
Peer_Review_Cholera

Marc OUDART

15-20/04/2020

Instructions

1. From numerical data, draw a map in John Snow’s spirit. Show death places with markers whose size
indicates number of deaths. Show water pumps on the same map with a different symbol.

2. Try to find different ways to show that the Broad street pump is at the center of the outbreak. (Density
of deaths in the neighborhood ? Other approaches ?).

3. Submit work on FUN.

Use ggmap with OpenStreetMaps as map template with source="osm".

Importing data

There is already a version of John Snow’s data sets and map in the package HistData in Snow.deaths and
Snow.pumps. However, the coordinates fit John Snow’s map and no other maps.

First download and extract the zip file from data sets available at this address : http://rtwilson.com/
downloads/SnowGIS_SHP.zip. It is the first link on Robin’s blog.
Two files of interest are the Cholera_Deaths.shp and the Pumps.shp files containing death people and water
pumps coordinates.
The next code lines test if the file Cholera_Deaths.shp exists. If not, you have to download it manually as I
do not know how to unzip documents in R . . .
if(file.exists("SnowGIS_SHP/Cholera_Deaths.shp") == FALSE){

print("You must download the zip file as explained above")
} else{

print("Files already downloaded")
}

[1] "Files already downloaded"

Reading the data

In order to read .shp files we need the maptools package.
The next code lines test if maptools is installed. If not, it does and load it :
if(!require("maptools")){

install.packages("maptools")
library("maptools")

}

1

http://rtwilson.com/downloads/SnowGIS_SHP.zip
http://rtwilson.com/downloads/SnowGIS_SHP.zip
http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/

Therefore, we can read the data with the readShapePoints function :
Deaths <- readShapePoints("SnowGIS_SHP/Cholera_Deaths")
head(Deaths)

coordinates Id Count
0 (529308.7, 181031.4) 0 3
1 (529312.2, 181025.2) 0 2
2 (529314.4, 181020.3) 0 1
3 (529317.4, 181014.3) 0 1
4 (529320.7, 181007.9) 0 4
5 (529336.7, 181006) 0 2

We have coordinates, Id (I do not know what it is but I think it is not important) and Count that are the
number of deaths at this location.
To extract coordinates, we can use the coords function.
head(Deaths@coords)

coords.x1 coords.x2
0 529308.7 181031.4
1 529312.2 181025.2
2 529314.4 181020.3
3 529317.4 181014.3
4 529320.7 181007.9
5 529336.7 181006.0

The number of registered deaths is :
sum(Deaths$Count)

[1] 489

It seems that this is less than recorded deaths (616) displayed on the FUN website but let’s suppose that it is
Robin’s fault. . .

We can also read the file with the Pumps coordinates :
Pumps <- readShapePoints("SnowGIS_SHP/Pumps")
head(Pumps)

coordinates Id
0 (529396.5, 181025.1) 0
1 (529192.5, 181079.4) 0
2 (529183.7, 181193.7) 0
3 (529748.9, 180924.2) 0
4 (529613.2, 180896.8) 0
5 (529453.6, 180826.4) 0

There are 6 pumps.

Extracting London map

For this purpose we will need the ggmap package.
The next code lines test if ggmap is installed. If not, it does and load it :
if(!require("ggmap")){

install.packages("ggmap")

2

library("ggmap")
}

I got the London coordinates centered on Broad Street on Stamen Maps website :
london <- c(left = -0.143, bottom = 51.51, right = -0.131, top = 51.517)

We will get the map based on the above coordinates with streets names with the maptype = "toner".
london_map = get_stamenmap(london, zoom = 17, maptype = "toner")

Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

We can display the map with ggmap.
map <- ggmap(london_map)
map

51.510

51.512

51.514

51.516

−0.1425 −0.1400 −0.1375 −0.1350 −0.1325
lon

la
t

Good, it looks like John Snow’s map !

