{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline \n", "import pandas as pd \n", "import matplotlib.pyplot as plt\n", "import isoweek" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020224975057317569398511FRFrance
120224874985304369278511FRFrance
220224776087373384419513FRFrance
32022467303313924674537FRFrance
42022457382717205934639FRFrance
52022447427122316311639FRFrance
620224375863330284249513FRFrance
72022427377019505590639FRFrance
82022417417722196135639FRFrance
920224074883147282947212FRFrance
10202239720413313751306FRFrance
11202238717714193123315FRFrance
12202237717254992951315FRFrance
13202236710691781960213FRFrance
14202235715814002762204FRFrance
15202234722667883744315FRFrance
162022337734001739911026FRFrance
172022327780140861151612618FRFrance
18202231768964170962210614FRFrance
192022307903957701230814919FRFrance
202022297148511006019642221529FRFrance
212022287154711102819914231630FRFrance
222022277211911619826184322440FRFrance
232022267168541280620902251931FRFrance
242022257222461801126481342840FRFrance
252022247224581810526811342741FRFrance
262022237187721487522669282234FRFrance
272022227189161494122891292335FRFrance
282022217203101630724313312537FRFrance
292022207235851900428166362943FRFrance
.................................
16411991267176081130423912312042FRFrance
16421991257161691070021638281838FRFrance
16431991247161711007122271281739FRFrance
1644199123711947767116223211329FRFrance
1645199122715452995320951271737FRFrance
1646199121714903897520831261636FRFrance
16471991207190531274225364342345FRFrance
16481991197167391124622232291939FRFrance
16491991187213851388228888382551FRFrance
1650199117713462887718047241632FRFrance
16511991167148571006819646261834FRFrance
1652199115713975978118169251832FRFrance
1653199114712265768416846221430FRFrance
165419911379567604113093171123FRFrance
1655199112710864733114397191325FRFrance
16561991117155741118419964271935FRFrance
16571991107166431137221914292038FRFrance
1658199109713741878018702241533FRFrance
1659199108713289881317765231531FRFrance
1660199107712337807716597221529FRFrance
1661199106710877701314741191226FRFrance
1662199105710442654414340181125FRFrance
16631991047791345631126314820FRFrance
16641991037153871048420290271836FRFrance
16651991027162771104621508292038FRFrance
16661991017155651027120859271836FRFrance
16671990527193751329525455342345FRFrance
16681990517190801380724353342543FRFrance
1669199050711079666015498201228FRFrance
16701990497114302610205FRFrance
\n", "

1671 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202249 7 5057 3175 6939 8 5 \n", "1 202248 7 4985 3043 6927 8 5 \n", "2 202247 7 6087 3733 8441 9 5 \n", "3 202246 7 3033 1392 4674 5 3 \n", "4 202245 7 3827 1720 5934 6 3 \n", "5 202244 7 4271 2231 6311 6 3 \n", "6 202243 7 5863 3302 8424 9 5 \n", "7 202242 7 3770 1950 5590 6 3 \n", "8 202241 7 4177 2219 6135 6 3 \n", "9 202240 7 4883 1472 8294 7 2 \n", "10 202239 7 2041 331 3751 3 0 \n", "11 202238 7 1771 419 3123 3 1 \n", "12 202237 7 1725 499 2951 3 1 \n", "13 202236 7 1069 178 1960 2 1 \n", "14 202235 7 1581 400 2762 2 0 \n", "15 202234 7 2266 788 3744 3 1 \n", "16 202233 7 7340 0 17399 11 0 \n", "17 202232 7 7801 4086 11516 12 6 \n", "18 202231 7 6896 4170 9622 10 6 \n", "19 202230 7 9039 5770 12308 14 9 \n", "20 202229 7 14851 10060 19642 22 15 \n", "21 202228 7 15471 11028 19914 23 16 \n", "22 202227 7 21191 16198 26184 32 24 \n", "23 202226 7 16854 12806 20902 25 19 \n", "24 202225 7 22246 18011 26481 34 28 \n", "25 202224 7 22458 18105 26811 34 27 \n", "26 202223 7 18772 14875 22669 28 22 \n", "27 202222 7 18916 14941 22891 29 23 \n", "28 202221 7 20310 16307 24313 31 25 \n", "29 202220 7 23585 19004 28166 36 29 \n", "... ... ... ... ... ... ... ... \n", "1641 199126 7 17608 11304 23912 31 20 \n", "1642 199125 7 16169 10700 21638 28 18 \n", "1643 199124 7 16171 10071 22271 28 17 \n", "1644 199123 7 11947 7671 16223 21 13 \n", "1645 199122 7 15452 9953 20951 27 17 \n", "1646 199121 7 14903 8975 20831 26 16 \n", "1647 199120 7 19053 12742 25364 34 23 \n", "1648 199119 7 16739 11246 22232 29 19 \n", "1649 199118 7 21385 13882 28888 38 25 \n", "1650 199117 7 13462 8877 18047 24 16 \n", "1651 199116 7 14857 10068 19646 26 18 \n", "1652 199115 7 13975 9781 18169 25 18 \n", "1653 199114 7 12265 7684 16846 22 14 \n", "1654 199113 7 9567 6041 13093 17 11 \n", "1655 199112 7 10864 7331 14397 19 13 \n", "1656 199111 7 15574 11184 19964 27 19 \n", "1657 199110 7 16643 11372 21914 29 20 \n", "1658 199109 7 13741 8780 18702 24 15 \n", "1659 199108 7 13289 8813 17765 23 15 \n", "1660 199107 7 12337 8077 16597 22 15 \n", "1661 199106 7 10877 7013 14741 19 12 \n", "1662 199105 7 10442 6544 14340 18 11 \n", "1663 199104 7 7913 4563 11263 14 8 \n", "1664 199103 7 15387 10484 20290 27 18 \n", "1665 199102 7 16277 11046 21508 29 20 \n", "1666 199101 7 15565 10271 20859 27 18 \n", "1667 199052 7 19375 13295 25455 34 23 \n", "1668 199051 7 19080 13807 24353 34 25 \n", "1669 199050 7 11079 6660 15498 20 12 \n", "1670 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 11 FR France \n", "1 11 FR France \n", "2 13 FR France \n", "3 7 FR France \n", "4 9 FR France \n", "5 9 FR France \n", "6 13 FR France \n", "7 9 FR France \n", "8 9 FR France \n", "9 12 FR France \n", "10 6 FR France \n", "11 5 FR France \n", "12 5 FR France \n", "13 3 FR France \n", "14 4 FR France \n", "15 5 FR France \n", "16 26 FR France \n", "17 18 FR France \n", "18 14 FR France \n", "19 19 FR France \n", "20 29 FR France \n", "21 30 FR France \n", "22 40 FR France \n", "23 31 FR France \n", "24 40 FR France \n", "25 41 FR France \n", "26 34 FR France \n", "27 35 FR France \n", "28 37 FR France \n", "29 43 FR France \n", "... ... ... ... \n", "1641 42 FR France \n", "1642 38 FR France \n", "1643 39 FR France \n", "1644 29 FR France \n", "1645 37 FR France \n", "1646 36 FR France \n", "1647 45 FR France \n", "1648 39 FR France \n", "1649 51 FR France \n", "1650 32 FR France \n", "1651 34 FR France \n", "1652 32 FR France \n", "1653 30 FR France \n", "1654 23 FR France \n", "1655 25 FR France \n", "1656 35 FR France \n", "1657 38 FR France \n", "1658 33 FR France \n", "1659 31 FR France \n", "1660 29 FR France \n", "1661 26 FR France \n", "1662 25 FR France \n", "1663 20 FR France \n", "1664 36 FR France \n", "1665 38 FR France \n", "1666 36 FR France \n", "1667 45 FR France \n", "1668 43 FR France \n", "1669 28 FR France \n", "1670 5 FR France \n", "\n", "[1671 rows x 10 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_url=('https://www.sentiweb.fr/datasets/incidence-PAY-7.csv')\n", "import pandas as pd\n", "raw_data=pd.read_csv(data_url,skiprows=1)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020224975057317569398511FRFrance
120224874985304369278511FRFrance
220224776087373384419513FRFrance
32022467303313924674537FRFrance
42022457382717205934639FRFrance
52022447427122316311639FRFrance
620224375863330284249513FRFrance
72022427377019505590639FRFrance
82022417417722196135639FRFrance
920224074883147282947212FRFrance
10202239720413313751306FRFrance
11202238717714193123315FRFrance
12202237717254992951315FRFrance
13202236710691781960213FRFrance
14202235715814002762204FRFrance
15202234722667883744315FRFrance
162022337734001739911026FRFrance
172022327780140861151612618FRFrance
18202231768964170962210614FRFrance
192022307903957701230814919FRFrance
202022297148511006019642221529FRFrance
212022287154711102819914231630FRFrance
222022277211911619826184322440FRFrance
232022267168541280620902251931FRFrance
242022257222461801126481342840FRFrance
252022247224581810526811342741FRFrance
262022237187721487522669282234FRFrance
272022227189161494122891292335FRFrance
282022217203101630724313312537FRFrance
292022207235851900428166362943FRFrance
.................................
16411991267176081130423912312042FRFrance
16421991257161691070021638281838FRFrance
16431991247161711007122271281739FRFrance
1644199123711947767116223211329FRFrance
1645199122715452995320951271737FRFrance
1646199121714903897520831261636FRFrance
16471991207190531274225364342345FRFrance
16481991197167391124622232291939FRFrance
16491991187213851388228888382551FRFrance
1650199117713462887718047241632FRFrance
16511991167148571006819646261834FRFrance
1652199115713975978118169251832FRFrance
1653199114712265768416846221430FRFrance
165419911379567604113093171123FRFrance
1655199112710864733114397191325FRFrance
16561991117155741118419964271935FRFrance
16571991107166431137221914292038FRFrance
1658199109713741878018702241533FRFrance
1659199108713289881317765231531FRFrance
1660199107712337807716597221529FRFrance
1661199106710877701314741191226FRFrance
1662199105710442654414340181125FRFrance
16631991047791345631126314820FRFrance
16641991037153871048420290271836FRFrance
16651991027162771104621508292038FRFrance
16661991017155651027120859271836FRFrance
16671990527193751329525455342345FRFrance
16681990517190801380724353342543FRFrance
1669199050711079666015498201228FRFrance
16701990497114302610205FRFrance
\n", "

