From 41f39e0a63f9b60f0701c78e0ce416cee52ed8cb Mon Sep 17 00:00:00 2001 From: d673626e3823c315c4fb8df298c44ddd Date: Fri, 24 Apr 2020 21:20:17 +0000 Subject: [PATCH] save progress --- module2/exo1/toy_notebook_fr.ipynb | 55 ++++++++++++++++++++++++++++-- 1 file changed, 53 insertions(+), 2 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 0556842..5fe2f70 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -13,13 +13,64 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.141592653589793\n" + ] + } + ], "source": [ "from math import *\n", "print(pi)" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## En utilisant la méthode des aiguilles de Buffon\n", + "\n", + "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.128911138923655" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "np.random.seed(seed=42)\n", + "N=10000\n", + "x=np.random.uniform(size=N, low=0, high=1)\n", + "theta=np.random.uniform(size=N, low=0, high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Avec un argument \"fréquentiel\" de surface\n", + "\n", + "Sinon une méthode plus simple à comprendre et ne faisant pas appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\le 1] =\\pi / 4$" + ] } ], "metadata": { -- 2.18.1