Displaying the Cholera deaths and pumps on the map

We will first extract the points and their coordinates from the .shp file.
Remember that we put the Deaths points in the Deaths variable and the Pumps points in the Pumps variable.
Deaths_coord <- data.frame(Deaths@coords)
Pumps_coord <- data.frame(Pumps@coords)

3

Unfortunately, both coordinates are in OSGB36 National Grid reference while our map is in classic decimal
degrees reference.
Fortunately, I found on the internet this following code that works but I do not know exactly how it works . . .
It seems that it specifies the Coordinate Reference System (CRS) first to the Deaths and Pumps coordinates
with the CRS function.
And then, it transforms the system to a more classic longitude and latitude system with the sptransform
function.
coordinates(Deaths_coord)=~coords.x1+coords.x2
coordinates(Pumps_coord)=~coords.x1+coords.x2
proj4string(Deaths_coord)=CRS("+init=epsg:27700")
proj4string(Pumps_coord)=CRS("+init=epsg:27700")
Deaths_coord = spTransform(Deaths_coord,CRS("+proj=longlat +datum=WGS84"))
Pumps_coord = spTransform(Pumps_coord,CRS("+proj=longlat +datum=WGS84"))
df_Deaths=data.frame(Deaths_coord@coords)
df_Pumps=data.frame(Pumps_coord@coords)

Let’s see the results :
head(df_Deaths)

coords.x1 coords.x2
0 -0.1379301 51.51342
1 -0.1378831 51.51336
2 -0.1378529 51.51332
3 -0.1378120 51.51326
4 -0.1377668 51.51320
5 -0.1375369 51.51318
head(df_Pumps)

coords.x1 coords.x2
0 -0.1366679 51.51334
1 -0.1395862 51.51388
2 -0.1396710 51.51491
3 -0.1316299 51.51235
4 -0.1335944 51.51214
5 -0.1359191 51.51154

Looks fine for both points :)!

Let’s project the Deaths points on our map with the geom_point function in red and with a size depending
on the number of deaths recorded at the particular coordinates :
mp <- map + geom_point(df_Deaths, mapping = aes(coords.x1, coords.x2), color = "red",

size = Deaths$Count, alpha = 0.5)
mp

4

51.510

51.512

51.514

51.516

−0.1425 −0.1400 −0.1375 −0.1350 −0.1325
lon

la
t

Let’s add the pumps in another color and symbol :
mp2 <- mp + geom_point(df_Pumps, mapping = aes(coords.x1, coords.x2), color = "blue",

shape = 24, size = 3, fill = "blue")
mp2

5

51.510

51.512

51.514

51.516

−0.1425 −0.1400 −0.1375 −0.1350 −0.1325
lon

la
t

Highlighting the Broad street pump (number 1 in the coordinates list) :
mp3 <- mp2 + geom_point(df_Pumps, mapping = aes(coords.x1[1], coords.x2[1]),

color = "green", shape = 24, size = 3, fill = "green")
mp3

6

51.510

51.512

51.514

51.516

−0.1425 −0.1400 −0.1375 −0.1350 −0.1325
lon

la
t

From this map, we can clearly see that the Pump on Broad street is in the center of the outbreak.

Analysis to show that the Broad street pump is at the center of
the outbreak

We can try to plot a density of Deaths with the stat_density_2d function :
mp4 <- mp3 + stat_density_2d(data = df_Deaths, aes(coords.x1, coords.x2,

fill = after_stat(level)),
geom = "polygon", alpha = 0.3) +

geom_point(df_Pumps, mapping = aes(coords.x1, coords.x2), color = "blue",
shape = 24, size = 3, fill = "blue") +

geom_point(df_Pumps, mapping = aes(coords.x1[1], coords.x2[1]), color = "green",
shape = 24, size = 3, fill = "green") +

theme(legend.position = "none")
mp4

7

51.510

51.512

51.514

51.516

−0.1425 −0.1400 −0.1375 −0.1350 −0.1325
lon

la
t

We can clearly see here that the green pump on broadwick street seems to be at the center of the outbreak.

Computing distances between deaths density and each Pump

In order to have numerical data to compare, we can find the maxima of the Deaths density and compute the
distances between them and the pumps.
We can try to get the coordinates of the maximum density points with functions in MASS and raster libraries
:
if(!require("MASS")){

install.packages("MASS")
library("MASS")

}
if(!require("raster")){

install.packages("raster")
library("raster")

}

As I am no mathematician I copied pasted a code from the internet.
I think that it computes and retrieve the coordinates of the local maxima from the Deaths data frame.
w = matrix(1,3,3)
x = kde2d(x = df_Deaths$coords.x1, y = df_Deaths$coords.x2)
r = raster(x)
f <- function(X) max(X, na.rm=TRUE)
localmax <- focal(r, w, fun = f, pad=TRUE, padValue=NA)
r2 <- r==localmax

8

maxXY <- xyFromCell(r2, Which(r2==1, cells=TRUE))
maxXY <- as.data.frame(maxXY)
maxXY

x y
1 -0.1344211 51.51583
2 -0.1341236 51.51434
3 -0.1359086 51.51401
4 -0.1379912 51.51335
5 -0.1365037 51.51285

In maxXY there are the coordinates of the 5 local maxima.
We can plot them on the map in yellow.
mp5 <- mp4 + geom_point(maxXY, mapping = aes(x, y), color = "yellow", size = 3, fill = "yellow")
mp5

51.510

51.512

51.514

51.516

−0.1425 −0.1400 −0.1375 −0.1350 −0.1325
lon

la
t

It really seems that the closest pump to the maxima is the one on Broad street.