1671 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202249 7 5057 3175 6939 8 5 \n", "1 202248 7 4985 3043 6927 8 5 \n", "2 202247 7 6087 3733 8441 9 5 \n", "3 202246 7 3033 1392 4674 5 3 \n", "4 202245 7 3827 1720 5934 6 3 \n", "5 202244 7 4271 2231 6311 6 3 \n", "6 202243 7 5863 3302 8424 9 5 \n", "7 202242 7 3770 1950 5590 6 3 \n", "8 202241 7 4177 2219 6135 6 3 \n", "9 202240 7 4883 1472 8294 7 2 \n", "10 202239 7 2041 331 3751 3 0 \n", "11 202238 7 1771 419 3123 3 1 \n", "12 202237 7 1725 499 2951 3 1 \n", "13 202236 7 1069 178 1960 2 1 \n", "14 202235 7 1581 400 2762 2 0 \n", "15 202234 7 2266 788 3744 3 1 \n", "16 202233 7 7340 0 17399 11 0 \n", "17 202232 7 7801 4086 11516 12 6 \n", "18 202231 7 6896 4170 9622 10 6 \n", "19 202230 7 9039 5770 12308 14 9 \n", "20 202229 7 14851 10060 19642 22 15 \n", "21 202228 7 15471 11028 19914 23 16 \n", "22 202227 7 21191 16198 26184 32 24 \n", "23 202226 7 16854 12806 20902 25 19 \n", "24 202225 7 22246 18011 26481 34 28 \n", "25 202224 7 22458 18105 26811 34 27 \n", "26 202223 7 18772 14875 22669 28 22 \n", "27 202222 7 18916 14941 22891 29 23 \n", "28 202221 7 20310 16307 24313 31 25 \n", "29 202220 7 23585 19004 28166 36 29 \n", "... ... ... ... ... ... ... ... \n", "1641 199126 7 17608 11304 23912 31 20 \n", "1642 199125 7 16169 10700 21638 28 18 \n", "1643 199124 7 16171 10071 22271 28 17 \n", "1644 199123 7 11947 7671 16223 21 13 \n", "1645 199122 7 15452 9953 20951 27 17 \n", "1646 199121 7 14903 8975 20831 26 16 \n", "1647 199120 7 19053 12742 25364 34 23 \n", "1648 199119 7 16739 11246 22232 29 19 \n", "1649 199118 7 21385 13882 28888 38 25 \n", "1650 199117 7 13462 8877 18047 24 16 \n", "1651 199116 7 14857 10068 19646 26 18 \n", "1652 199115 7 13975 9781 18169 25 18 \n", "1653 199114 7 12265 7684 16846 22 14 \n", "1654 199113 7 9567 6041 13093 17 11 \n", "1655 199112 7 10864 7331 14397 19 13 \n", "1656 199111 7 15574 11184 19964 27 19 \n", "1657 199110 7 16643 11372 21914 29 20 \n", "1658 199109 7 13741 8780 18702 24 15 \n", "1659 199108 7 13289 8813 17765 23 15 \n", "1660 199107 7 12337 8077 16597 22 15 \n", "1661 199106 7 10877 7013 14741 19 12 \n", "1662 199105 7 10442 6544 14340 18 11 \n", "1663 199104 7 7913 4563 11263 14 8 \n", "1664 199103 7 15387 10484 20290 27 18 \n", "1665 199102 7 16277 11046 21508 29 20 \n", "1666 199101 7 15565 10271 20859 27 18 \n", "1667 199052 7 19375 13295 25455 34 23 \n", "1668 199051 7 19080 13807 24353 34 25 \n", "1669 199050 7 11079 6660 15498 20 12 \n", "1670 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 11 FR France \n", "1 11 FR France \n", "2 13 FR France \n", "3 7 FR France \n", "4 9 FR France \n", "5 9 FR France \n", "6 13 FR France \n", "7 9 FR France \n", "8 9 FR France \n", "9 12 FR France \n", "10 6 FR France \n", "11 5 FR France \n", "12 5 FR France \n", "13 3 FR France \n", "14 4 FR France \n", "15 5 FR France \n", "16 26 FR France \n", "17 18 FR France \n", "18 14 FR France \n", "19 19 FR France \n", "20 29 FR France \n", "21 30 FR France \n", "22 40 FR France \n", "23 31 FR France \n", "24 40 FR France \n", "25 41 FR France \n", "26 34 FR France \n", "27 35 FR France \n", "28 37 FR France \n", "29 43 FR France \n", "... ... ... ... \n", "1641 42 FR France \n", "1642 38 FR France \n", "1643 39 FR France \n", "1644 29 FR France \n", "1645 37 FR France \n", "1646 36 FR France \n", "1647 45 FR France \n", "1648 39 FR France \n", "1649 51 FR France \n", "1650 32 FR France \n", "1651 34 FR France \n", "1652 32 FR France \n", "1653 30 FR France \n", "1654 23 FR France \n", "1655 25 FR France \n", "1656 35 FR France \n", "1657 38 FR France \n", "1658 33 FR France \n", "1659 31 FR France \n", "1660 29 FR France \n", "1661 26 FR France \n", "1662 25 FR France \n", "1663 20 FR France \n", "1664 36 FR France \n", "1665 38 FR France \n", "1666 36 FR France \n", "1667 45 FR France \n", "1668 43 FR France \n", "1669 28 FR France \n", "1670 5 FR France \n", "\n", "[1671 rows x 10 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " import isoweek\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXncVUX9//tz730W9h1EQEAFFVxQEHHPLckyWvQbVmplYWbfLPt++2mL2uLXVi21LM1KzVIzTXNJUTTUEARFEBR5FJRNNuFhfbZ75/fHOXPOnDmznbs923nzerj3zpkzM2fOzHzmsw4xxpAiRYoUKVKIyLR3A1KkSJEiRcdDShxSpEiRIkUMKXFIkSJFihQxpMQhRYoUKVLEkBKHFClSpEgRQ0ocUqRIkSJFDClxSJEiRYoUMaTEIUWKFClSxJAShxQpUqRIEUOuvRtQLAYPHszGjBnT3s1IkSJFik6FRYsWbWGMDbHl67TEYcyYMVi4cGF7NyNFihQpOhWI6B2XfKlYKUWKFClSxJAShxQpUqRIEUNKHFKkSJEiRQwpcUiRIkWKFDGkxCFFihQpUsSQEocUKVKkSBFDShxSpEiRIkUMKXFI0amxp6UND76ytr2bkSJFl0OndYJLkQIArn5oGf62aC1GDeiJKWMGtndzUqToMkg5hxSdGu/taAIA7G7Jt3NLUqToWkiJQ4oUKVKkiCElDilSpEiRIgYrcSCieiJaQESvEtEyIvq+n34NEa0josX+31nCPVcSUQMRrSCiM4X0yUS01L92IxGRn15HRPf66fOJaEz5HzVFihQpUrjChXNoBnAqY+wIAJMATCeiaf61Gxhjk/y/xwCAiCYAmAlgIoDpAH5DRFk//y0AZgEY5/9N99MvArCNMXYggBsA/KT0R0uRIkWKFMXCShyYh13+zxr/jxlumQHgHsZYM2NsFYAGAFOJaDiAvoyxeYwxBuBOAB8T7rnD/34/gNM4V5EihQu8IZUiRYpywUnnQERZIloMYBOA2Yyx+f6lrxLREiL6AxEN8NNGAFgj3L7WTxvhf5fTI/cwxtoANAIYpGjHLCJaSEQLN2/e7PSAKbo20j1EihSVgRNxYIzlGWOTAIyExwUcCk9EdAA8UdMGAL/ws6tmKzOkm+6R23ErY2wKY2zKkCHWg4xSpNDimTc2oXFva3s3I0WKDotE1kqMse0AngUwnTG20ScaBQC3AZjqZ1sLYJRw20gA6/30kYr0yD1ElAPQD8D7iZ4kRQpHbN7ZjM//6SV85e5F7d2UFCk6LFyslYYQUX//ew8ApwN4w9chcHwcwGv+94cBzPQtkMbCUzwvYIxtALCTiKb5+oQLADwk3HOh//0cAHNYKkROkQBJBktzm+cwt2rz7so0JkWKLgCX8BnDAdzhWxxlANzHGHuEiO4ioknw5uVqABcDAGNsGRHdB2A5gDYAlzLGuPvqJQD+BKAHgMf9PwC4HcBdRNQAj2OYWYZnS9ENUIzGIdVTpEhhh5U4MMaWADhSkX6+4Z5rAVyrSF8I4FBFehOAc21tSZEiRYoU1UHqIZ2iy+D5lVvwsV+/gLZ8wSl/KrdMkUKPNCprii6Db/5tMTbuaMaWXS3Yp1+9Nl8qVEqRwo6Uc0jRbZGaPKRIoUdKHFJ0O6T66BQp7EiJQ4puC1ZhrcN9C9fgznmrK1pHihSVQqpzSNFl4ComoippHb51/xIAwAXHjqlKfSlSlBMp55Ci2yLVOaRIoUdKHFJ0O6Q6hxQp7EiJQ4ouh3TxT5GidKTEIUW3RSpVSpFCj5Q4pOh24IxFqnNIkUKPlDh0cLy+YQc27Wxq72Z0fCRZ6AOxU0odUqTQISUOHRwf+tVzOOVnz7Z3M7oWUpqQIoUVKXHoBNjdkrdn6qYoRfmcipVSpNAjJQ4pugxc1/qUJqRIYUdKHFJ0W6REonNiQ+Ne3L9oLQqF9A1WEilxSNHtkIqTOjd+/Pgb+J+/vYpVW9NjXiuJlDik6HKwqSEqHXAvRWWxZG0jAKAtn77HSsJKHIionogWENGrRLSMiL7vpw8kotlEtNL/HCDccyURNRDRCiI6U0ifTERL/Ws3kn+YLxHVEdG9fvp8IhpT/kdN0V3grHvoYizE5/64AIde/UR7N6NqSIl8ZeHCOTQDOJUxdgSASQCmE9E0AFcAeJoxNg7A0/5vENEEADMBTAQwHcBviCjrl3ULgFkAxvl/0/30iwBsY4wdCOAGAD8pw7OVDYwx3PXiO9jd3NbeTUmhQZKFoovRhADPrtiMXd1gjHLOsOB2GmyKImElDszDLv9njf/HAMwAcIeffgeAj/nfZwC4hzHWzBhbBaABwFQiGg6gL2NsHvO2bHdK9/Cy7gdwGucqOgJeaNiK7/3jNXz/n8vauykpJKgGievA6aI0ouvDf8Ep51BZOOkciChLRIsBbAIwmzE2H8AwxtgGAPA/h/rZRwBYI9y+1k8b4X+X0yP3MMbaADQCGFTMA1UCe1q83dj7u1vbuSUpyoF0SencSMOfVAdOxIExlmeMTQIwEh4XcKghu2rjxgzppnuiBRPNIqKFRLRw8+bNtmanSGFEurh0TnChQiF9gRVFImslxth2AM/C0xVs9EVF8D83+dnWAhgl3DYSwHo/faQiPXIPEeUA9APwvqL+WxljUxhjU4YMGZKk6Sk6CPa25LFlV3NFynZdKzqrIrqlrYCHFq/rtO0vN9JuqCxcrJWGEFF//3sPAKcDeAPAwwAu9LNdCOAh//vDAGb6Fkhj4SmeF/iip51ENM3XJ1wg3cPLOgfAHNYBZ8Cy9Y246emV7d2MTo1P3PIfTPnRU875v3HvYjy0eF1F2tIBh5gRNz69Epfdsxizl29s76a0KwKFdCd7f50NLpzDcADPENESAC/B0zk8AuDHAM4gopUAzvB/gzG2DMB9AJYD+BeASxljPDjQJQB+D09J/RaAx/302wEMIqIGAJfDt3zqaNjQ2IRfzH6zLItKw6Zd2L6npQyt6lx4fcOORPkffGUdLrtnsTVfklfS2daU9dv34q3Nu7B5p8dxvb+7+40bEdxUJXWQrixytgyMsSUAjlSkbwVwmuaeawFcq0hfCCCmr2CMNQE416G9HQIt+QLqcll7RgNOv/7fGNG/B1644tQytap745V3t4c/OoydW3lw3I/nAAA+fcx+AIDWbr4qUqiSbtd2dHWkHtJFoKWtPAbW67bvLUs53Rlt/kJ58zMNYaKr7qEC7akkchlvUcznu7eBf8o5VAcpcSgC5SIOKUrH3iLCmXc2sRJH1icObemqCKDzvsfOgpQ4FIGWbr5z60jY26ogDl3UC45zDi6KWMYYfvTIcixZu92at7MiVUhXFilxKAIp59BxoCQOFnRWz9psxpuurYqAc6u2RCOUNrcV8PvnV+GcW+ZVpW3VRCb1c6gKUuJQBFLi0HEwrE89AKA2l3wod7alpSbr6xwksdK7W/fglJ8/G0nj62amC85wSvXRVUEXHDqVR75KO5atFXIW60qYtF9/AMAXjh8L19Wis244dTqHjTubYnn5rjrTcUKUlR2p6qWySIlDB8bvn1/V3k3o8FAu9F3UU5rrHNocdF5dmTiE1kqd6/11NqTEoQikY7LjgOsPEoXsrlRjKowMN2WVBqBq+efhrLsgbQjQWd9jZ0FKHIpAtYhDSoQc4PdRMg/pztmxFMaqtiLfhTmHVCFdHaTEoQhUy9qls1rVVBO8h1oFUYvzSXCW6+O/+zh+9sQbwe/dzW14Ytl7idpXTpA7bQiU1pmuRxtCTimdHhVFShyKQNU2LOngt4JzAX98YbWzQ5xrt7a0FfDrZ94Kfn/7waW4+K5FeOO9ZPGhbMgXGK6f/Sa2KWImfev+V4Pv4Qlo0SdQPQ/fVWe7InXwkXIOlUVKHDow0qFvh6ib3Z3QWzrp2vLu+3u8epqT+1aY8O83N+HGp1fiqofjJw3etzA8H4sbKLhY6XDOoQMdqFg+BGKldm5HF0dKHIpA9XQO3WP0P7R4HV5aHTu+wwl5xUHCqm57Z+turNy4EwDw6ppSvYbL+15a2rzymi0OfTwqqyxuVC3/3UGs1F3mR3shJQ5FoGo6hy489sWJfdk9i3Hub4vz5HWNUHryz57FGTfMBQBcfp8nqqnWe9zQuBdXPrAkohcRwfvCdZMvjwv5Kfa0tAV5qKuFqEUaeK9aSIlDEaga51CdaiqCvS15/PCR5cH52zLK1Yd5RSiJyiPZgnvF35firwvW4PmGLcrr4Vm5buXaZO0TrnoCa7d7IrCUc0hRLFLiUASqpo/uxGP/j/9ZhdufX4Vb576tvF4uZaIqQqkrR1B8E5LdaDooXWxHsZyDCp++bb5fZtejDvyZGve24ldPrYyFE0lRHlgP+0kRR7V2LJ3ZlLXN39HrJm65nqxNoXOoFIpdZm3jhb9n13U8CWHtirGVOH74yHLsbsnjoH36YPqh+7R3c7ocuvDQqRxSzsEOW9sryTl0NGzc4cU+0u3ik+oHkjxytityDv4nt05rbiuv9VgKD1biQESjiOgZInqdiJYR0WV++jVEtI6IFvt/Zwn3XElEDUS0gojOFNInE9FS/9qN5M8WIqojonv99PlENKb8j5qiPWATpZQKVZwhU9mij0C1yMqbG3cB0PdFwP04r+MJOIcyEIfte1rwztbd9oxVgvxInXkT1ZHhwjm0AfgmY+wQANMAXEpEE/xrNzDGJvl/jwGAf20mgIkApgP4DRHxA5dvATALwDj/b7qffhGAbYyxAwHcAOAnpT9a5VCtwdiZnXxsIrGyKaQTcg7N7RhuXbdOf+Nez3rKdSFP0nflYBxOv34uTv7Zs6UXVCZwDosr21OdQ2VgJQ6MsQ2MsZf97zsBvA5ghOGWGQDuYYw1M8ZWAWgAMJWIhgPoyxibxzwh7J0APibcc4f//X4Ap5GOB+8QSE1ZS0W59ClJxUq7mgXrqSr3r01s5GpZlEjnUIZptMUSOv7u+e/gS3cuLLkeZ/iPxJeIaoXQ725IpHPwxT1HApjvJ32ViJYQ0R+IaICfNgLAGuG2tX7aCP+7nB65hzHWBqARwKAkbasmqmfK2nkHvW0hLNdmT7VrFFMYY/jzi+8Ev3WmtUlQ7Pu3rdOu5Sbpu2oE3vvOg69h9vKNFa9Hh9SktTJwJg5E1BvA3wF8nTG2A56I6AAAkwBsAPALnlVxOzOkm+6R2zCLiBYS0cLNmze7Nr3s6G4K6XlvbcVzK5P1t12sVJ6Hs+2i567cgu/+47Xgt8g5JCW+lWZmXTmC+xetDby9bejI/HexIOkzlSpVBk7EgYhq4BGGuxljDwAAY2wjYyzPGCsAuA3AVD/7WgCjhNtHAljvp49UpEfuIaIcgH4AYvEUGGO3MsamMMamDBkyxO0JK4Du5gR33m0v4vzbFxR3s2Z1KteEtr2LPc1RTuG5lWpHNLe6KvtGkoiLzrttvj0Tqhuy+855q9G4p7Xi9RBFP1OdQ2XgYq1EAG4H8Dpj7HohfbiQ7eMA+PbsYQAzfQuksfAUzwsYYxsA7CSiaX6ZFwB4SLjnQv/7OQDmsA7MK1bNz6EdeuAXT67AT/71hj2jBda2V5A4mN7Pjx9/Q8hXnja4wrZMJ3HZaHE036ymn8NVDy3DVQ+/Zs9YAmbc/DxefNvbN1J6rkNF4eIEdzyA8wEsJaLFftq3AZxHRJPgTfPVAC4GAMbYMiK6D8ByeJZOlzLG+Ei+BMCfAPQA8Lj/B3jE5y4iaoDHMcws7bGS47V1jehZm8X+Q3pb81ZvKFZ/0N80pwEA8P+mH1zRejrjhC5ZrGS5PYliVcxquq3ah/24hk0vFq+ubYylySHMU5QHVuLAGHse6mH9mOGeawFcq0hfCOBQRXoTgHNtbakkPnLT8wCA1T/+sDVvehKcHVbla5nq6UxKe5uSPglH6pqz2kZ/verMS0rDpl0Y0b8HetRmjfmSIKUNlUHqIV0EuntUVsYYHlq8zuiZWi0PabVYyfHeYuss8r5yWSt5ecPMpnKrHXivvka/6LfmCzj9+n/jK3cvKqpsmXjyZ+uMXGhnQEocikE3N2X995ubcdk9i/HzJ1ZY81baQ9pWTEey1rHqHIrkHDqSWClrWFG44viFhq1FlS0rnjknliqkK4OUOGiw6J1tGHPFo1j0zrZ2a8Pwfj3arW4TGvd6Finv7dA7R1n10dWiDhVoQ6WW2yRrnGvTq805uLSr2J2+rn+6Kml4ZsUmjLni0apYgKmQEgcN/v2mZ9evsu+v1mDs6ctlxw+zK8k7ElZv2Y0HXl5rzNOZdQ6VqjHJoumat9qcgwm8zcV6NOueuatKlW7xzy8v95nlrkiJQxEoZTBuaNyLF98O2WrT7pXvlKp1mteFfyjSl0HC2Tc/j7Xb9hrzVFLnEIW+70y3qt5LqW/BxhkUK1YywUYcGGO4b+EaNFmOKHWFqV38+Yt99XL/8I1BV9U5BH4c7fR86XkOFuxpyWPr7pZIWim71TOunxvx0m0rMNRkdY5iXj3V2vxxbsmEd7fuCb7rCNvOJnuIig4gVao6bGKsREdTuIqVLNu/Z9/cjG/dvwTL1+/ANR+daMxbKDBkSpBTlbqIdzfdAifs7UX7UuKgAZ8CqpPMSnlZuySP3Za2Amo0WryO5gf46prtmPHrFzBl9AB7Zh86wlY+zkERW8nVWsmQrxJdryty3NDeWLlpF047ZGiCssojVtrlE/LNluB6gPfOMlZzXP211VvsYb+/8+BSDO1Tj8tOH6eoP/q7qdWjpl3Vz4ET9vZaBlKxUhEo9l3dpiA0ukPngY5nv73aj+m/MIGS/nlNuIpyDPjVW3bj5Xe3l16QApXoeh1BHNS7FgCQTbArb48FQxyPLW0FbN6pIijqhq3fvhcfvfkFax13z38XNzz1prr+Cp8q2NGQaeeosylxKALF7uivfez1WFqL4XyBUKzUcZSKSaEjJC5daOvnD/z82URtGdirNlH+ckP1OG35QhAOIsmwcuW8khCcJHV+497FOPrap4z52/IFjLniUfz6mQbsbi49Gq5ukexgDHbZwOf99U/aTcYrgZQ4FIFyjsWWTsQ5lJNIlWplZCIcYtlik5NY7hjLL5NCFQA2NDaF5SYqyy1fTqN02L6nJbESWmz/o0s3AIj3k/izyd/4/OaZBqNznAqn/uJZY/0u6Z0dnK6/uraxXUTMKXEoBmV8T2a5N4t8tjfKyb+4LG7l1gmYHLRi5SvSSqWNVfP9EKAzdpj0g9k497fzEpWlemem91jK87y9Oa6f0CnsO8r8KDfEN9ceJximxEED00JQTtt6066nq+6IgNIndDF3l2rzX+rrKEV5XixMYqWl6+JB7ExQjUeX90hEZXlOrZ9D6UV3SIjjtT2WgpQ4FIHvPFi+sMSml16qXXi5UU7VhxPnUGTZuv5qb4WvzVS1qTVfFtm8CJ0lXDFgivbL3aTrt2I2VLICWmfKqqqzqTWP6x57vez9WU2IZsPtsVFMiUMREOXEpcKFc+goMZZkZ7zSdBCV0znoUKpythJiJR6KBAB+/uSbmHj1E8nLNfSF7ZlV4hsdVGPVddEqRn8mnw+uq0rVhnsWvIvfzX0bNz/TkLxiBd5rbIqZoVca4ptrjxWg2xOHnz+xAv+VUPZaTpi9dKOf1YTSQ7janINR6ZwciRTSFZiOqkXs7JufL3s9ImxPLJuNMsbw4CtrA2W1+A5U1kJykq7fiiHmMqegtVZSpHHC0txaHln9tOuextk3VfZdyRDHa8o5tANufqYBC1bHTiStWsgKY/iMAuccqg9Vs+Qe2aK0cy++/HLdL14S25yEcXAxFEiKSs1vEweXtMoXGrbiG/e+iut8s2txgVbrHNzKLYZzaJXkcEmslXif/HPJejzuW1aVilUOTnzlhGhotlCxRlW8/qrXmCICN51D5cnDv16LTiD1hIv+nvd2caGXdeXLKPdTl9Pm34aGTbtiafJ7dAlX4oKyjA+/iB1Nnphrox9xV1zUVdXInIKYR7qSuEn5fPQerSe0YSOzeWczLrn75cR1dwSIRP/7/1xe9fpT4tDOMO2oQp2DGfe9tAZjrngUs+5cqM2ztyVvDF/w5T9HJ5As7wXK7OdQKudQxGJTrgilLv3wuT/GgxiKLWaMlS3QoQml9rNIxFUyd1dz43LoHLpbyO7UWqmbw7TIBTtCy8D41t+XAACeXL5Rm+eSuxfhAz9/1jkOzbL1XphgMX95/RwcOIci/Rx0O+lkTnDJy+d4dc12bFKI3MRn3rKrJXa9EnAmolLXBBFBhfc//ZdzY9fjkVLjPwjFLW6Ne6N9pLNWUo3pap9jUQmIz9AhdQ5ENIqIniGi14loGRFd5qcPJKLZRLTS/xwg3HMlETUQ0QoiOlNIn0xES/1rN5K/BSOiOiK610+fT0Rjyv+oHRMm88aCG21wwlxfhOFa1idv+Q8A4M/z3ylD7R0DOocwFd7cuDOW5qqHmvHrF5RhUdrFJNm1To3xg7gotfpinu17WqDbt0TFSmZ9hQ1f++tibVui6fG0zhxyhqMzcA5tAL7JGDsEwDQAlxLRBABXAHiaMTYOwNP+b/jXZgKYCGA6gN8QEfedvwXALADj/L/pfvpFALYxxg4EcAOAn5Th2UpCtcaWaWcXiJWMoRySjZqk+d8RQnSXc8K56RxKnxFim2tz7ozyjF/bg8QlhfjM1doJFltLwBkoNi+TfjA7LN+wuREfMYnJLMfyDdFDbvROcJW1rGsvPPjKunat3zpbGGMbGGMv+993AngdwAgAMwDc4We7A8DH/O8zANzDGGtmjK0C0ABgKhENB9CXMTaPeSvUndI9vKz7AZxGXYH0O8BJIW24P6ksN+liIbavnC+kWtZKIpIQBxPeLtJqRWzzmvf36DOWEc6bAf/lygutjYjFFNLCb/HKpX+xK4Vt5zVodQ4OlnWdHR0+tpIv7jkSwHwAwxhjGwCPgADgwehHAFgj3LbWTxvhf5fTI/cwxtoANAIYpKh/FhEtJKKFmzeXx9KjvWGafGFsJf39SQ9ASTrGKuWAV7LOoYh2bS1Rzs8Vslc+sLSo+8U2V0MZ7dVZWkZbuGgX3cxOR+cxHhJeB72HtFKu5FRnR4UslmwPiaQzcSCi3gD+DuDrjDHToaaqt8IM6aZ7ogmM3coYm8IYmzJkyBBbkzsFzJwDt1ayi56c60s4zPSmiaWh1LKK2Ui98V5cj5AEpYqCRBHN7pbyHMtZadieOXa9hPFic1jT7Z5VqZ2bNCAW9qOj6hxARDXwCMPdjLEH/OSNvqgI/ucmP30tgFHC7SMBrPfTRyrSI/cQUQ5APwDV9/oQUOzgen3DDoy54tHIOdEmmMNneJ/tyTlE21O+EVpJNrlSRZdufltdjBnUU+2b4BIsz58BtnhQMYV0pB5rNRHYxpfWWklxX7nMltsLe6Vw6u0RQsfFWokA3A7gdcbY9cKlhwFc6H+/EMBDQvpM3wJpLDzF8wJf9LSTiKb5ZV4g3cPLOgfAHFbB1ePsm57H75+Ln8pWDvCTz2YbzEpFmPUJDmKlErspSTeXM2xwtRZa0xLRqzbZGQOlTtBqmyMSkbLF5jDb0d+28WUUi5Z5QRPbfdL4UHKgOhKlUrRhRYncpyvkEyI7KudwPIDzAZxKRIv9v7MA/BjAGUS0EsAZ/m8wxpYBuA/AcgD/AnApY4yTwUsA/B6ekvotAI/76bcDGEREDQAuh2/5VAnkCwxL1zXiR4/GT2UrB/iEcB2bTuEzHPKY8MyKTUou5LV1jRh75WN4bqVefyPW/bW/vmKtyxWln+eQfLZMHTsw8nv8Pn0S3S+2+YI/LMC47zyWrAFVnuCef0G8UiciFVgrmfO+tCp60l+kPs2tOh+EJCKsGjFiqcph01hS8Tjzl3MjwRIrhRhxqHiNceRsGRhjz0Pf16dp7rkWwLWK9IUADlWkNwE419aWcmDbnuKVkl88YSx+//wq7fU9LW1B2ATXnYtpPnAPUdPAsImVlq5txOf/+JLy2gsNHpfznOacZ1vdgDcxM0V4HJXzPIcjRvXHq2u2a66G+PTU/bBgVSitTKycF26YW0Toi0pxDtpSSX0tSTNsbd6+Vz+fdHfqTqeztUtsS07wWXEJ9VJONLfmgR41lasAQEubZAXWQTmHLgVXGb1qcJ12yDAAQO+6kKYWCgxtPpW/+K5FuG/hWv9+t9Fpak4+4BwMeSyjZuvuqKeuyOpzpWhPg3jFNiiLFWu5necQZhpzxaO4VBMjZ1CvWnz3w4dYy5OJWNKWl6xEL/F+Gc1tPHKq+jppKk1CpGzvSVYiu+gcchpnRFurxLmbE86pKEW0et6tL+KueasT3fPNv71adH2ukI8P7vCmrF0BpfTx8H712H9IL3zgoFDe+aU7F+LA73jSMXEH7s456BsUcg4msZK5/La8fgfCLSJ61eoZSJvcOKlC3LVcFR4VomuKz7HX0fInK78URSC8yT+crS2vnHGKyoEfPWIWjeo2KEl8RGwiFJMeSveOcxpO0+pTIVzOWcRKhqPZI5j39lZ876Fllnqj5Zs47XKhI4iVuh9xKKGbsxlCRjry8Ok3NinzuoZaqDTnEDswRfjObalNzmG2tb/YBe+Bl9fhbwvXBFyXCsaihWs8kqjqPnF9lA9Fk4u/7rHXsXV3izY0c7GEkKPE22NYuclTjhrjcymuubwz3m0btu815lOFCQnq1nIOxYmVIpyDIJpS9WvSE+DMUQgSFVUWtMp+DinnUHnY+tj0Eoi8SVNWk07DxHbRObxg2cW0FfSDLFCea+gYY8w6KF0WTJEA8LruX7QW/3v/EqMOxwSx33Y2tTmJ8WTzxqSvUfWsq7fsxpk3zMWWXQ5nW1TMxladrAt45+J4ySGLN2S05CWTS7s+Wss52MZaRCEtiKZUG6R3E3qg379orfZae+zaY2KldmhD9yMOtuuGDBmKcw4lt0cq65qHl+Fb93syzby/sJvq+9Gj5jjvMbGSIo9uWWXMRUlovg4Az6wIlbdyXe/vTq7QlNHSVnDi0+TzHJI7BMbz/+bZBqzYuBOPvLpecUcU5eYcbCBSvz+XZjyyZAM+ect/cMuzbxnzmRzXdIu9Tsdla5dIHESORSlWSjhJ3zI7x3JtAAAgAElEQVTEfmqPiKitBnFwtdD9iIM1Vowe2QyByG2wuA4oOduf/rM6UGqHC7u6rEeXbMCOJjP77HoOrwoFxuz5HcoTpQiypUqxViViu2LckeaemEJayDjnjY1WD2rV4t6U4BjKSokGdKUSSEkATcHyRCx6Z5u1T2TOz0Uh3VOj45IXedkPRbwsni1Rygl1HH17GPRu7SFWkjiHDhmyu6uhVLFShshpB+i65pk8qW1OcG9tjp82JiMm008wxhjsg9Jl0NblwkkuW6qYPFldz5BuaStEiMx9L62J5QeAwb3qIr/5e8wXGL7wp/CgJF2TVM/a1OoeBkMcNwcLPhafPGqkIncUowf11LZLJfcn0nMO7bHQiNCFTpdbJe/+RbFejWitpCR2yZ5RJ+oC2otzKH7elgvdjjjYYHoHGSJkMuXdAd78TIP2movOwYbtkrVJElEKY3ZRiEtp9TXhMJNFO8UeyiK+g7YCixBjnR6jT310d8h3qn9d8K5TnapFIonXeFIZvIxbz5+iTL/4rkXaMlV1lrLYWTlvUaelyaorQW6XbIknWpHZwp8n92Ep7lqlwAn+GRM88/lU51AF2DkH/bWsr3NI4mFaCkJrJfehUSgw/OLJFdjqK0hlmX4SGTTz/xnrc2ibuMuTF0KTWMb1qWW9igiT2IofYL9dcozUmW+qxUrunEOjUI/Yba5OhGdMGIaBvWpj6Sql8QOXHK9U0hcKDH/6z2qn+kqFbuxox4yULHMOolVaUuKgmkNR4ww92lPnwLms1FqpCrAtdvy6aiHIEIGIYFiLAriasprAFz29TDmOF97agpvmNODbDy7FX+a/G9sVK3eS2lDIpRFTFWQzRp0IyIaIWClfcLJWkrNw4iuvrbr+UIqVEnAON85pwE5/gRPHocayMwJetQsdmbb/QBw2sl/kPo4nl2/ETXP03Gqp7/uRJWpfFJcy5G6XrcN2NrUp86qsyOR5rsojpuna9F5jEyZe/YT6YgXBxUp8Y5VyDlWA6+CXFbkAQBkvpkte4Xl2+b3RIw1Ldd/ftrvFyc9BBicoTa0FfPvBpZEJ5ZWlmCSGSZz0sBcVxK6UOQdTPyVh9V36WybYvK/kHeqabWozSBXRaE7AOQDA7ua4V3PMOc8AkQjqNiC8bJVgKan9f6zsMuTVHtqj8skQMosiPLH/VGNUrkNVZz7COcQz7G3J49kVaj+mSiNGHFKdQ/tj444mAFASgCwR6moySvO9B6Qj/UrlG4784eyAjdaxlKY1Reu7IH73f+h2yo17W7Fyo1np7TJoxfbLCmhZB+GKUiN+9utRE1g5yc////6uPsxH1U02ncPnjx8T+c2NtcSisppYQyokIyTm9/OlE8c6lwUA+w3smUi8ocp7+iHDtGWoknULuDg/VVEC5LJsoidVtNVDrvoXrijyYKdSwUWF3HBh5IAeVW9DtyMO4hAZc8Wjsev3LfTEHCrOIUOE2mymrKGrB/eu017b5e/6tToBpf7APHmfXBYPJa6zCf/kLf+JnePr0gYZm3aGDmKytZKROCRY/12WTHFdzWUo4MxcZcomayWdWOvqsydGfnPiWKwMOQktJU3gPY7DR/Z3Lmv8sN44cGhv98oRr/uAIb2MIjRV/0bEQcLXYX3rwzyqhV+q3Vb2Q4vXY8na7bE87YVWP/De54/3CPipBw81Za8Iuh9xsExKThT27Ren1ESeWSYPeGaCq8PTpFH6CcoVponMTyMihTi+/eDSmMJV5+W8zhI6AXBbWEVrGnnnm/RQFv7+Hl/6XvSCphyd6CWboeBdu76rGZP2jaXxjYLrYh8ShzBtV7M9BHTozZ6AcwAZ21WTJQzuHVVw6zYX2UzG85h3rj2+cchmCAS9QYdSHyYpjetrMvjLl47Bd4RAi0rOV0pSxUOS2/HRm19Qtqs90JovIJchZDOEHjXZVOdQDdg6Oe/LoVU7tGzGFys5cA7uFg76fNySZ2dzGzb54i4Rxeo13pHO6jVZ+9iQ9E65zSJXES9bLwq4c97qhDXLcZYoeG7XdyVG4+VIYq0EhESEARjR39uAjB3sviN3kUDxp7FxDrlMxpnY5DLewUHJGJ5oZs+gw6So1u/u97S04da5b6OptYDjDhiMPvU1ePIbJ6FvfU4tMpJ+3zXvnVgeW9DK9kRLvhDoG4jczm0pN7ofcbD0scm3IEOEupxa5yBDfplJ5KwqrNgYlYm2tBXw7IrkZwqo6lTpV1zh+pwcSXa+KuhKT1rq8H71Mc/qYhCPemtT4If5Jo8egH9+9QTMOml/5zJETku7jzdwj+IduWycr9JVnbHoL5TNkPIH4Wcc8wMhV3f5vfEw2eOH9cGk/QYoDSpcYkS1tzOgCS1thcCM1dRnlUS3Iw62vW4P32VfNW4y5LHXLnFbZEKf1CFIRn1NNJTAL2avwMJ3oqdw9anPhWKlBIuwSr9SLGyB+JIs4qo+e+XdbfFEOForCZmm7T8oaGspBzMlXWB4dubXe9jIfshmCJefMV4o0/tcKWwIQlNWiqUlbTNHTTbjLtbzF6hETpTS7wJjgCH8jFI65Odduq5ReU9Ws6uWU2oVyo5Sj9itJFrzhSBacrmDfbqi2xEHWx8P7VPn54tnJCJ/B+VCHKQdpbY94ZXGPXrZc30uShxWK8JKjxnUK2yroW1yW35jCa5mQowL0fQNt+8v1cT3L77fRjFTRaxa1Dm4LpAmmTgpdAnqMliQT6x1/LAwnAYv84wb5sbuF5vKEParEoodp9wHrgpuni3JGqWyGNJFivXyhxcG+c5+tn2LzilVTlKF7Ph3kZx3NdAqiZU6pCkrEf2BiDYR0WtC2jVEtE46U5pfu5KIGohoBRGdKaRPJqKl/rUbyZ9NRFRHRPf66fOJaEx5HzEKWx+LOzsVXGMrxYiDw9tdu10fZjgWUdSyi9WdM1Fu2EIecGzc4RDSWoKyx1j84rihvfVOh1Ly45ediAe+chxIiK5rWyCNZ3jLHKK5qCADA4v6LAhtMO0SxaYyxvCxX+uVqIR428VfNVl3nQOvLwlkLqOtwJDNxBfz3c1tWPP+nqAv77v4WHzttHEA