From f7ee64e7072e426c79cdfa6791953ea77040649a Mon Sep 17 00:00:00 2001 From: d50fa6e987b3c8f6931784a24c7d5447 Date: Thu, 2 Apr 2020 12:22:41 +0000 Subject: [PATCH] Exercice --- module2/exo1/toy_notebook_fr.ipynb | 175 ++++++++++++++++++++++++++++- 1 file changed, 172 insertions(+), 3 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 0bbbe37..dabba47 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -1,5 +1,175 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "March 28, 2019" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1 A propos du calcul de $\\pi$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.1 En demandant à la lib maths" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mon ordinateur m’indique que $\\pi$ vaut *approximativement*" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.141592653589793\n" + ] + } + ], + "source": [ + "from math import *\n", + "print(pi)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## En utilisant la méthode des aiguilles de Buffon" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mais calculé avec la **méthode** des ``aiguilles de Buffon``, on obtiendrait comme **approximation** :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.128911138923655" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "np.random.seed(seed=42)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Avec un argument \"fréquentiel\" de surface\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n", + "sinus se base sur le fait que si X $\\approx$ U(0, 1) et Y $\\approx$ U(0, 1) alors P[$X^2$ $\\sum$ $Y^2$ ≤ 1] = $^$\\pi$/_4$ (voir\n", + "``méthode de Monte Carlo sur Wikipedia``). Le code suivant illustre ce fait :" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 2)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m import matplotlib.pyplot as\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as \n", + "\n", + "np.random.seed(seed=42)\n", + "N = 1000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "y = np.random.uniform(size=N, low=0, high=1)\n", + "accept = (x*x+y*y) <= 1\n", + "reject = np.logical_not(accept)\n", + "\n", + "fig, ax = plt.subplots(1)\n", + "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", + "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", + "ax.set_aspect('equal')\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n", + "en moyenne, $X^2$ $\\sum$ $Y^2$ est inférieur à 1 :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'accept' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;36m4\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maccept\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'accept' is not defined" + ] + } + ], + "source": [ + "4*np.mean(accept)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +186,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - -- 2.18.1