Let’s see if we can compute the distance between these maxima and the pumps to show what pump is the
closest to what maximum.
If I remember well, the distance between 2 points on a graph can be calculated with the following equation :

y2 − y1
x2 − x1

In the next code lines, I initialized distance vectors between each 5 local maxima and the 8 pumps named
dist_pumpi with i the number of the pump.
Then, it computes the distances with local maxima and the pump in a for loop to go around all local maxima.

9

There is one for loop for each pump.
I think that I could have done one for loop in another loop to reduce the code and go around all pumps that
way but it was fast the following way.
dist_pump0 <- c()
dist_pump1 <- c()
dist_pump2 <- c()
dist_pump3 <- c()
dist_pump4 <- c()
dist_pump5 <- c()
dist_pump6 <- c()
dist_pump7 <- c()
for (i in c(1:length(maxXY$x))){

dist_pump0[i] <- abs((maxXY$y[i]-df_Pumps$coords.x2[1])/(maxXY$x[i]-df_Pumps$coords.x1[1]))
}
for (i in c(1:length(maxXY$x))){

dist_pump1[i] <- abs((maxXY$y[i]-df_Pumps$coords.x2[2])/(maxXY$x[i]-df_Pumps$coords.x1[2]))
}
for (i in c(1:length(maxXY$x))){

dist_pump2[i] <- abs((maxXY$y[i]-df_Pumps$coords.x2[3])/(maxXY$x[i]-df_Pumps$coords.x1[3]))
}
for (i in c(1:length(maxXY$x))){

dist_pump3[i] <- abs((maxXY$y[i]-df_Pumps$coords.x2[4])/(maxXY$x[i]-df_Pumps$coords.x1[4]))
}
for (i in c(1:length(maxXY$x))){

dist_pump4[i] <- abs((maxXY$y[i]-df_Pumps$coords.x2[5])/(maxXY$x[i]-df_Pumps$coords.x1[5]))
}
for (i in c(1:length(maxXY$x))){

dist_pump5[i] <- abs((maxXY$y[i]-df_Pumps$coords.x2[6])/(maxXY$x[i]-df_Pumps$coords.x1[6]))
}
for (i in c(1:length(maxXY$x))){

dist_pump6[i] <- abs((maxXY$y[i]-df_Pumps$coords.x2[7])/(maxXY$x[i]-df_Pumps$coords.x1[7]))
}
for (i in c(1:length(maxXY$x))){

dist_pump7[i] <- abs((maxXY$y[i]-df_Pumps$coords.x2[8])/(maxXY$x[i]-df_Pumps$coords.x1[8]))
}
dist_pump0

[1] 1.109747025 0.393558957 0.882165101 0.005019071 2.988257905
dist_pump1

[1] 0.37918061 0.08539183 0.03668145 0.33119174 0.33270960
dist_pump2

[1] 0.1769390 0.1015097 0.2377975 0.9273824 0.6488565
dist_pump3

[1] 1.2469328 0.7973772 0.3872278 0.1562141 0.1018483
dist_pump4

[1] 4.4704858 4.1643081 0.8089122 0.2749445 0.2445759
dist_pump5

[1] 2.8651415 1.5594601 234.9633795 0.8713185 2.2379015

10

dist_pump6

[1] 12.6596538 26.7134490 2.0501972 0.8260129 1.1137462
dist_pump7

[1] 1.2015992 0.7477490 1.1858130 9.8897454 0.9174587

From these vectors, we see that the 2nd vector seems to have the shortest distances. It corresponds to the
pump number 1 which is the one on Broad street.

We can now plot the mean distance of each pump on a barplot to see if it is the case.
Mean_dist_pump <- data.frame(index = c(0:7), dist = c(mean(dist_pump0),mean(dist_pump1),

mean(dist_pump2), mean(dist_pump3),
mean(dist_pump4), mean(dist_pump5),
mean(dist_pump6), mean(dist_pump7)))

Sd_dist_pump <- data.frame(index = c(0:7), dist = c(sd(dist_pump0),sd(dist_pump1),
sd(dist_pump2), sd(dist_pump3),
sd(dist_pump4), sd(dist_pump5),
sd(dist_pump6), sd(dist_pump7)))

We call ggplot with geom_bar and geom_error_bar to plot the mean and its standard deviation.
gg <- ggplot(data = Mean_dist_pump, aes(x = index, y = dist)) +

geom_bar(stat = "identity") +
geom_errorbar(aes(ymin=dist-Sd_dist_pump$dist, ymax=dist+Sd_dist_pump$dist)) +
labs(x = "Pump number", y = "Mean distance between local maxima and pump",

title ="Distances of pumps from outbreak") +
scale_x_discrete(limits = c(0:7)) +
scale_x_continuous(breaks = c(-1:50))

Scale for 'x' is already present. Adding another scale for 'x', which will
replace the existing scale.
gg

11

−50

0

50

100

150

0 1 2 3 4 5 6 7
Pump number

M
ea

n
di

st
an

ce
 b

et
w

ee
n

lo
ca

l m
ax

im
a

an
d

pu
m

p
Distances of pumps from outbreak

Pump number 1 is on average closer to the local maxima of Deaths and the number 5 is the farthest.
Perhaps, we can try to test if all the pump distance means are statistically greater than the mean distance
of pump 1 by testing 2 by 2 with a one-sided Mann-Whitney test with the function wilcox.test and the
option alternative = "g" with “g” standing for “greater”.
wilcox.test(dist_pump0, dist_pump1, alternative = "g")

##
Wilcoxon rank sum test
##
data: dist_pump0 and dist_pump1
W = 20, p-value = 0.0754
alternative hypothesis: true location shift is greater than 0
wilcox.test(dist_pump2, dist_pump1, alternative = "g")

##
Wilcoxon rank sum test
##
data: dist_pump2 and dist_pump1
W = 16, p-value = 0.2738
alternative hypothesis: true location shift is greater than 0
wilcox.test(dist_pump3, dist_pump1, alternative = "g")

##
Wilcoxon rank sum test
##
data: dist_pump3 and dist_pump1

12

W = 19, p-value = 0.1111
alternative hypothesis: true location shift is greater than 0
wilcox.test(dist_pump4, dist_pump1, alternative = "g")

##
Wilcoxon rank sum test
##
data: dist_pump4 and dist_pump1
W = 19, p-value = 0.1111
alternative hypothesis: true location shift is greater than 0
wilcox.test(dist_pump5, dist_pump1, alternative = "g")

##
Wilcoxon rank sum test
##
data: dist_pump5 and dist_pump1
W = 25, p-value = 0.003968
alternative hypothesis: true location shift is greater than 0
wilcox.test(dist_pump6, dist_pump1, alternative = "g")

##
Wilcoxon rank sum test
##
data: dist_pump6 and dist_pump1
W = 25, p-value = 0.003968
alternative hypothesis: true location shift is greater than 0
wilcox.test(dist_pump7, dist_pump1, alternative = "g")

##
Wilcoxon rank sum test
##
data: dist_pump7 and dist_pump1
W = 25, p-value = 0.003968
alternative hypothesis: true location shift is greater than 0

Except for pumps number 5, 6 and 7, none of the means are greater than the mean of pump number 1.

Conclusion

I think that I kind of showed that the pump on Broad street was in the middle of the outbreak. However, my
statistical tests are not really conclusive . . . This is because I do not know how to deal with density and
distances. The fact that I reduced the density in local maxima lower the tests power and that is why it is not
significantly different.

For the troubles part, I had difficulties in getting the data as I do not have experience with maps in R. At
first, I almost believed that there was something wrong with Robin’s blog website because some links did
not work. But, by going on forums on the internet, I understood that I could read .shp files. Then I had
real difficulties getting a map. The OpenStreetMaps source in the ggmap function did not work as it asked a
Google API key . . . I got around by getting Stanemmap maps. However, as I finally get the map to work, I
realized that the files with the deaths and pumps coordinates had a different coordinate system than the
map. I am lucky that the code I copied pasted worked. I think, I would have used the map that was in the
folder SnowGIS_SHP if it did not work. Next steps was quite easy as I do know how to plot with ggplot.

13

	Instructions
	Importing data
	Reading the data
	Extracting London map
	Displaying the Cholera deaths and pumps on the map
	Analysis to show that the Broad street pump is at the center of the outbreak
	Computing distances between deaths density and each Pump

	Conclusion

