{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "March 28, 2019" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1 A propos du calcul de $\\pi$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1.1 En demandant à la lib maths" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Mon ordinateur m’indique que $\\pi$ vaut *approximativement*" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.141592653589793\n" ] } ], "source": [ "from math import *\n", "print(pi)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## En utilisant la méthode des aiguilles de Buffon" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Mais calculé avec la **méthode** des ``aiguilles de Buffon``, on obtiendrait comme **approximation** :\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.128911138923655" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "np.random.seed(seed=42)\n", "N = 10000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Avec un argument \"fréquentiel\" de surface\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n", "sinus se base sur le fait que si X $\\approx$ U(0, 1) et Y $\\approx$ U(0, 1) alors P[$X^2$ $\\sum$ $Y^2$ ≤ 1] = $^$\\pi$/_4$ (voir\n", "``méthode de Monte Carlo sur Wikipedia``). Le code suivant illustre ce fait :" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (, line 2)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m import matplotlib.pyplot as\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as \n", "\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", "\n", "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n", "en moyenne, $X^2$ $\\sum$ $Y^2$ est inférieur à 1 :\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'accept' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;36m4\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maccept\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'accept' is not defined" ] } ], "source": [ "4*np.mean(accept)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }