FJIQQInQkQQghhGiXJAghhBDtkgQhhBCiXZIghBBCtCusq7kKcTYLFizA7Xbj8XgoLS2loKAAgBEjRvD000+HOLrAFBcXU1ZWFlUrlUX0kGmuIuIdOXKE+fPns23btlCH0obX68VkOvPnsBUrVvDpp5/yu9/9rtuvLcS5kn9dIiqtXLmSf/zjH6iqSlJSEo8//jgDBw5kxYoVrFu3DqvVyp49e+jbty//8R//wTPPPENZWRljxozhmWeeQVEUHnjgAeLi4jh8+DDl5eVcfPHF/OpXv8JsNtPQ0MBTTz3F3r17cblcXHrppTz44IMYDAYWLlzI+PHj+frrr4mPj+e5557zLxJ0uVyMGTOGxx9/nPr6ev70pz9ht9uZO3cuF198MYsXL2bRokV88sknABw6dMj/+NChQyxcuJAbb7yRrVu3cv311zN37lyeffZZvvjiC9xuN8OHD+exxx4jLi4uxD8BERV0ISJcWVmZPn78eP/jrVu36nfddZfucrl0Xdf19evX64sXL9Z1XdffeOMNffz48Xp5ebmu67p+++236/PmzdMbGhp0t9utz5gxQ9+6dauu67r+i1/8Qp87d65ut9t1t9ut33LLLfrf//53Xdd1/cEHH9TXrFmj67quq6qq//SnP9VXrlyp67qu33TTTfqPf/xj3ev1+p+vra31f33//ffrb7zxhj+en/3sZ/7YS0tL9UsvvbTdx6WlpfqQIUP0devW+Z9/7rnn9KVLl/ofP/300/rvf//7c/sfKkQzuYMQUWfDhg3s3LmTBQsWAKDrOna73f/82LFj/YUER4wYgdPpJCEhAYChQ4dy+PBhLr74YgBmzJhBfHw84Kuhv3HjRhYuXMhHH31EcXExzz//POCrFTZgwAD/95g9e7a/gqamaSxbtowtW7agaRq1tbVd3qksPj6eadOmtWqrw+GgsLAQ8FVfHTlyZJeuLcTpJEGIqKPrOt///ve59957230+JibG/7XBYGjz2Ov1nvG6iqIAvjf9pUuX0q9fv3bPbUkqAKtWraKoqIi///3vWK1W/vjHP3L8+PF2X2c0GtE0zf/Y5XKd8botMf3617/moosuavd6QpwLmeYqok5L1UqbzQb4igXu2LGjS9d67733cDgceDwe1qxZ47+zmDx5MsuWLUNVVcBXebisrKzdazQ0NJCamorVaqWurs7/aR/AarXS0NDgf5yZmYnT6fRfa+3atR229cUXX/QnksbGRvbv39+ltgpxOkkQIupccskl3Hvvvdx1113MmTOH2bNns3Hjxi5da+zYsdxzzz3MmjWL3Nxc/xajv/rVr9A0jblz5zJ79mzuvPNOKisr273GddddR21tLbNmzeL+++9v9Wn/sssuo6GhgTlz5vDUU09hsVh46KGHuPXWW7n55psxm81nje/uu+8mPz+fG264gdmzZ7N48WIOHjzYpbYKcTqZ5irEGTzwwAOMHTuWhQsXhjoUIUJC7iCEEEK0S+4ghBBCtEvuIIQQQrRLEoQQQoh2SYIQQgjRLkkQQggh2iUJQgghRLv+fwWn1lJJMA1GAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.set(color_codes=True)\n",
"plt.xlim(30,90)\n",
"plt.ylim(0,1)\n",
"sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**I think I have managed to correctly compute and plot the uncertainty of my prediction.** Although the shaded area seems very similar to [the one obtained by with R](https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/tree/master/challenger.pdf), I can spot a few differences (e.g., the blue point for temperature 63 is outside)... Could this be a numerical error ? Or a difference in the statistical method ? It is not clear which one is \"right\"."
]
}
],
"metadata": {
"celltoolbar": "Hide code",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}