7JxoRrA6i9Ydxb79owYmjLGqnOhWLFrzTCAOZsOCSsGFc/gTgOmK9BsYY5P8v8cAgIgmAJgJYKJ/z2+IiG95bwEwC8A4/4+XeRGAbYyxAwHcAOAnRT6LE+w7O2D99r34/j/VobAzAltsGrhPLIta02zZpQ5N7frK5Ymmui+xTFiTfoTvXVtMGTrOga9B5R7jU8cMxIOXHu8oVgIOGd4XR+03ICAIjDEr5xBsGJzEOK46B3mhV3+XIba1wMyhpm190rM2G8ujq7scZzLnCwy5TCamp/n0bS/ixJ8+A947fepzwWbI1p9ZLecQTbt7/rsR4wFdiBTT4VPVRHNbPhAr1WQzaCnBaKRYWIkDY2wugPdt+XzMAHAPY6yZMbYKQAOAqUQ0HEBfxtg85r21OwF8TLjnDv/7/QBOoyTbmYSwhs9gDEvWquWbgEfFuYzzd3P14hh5pzx3pZqFdV0s5Xw6zsGlOOuES2BML09MHcHkJSaRnSrj4Ui/h/WrV1oRqdsQPhdfZAvMbcMAAO++r1+Ide0DgO99ZEJ4XSA00WHOYnki5Sp1DuqGB2avmrI4VMRBB15WKWKlfIGhJkuxiKOv+vONDx2icAxaxUoZja5Ckfdfr4Ubth171Z7iC1a7LnWVxZ6WfHDuRZ/6XMme7cWgFJ3DV4loiS92GuCnjQAgBstZ66eN8L/L6ZF7GGNtABoBDCqhXUa4DG5xbVz+gzOla6E44p0t7qdN8d3S9f91RLQ9lrbxyRtfdNVy1oUOg9vWBUl8D2JyZR1x4DJ555J19bFIOSR9miA+lkisbIpJ71wLhqdet4vqVEVddELoiRyGYWeJQoPvafEWB1nnYGqDbY/VozYbPx1Pk5fIOxtCtf24+uwJijvUxCGXJa0BRNBuhLoQ3he6TUVG2KxFC4sn9RI2Edv3qjn5jmLeKhKHXnXZyPkV1UKxxOEWAAcAmARgA4Bf+Ok66zmTVZ3N4i4AEc0iooVEtHDz5vKYcaquixNGPphEFCvV1bh3H79n4r5RkY0L2yzeL7ZTBgPD7+a+7dwmbZ0JOAe5/bqFNhTjuLdDKTqT6uWvSrcO6p4kE4gt1P4LkTqZ+cS6aPscxUowiJUU923zjRUSWysZ2tOjRkEcdGJB6DmHuD6ME/C4ziGXycTPKvDBx3iGQsLG03QEJZsh5Zh7dOmGWJr4nrdrjD86igXTnpa2YO3pVZvrPMSBMbaRMZZnjBUA3AZgqn9pLYBRQtaRANb76SMV6ZF7iCgHoB80YizG2K2MsSmMsSlDhgwppukOk5cZHY0ymVAhXZdz7z4+YZLGEtKx16qncLVItY3/RMRBboNWrKQmcklRyu3iU5GwM7W9RwaGPS1uzm72zQcL8um4AFMfTRkzIPhu9SlRtEe8J5fJxP0cdGUZLGZkAsOHgIqrrMmS1unydv8cDn6olliGThegslZavEYdBkPczInnnIwQlNXt4WymQlNrITgHJZfVcEcVRlHEwdchcHwcALdkehjATN8CaSw8xfMCxtgGADuJaJqvT7gAwEPCPRf6388BMIdVUDXvwjm8v1tvHigeE1qXU5+FqwJ/t6aF17Qrc+kS924z5ytFrGTbeZUis45ck347hUgXsoiLj8uYKBdCazgWaXOEczCINr73kQnYt1+9X4YZ8oK+dtse3DFvdfA7k1FwXJpC+ZGjqsvymNYRt7YCw97WPPa25vFPxZnbfFHnJuNAKE6Vz1QOnoEoJgrSyefFVu4R8ohmruX0+SkF+QILAjKaQo5UElZNHhH9FcAHAAwmorUArgbwASKaBG8orQZwMQAwxpYR0X0AlgNoA3ApY4xvuS6BZ/nUA8Dj/h8A3A7gLiJqgMcxzCzHgxWL9/e04LrH34ik/e3Lx2JYH29CijqHJGpz/nLl2ELiO1d57IZipWi6+vASt7bY8rkePgO4K6QLjKEtX8C777vraVQIxUreZ9DShCYMokzbbqSQvG8vOHY0PnX0KGM+cSiI7960ENRkMzhkeF+sb2yyxiiSz5A+//YFWCX4x2T980m8e8yyfRDvh/h13ZhW6Rw2+YYaN81ZibOPiMeq8qsSOGZOHNQUM5uJjzmxNc996xTfEkrmzsLvuciRo+1HHAoFhvd2NGHf/j084iCITNujVVbiwBg7T5F8uyH/tQCuVaQvBHCoIr0JwLm2dpQLtkm+XcE1HD1mYPBd1Dkks7zx75d4tWgYYsXE80eIfE0tVnJrjy2X5ohfdVkx0YG+znmG87LV98RbGih0uUVOwkB0HBlBpm3rtgJjCfrWy7dv/x4x/RIgcg5R4iCGZHHhCABDXwuUU2z2FimOlegEJ7ZLWafhmhxpV35HHOOH9Uaf+hoAYcRhZV0C0RLP+VbXnYltqsQxMWpgz+B7VK8T/hBPKmzPkBq/enolfvX0SnzpxLF49/09gQiRHH2ryo3u5yFdIg0WZZymcaRjtXMSdYhyDvpdWcyZSVG365PZDhHibXcxEZUnkxwDSsxXlnknlVGstRJHgdn7jcWr1eeVOZpYWWLfh7ma2tTnI3N88qhQZccXP1s4dXlBl+MLkR/rSKxTtziSX5jqao0UmoLXIxY1Y9K++MPnjkZtzqtvfWM8kCRHbS4T8UMB9OKePvU57JAIjX6/EJYhtq22g4iVuG/Ubc+tAhDO/YzNJrlC6H7EwdLHto2oSMVN40h219dyDkIZF/5hQaycjKO9t5fHbQDZlFukIUgAMMQPL6Lrpy/duVCZzhjD/FVmzkEMBZEvsOCQdRc4HRMqfA/0Kk46B+aszwlEOloz1TCnuH8QOQfVexTXX1deSW6DTjQjtksvVSLtdZk43Ppvz2JOXGin7T8I/XvWwqX19blMxA/FhL71NWhpK0Qc3LSEOcI5hBDFSsWqO9dv34vZy+NnpcgwRfGVxzvfpBHcjU3Kie5HHCzXbWuMuKMxDSSZDdZyDkKLVKHAtaasijpdx7VtoPE6ReXy1LEDI3Xo2mWq89fPmGM4iZPrK3cvwgk/eSaWJ7rztkNHNJLoHArM3mck7XT1R3jyHXp0rA3rVy/kUbU3LhJzglCW7lx0sV2mMc00rINs7bXVN/tNQtwj5dVkYwppHTh3KyqhdTozsSTxOcWNnKm+Sz5wgPbaR29+Qbsx4vjPW1tw8Pf+hZc0vkhyzfw5uI9JtdH9iIN1VTFPPHFHY1oYZfa0IC2qADBl9ADYICvmOEpRSNssivrU5/w6w7SzDx8eaUc2o99JquBCRHoIkWefUJxYJ9YXFEeRDyNEQpER+lXXtGP3930xWfCfFTrO4aTxQyLXGYtaK519+PDgMCGT1ZqqbBknjPPqkhXSKshhTVS5//nVE4ymrDLnwJsqirGSGHFEOQfH9ivqlxHhHITvYvtNYqUDhujP3diyyx477KFXPAst1ZGkQDxy7Fa/zAy1j3NetyMONoiDVwyjzCHuOF9dow+zwVh0FxI4+Ag9nsmQdXHVEQcVXHfxtvgxPEhZZOfHuYmCRBycanQb3HJYchW0Yo9klqwxhacKWQcC4opPHuUFBNAppIkIxx0wKKhP1xbA/KzP/s8H8HU/aJ1LNM+YzkHRIfU1mcBiRkVsZBEqL7NYziEnhBK3ioH9z2g+M9cmfxdN0k0i108eNQIHDesTRG5OCk4sueezjDGDe0Z+hxuk9DyHqiAJ33DM2IHx68JkssVh4SEPgHAwirsUkwUIR7BASfNMqZB2HEG2SdtDM3iBuEluQTPhdPeZ4OJUKC9OTv4Nwb0hXMSDGYEAlupgGHItoVhMbrnJUVAUJZn0KyMG9BDEEfbxFfQDop/RtiM4clSpc8hpOIcSzlrnmyjruJFMcU0Qc/D3+djXToyMOxNXTUQ4avQAY02mOdAmbaxk9NIYgLgeE1BudD/iYOljcRFQyS5ddzRAlH3k5dZkMzjcj3pKDtThkOF9/PtlnUP8RlfOwXbMaU7x3DyF76y4ia1YpUle69I0l3Akcjm28BkianMiYbZzDhEC4rp3C8Qn0QbJO1wvtpKURxLxRNsiEAdD9dlIPodQz9J4VvWHZ1qqt9qSxSF83rTkQ+Wrrv+04TpcxUphBWKpmrriOUb07xGZ59bDqiwLtel2fuKijjhog1Y6cICVgFs4yy4Fcy+LL171DuWAYCac89t5WP3jD0fyZwh48CvHo8AYLrh9ARjiC/W9s6bhoH364K3Nu1CXy+Kxpe/FBp1KTOM6fprbzKEgZBkyEC5cfGelMrG98emV2jLdxGLWLAHkCeqipBVNc8Mds15klCRyKyeavH/k1gSbCiDyqcyjuDhuWCjvNnEOGUn8JOo4lPml8aw85CooQ1utVGZcrBToHKS8suczb08pOged1FQkUKIviCgV4wu06jAt3j7TOPXKNS/+uvt1+o5MqpCuDuycQ5hBNQldTOxUMskwHDEhmyH/oBV1e/bt3wP9e9Zi8uiBgYORPElUZ+K6sp5NgdmkOr9qZyPvtFU6B5OYzYk4OFAHOQdvqWwFZkNk4dfk4c+4cUcTbpqjJ3xAOFbunLcaAPCQFB5CjOX07tY92NnUFuN2TKKUmYK3tbsgLcQczeFP8iKsek3cKY3BbYxlCHhtXaM2uJ2IJmmjwrk7OTLAkfv1V96vMrHVjjUlRxbdWPAF/NW10fhMv/70UX5+Mzdm5hz4p5p65TUhQshCkCqF7kccLNcjYiUFcRAnOcdkyero9AnDAADnTxsd1sviIZp1G0BxcdaZjMq7/89O2087gC48dnTkN7/3ocXhAiaKBlRHKoZeuVG5qbig722129Gb4JKHT8wtUpRUBbNjhPg8urnO+/5/71+Cx5a+p87kgy9q7/nOXRu2743W538yBvz0CS88y7ptch79bjliaZWAOvCidFFlY+IuxQzJkJ+Pqfevsod0fU0WH7np+UgYGn6fPOabpTHDudaMNN7kk9yC9gscIIctrIiYh4gi3BbnZGTuecQAr36CeZyaNkFBhFkNEdAflNVxT4LrUkjCOajFSv5ORRjTf7/kuFgd/XrURO5nTE1slJMtIhpQcyqyss+0o/nU0ftFfvMJKUYaFSeXahfOW8RZX74giDU2Gxx8yhU4cB/fH4A/P+/SrIZz0ItTwh2njmXnepUWixiOlwOE/RKL9yPoE/hhUnul/lKJSFRwDRnCd/smyKIspc4BFBFRyRg/tE/k9/B+8YW8r28eLRsQyIupeDSm2B59tF9E2i9/19UlirnEecodBWXiIBIToy+I5tIzb2wKuLcC8xw8//uvr0RiXZkOymoPnUM3JA7mXhYvqxZzF51Da74Qm0y3P79KESBMPdBUu0Q535sbd0lleRNp9KCoOZwKKoV0NBCZffHhnIbYLFNY63JxDqMGqJ+vaM7BYKbKiXStQ/Rd2ckxLj/mxJQFXJe8g5Qd0rRtt7ZGyMfFRdK1cyZ74ThkTlgtVgoXKKWy3BKV9f8+fhjOPlwdZC9OHLyy5HFvDOsBWeeg4RxEAiLcLxIsXo8uwoFNOaxr56V/eTn43lZgWPjO+/jnq+txxd+XRNJVyDgQ+Uqg+xEHRdrjl52I5T84MxKOG1CLfUTnKR32tuYj0Vt5mgw3U0NXxVyc0Ij21GJsHpVC+tSDhwbflZyD1Bc1AXEI61RNyps/fSQAN50D38Gv3aaP3JpU9vqVu19WposKYl7kGImwcrFSvcKK6uGvHh/5zcsIF345jpGfj4ULn9xfvE3FHmN84rjBsTp13XXFhw6OtQvQibTCDUtSk9FshvDpY/bTey1LxfGxx/NzUYuuT0Kdg16sdN0nDou1i2fRnUUhW2Dxu20LtW6cixunfIFBNlDw0qMPyZ1R5XWpWuh+xEHRx73rcuhZm4vJE1U29C7OU82teb8sF1GK+brLgnHfxccGxEhccMSBz81ngTjnQATcdN6RwW+TQpqDy9h5bUvXNsbk2mdMGIZBvTzlvNgXF5+0v/I5eNNVYTM45MUpWNQ0/aPjZiI7Zr+QWSdFwyPwfogvFHFvWb44ca6r1RBGOiAgUqN16fHGq5PvuuiYWLag26VxFgZ1sy/6Yp7VDkfjiiIgVd9F8koTIJeNtiuMY6Zpn0Tc5O8AMH5YHz89vHCrcP67uBcqBGJTdYBM27x22bxc9dCyQDcldvvu5uhYve2CKV77yO4sWwl0P+KgmAR8QHpB9YTFVdE7OjGPiEG96iK7Np1Hsk4mPLh3bawN/BzjV9dsj8gpAWDUwB7B7qIQIQ5hnguOHY0nvn4S9ulbH1MCZogi3snKTZ6Uxid9gTE0bNqJs29+Xskd8bLWvh8qX3VOdi7E9Kf/WhF5Rv4t6fGOogiHQb07C8dF/H5ZJs1vHdjTe3cH7xOVw4uyff5dFiNwMVa5zhQQAyj+bm40rpXoKAeYZfuiWOmqh16LXZchPlet5CAn96X82jiBdD1DWgWtvsf/vW13S3DsqnctLlaS28mL9E6CNLTFsZn8sCNxPZLnNTe9dt1olhvdz89B0cdi9MOon4NK52DmHH41cxJOP2QY5qzYFAz8Jo3TmVz6vv3qcdyBgyWdQzjBH351PS67Z3FM/OGxqd6jiRMzKym2D9qnD2pzmZhYST6sxUXhWSPoHM785XPafHwRelgw7dQpF10tMnYqzgJIas0h+zDI7x4wn9onL3r8Xn5+wA9nRI8uETkVTnRknUOQ7vfPhOF9lWG5k3mFM6zYuBNvbY4uPOGYj4plVL3oKaS9aMTrJCssFQoG4mBDDRcrSfoXk7I2Vr/0HoM8fvKRP5wdXMv4Dn4cfJMhj9GAM8x4x5yqnBhVdevwdKCcDtPkTWRUCe5UbFnR7YiDqo+5nJMoKp4oxgluxiQvho642JjC9IpvvbXAtHFqCgx425/gq7dGWftCIeR6xHapFrdchiBb0sXs7RXPvWNv1Gadh0woMGbc6YrOZhw6xZtzcDGhfSYrGxPkqKyqA1VkommCLP6Q4+eIu1duWSX3W6DMzjNs3tmMlZs8D/tiY/nw3X5rW7xz+LPFOAfFuPZ8AfzxLF0+YEivWP4I5xALymdWXsfESgV9u7z2hxyZrkyTvoQQHe+68cR/9q7Poa3A0NxWUMYCS7rDj+jspHtD36jkm59yoPuJlYycQ5RlVO0MeNrKTVFroQE9a6R8YV26cBWywtA7N1YmDt5ngTFlWAvAm1C8PnHBUXIACvGJfKiP6rb9/B3xQb78tlZhyqqCavIetE8f3PKZowJlNYdpYolimiWCg9JHpGixrgj9HELOQS5DPMPXBn6n6OwYqU/YofPXKOsWQs6hgKn/91Rgc//P/z5B2XYb+JhQLvixc0V8zkHNOiDri1Pkyyr/A1GxKsfL+vrp46R6o/fmJHFXnjG05gsxUajQNK8coWWy13WQR/FsRISLTgh1YJxj0B2u1cefKzua1A5+STcpYvZYFAS/0gzZ51klYCUORPQHItpERK8JaQOJaDYRrfQ/BwjXriSiBiJaQURnCumTiWipf+1G8mcPEdUR0b1++nwiGlPeR4xCtXsIFmSyO8HxtIcWr4ukz/nmBzD7GycFv8VwyZxz+OWnJkXuiSgM4ZnAypZCgQK8wAK7exG//exR2Ld/j0BpJe7atH4aLDr47/vysQCAP37+aHzuuDHKxfCDE/fBc986BX/+4jE4/sBB+Mwxo70LJvEr04e1+NBhwzFmUHTXaZpYV589Mfj++T++FHw/xbeySiqnF3eTDFznEM3TXyL4JsjnIcT6XuAc9unr+Wp884MHRbLwhdETW4Tpw/rWR/K58zOkjYckc0X82VU71AyRfwKi2w7WpHPo37MWF5+0f2ABFifIFPlkjOHknz6Dhe9sU9YlW1sB8UONVHmCawDGDg7HYSBWkjkHP713PT8/Qi0NSOW7FXMAACAASURBVLrDj3A8GlGWvGmtFlw4hz8BmC6lXQHgacbYOABP+79BRBMAzAQw0b/nN0TEea9bAMwCMM7/42VeBGAbY+xAADcA+EmxD+MCVR/ntDqHeF6eJsu9B/SqxbhhfSL5Ap2DTxxkNlQ+xCNfiHMHYdhotZhj+qHDg7bLCmlVfn4G9l8WvBukccubUw4aims+OlG7+owa2BND+tTh7i9Ow8BetX67zINWPqNY/C4rpk0TS+wWFcHZR1pAbYg4wTG1z4mLzwhHKI7gxEHmHMJ8/XrUYFjfOpx12PBIHm4hYyN0rkSLiyNU/Roqfr1PvqBqGIdAYc+vc3HSSN9zeM43T8YjPocjjkFVnC5xEybXl8tGdQ4FZj5SVOXnECMOgY+J/n4O+T0G6f5nbTarrIOjFM5BFivt4zsTZjJ2q8ZKwEocGGNzAchBc2YAuMP/fgeAjwnp9zDGmhljqwA0AJhKRMMB9GWMzWPeSL1TuoeXdT+A00jmycsI5S5KYGWjHtJ6zsF0QLpXVijDbvQtI2R7eZlzaMuzmAmdKFYyKUjfa2xCW4FFLIZ0UWULvtWTDi5B7Fyj05r8NGRZuqmooZbF/5j9B+H4AweZGxNpF4J2MXhypY8cvi/2FU5k422Xu2Pivn0BeMYHpxzED/Hxd5yF6L0cYsjuAmPKPuYbg+/+w2wRJHMcOvAadJFWvU/vdxgUTiGX55yDEGrkiFH9cctnjsJVH/E4uv2H9A7ep4lzAELuFYhvCHIB0eJtNw8wlZ9DiyxWCjYo6mcToesH/jMXeM2ricOGRrvCPlpuyHHKzRsRiOzi+rBqoFidwzDG2AYA8D+5B9UIAGuEfGv9tBH+dzk9cg9jrA1AIwD3WZ4Qyl0UnyiIKmuVIns/TQ4YpqzLnwGf/v18ACrOIZq/rVCIcQ6iX4WJOCxd1xjk49At8gWmj+8CuIktyHXyKnZ2J/jOWn3qoztgXVn3f/nYCOuva+Dk/ewn63FErM482oB9+tXjP1eeFmu7iOv/6wg8/FVvhzxj0gj8+jNHheUIz6BT8je3FVDQiNv4+7VZBNXXZJWOeTJMiyLH4N7egl6by6CpNR8c5frbz04O20Xk6xxEIsjwocOGR7k/idAAau5b1O/ITQs3asL7cXlG//eelrbAeOJXM6NiXJf1Vdeuaft7Z7twBbuOc7jm4WUOtQhtCsaNPo/XJR1TrJQEqmnLDOmme+KFE80iooVEtHDz5s1FNVBVcORwFEfOwRZBlChemeowm2BwFBgKLB66QgxAplNIA8BlkqIPUBMTrpuQnbRibbdAteiLmLhvX/zPmePDPhQy8gVJRoFFD0jiEMV1QDhgZJPeRNPHL2RPcxv+Mv9dTRb1Ai72q8xB8U+Za+POeI8s2YACiwdhBNRe9PrmuzHXCgOjCL7/UW/nf/SYgdi0Izzqcvqh+wTfMxlBrGRYzEKHzfDiS6vjugLuZcwYixlr8HvlwHscOsst3q4JVz2Bnz2xAgDwwQneM5h0DjJUVlvjh/UOOHrZ3BgAfvZEPMCgK7jjqEmUqNKHVQPFEoeNvqgI/iePB7wWwCgh30gA6/30kYr0yD1ElAPQD3ExFgCAMXYrY2wKY2zKkCFDimu5oZPFHQ1gJg5cPjisr3qwZoiwaWczvnL3oiAtviiGTnBBQLuYtZJeLCNC5YmqSvPkl8xI3FzESip2XsSjXzsRB+/T18kDl4MxpjRzlWkcb55slZIEvF2/mP0mdja3KS3KxN1+2EZ1ebKzltyDR47yQk6PGtBTq6ifMLyvc/udCLhvFGEaOr3qcujfs8YTW2piamUzgljJT9PpJgDzOcxASGjueWkNPnLT85FrnECqjsc9/ZChWPCd06WyQnGdDG4WHhJS+3gJrZWEOoS3yXUorcKY4NyWlzcZ1m3fi007mmLzW1xXbGHCK4ViicPDAC70v18I4CEhfaZvgTQWnuJ5gS962klE03x9wgXSPbyscwDMYe3RE/D1BI5+Dlwso7OFJwKeb9gSCfU8RNr1iJwKN2uUdQ6iQlreXYiiBdVi89vzJ+Pik/aPmIFynYOOLQaSiZXsOge3fIC3ELz41lZFXZKozW+h6Rls4O1q3Ks/c4AThUWCpUzchj56T+BJK12o80WKNVnydQ7x+uprsrjg2NExs2gVXN+RypT122cdHPmdJUK+wLRlZoiQ5To0xc5azKe7Fm2Xx70+vHh97BoPt6JyNlWG0Pc/VeIpUZeoyqOCzSM7IA5cNyETwiLUpZt3NePx1zZE0n56zhFhkeignAMR/RXAPAAHEdFaIroIwI8BnEFEKwGc4f8GY2wZgPsALAfwLwCXMsY4r3wJgN/DU1K/BeBxP/12AIOIqAHA5fAtnyoFcQd7woGDsfiqM4LfMudg8nMI2F+NqEeVKu/keZ6dTa2BEjKuc/A+C4xhuGRTPkL4rQr1MXpgT1x51iHR08EQJTSHjegXv9FhfKsCh6mQxLagUABm3bUolt5T0tVworhpZ3MkPcmWgrffFPtHtQOW65A9efn4kodFaJoJrc4BcF8IXPqV633lBezjR46M/OYhIXSiDd7293Y0BYdM6cJsAA6cg/+p4iZ/ds7hkbJsnDxPam4r4PrZbwbp+ULowWwTgQKeGTcA/G3RWr9edT7OjXDOQbYwSk4aPOfHb9z7aiTt5PGhZKS9znOwekgzxs7TXDpNlcgYuxbAtYr0hQAOVaQ3ATjX1o5yQezjulwG/XuGcYxA0esmzoFPJJ2SWE1Y4r8ZA26e04AHXvb8JnRiJZU1w+0XHh3LF7lXFUDPl/eaDjt3kWeXopDWQVXW5NEDYs8xckBPbNvT6FCivV2m8A6qVyu3kGcJZdW8fLXuKM+YVufA72OM4aj9+uPld00WZdpLQtu8ssRDd4A4B8s5B92iniXCvQvXRNJMBxLZ9HGmEDQDfBNpVfhy01j984vv4J6X1sSui3lMQ/WUg4ZGfrPIJjFM55wD5/TjYdf1dehgMjTh9beHLKX7hc8QF395lw4756ALmiZDbemkHgTiji2rCTfgbdiidY4RLHhc9ARePl/n4BelVlq7lQOoB230rGazbkKE6wTQn/TlPoN4u1RK/u9++BAcPWYgGiQveFXdcYW0mnMQlbVMY8rK8zFmH187LKbUALzNDkJLNh2yGUK+oD++UrXJUCukvU/XuWH2axHHvb4dvKxdzfr+cDWLFWHjHLi5rOzlPnpQPJyIDbb5xkXB1Ub3Iw7C97iiU4rKquIc/LXbZBcOOMqEfYWhOOhrDOEzzOZubsSBP6OJ83ETBanly/O/fVrEoiSMrWSHLvaNDJfDXGwwPeEXT/TCKcghUrxKpHKkhYfvmuX3IXr8Fgr698WdFE2mxq5w3cRmMn6dfttv+NQRljt0YqWoyFVbX9BnLnmEjZNqw+V/2qx9AAQWUjY0teYjFkgiZIW0XO94ybJOxkHD+mDEgB6RM71tYkQvHlpKHCoOk6mqbDLmonPQwVkmzKKTWF6svcPd1WIlEa7sbIY82T5ffFQ7ZxfaoKtPDvXgavoL6Jy14mm2nakLdLoiEaqFRCZgYRgODzqFtLgTNouVfD8U5yiEFjh0VSBW8sdEr1r7sqAL0Ae4cA7qjUWkLIGYhuXrx6pcJ9ch+LmCsnRxzkTcNvftSHBLccGXxUqyxZyO++LIZSk2d2xcgcfZpcSh4ohyDnGxkj18Bhcr+eEGNO/MSSbss/0iIVGFG+Bxbe6ct1pblstiB3CdQ7hLVLXfre32Ce7l8z5dFnSTHFuELsptkunj8oyq8nQLlHycJUmvUeYAdZuHDH8/ZeAcso47zoyfjy9ALsfEnjgubkrOZfu2BTLgthzMqZ96Pdxhq8e4erMmcq9iV7sssqK/yQ9mTMS5k0Pr/JwkVpLLs41zbzMWfQ65DDkycy5DZdkQJUW3jsoaVxBH3dRNZ0jbbOydlLq+wlAc87sVTmBc1DB/ldL9Q9tWdb6otZJaTh/nqHQ57KasXs5l6+PnEshQcg6KfMYQ6AJMIgR5x68uIPrzxHGD8bEjR8SyeZsKXqf3qQqfQQRs2dWMp17fqCVOfAy2loFzqMtlYmEe5KNEeVtFH5OsyvRNwJkTh+Hzx4+JpfNHtnLVgUgymi5G6eX9I5oRm0Koy3WKDqfiWDURy88csx8G9aqNGCkcPrJ/xAucW7fxsxdkDs/27NkMxeaTeM+ZE4dh5bVnSfdkPCu3KhOIbkccxBmv4hxcneCCQGWa95VAbB/J+8aGnYqy7DtAV7ESJ0gmzsFNrMRZdbd8LlDHvonn26s5+vPLJ0eP+XTR0ZgIiMzJ/OnzU7WcXRBWQuMEB3iL292+N/bGHc2KHKHBAOccLjh2tP4hLKjLZdHcVsAk3wEPQBDuQ25XviBwDpbBNLh3ndEaz13nEOa78wtT8ZHD9xXKsr8fU508QF6kLJidPzmnJb7jfj2iPic5KXyGXG+Lxfcml83ExobYD9d94nDFPVxakRKHikIca1PGRGPxxHUO8fuTiEmc2oPoAvrFE8fG8mTJfhKUqz8Bj/DIWX8736Be6FxNWeV1Rp5sote4auLKRycC+pP15LJdoryaWi9f0/WwOG5MJsLie27WcD+hzoHhvKmj8IMZMetvZ9TmMmhuzePQEaHntewzAvhipUK4C7aZVposrQAXfZz3KXKTcR2N9ykWZTJYkHfwtRrOQSzvwKHRc8AzPpEUfV8iMb0g+Dn4xFuUIBABTZqNC0fO9zYXkS8wDOlTh/OmjgqiHauwfW+L9lol0P2Ig//5u/Mn4/xp8q6MrAqwQOcQcA7qieAWgsJrkJhTPnjHK8vOUtomtNiupNYwaosm79NWiky0fn/hlMjvJ75+Iu6dNQ2Aeqev2mG7KudM2ZwO8JHuN/smeN95vyo5DPEge8O48TiH+NkeSVGXy6C5rRA1lVa8y6xvreTKOWj7wf+0bZxMimVTO9VcrpogiWHNQ9PZMN8PZ0zEU5efHKuzUGDaM86B8BhTzjls3xMu2H3ra4IYWtF2h2375gfHK7zqPWMT3QbvyeUbAQDXPaa2oKoUuh9x8N/TmEG94mEZSBYrxe+XHXh008BlI88d0sR2yOEzeJ229dBZrOSX1WZ4APGsisG9a/HgV45XlgNIA/+M8dZ2yTujQb3rcLAfU6icttyMMY0+xYPL+9FZJsXKQjQMCpGdc9C9z+D95JmTYtiEulw2ONJSLF+G7ASnavtZhwmB+ErkHFSQi1TF5DLppMQd/FmH7ROJgCye5xCct6Ekkl7fm87LyGQ8a6O2PEPjnlac89t5wbU+9Tll8ETeH5efMR6TRw9U6By88aN727ypm3bqz7WoBLofcfAHm07JGg03HM/kemC6E3EAYg5ROtNSu/gmvO9rpx6IWxSyZbHOwb29Rfo4xRkIYryhb5wxHocqQmzwZr4tHFzfX8ES6w69UZVVTjyx7D2L6a9X6SsGL2ST8YIIbnUGeERXt/PORoiDjnPwPlvyBfVBOQlQk/MK0+logjp5+IzAvNmr95tnjMeU0Z7o9RrhJD6TGS7gonNQjHGNEYTI4TYrwuSr6gxOKfQhnsEQ+PdouJe8xWSct5+BxcQ8vetyyr7m+kI5HDnH3tZ8TLwslwvoT5+rFLofcfBfvOo1yCZjqnclx+LRKqQdxBZcASbWo9ot8slrgljGhH374kPSKWNBWf5CNrxfD/SszeJrp8ZDfYu6GG1gQf/5fjf37SBNduDz6pMnvT6P6hl7GVh8E77855eNi6Ib5yDkN+Rrai3gVr8fTOIgsU4txykEFbSJd2zg7053MI2YT8U5/Pdp43D/JcdF0sQ2xtqeUOcgQudRLs7HR5ZEg9OJZYn55ND4Q/vUIZchrNu+xxgTLUvkh863E7e8wpGxriarFKnJDqdyzd9+YKnR94UjgW1HWdD9iIP/qeroXDYTCcWrWsjqpENWdKILl3m9cUcT1ry/F+uFw11qFAtLluzEQXXGgLpdYVTW/Qb2VE6S4f3EgH66hSCeptrp6uz95TYBarGBaE9/9dkTlG3R4cgfztZecxJ9WEKpqNBqEAeJ70ivq/I+C8wu+xfx03PiVi68PpsFTSYjWSsp2i8SPFOzMlSszoGseVRQ+VbIh2rlshn0qM1id3Mes335ve6wJZFz6KPQ/wEIwt7LcyOncVaTuRX5Wddt36sN4w6E+o1SNwtJ0f2IQzApVROAjIfgAPFdyS3CiVkROAzu//jhqcWAYbpgeXadg6i30NdN/q5n254WJ7GFKSS5jBqFyE22jlHtOnlZ2/dEw2d/4fix+KVwmpfsfV0KZBEFP/pThCvnIKKtoBcHuegcxPev0j/poDpIitfX3GrnHAqM4ZZ/N3i/VRygULxZxGb35nXjHIxFCIV5HyJB2n9IPL5R1ue+f/DIcv+3qg0UUVo/8rUTlFXyDZbcxqzm2fmBPnxeyhuDAf55Grp+/f5HPYu1IxOcdFgOdDviwKHmHMh6RoCoczhiZD8cpXlhLmPblU3ktu+2POF3E3EAXt+wAy+t3oatu9S29iJ0VlCq5qjESvICp14YvETR8gMADhjaS1Islg/ygnmPbzElQnxG19g2bXm9zkFc+HULqE3EqIPaCsknDpYxzcMzvLbOMy1VtT/KOZg40+izfeAghSe1g7WSKs8JB8Yd+Hgusc6eivAf8sJtOqaVm8WaFO8FFt/oZDLqcfLff30FALBumychkNeYz04b7YfRUdd30D59kM2QMbx8JdDtiINZ55Cx7rLqcuFiZTIfdVn4TR6fIjJOu7GwLFO7xEvyeQjK/JqyVET01EOGKnJGYdo1yrLxuJKyfORBPr9a/g1ECbKrIZWrQlqHyKljBlPW0w8ZZi1b16+xfJI4xERoAPN7IETLmjFp31gelVm2ixhJ5RDI22IzzZb1dqZoxNzyyaR4LzAW88HhprAyeD5OOOQsnimr+gCooE6U15rPBd2POATWSqpdLgWmaPddfKzyfnFQmezQXQa7azykbIaclIpifpd2udSvW9BGDoie33zdJw6LEE6X+jn4u5Bl47qDj4rBLz8VPWz+sJGhBZauv4rxc2zLF7TiIJfXLeYxcQ7yIU2qd8nTWhRWPiKyFMYKAtTjOhchDvqyiKIOaaooIKoQMTY/nc9O2w+nSQQR0DvBxcqn6CmPSmLKOYe82RmQi5/Ou+3FWLqKc5B9X2QC0lbg8bb07efnbre0FbChca8+YxnR/YiDxVqJ4+Dh6tC72cjiqq9HLv9XMyfF8rj7JpiPs/TKEoiDRazkUj+/ZuJkP3ToPoGs25XlNXEOMjciK/+ThOKQobJdHzWwR6R+GedOGam+IEE8+7klX1DK/wE3Ymwzaw7zRX+r3nlWQ3RlEBFe3xB6K6t1DmFMIPO4ierHVPR1l+IsCtu7/e6HJxidMV1iGuUtBga8v7j+whRWXUWMdNFTZWslmQPwzubWn/Hhtde773v/eA3HXjcHuw3nV5QL3Zc4qHQOwmqvm5gRmXACzmHGpHjAtiRipWdWbI6kyYudWJRZ3OVGRHgZNssn7mDl7P+hVEjzHW50wsXOa3aqQQ3V0sHfn+4Z+9TX4DtnHWIt+/gDB6GHrxtpbi3EiBqHk9d8hHMwjC/pHauGIs+z5n3zTlM8W0Bugwg+XmyLmLhwqnRlOxXEwcY56DYffDxZLaQy0R27SXRmEytlM4TWtmh9NVnSKqRbAx2G91vOwTkH0wAnAt7Zsic4kc90uFG50O2IgwkiG2/zAgWA5Rv0kUZdwlm4ipXkbE9dfjLmfusUbVnlECvxfK56FVeHLV1xGYpHupWJRUnRJBRrhxMBdHhHPAw64J1lrFvIxL78yScP05bFkcR0UalgLZLTUoVwAfR2+nI7xE21asnerNB12fRkNpNqm65QFvnorJWAUKykPeeb4oYrr/9gupZzkOmjmKUm699jMGXlbXlx1dbgt81wphwoiTgQ0WoiWkpEi4looZ82kIhmE9FK/3OAkP9KImogohVEdKaQPtkvp4GIbqRyah4lhIas+p0DoJ+YYh5uoqaCSGiu+4R6IXAPsx3NN7BXLfpKClR3nQOc8gULpyOh0YlSYtASh7heZdIoKTCidLNuEVNB5Y/C37Frf+ngsfze9+a2vFb3wrurV20Wnzp6P2t9JoKrO2kukqeI2X3VRybE/ATkOswKaTvncPYRcSW1aS6YOCh+V5NVrxJduOsV74h3oYtYSTZ5z2UzgbmsDmFY9zBPTTaDvO94ZyO6Ispx3ocN5eAcTmGMTWKM8YhqVwB4mjE2DsDT/m8Q0QQAMwFMBDAdwG+IiL+hWwDMAjDO/5tehnYpwV+M6r1nHXbfrps5PrEPGtYH501VLwTOpqyyYtbSLiPbL3w3Leic2Jh2n2KdpYiVvLIoIhtf9v0zcdA+Ub1PT8Fb+ttnHYynv3myU52AWjHKYZJXuwVQJIAB7zU24aXV27BiYzzsOuAmlnlrc3g0qUkh7aJzKEZHY6rTVawkBktUrZUfPnx45F0CZgKtMpGWYQ15IS3cKoITN2XVlEUUcZb96ScPD+owjaUgnFmEc/CIgyl8BhCf8x2ec9BgBoA7/O93APiYkH4PY6yZMbYKQAOAqUQ0HEBfxtg85q3cdwr3lB2mMcRfDpF+d+TK1OQcdt6ulmnyQfeqJkSD97nt9lX24EE+p111eK2X4y5eJ48nioqRVOWNFZybjtxvQCKnOFVXv/Get4irgqVxuCmRPc7k+YYtAPQcpTi+dBA9wk1iJbkMXSC5pLAt/Kq6o3miF131L6ZNiMq5MqxQf0kuP+rnoGhTYK2kt2j07o2KlXgU1yyZnVXlMz8AiXMw9mt0veBjrZIolTgwAE8S0SIimuWnDWOMbQAA/5Mbv48AsEa4d62fNsL/LqfHQESziGghES3cvHmzKotbi2G2mimHmzpfoJMUpbIJV0EWKcn1mCaaaPWkEx8AbvJ4cfKMHthTm0+Eip3n9VjDPIj6koS74mLfaRKxki2vC8EVzw9IYvCgVLAWwTk4iRoNxYrXPjVlFD56hHIqxz2iDSvRIMMZBy4xzLzyKeLXo4utBIS6L91zEkUtwET9nMqK6RDfmu2DEzxT3Chx8IiWKWQ3b684d5N4zxeLUms4njF2FIAPAbiUiE4y5FU9uU5Hr6S/jLFbGWNTGGNThgyJe166wOTnwJtSiskkB5/Ypsl2uRDieubRo/CrmUdq8wLeoFx57Yesu0TTbvfNTaHIY9KoeLTVoAwHhbR4SbdDlCGfj8tBFLLK//dxu45Gt9gfIZx6xnH6IcNw8vjixouTvwrx417NeXmTTfl6CATbFgbF1k45zwGKsBIyXCzdjIuYcO0rpxygF89K6aZ6TQfguE7VbCYagfeIkfFxwtvUalFIy/ox8b2qxJfjhvbG2MG9MHn0wFi5tblM4MFuIrrypfhZNOVHScSBMbbe/9wE4EEAUwFs9EVF8D+5ndxaAKOE20cCWO+nj1SkVwQmPwdZIVUK+MQ2TaQLjxsTfD9OERpARn0uq1VSulq5iAPzaiEMs4yc0y5RrNPVz8E+4Y4aHZ+4clt0i8mXT9o/lnbdJw5ztgyT4ebVDKsTE+Cm0BWJrEkhLZcgn1gm1gd4Z0f/49L4uRyxexx0TOUwF5GLMPvm2LkZG8Tye9fljJyWTSGdzUTFSny5yGbU+qvWfCGyKeKxn7522jj061GDHT5HYOKCyrFhTYqiiQMR9SKiPvw7gA8CeA3AwwAu9LNdCOAh//vDAGYSUR0RjYWneF7gi552EtE030rpAuGesiOwVlKKlbzEYg4rkcFDH7iGxzEp3fguwbSDKrdCmpdn5ByE20sVxWVIjD5pJ4DaXZ2iHUmsmuJ1uuTxMl12z2JjPt5mU1eJoj6zotz7HNirFqt//GHl2BBpy34DeypDhMTvsS9QpvElmoualKbyk5mIt+kVOJtQuxib+EXxTYqOc/O43PAJwuNVMzEP6ZUbd+Lx197DmxtDvSHXp9XXZNCvRw2eW+npDx58ZS10qKABpxbFzxpgGIAH/UbnAPyFMfYvInoJwH1EdBGAdwGcCwCMsWVEdB+A5QDaAFzKGOOawEsA/AlADwCP+38VQcg5qNjw8tWTzdonkgjTIOeDeUAvwwlVjqas4iAzDTi+LplCYpCw2BW7M+fIZEKHOp3oSaxCN3FLOaBJBZedqbPVmZ/P5MAkxlMyLa4ui4WYp5hFNHaNi5UM94sErdkQ8kUOIVGsT4arZ3420hfmscMj9moDKBJh6brG4DfXIWQz8ed6dGn8DAqud2tuLaB/z5Cor966R9v+dqANxRMHxtjbAI5QpG8FcJrmnmsBXKtIXwig+JPUE8B0Elw5wTkB10XTaELolzGwV501D5DMykUHPuDrDbqEUIHvNkEnKfQBYVmEprw3KU0xbVTfRajWimKsdmz1mPIM7q1+T7wdqnOG5TxA3CkwWqe1WeglWKO59oFpsX1vR5Nft74s0ft5RP8e2nyypV6xmwtXwi/OL914DaLYtnkHLelFoNHf3LopS/HYSirLNS46bG4roH8POzenqrMa6HYe0iadQzmDHnJrAtcdkQvnMNBwtq1YTbEsuoiAczBYNPFFwjW09B2fn2ooK2TnXc5DMO3qygknsZL0+/cXTtHksxcmPpcpmBxfuHS7YAA4QjA4cBX7uRgWmOrk+N8zD4rsimXIU83Uz/NXva+95so5vPh2WIZuvPL5P3v5RqPeUR5j4ulyeYmgr3k/zg0cM9Y7mveY/Qein0AcVPHXdHVWA92POPAvir42HUifFKGfg1t+06vnxKGnQXaecRQhuMouubOgafLxOk07YRG96/XtFw800u1yxabr8iThElwWuWLESn0Mz2mDSNhPPFBvYcXrNL3rulw2MI92JeAunu5GvwMftnOrZU/i3gafGxNkzuGOL+g3IBy6Ptvoc0Y2Cy334AAAEYVJREFUyHMoOF5VwTnwMb1vv9AnZ/LoAXj9B9NxykFDI5z5yAF6TqsdGIfuRxz49kC1i0vKOXzj9PHaa7mEOgfT2+fch8tCDSQIZWFAKEct37B0tY/XnWPgoldJIrt2EYe5BcuL5tG1f8Fq/Q5YhX4GTjEbcA7mZ+AtyxqeVSSSLmHXXfQXPevM5ZRLrCS2/dzJI51MlnVc1O5mt02OfHyoOFdkI4K2QgG963J48vKoN3/gOOd4iFJ7KKS7HXEwWSsl5Ru+cMIY7bXALM41BoohG584riGcTcTB9cCQWz47GacePDTC9spIatVlNEkUF34HhbSeu4imf2rKKGU+APjd+ZojXgUsW99ozSM/Vi/LwlgOcLGlTVzEvb/lcBUixMXeNHa4zshl8/GZqWY7/HIdXCN6+btyR7qxs0dxzoQKQ/pEdUp8jsshOvi1ifv2NQQzDL+bA0A6Na2s6H7EwaBzMAXSU8G0g/rnEs9KYd7bW7V5XOESisPVCsl1QZ+2/yD84XNHGzkH2wErSeDip+HEOUjps06O+z1wnOSwyzQphVXtAvShRI7cT6+QTwqXoIFAOKaHaJTkAPCpo0MCalr4h/Wt8+u2LxsmrgdIvhHToUdtNmiz6+5aN2/FfjBBXuj5nMopOQfmHM7GBFdP8HKiGxIHvYf0one2AVAfDKOCiTjsbDIfzhODSazkEMrCFeU8arCckSHF9Ubv6Bd+14mP5FsPGNLbWO/njhsTO3JTxEUnjDXeD8RfnW6B/cwx5fNq5QuOjTjs8kUlJj3It848OPjuEiPLJgHihyiZ4MJ99DJwOyK4yeyc1zdp8/zli8cE33V9tv+Q3kYLKw5ZaS86zRVYNOqqd2ys/lldp6PY5KPKuMkwoRQ/h06JMGS3HvIRjDqYJ2ayhdykT+CDrRzi/zJu9sviSc4RNVNV54k4wWkyJW3SNR/Ve4kD5vhTQVskQqUN2ujeLCtcOQc+dkwbGXFnazIacMGSaz7oZEE0tE+d8tAfEXO/dQom/+gp57rf36Pn/PcVFn2TIQLvzzMn6jcM8vPJ+jkeSG/OG5u8Y2MN76jVcULyMfWJI0fg+k/prZrKie5HHAyB9zhsO/TFV51hVdwl3eRPHj1Ae40veC6cg8kvAQhZ4DkJwl3r21U+4vCO4ADkIh7QTbhWy1nbSeFi0cSbm80QPnuMOjy7mK8cyDrE7gLCd+QSihuI+kbI2LHXW8xN3IUqKKQKtcL8EY9ZFZE0uJzpnHXRwsokouH9NWG4foNYG4ixvPXkmLFezKSAODCGG2avxG///RYAsxWSK/fNX1GpzqZJ0P2Ig/9pGiC2SWyy3y4WpgWxr7+bs5mMLrnmg5HAbSpwUztXxzUTysg4JIZuUWwuc5x7l37i7y5fYOaDafwmu0bfNbYrazdSAGA1DwbcQksAwLfPOgS/mL0CU/3FsBTwWn53/mScoRHrJQ3JcurBQ7XXxPA012lO4QOAtdu8I1VHD9JHGebE4dj9B+HOL0wN3jnfvBUKwJpt4WbHNIbaHMdrEAizilZL3VbnYDyvtQz13HyeOcJqEpx2yDCM6P//2zvzWKnKK4D/znuPhzxkkUVUEKRKWcSFRVqiVLSKa6R1i9YCLq17pLZNqlZjGtOIjdq6pZa0ULWLtdGm2GrV2qpxF6qoiIha4xq1rbIoKuDpH/e7cJmZu8x739w7l3d+yc3c+eabb86cuXPPd77lnF4cNDb+4oeg15a2zDDc3p91ZUdiWz53DdZJ3E0sqffYGTJ5DpHzxEiqrmaa2qaMHMDZ03dNrJN1WGnT7+2hM7DHsH78+pQpmYba0gjvce2tLbG94XqXUc+LybgIWw6rpc1DAWzfN34CPxw1qOwMhKcbVbeYcb/vhXdj24pmlNtlYHzU3CyLUnzT7TyHkCQD7GNNcWUWs66w84AOHrngQC9tZRlmyEqtFJB5EdeDqicBUBayXAtZ9mgEbQWPaVq77YypGSQL8DGsVATRobg46vUckoa76v3+ScNjoedQuTIpGrgz2nFKylMS9RySVniF381HrpmsdFvjkIQP/YcXfVrPc8HJk3PJBxuy0WNPMrz+b/jGxC63VS9xPaik+E2NImsWPp+E4/9pEWfD+1eeN5V6SJKrXs8hbbc4wOk1QrrXIpNxqOgchZ+/fuPniUEHo4RLpYenJMsKNTEkwaPxTbczDhlGlbx4Dh3tbYwe0oe5B41KrHfgmPhVEY1g083Ci+cQPDbbfWenftvw9qpsoRCykhjaIOo5ZAhd4sPj6tsr+OtOcXF64gg7Az53uvsgHGLLEkH4qL2yzdEkdcTa21p48bJDM8diSoox1dO1URmBNZzv+2T9Rj5JSD0bJdwr9O1pyUumV7pUwWN2qD153wi6n3FIzAQXkDVSYhKtLcI95yclxiuGjZE4MF3l8017RrrclFd8+2F3z53GDgnDVVkTLe232yAGbduTM/dPnk/IwrRRg7n9rKlMHB6/yg023zB9eIo+CVWW1klZeumM1P0Oc6aO4N4X3k3t1NUzV5Jk5OM8hzAkxrrPNrL4tQ+q6tdCN3XWss0VJk2U+6a5rpgcyOI5XHzkuFxkKYIsY71ZCTtORcR9SeKQ3Xfw2t7YHfuyXWIe480kTT4O6N3O4osPYnzGfTRpTBoxIFX3vdzS1KTcEEXw6fpAnl49kvun/Xr1SL1x/mjmeB71NCcXknhDd92P599avUV56DmsW79xi3mGpKG/780YzYlTdubrE2rn2t6E+5m7ug+lHrqfcXCPSf+pvjn+AHlz2xlTOWv6rl6C84UxZioDkRXNJTkb92j/8f21n8bWK4IwptK6DMMcR+yxY6PF2cQqlxozLcxGVnx3UJKGqN5dXfs3Dj2HyiXnSW0N6N3O5UfvmerVhPtP0paq+6S5/tU5cNj4HfjikG0zZTjbGhk/tJ+3nuslR45lwvD+TN01edzbJ6/NOyK1Tt7j69Hls3kkfq+Hnx6/N9fcvzJ1oj6LXn1y+dF7cOW9KxjSJ78J1npImpuI8wRC43DC/Me3KP/5N9MDPKZxy2lTuHPp24mBMH3T7YzDiIG9GRGznvjoCUO54+m3cpaovHS0t3F8QtTTzuDrvv7ERV/1Gt4jiahxyBKLKU+GD+zgquOrEjYWzgFjtueAhE1rRZPUQTxhn51Z88kGZk3dsiNQq1e/724DU+eFsjBqSB++O2N0l9uph6YxDiJyKHAN0Ar8UlXn5S3Dlcftlbh70ugci87dNzFvcpSskTHT8L3fIYmocdiavc7uQM+2ltRlqG2tLZxVY5NipXG467xpjNspv9VFvmkK4yAircANwMHAm8BTIrJIVV/IU46WFqFnS35jet2FPYel7z2YP2sSp9+yhC8MSt+92qx8q8m8BqN+/vH96bzilo3WS+XKqzEeN8IWQVMYB2AK8LKqvgogIrcCM4FcjYNRHAePG8LCU/Zh/1HpORaajUF9gpVMeYY2MBrD0P69MoXtrsWAihVtZb8emsU4DAXeiDx/E/hSTF1jK0REOGB0845BJ3HspGG8/t+POXv6bkWLYhRIR3sbr807glXr1rN6XZ35XJqQZjEOtUxs1WyiiJwOnA4wfHh8aGTDyJOeba1cePjYosUwmoR+vXrkuqqoUTTLPoc3gehM5DDg7cpKqjpfVSer6uTBg8s3/GAYhlEWmsU4PAWMEpGRItIOnAAsKlgmwzCMbktTDCup6gYRORe4h2Ap6wJVXVawWIZhGN2WpjAOAKp6F3BX0XIYhmEYzTOsZBiGYTQRZhwMwzCMKsw4GIZhGFWYcTAMwzCqkCKTxHcFEVkDrIh5eTjwekoT/YBVHur4biuL7L4/01dbPmX3KVfWemXWPfi77n3LZbovTq5a9UaranrgJ1Ut5QEsTnjt/Qzvn++jTgPaSpW9WeX3KXtB37G0us8qv+nedJ9074weW+uw0ocZ6tzpqY7vtrLI7vszfbXlU/as9Xy2VWbdg7/rPms90/1myqz7mpR5WGmxqk6u97Vmx2QvDpO/OMosO5RL/qyyltlzmN/J15odk704TP7iKLPsUC75M8laWs/BMAzDaBxl9hwMwzCMBlEK4yAiC0TkPRF5PlK2l4g8JiLPicidItLXlbeLyEJXvlREpkfeM8mVvywi10oOCX89yv6AiKwQkWfc0fDMOCKys4j8U0SWi8gyEZnrygeIyH0istI9bhd5z4VOvytE5JBIeRG69yl/0+tfRAa6+mtF5PqKtnLVv2fZy6D7g0VkidPxEhE5MNJW7te+F7IsaSr6AL4CTASej5Q9Bezvzk8FLnPn5wAL3fn2wBKgxT1/EphKkFzobuCwEsn+ADA5Z73vCEx0532Al4BxwE+AC1z5BcAV7nwcsBToCYwEXgFaC9S9T/nLoP/ewH7AmcD1FW3lqn/PspdB9xOAndz5eOCtonTv6yiF56CqDwH/qygeDTzkzu8DjnHn44D73fveI1hiNllEdgT6qupjGvxiNwNfK4PsjZYxDlV9R1X/5c7XAMsJUrrOBG5y1W5isx5nAreq6qeq+m/gZWBKgbr3In+j5YyjXvlV9SNVfRj4JNpOEfr3JXtRdEL+p1U1TFC2DNhGRHoWde37oBTGIYbngaPc+XFsziS3FJgpIm0iMhKY5F4bSpBxLuRNV1YE9coestC51Zfk7ZqKyC4EvaMngCGq+g4EfyICLwdq5wIfShPovovyhzS7/uMoVP9dlD2kTLo/BnhaVT+lCa79zlJm43AqcI6ILCFw+z5z5QsIfoDFwM+AR4ENZMxTnRP1yg5wkqruAUxzx6y8hBWRbYHbge+o6uqkqjXKNKE8FzzID+XQf2wTNcpy0b8H2aFEuheR3YErgDPCohrVSrFEtLTGQVVfVNUZqjoJ+D3B+DCqukFVz1fVvVV1JtAfWElw0x0WaaJmnuo86ITsqOpb7nEN8DtyGu4QkR4Ef47fquodrvhd5y6HQxbvufK4XOCF6d6T/GXRfxyF6N+T7KXRvYgMA/4EzFbVV1xx09x36qW0xiFcsSAiLcDFwI3ueYeI9HbnBwMbVPUF5wKuEZEvO7d0NvDnMsjuhpkGufIewJEEQ1ONllOAXwHLVfXqyEuLgDnufA6b9bgIOMGNtY4ERgFPFqV7X/KXSP81KUL/vmQvi+5FpD/wV+BCVX0krNxM9526KWomvJ6DoHf9DrCewBKfBswlWEHwEjCPzRv6diGI1roc+DswItLOZIIL6xXg+vA9zS47wUqOJcCzBJNd1+BW0TRY9v0IXOBngWfccTgwkGDifKV7HBB5zw+dflcQWZVRkO69yF8y/b9GsABirbvexhWhf1+yl0X3BJ28jyJ1nwG2L+ra93HYDmnDMAyjitIOKxmGYRiNw4yDYRiGUYUZB8MwDKMKMw6GYRhGFWYcDMMwjCrMOBhGAxCRM0Vkdh31d5FI5F7DKJq2ogUwjK0NEWlT1RuLlsMwuoIZB8OogQu29jeCYGsTCDYszgbGAlcD2wL/AU5W1XdE5AGCWFj7AotEpA+wVlWvFJG9CXbBdxBshDpVVT8QkUkE8bQ+Bh7O79sZRjo2rGQY8YwG5qvqnsBqgnwb1wHHahAXawHw40j9/qq6v6peVdHOzcAPXDvPAZe68oXAeao6tZFfwjA6g3kOhhHPG7o5Ts5vgIsIErnc56JGtxKERgn5Q2UDItKPwGg86IpuAv5Yo/wW4DD/X8EwOocZB8OIpzK2zBpgWUJP/6M62pYa7RtG02DDSoYRz3ARCQ3BicDjwOCwTER6uPj9sajqKuADEZnmimYBD6rqh8AqEdnPlZ/kX3zD6DzmORhGPMuBOSLyC4IonNcB9wDXumGhNoKkTMtS2pkD3CgiHcCrwCmu/BRggYh87No1jKbBorIaRg3caqW/qOr4gkUxjEKwYSXDMAyjCvMcDMMwjCrMczAMwzCqMONgGIZhVGHGwTAMw6jCjINhGIZRhRkHwzAMowozDoZhGEYV/wc584zIJdpUMwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc']=sorted_data['inc'].astype(int)\n", "sorted_data['inc'].plot()\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4G9d97/09M5gZrCRBgKQoUhKp3ZK8Spb3JLbjJZudtE3qvEnt3rpx6zpp+9z09iZt37dpe90k7W1zm9skzto4zb7UdRbbjbd4SRzLkmxJtvadpLgBIIl9P+8fM2cw2AiAxEbM+TwPHxKDATgYAPM9v51QSsHhcDgcjhGh1QfA4XA4nPaDiwOHw+FwiuDiwOFwOJwiuDhwOBwOpwguDhwOh8MpgosDh8PhcIrg4sDhcDicIrg4cDgcDqcILg4cDofDKcLS6gNYKl6vl46MjLT6MDgcDmdFsW/fPh+ltK/SfitWHEZGRrB3795WHwaHw+GsKAgh56rZj7uVOBwOh1MEFwcOh8PhFMHFgcPhcDhFcHHgcDgcThFcHDgcDodTBBcHDofD4RTBxYHD4XA4RXBx4HA4psUfTuCxQ5OtPoy2hIsDh8MxLY+8OoE/+tZ+LMRSrT6UtoOLA4fDMS3hRBoAEIpzcSiEiwOHwzEt8VQWQE4kODm4OHA4HNMST2UAAOE4F4dCuDhwOBzTwsQhxC2HIrg4cDgc08Ith/JwceBwOKaFxxzKw8WBw+GYlnhacyvxbKUiuDhwOBzTEktyt1I5uDhwOBzTEk+rbqXCgPTrEwt48z8+iwNj8604rLaAiwOHwzEtiTIB6WNTIZzzR/H739iLiflYKw6t5XBx4HA4pkXPViqwHCJJ9fZCNIV/eOJo04+rHeDiwOFwTEusnDgk1O0b+p3wh5NNP652gIsDh8MxLSyVNRQvFIc0BAL02CQktIwms8HFgcPhmJbF3EoO2QKrJOgCYja4OHA4HFOSzVIkWLZSQZ1DJJGGQ7FAsYi6gJgNLg4cDseUMGEAirOVIokM7IoIqyTk7WcmuDhUgFKKJw9PI5OlrT4UDodTR5hF0GOXEElm8r7jkWQaTsUCq8QtB04ZDk0s4EPf2Itfn/a3+lA4HE4dYa0zvE4FQC59FdDcSrIFioVbDpwysCwGPkaQw+ksWOuMPk0cjK6lSCIDhyLmWQ4LsRQWoua5DnBxqAD7YEST5jQtOZxOhWUheV2aOBgyliJJFpBWLQdKKf7HDw7goz94rSXH2gosrT6Adod9gGIm9TtyOJ0KcysxyyFUYDnYZQsUSQSgBq+ng/HmH2QL4eJQAVYAE0vyro0cTifBvAJelwygwHJIpOHU3EoAkEhlEUtlIBDS/ANtEVwcKsAsB+5W4nA6C10cdMtBjSdkshSxlGY5WFTPeyKdQTSZgSSaxxPPxaEC7APE3UocTmfBFn59rvyAdFTzErBUVrZvLJlB1mKelHYuDhWI624lLg4cTifBFn56tlKCiYO63a6IeZaD2RaIXBwqkOBuJQ6nI2EXe49TjTmwgDQTCaPlEEtlTBdzqOhAI4SsIYQ8Swg5Qgh5gxDyJ9r2XkLIk4SQE9pvt+ExHyeEnCSEHCOE3GbYvpMQcki777OEqGeaEKIQQr6nbX+ZEDJS/5e6NHTLwWSrBg6n00hnsvjId17F3rMBADm3kl2ywKlYdHGIaOLAGu8Bao0DpTBVh9ZqoitpAB+llF4E4GoADxBCtgH4GICnKaWbADyt3YZ2310AtgO4HcDnCSGi9lxfAHAfgE3az+3a9nsBzFFKNwL4DIBP1+G11QVmOXC3EoezsjkwPo+fHLiA54/PAsi5lRRJgNcpYyakpqqyWQ6qW0m9dM1pxW+pDDVNK52K4kApnaSU7tf+DgE4AmAIwJ0AHtZ2exjAu7W/7wTwXUppglJ6BsBJALsJIYMAuiilL1FKKYBvFDyGPdcPAdzMrIpWw1YKUZ7KyuGsaJ477gOQu9AnUhkQAigWAWt67RibU8eBRvLcSuolcj6aG/hjFuuhprwszd1zOYCXAQxQSicBVUAA9Gu7DQEYMzxsXNs2pP1duD3vMZTSNIAFAJ5ajq1RxLnlwOF0BC+cUC2Gea0VTiyVgdUighCCYbcdY4EogFyPJTWVVbMcIrm2GQmTzHeoWhwIIU4APwLwp5TS4GK7lthGF9m+2GMKj+E+QsheQsje2dnZSodcF3gqK4ez8lmIpnBgbB5AzgqIp7K6ZbCm14ZAJIlIIq27lYyWw1ye5cDFQYcQIkEVhm9RSv9D2zytuYqg/Z7Rto8DWGN4+DCAC9r24RLb8x5DCLEA6AYQKDwOSumXKKW7KKW7+vr6qjn0ZcM+CDxbicNZubx40ocsBTwOWb/Qx1MZPRtpjdsOABibi+ouZLuhQnqOu5WK0Xz/XwVwhFL6z4a7fgzgHu3vewA8ath+l5aBNAo18LxHcz2FCCFXa895d8Fj2HP9FoBntLhEy9EtBy4OHM6K5ZWzAdhlEddt9Oouong6CxsTh15NHAIxPZXVYaiQnjN0YzWL5VBNncN1AH4HwCFCCGtJ+BcAPgXg+4SQewGcB/BeAKCUvkEI+T6Aw1AznR6glLIr6/0Avg7ABuBx7QdQxeffCSEnoVoMdy3zddUN7lbicFY+08E4VvfY4HHKulsplszojfXW6uIQRTSZgVUSIAokZzlEDJaDSWIOFcWBUvoiSscEAODmMo95EMCDJbbvBbCjxPY4NHFpN4xdWSmlaJMkKg6HUwMzoQT6nArcdhmRZAbJdBaJdEaPKbjtEhyyiPOBKJKZLJyKemmUxVIxB3MsFM3TRWqJsA8CpTmhWAxKKe7+2h488fpUow+Nw+FUyUwojv4uBW67BACYjyXVmIOWjUQIwZpeO8bnoogm1FkOACAIBLJFwLwJ3UpcHCpgFIRqXEuxVAbPH5/Fq2NzjTwsDodTJZRSzAQT6Hcp6LGrrTLmoynEUhnYZFHfT01njSGszXJgWC1CXjtvbjlwAKgfBGZaVlMIlyuwMcfqgsNpd4LxNBLpLPpdVrg1cZiLJPNSWQE1nXVsLqrPcmCwuATDLN9tLg4VSKSycDtUU7SajCUWuDKantFkGk8enm7MAXI4nEWZ1dpi9Hcp6NHcSnPRVJ5bCQDW9doRTWZwZCqYbzlI+ZdJ7lbiAFAb77HVRjW1DixwZTQ9H3ruND70jb2YXIg15iA5HE5ZZoIJAOrcBiYO81HVcjBaBXdeNoSLh7oxH03pAWkAepU0I26SzEUuDouQyVKkMlT/QFUTc9DdStrqglKKnx1Ua/1mQ4kGHSmHwynHbFj93uW5lTTLwWYQB7dDxg/+8Bp86IZR3HHZan07sxzYb7NYDnyewyKwFUKvQ/1AVeNWYjnUSe0DdHw6jFOzEQBAwJArzeFwmoPRcrDLImRRwHQwjmgyP7YAAFZJxF++Y1v+Ns1y6LHJmErFeUCak1sh9NTgVgoUxBx+dmiy6D4Oh9M8ZkJxKBYBXVYLCCHosUv4xbEZZClw6Zqeio9XNIuBeRB4QJqjWw7uGtxK84Z2wADwxOuTuGiwCwAXBw6nFcyEEujvUvQCVrddxll/FIQAu0Z6Kz6eWQ5dVgmiQEzjVuLisAg5cWBupWpSWfMth/G5GK5Z74EoEC4OHE4LUGscrPptZgFctKoL3Tap4uOZ5WCV1ZnS3K3E0S/wLOZQXbZSLiBNKUU8lYFdFuG2y3kl+BwOpznMhOLodyn6bSYOu0crWw1AznKwS0wcuOVgepjlUEu20rwhlTWZySJL1SwHj0OGP8zFgcNpNrOhRJ44ME/AVVWKA0t3tcvq2FAec+DorTOs2oqhmmwl5jpKprN5j3c7JO5W4nCaTDyVQTCeRn9Xzq3EPAFXVisOWttumyxCkczjVuKprIvAPgRWSYRdFqtyK80b3EosKG2VRHgcCo5MLTZAj8Ph1JvTWhr5sNumb/vA1euwY6gbXqdS7mF5sLbdNpO5lbg4LIK+8reIsMuWsuJAKcWXXziNm7YO6A26EqmM7oayccuBw2kJ+86rDTCvWOvWtw312DDUYyv3kCKY5aC7lbg4cJjloEgCrJJQtmx+JpTA3z92FK9pM2qdigWJArdSr0PBQiyFdCYLi8i9eRxOM9h/bg59LiXPcqgV3XLQJsPx9hkc/UOgupUsZbuyng9EAQDPHp0FoDb4SqSz+v5WSUCvXQKlwHwsVfI5OBxO/dl3bg4717qXNaSLtc2wSQKsknksB9OKw8mZkJ5ZVMip2TCu/vundX+l1SLAtkjMYUwTB+ZGWqUFv5iLySaJ6NX8m9y1xOE0h5lQHOcDUexc56688yKwxnt2zXIwS0DatOLwwa/swed/carkfcemQpgKxvHLUz4AaiqbXRbLprKOBfK7rTJxWNCsBEUS4dEyJLg4cDjNYf85Nd6wc2R54qBbDixbiaeydjYLsRR84dJdUkNx9aJ+bCoEQLUc+pwKJhfiJfcfm4vC61T0Nr8D3ao4sMwlmyTqudVcHDic5rDv3Bxki4Dtq7uW9Tw5y8FcAWnTikMyk0UkUTqGEIqr21MZCotAYBEFjHgdmA0lSj5mLBDFiMeOK7UVSqHlYJUEeJxcHDicZnJ6NoL1XkfRPIZaycUczNU+w5TZSpksRSZL8+bCGmHiAOTS2Ea9DgDAWX8E21d35+0/PhfD7tFe3LZ9FURB0Cuqc+Ig6tu4OHA4zWFiPlZTymo5Ng+4sLHfiY39TlPVOZjSckhl1Dc3nCi9AjCKA0tjG/Fo4uCL6s/xJ999FQfH53FhIYY1bhtu37EKX7lnlz5zesHgVlIsIlyKhYsDh9MkLszHsLoO4rCm146n/vub0d9lhSKZp32GKS0HpvzheOm00pBhOxOHdR47ANVyAICJuRgefe0CzvgioFT9ADFYF0ej5QAAPQ6pbIYUh8OpH+FEGsF4ui7iYIS5lSily0qPXQmY2nKILGI5sPeduZUcigX9LgVnfao4BDUBOTi+AKBAHDQfp56tpD2H1UTBLA6nlUzOqxmEq3usFfasDcUiIEuBdJbW9XnbEVOKAxvhWS4gHU6ksanfCQB5A8hHvA7dclgoKGbLF4ec5aBYBAiCqjRWSTRNdSWH00omdHGot+WgXg/M8D02tTiEk2lQWrwCCMVTGOy2YaBL0TMVAGDU48AZLeYQjKnC0mOXIIlEz1AC8i0Hq0FczBTM4nBaCUs7r7s4aNcDM3yPTRlzYG4lStUBPg4l/zSE4mms6bVrE9xy4rDOa4cvnEAontLdSn975w74QgmIQs7/aIw5OA3PbZXEsi04OBxO/bgwH4NAgAFXdZ1Xq4V5Bbg4dCjGNzaSSBeJQzCehstqwd+/5+K8oNOolrF0zh9FUHMr3by1v+jx7AMUTqTh1eob2PZApPM/VBxOq5mYj2FVl7XuTS6ZJyDB3UqdSTKTu0CHSsQdQvEUXFapKBthnSYO5wNRLMRSEAUCu1xcYCNbcqfV6FZSm3Z1/oeKw2k1k/NxDNbZpQSYy3IwpTikCiwHI8l0Fol0Fi6l2Kga6FJN1NlQAsF4Ct22YgEBkFeRmRdzkAS9jTeHw2kcFxbqU+NQCPtuc3HoUIyWQzieLw6satplLRaHHrsMgQD+cALBWBpdJfYBcqsLAHkBbbUvC7ccOJxGks1STM7H657GChgsB+5W6kySBtUvbKHBCuBcVqnocaJA0OuQMRtOIhhPoctWvA+QLw62PLeSeTo6cjitwh9JIpnJ1qV1RiEs2aRch+ZOoqI4EEK+RgiZIYS8btj2CULIBCHkNe3n7Yb7Pk4IOUkIOUYIuc2wfSch5JB232eJ5o8hhCiEkO9p218mhIzU9yUWkzJYDpFkoTiot51lrAKvU4E/nMBCTHUrlcIiCnr2UmHMIc4tBw6noRyZVGe1s35o9WTE4wAhwIGxhbo/d7tRjeXwdQC3l9j+GUrpZdrPYwBACNkG4C4A27XHfJ4Qwq6OXwBwH4BN2g97znsBzFFKNwL4DIBPL/G1VI3RX1joVgrqlkNpcfA4ZfjCCQRjKXSVsC4YzHqwFdQ5pDJq0z8Oh9MY9pwJQBRI3tzoeuFxKrhkuAfPHpup+3O3GxXFgVL6PIBAlc93J4DvUkoTlNIzAE4C2E0IGQTQRSl9iapVZ98A8G7DYx7W/v4hgJtJg5uWpDK5i3Nh8z1mOZS78HudCvyRJILxNLps5TOBmTgoUnFwmscdOJzGsedMADuGuotSzOvFTVv6cWB8Hv4y82A6heXEHD5MCDmouZ2YRA8BGDPsM65tG9L+Ltye9xhKaRrAAgDPMo6rIvkxh/w2GMySKGs5OBT4QpUtB5bOagxIW7VtPGOJw2kM8VQGr43N46rR3ob9jxu39oFS4BfHZhv2P9qBpYrDFwBsAHAZgEkA/6RtL7Xip4tsX+wxRRBC7iOE7CWE7J2dXfobkzSs3Aub77GAtLPMqsPjlBFJZpBIZ8sGpIFcylueW4lbDhxOQzkwNo9kJosrRxonDjtWd8PrVPBMh7uWliQOlNJpSmmGUpoF8GUAu7W7xgGsMew6DOCCtn24xPa8xxBCLAC6UcaNRSn9EqV0F6V0V19f31IOHUDOrdRtk0pkKzHLofSFv8+ZK8dfXByY5ZCfrQRwy4HDaRR7zqiXjiuXOTd6MQSB4PK1PTgxHWrY/2gHliQOWgyB8R4ALJPpxwDu0jKQRqEGnvdQSicBhAghV2vxhLsBPGp4zD3a378F4BlaqhteHWF1Dm67VBSQDiXSUCxCXpWzEY+hHUa5Ogcgl/KWl8pqoo6OHE4rODSxgA19DvTY5co7LwO7LOa5pzuRihEbQsh3ALwFgJcQMg7grwG8hRByGVT3z1kAfwAAlNI3CCHfB3AYQBrAA5RSdiW8H2rmkw3A49oPAHwVwL8TQk5CtRjuqscLWwyWrdRjl0uksqbKWg2AGpBmVONWyiuCM1FHRw6nFczHUvA469tsrxRm6LBcURwope8vsfmri+z/IIAHS2zfC2BHie1xAO+tdBz1JJXJQhYFuKyWkm6lxSwCo+VQrs4BKJOtxC0HDqehBGMpDLvtlXdcJooJBneZtkJaEgkcsqXYrRRPly2AAwosh1rrHCTz9GXhcFpBpcVdvVAsQse30DCtOMgWAU6rpajxnupWKv/hskqinsm0WJ2DXCIgreiprJ39oeJwKkEpxU8PXiiaqLhcFmtrU08UqfPdSqYUh1RGEwfFglA8jT/61j5846WzAIC5aKpiMIu5lha3HIpTWZlQcHHgmJ09ZwL48LdfxTd/fa7k/dksRSxZ/D1JZbL4RZkU0myWIpxoluUgIp2lSGc6VyBMKQ6qW0mAQxERSqTx2KEpPHl4GtksxcR8DMMVGnZ5nQoUi5BnFRSilCqC4wFpDgcA8J095wEA+8/Nlbz/xwcu4JpPPV1UE/TM0Rn87r+9guMl0kjVsb/l09DrCft+J7k4dBZJ3XLIfYjG52LwhRNIprMYci8uDh6HXNF0ZZlJ+W4l80yR4nDKMRdJ4rHXp0AIsP/8nD7H/dhUCF998QwAYCwQxXw0pdcdMRaiqhuKzYg2wqYzLuburRe51t1cHDqKZFrNVuqxqxf4ratcmJiLYWwuCgAVW/3+xhVDuOeadYvuk0tl7dwiuJlQXK8o53Cq5ZFXJ5BMZ3H31eswF03hjC8CAPg/Tx3H3/30MLJZqlvXha4lNoN9JlgsDpUKWOuJGZJLzCkOmuXwzksG8eW7d+GDV69DMpPFq+fnAaCi5XD7jkF8+KZNi+5T2q3UWe0z7vnaK/jH/zrW6sNYUWSyFP/36RN4/nhn9+VZjH3n57DOY8cHrlYXWPvOzSGaTOudThPprP4dKZybENVuz5ZoeqdbDk10K3XKd7kUjbe/2pBcnYOEW7YN4Dnti/rr034AlS2HaigVkLYIBALpHMthciGG2VDjc8o7hXgqg49851U8eXgab9uxCm/avPQWMCsZfziBAZcVG/uccFkt2H9+Hg7Fon8v4qmM/ne0wHJglsRsqFgc9I7KTXErdb7lYEpxYAFpxhrNUnj5TADdNqkuZmmPXYIsCnltgwkhsEqdMSqUUopwPG2KiVj14pFXJ/Dk4Wm4rBYEIslWH07L8IeT2NDnhKDNXHjhxCzGNZcuAMTTmZzlUORWKhaHX53ygVLjLJYmWg4dstArhTndSlqdA4O5kULxdN1GC75v1xr85wPXFWU0WSWxIyyHeCqLdJl0Q05pjk2F4JBFXLvBg7moicUhktTTwd+/ey1mQwm8cMKnp6AmUln9OxJL5QekS4nDP//8OD75+BHDLJYmWA5S57uVzCkOGZonDopFxECXWvk8XCHeUC02WcS21V1F2xWL0BF1DiFtDkYnvJZmcdoXwWifA70OBYGIOQP5mSzFXDSp9z+6fccqvPg/b8Jfvv0i/PHNahwv33LIX0jFtIC0URwWYilMzsf1mENzLIfOdyuZUxzSGchi/ktfo/VjqRSMXi6qW2nlf6DYKo27larn9GwYo14neh0S5qJJZE04LnYumgSlgNfQo6zPpeBDb1qP9X3qzOe4wXKIJitbDguxFPyRJHzhBKxS+Y7K9cQMAWlzikMmW/QBWtOriUOd3Erl6BTLIczFoSbiqQwm5mNY71Uth0yWFuXwmwF/WHWn9TqKuxAY64DYRbfwu8I+b6FEWndpsljD8elwU6wGwOBW6gAXcTlMKQ6pNC1hOaiiUC+3UjkUSUS8AywH1s220OznlOasPwJKgfV9DvQ61AtYwIRxBzZ32eMobqut1wGls2WzlYy3feEEEulcZtOx6VBT4g0Adyt1LMlMFpIlfzrpWo9q0ja63a+1Q7o5suK3TrCCmsGZWbXQa0OfE26td1cg0tkD6kvh17K0jG4lhmJoaa8XwRXWOSQzutU/E0ogGMtZX4FIsilN99Rj7Xy3kilTWVPpLGQxP4vonZcMggDYXiKIXE+skoj5OneibAXGmAOlFOqAP045TmtVwKNeB9icQzMGpXXLocRAHmNjSraAKhSHWDKNtb12nJwJYzYU17scMJrmVrJ0fp80U1oOiRKWg1US8Zs7hxt+keuUPvBMHDJZqs/k5pTn1GwYq7qscCgWuDW30pwJax38kSQEAvSUWOEbL7jl22dksE6LD86GEnqGEqNZbiWZ1zl0HpRSJNNZKGJrXnqnZCsZJ+jxoHRlTs9GMOpVXZcsGGvGmIMvnESvQ4YgFC/C9PYyqfJFcLFkBsNuGwSiigObB8HWdM2zHDqrFU4pTCcOaS19sBnpbqWwSp2RrWRsuNcJr6eR/OqkD4cvBLFllQuA2lJFsQimrJIORBIlg9FAfmNKPSBt+GxRShFNZeC0WtDrUDAbTiCoWbCjWsywGa0zAEASCQjhbqWOIqm9mVKLLIdOmT2bZzmYuEqaUoqvvHAa33jpLE7OhIvuf+PCAu59eC9GvHZ85KaNANQ2Kh6H3HBx+PLzp/HU4emG/o9a8YeTeXPYjRgbU+qprIbPViKdRSZLYZct6HMpmA7mLIetg6rwNqPpHqC+h4qls6fBmVYcuOWwPIw5+mZ2K531R/G/fnYE/9+jb+C3v/hS0f3PHp1BLJXBN++9Ki8I63bIDY85fOXF0/jR/vGG/o9aUVtnlLYcWGPKSDKjx7GMqatsEWKTRAx2WzG5kKuK3rpKTSRpVswB0BZ6HfzZN504pDKtFgcRcS3DZyXDxUGFNYx7y5Y++CPJopnIoXgaskVAf5c1b3uvQ9bTOhtFMJbGfLS9MqJ84QQ8JQrggFxjSuM5NH62mIvJLqviMLUQQzCegmwRMOJlbqXmWA4AuOXQaSRa7lYSkKW52MdKJZxI64WEcRO7lcbnYgCA6zd6tdvRvPuD8dIzjXsdckOb7yXTWcRSmSKxaiWJdAaheLqsOAAoFoc8y0FdkNhkEat7bJiLpjATTKDLKmG9Jg59rtJWSSNQJC4OHQWb+aq00HIAVn4QNxRP6V9Es1sOFoFg5zq3djuWd38oniqZQeO2l445UErx3PHZZfddYgkD7SQO5/2qcJZzKwFqkWiwnOWQZJaDBYPdqiV2dCqELpsFO4a68Z8PXIdr1nsaceglUeOHnfvZN504MLdSyywHXRxW9oojHE/Dy8UB43MxDPZYMaJlyxSKQziRhquM5RCKp/UYGOPA+ALu+doePH9ieZPiWBZPYR1Aq/j1aT/e+8WXYJdFXDniLrufYrAcbJKYF3PIiYOIwW61zc2pmTC6NVfSZWt6mlqMqdYsrezv8WKYThz0gHQL3UrAys+PDsXT6GfiYHK30nCPHT12CXZZxESR5VBaHNyaa2W+wLU0taA+fmI+VvSYWmCiEEqkkc60/gL25edPQxYF/OyPb8CmAVfZ/RSLoMdJ3HYpz8LWA9KyiNU9quWQzGSblqFUCI85dBitDkjbZdVyaLdAYS1ksxThZFp3K610F9lyGJ+LYthtAyEEw25bUcwhFE/BpRRfvFijx18cy7cQfFrX0umg2lTuf/7wIN770K/w948dqem4jAkDwTbo/hqMp7Chz6kXApbDGHPotst6exYg33JY1Z0L8DczCG2Eu5U6jFYHpK9Yq5rUL570teT/14NoKgNKkbMcTCoOiXQG08GE3qxx2G0vEXMobTm8aVMfdq5z45OPH8lLaWVxiNlQHG9cCOJ7e8dwYHwBPzlwoaZjCxqKFNsh7lDuPBRilQT92N12CZks1eOEbLaDXbJAsYh6877uJhW+FcID0h1Gq+scVvfYsH11V9sVJ9UCC3bqAWmTtu2+MB8HkGvzXtpySMNZ4qIoCAQPvmcHgvE0PvvMCX07a0w3HUzoLqpLh7uLYhOVMMYa2kUcSp2HQhSLqDcmZN1r48n8Dq02zfpm1kNL3Uo85tA5sOKaVmUrAcBbLxrAvvNz+oVgpcEG/XTbJMgWwbSWAxOCIYM4BONp/WKcyVItIF364rV1VRd2rnPjjYmgvs2nWQ4zobgedxj1Ompeobab5RBOpOFSqrMcGKzj6uHJIP7ikUO64DHXLAtKc7dSYzCdOLS6fQYA3LJtAJQCzxydadkxLAfmw3YqFti0oj4zwlxIOctBdS+xFT9rMbJY1W6/S+0RxAgZQRSzAAAgAElEQVQYYg4TczF0aX2EarcccnGGwqB3s6F0cZE0wlK9gZzl8B/7x/Htl89j37k5AGoWEwCs1iyH7paJg1Dz+7KSMJ84ZNQLWavcSoA6M2JVlxXPHV9eumKrYBc9l1WCTRJNm600PheFKBCs0qqfmUiwFX/uPJUXhz6XkjcP2a8NAPKFEzgfiGLIbYdsEZDMZGuqqg/GU3qn0lans8ZSGWSytCq3ktWSEwdmORydCgFQ03ytkqB3dB3URvq2zK3EYw6dRSqtfsEksXXDaQgh2DTgLAperhSYW8lltcAmi6Z1K00uxDHgUmDRrFA2f5y5m1hsZrEVc59LQdgwD9kfTsIiEFAKHByfx7DbprtAkzWkpAZjKQy4VNFqtVspFK8skgzF4FZilsPxaVUcApEk7HLuOQZbbjl0RhPNcphOHBItTmVl9LusmAnGW3oMSyWoX/QssErmFYdQPJ3n73bbZRCSyziq5qLYp1UL+8IJZLIUc9EkNvY7AQBz0RSGemx6TU4tLoxgPA2vS4ZVEtpGHJxVxRwMbiVtKJLxAmwz3H/VqAfXbvBgW4OnN5ZDrXPo3M9+xSskIeRrhJAZQsjrhm29hJAnCSEntN9uw30fJ4ScJIQcI4TcZti+kxBySLvvs0QrZSSEKISQ72nbXyaEjNT3JebDvmBKwZjQZjPQpWAmlFh2m4RWMDkfgygQ9DkV2LQus8F4Sk81NAuRRBoOwwVPEAi6rFKuAK1KywFQ5yHPR5PIUmDbYO5iN+y26avpWlapoXgKXVYJPTa55TU1udhLFTEHizEgXdyDiQWjATVb6dsfulofntRsFIuIVIYiswK/w9VQzfL56wBuL9j2MQBPU0o3AXhauw1CyDYAdwHYrj3m84QQ9m5+AcB9ADZpP+w57wUwRyndCOAzAD691BdTDXr7DEtrZx4PdFmR1laKK43xuRhWdVlhEQXVrZTM4Pe/vhd/9cjrlR/cQUQS6aLVcLdN0lfq1ayYmTjMhhJ6l9aLDOKwZMshlkaXVco7nlbBRLKqVFaDZWB0F23VBiUZxaHVMNHu1KB0RXGglD4PIFCw+U4AD2t/Pwzg3Ybt36WUJiilZwCcBLCbEDIIoItS+hJVo2rfKHgMe64fAriZNLBBynsuH8KP7r8mL/DVCga61IvCdHDlpbOOz8X09E2bJCKSzODgxDxO+yItPrLmEq4gDiyra7FsJV0cwgn4tUylLatcejB5yG3TXaC1uZVScFktbSEO4RrcSiy+IluEPCG4dfsqALkah3agU1rhlGOpjvcBSukkAGi/+7XtQwDGDPuNa9uGtL8Lt+c9hlKaBrAAoGRrRULIfYSQvYSQvbOzS8v0GeiyYue63pIzbJsJ6+8/HWqfuEO1cyYm5mMY1oKvVknEOX8E8VRWz7QxC+FEGg4l/2KVbzlUdit5HIo+D5mdv4Euqz5Kc1jLVgJqD0h32SR0tYE41BKQZjEHq0WAXcrtf+u2AQDIC0i3mtwcaZNaDjVS6opLF9m+2GOKN1L6JUrpLkrprr6+viUeYnvAWk+0S1B6IZrCzr97Ek8dWbz2IpXJYnIhpqdtGjtnspWvWYgkMnkxB6DYrWQRSF5hVyGiQNR5yKGc5dDrkNHvUmCTRLjtUs1upXQmi0gyo8Yc7FJRKqsvnICviQWYIZbSW6LHVCFMHBRJhFUWtMdZsH11l1pX046WQ4dWSS9VhqcJIYOU0knNZcSuKOMA1hj2GwZwQds+XGK78THjhBALgG4Uu7E6DuZOaBe30thcFJFkBmcruIamFuLI0lxVsPHLGk1mEE2m22p11ygopYgki6t+1ZW6ejEMa/2EKnlJWa1Dn0sBIWpPoWG3DVlK1VnFhtnK1cBW6l02C7rjEuYLxOGPvrkfNlnEw7+3u6rnWy41xRy0C65VEiCLAkSBYJ3XDkII/uodF2Gtx97QY62FXKIAdysZ+TGAe7S/7wHwqGH7XVoG0ijUwPMezfUUIoRcrcUT7i54DHuu3wLwDF3pMzSrQLGI6HXImG4Ty4EVYrFVXjlyVcHql9SYWgiYx3qIJtXmg6Ush2AsBUpp2UE/hfRpVdL+cAJuuwyLKOCv79iOz33gCgC59vLVui9YqjELSEeTGT0RIxRPYd/5uaZ+7sLxNOyyCLEKV65uOVhEEEJgk0Ss61U7ud61ey2u3eBt6LHWgundSoSQ7wB4CcAWQsg4IeReAJ8CcAsh5ASAW7TboJS+AeD7AA4DeALAA5RSJqv3A/gK1CD1KQCPa9u/CsBDCDkJ4L9Dy3wyA/0upW0sByYO4QrtnVmBF3MrWQvEoZnuilbC0jNLiUMyk0U8lVWbzVURhO1zKvBpbiWWljnUY8OGPrXeodaAtNHHzzJ+mKvrlbMBZLI0r6V3PRgLRPH7D+/Vz4uRcgOPSsFccOz3B69eh/dcPrTYQ1pGpwekK75jlNL3l7nr5jL7PwjgwRLb9wLYUWJ7HMB7Kx1HJzLQZcVMmwSk2XGEE6WDl/FUBmf9EUzMx0BIrukZcyut9zpw2hcxjeXALoKlspUA9WJcbZtq5lY6OD6PjSUG4Sg1igOLMXTZJL1AcT6agtep4KVT/rx96sW+c3N46sg0Do7PF63uqxVJIN9yAICPvW1rXY+znsgdHnMwXYV0OzHQpbSdW6nUyg8AvvriGbztX17Az9+YxoDLqn8xmFvpypFeADBNxlKkCnEI1uBWSmayuLAQx303rC+6v9ZsJaNbiVkirGr7pdOqOIQS6boWb7HVM5sTbSRUZdM9ID/m0O7kLAcuDpw6M9BlxWwo0RYVlqwzaDl3w0un/KBUbZ/MgtGAQRxGVXHwmcxyKHQrdWmDZ5jlsFiNA4MlJ7x5cx+u31TsU681K4Z1ZHVZLXpKrD+cwEI0hTcuBHXBqORCrAU2E/1sKXHQai6qodByaGdyMYfOdCtxcWgh/V1WZCnaYq7DTLC85ZDOZLH//BzW9rKJZzlxYBeaS4e74VIspok5RBLqBWFxt1J1F8WLh7qx3uvAX7z9opL312o5RJI54fK61PfHF07gtfF5UArcuEUtSzLOfFgu7AJ5zp/LdvvcsyfxtRfPIFyLW8nCxKH9L02sSI99FjqNzs85bGMGtBXjVDCuF8W1CmY5lFpNvnEhiGgygz+7bQv2n5vDmzbnVrc3bu3How9ch00DLnicsoliDuqFtVQRHKBejMOJNLpL9AcqZNTrwDN/9pay99da52CctWwRLNrxJHWR2b66Cz/aX19xYJbDOc1y+OG+cfzjfx1Dn0uBSMgSAtLtbzm4C1x2nQYXhxayRluJnw9EcclwT8uOg1K6qOXwylm17OSq0V7ccenqvPtEgeDSNeqxe5yKaWIOYWY5WEtbDgfH55GlwIY+x7L/V63ZSrFkBoSoq29CCNx2Cb5wAoJWb7FB6/pqHAi0XNjAp3P+CM74IvjLRw7BZbXosSxnFQVwQM5VsxIshy6rBZJI9J5YnUb7vwMdzDqtoKdS4VmjiSQziKXUC0opy2HPmQDW9toxUMG68Thk+EKd+UUppFxAmgVe2dQylo66HGp1K8VSGdglUS++8zoV+MNJTIfi8DhkeLQVb33dSuqxRZIZ/NsvzyCZyeKhD+7U76/WclBWkOVACEGvQ24Lt3Aj4OLQQuyyBQNdSskgXjNhLTyG3TaEk+m8NuKZLMXec3N6NtJieF3msRwiiTQEUlwEKAqqC+X4dBiE1EkcWBFclXMzoslMXuW6xynDH0lgeiGOgS6rbt3UM53VOCr2B3vHcfmaHly7waMLUdXiYBF0q2cl4HEoHetWWhnvQAcz4nG03HJgpv+o1wlKgajhi77nTACBSBJv2VK5l5XXISMQSbZF9lWjCcXTcMilW2Owi++w21aXXkCEEMgWQR9UVYlYMp33f71OBb5wElPBOFZ1W/ULdT0L4RLprN5JNpbK4K3bBkAIwW4ti61acSCE4M9u3YJ3XrK68s5tgMcpw8fFgdMIRjwOnPW3VhxmNHFY71X940bX0o8PTMAhi3jrRQMVn8fjVJClWJEzKmqlcNCPESYOG+tgNTAUsfph9tFkJq+jqSoOCUwHExjoUnRXWH0D0hms7raBdchgXVSZxVltzAEAHrhxIy4e7q7bsTUSj0NGoEOtZS4OLWbE64AvnNSbk7UCZjms14KnLBMnkc7gsUNTuG37qqpWwF7DyMtOJ5JMl20kx8RhU4lq56UiW6oXh1iqwK3kkBGKp+GPJDCgDWlyKpa6BqQT6SxcVgtW99gw4rHr7rQbt/bDpViwoX/5gfl2xKPFczoRnq3UYka9alD6nD+KHUOtWS3NhhOQRIIhbUYDczc8f9yHhVgK77qsOhN/Ta/6+FMzEWxd1Zq5vs0iXKJdN6MRlkNN4pDM5A3K8Wop05RCTyroslrqbjkokog/fPMGOJWcu23U68DBT9xasTPtSqXXISOazCBWEOfpBLjl0GLWedQVVStdSzPBBLxOBV3aRY2ls75yNgDZIuD6jdV1wrxosAtWSdAzdToZdURo6YsBEweWMloPZItQdZuGaDKTFyj3GGYsr9LEwWUtnvOwHBLpLKwWAe++fAhv3ZbvguxUYQAAr1M9t52YiMHFocW0QzqrP6KKA/NFs5jDbCiBPqcCSazuYyKJAi4Z7sG+850vDmEtIF2KbrtmOdRRHJRluJWY5QAA/dp42i6bpb4B6VRmRaSf1hvWnmR8LoY7/vVF/PKkr8VHVD+4OLSYdkhn9YeT8DhlXRzYTAdfOJF3YamGnevceGNiIS+1sRMJJ8rHHN67cxh/c8d23YKoB7JFqL7OodCt5Mi9h6t0t5JU9zqHlZJ+Wk96Ncvh2WMzODi+gIeeO9XiI6of5ns325C1vXZ9TkIjCMVT+NufHEYsWfqCHYgk4XEoerohsxx84ST6nJXbPxjZudaNdJbi4PjC8g66zYkky/cL2tjvwj3XjtT1/8mLZCtNLsTyxLhwGp9Hew8lkcCttfPostVXHOImtRyY8D53TJ1p/8IJH8YCra1bqhdcHNoAl1VqaPOuPWcC+Novz5SMBVBK4Qsn4HHKeoA1bLAcPI7aLIcr1rkBoKPjDpTSRVNZG0G5gHQincGtn3keX37+tL4tVnChdigW2CQR/S4rBC3X1GWtf7aSmS2Ho1MhdFktIAT4wd6xFh9VfTDfu9mG2GRR76TZCNjAl1IpppFkBol0Fh6HDEkUYJUEhBNqlXQgktS7elZLr0PGeq8D+zs47pBIZ5HK0Ko7jdYD2SKWbA19+EIQoXgax6ZDAIBURj02e0HmjMcpY1V3rv1Jl1VCKK6OM60HZrUcHLKoi+JV6z1406Y+PPLaRIuPqj7wVNY2wCGLiDbQcmAdM0uJA+sL49FqFJyKhFA8jbmoWunMahdqYU2vXS+s60TK9VVqJEqZbKVXz88DgO7KMHZkNXLT1v6897LLZkGWAg//6iwyFLj3+tFlHZ9ZLQdCCLxOBRPzMVw81I1IIo2Xz/hbfVh1wXzvZhtily2INtByYP7o2RLiwIbzML+0y2pBOJHWO00uRRycigXhFhb1NRrmAmy6W6lEQPrVMU0c5mIAcu91Yc793965A3988yb9dpfWIPB//ewI/v2ls8s6NkqpaS0HIDfT5OKhbiiSiHgqWzeLrJVwcWgD7LKIaDLTsA8Uu2CU6pjKLAcWWGMXdp+28l+KODgUsWMHoADAfEw9j9VMeasX5dpnvDamuu8CkSQiiXRZy6EQ1j02naWYiy5PyFMZiixdOc3y6g1bWO0Y6tbnUXTC6FBzvptthkOxIJ2lVacq1kp8kZgDsxDYB9ypqJYDszL6aow5qM8h6a6XToSdx1rTfJdDqYD0bCiBsUAMl2p9iMbmoroFWtgtthA2zhRQeyyll/HZY7EQs1oOIx4HRr0O9LkUfZJdJ6Ryc3FoA9gqr1yq6XJhAenZEnEA1m6YmcZOq1ocxdxNS3MriQgn0x1hWjOyWYofH7iAdCarn5u+JZybpVKqQvo1zaX0Lm0A01ggpn+GbGUK9BijXge6rBa84+JBUKqONV0qLKbFVs1m489v34If3X8tgJxAxquc993OmPPdbDP0WbQNEgdjQPrCfAw3/dMv8ItjM/o2l2LRP9QuzXLwaf2WllLI5bRa1NbfDXo9rWDf+Tn88XdexXPHZ3OWQxPFoVSF9BsXFkAI8LaLBwGoQWm2EKjkVhp223Hgr2/FrdvVVhfLcS0xy4FNcTMbdtmiL66YQHLLgVMXWMFSrEFBaXbB8EeSeOVsAKdnI/jDb+7DvnNz8IeTeq42oLZ+8IeTmF6Iw+NQltQXp7BeohO4MK8GfCfmY/CFknDIYlMbrZUKSAciSXTbJKzutsIuizgfiOqCXMmtBEAbIaq+9/PLaLPOFh+KSS0HI7rlUCLteKXB3802QLccGhTEZauYTJZiz5kARIGg32XFn//wAPyRRF5jtmvWexBLZfDUkemaaxwYzg4Uh8mFuP5bLRpsntUAALIoIpOleYOUFmIpdFklEEKwxq1W2efcStUJFxMHbjnUh5zlwN1KnDrALIflFML9xud/ia+8cLrkfUYT91en/Bjx2HHv9aM4NRvBwfGFvAvdmzb3wSaJCMbTNVdHMwob+HUCU5o4TC3EtUaFSxPOpaLPkTa4lhZiKd3tt6bXhrFArOpsJUaP1iRwbhnTzMweczCSizlwy4FTBxzK8gLSmSzFa2PzeOVsoOT9xlXMGV8EmwdcuPmifgDq7Abjhc4qibhxqzoSdKk+deZW6qSMJaM4+ELJpsYbgJw4GKuk88XBnpetZJwEtxjMV76c6X3ccsjRKHF49uhM1V156wUXhzZguQHp+WgSWaq2DS5FPJXRLwKAOqFs2G3H1lXqpLJCC+G27asAYNlupVAniUMwrv9uhVtJqWA5rO21I5rM6J+Bat1KdlmELArLcytxy0Enl8pavwv5GV8E/+3rr+DRJrfl4O9mG8DcStElXkxZOmo5cYilMhh22/Tbm7Q5A8x68BS4SG7c2g+PQ8a2waVNc3N2sOVwYT6GQLT2brXLJWc55C46wVhKH9A0og2NOjIZhEUg+v6VIISgxy4ty63ELYccy8lWSqaz+OavzxXVnLAZ1cemQss/wBrg4tAGMMthqamfLO9+IZZCMJ7CsakQprWVLqCuYvpdCmRtaM9mbbYxsxBW99jynq/LKmHPX74Vd142tKTjYXMOOkUc0pksZrWU30Q6C0qbWwAHGCwH7cJBKUUwltYtBzY06shksKpMJSO9DnlZbiUec8ixHLfSL0/68Ff/+TpePpPvHg5qsbuTs+HlH2AN8HezDdAthyUGpAOGVd94IIbf+erL+ORjR/Rt8VQGNtkCj1OGRSAY9aqrzEuGe/DTj1yPt140UPScorD00Y6d5lbyhdUmhJesyc34bnrMQcx3K8VTWSQzWV0cht12CES9kNSaYttjlzBfh2wls1ZIG1mOOLAi1Yn5fA8AG+d6YpqLg+mQLQIkkSzZcjDOr917LoCZUAInZnIfpHgqA6tFgNepYMTryHM57BjqXpYQlEKxCLAIpGMsBxZvuHyNW99mTP9tBoVuJVbRzNpgyBYBw27Veqg2U4nhttfHcjBrbyUjultpCcFjn/Y9npyP521n41wn5mNN/U7xlt1tgk0Sly4O4dwX+/FDUwDUIBalFIQQfabwfW9aj2Y0tCCEwKFYOiaVlcUbLlvTo29rvltJveAnC8TBWMG+zmPH+UC0YuuMQnqWKQ7ccsixnN5K7Hs8uZBvORhnfZ+aDeOS4R40g2VJPSHkLCHkECHkNULIXm1bLyHkSULICe2327D/xwkhJwkhxwghtxm279Se5yQh5LNkKWW5KxyHYlnyqsAfScBtl2CVBL2XfDSZ0c1U1k75XZeuxh1aH55GozbwW/m53gAwpX1ZLxnuBjOyWpXKupg4sKC0rUbff69DdSsttRcWtxxyCAKBLApLylZibVkuLBRaDjmXXzNdS/V4N2+klF5GKd2l3f4YgKcppZsAPK3dBiFkG4C7AGwHcDuAzxNC2FLjCwDuA7BJ+7m9Dse1orDJIqJLzI0ORJLwOBUMu+3IUoBJK7Me4qls01d1qjh0xkyHqWACsqi65fpdVsii0NR23YBBHDLqZ6SkOGixJHuNloPbLiOdpUuOEcVTGVgEAovIxQFQXUvLsRwuzBdbDi7FAlkU8tzFjaYR7+adAB7W/n4YwLsN279LKU1QSs8AOAlgNyFkEEAXpfQlqi5dvmF4jGlwyJYlp7L6wkl4HLKernrtBg8AVRyYj7rZmSSdNNNhaiGG/i4FgkCwqtsKj1NeUs+p5VAYkC5tOagxh9oD0loh3BLTWc06Ba4cVqn0SNdKMMthcj6WZ8WF4in0OCSMeh147vgs7v36K9hzpnTBaz1Z7jtKAfycELKPEHKftm2AUjoJANrvfm37EADj5O1xbduQ9nfhdlNhl8UlF8H5wwl4nDlxuG37KsiigDP+iL6CsTY5B91plTomW+nCQhyD2vzly9f24NIm+XyNlAtI58ccmOVQayqr1kJjiRlLZp4CVwqrJFbV7SAQSeZlKLLZKpFkRk9fBdQMNJciYcsqF45MBnFwYqFk+/16s1zb+DpK6QVCSD+AJwkhRxfZt9RSiy6yvfgJVAG6DwDWrl1b67G2NXZZ1OsVaiUQScLjUHRxuHS4B2s9dpyZjegdWZvZQRRQZzoUmscrlXP+CK7fqLYU+et3bW/JMbCVOatGZuLAJroBan8lgdQuDrrlsMSgNLcc8lHdSpVjDnd/7WVsGejCP73vUmSzFIFIEiMeO876o5hciOnCH4qn0GWz4GNv24rfuGII1230QmqCC29Z4kApvaD9niGEPAJgN4BpQsggpXRScxnNaLuPA1hjePgwgAva9uES20v9vy8B+BIA7Nq1q3MmyQCwKxZEtCHxtZDOZDEXTaHXIePtFw8iEEli++oujHodOOuPtKxAybmMAHs7EU2mMR1MYH2fo6XH4XbIcCoW/N1PDyORziAYS8GlWPLSkBWLiLuvGdHditXCrKKzvgiwpfZj45ZDPlZJrKpl98RcDJPzcVBKsRBLIZOl2DHUrYrDfBxbV6kdCkLxNNb02rG6x1ZUsNpIlnzFIIQ4CCEu9jeAWwG8DuDHAO7RdrsHwKPa3z8GcBchRCGEjEINPO/RXE8hQsjVWpbS3YbHmAZ7laZoIcwV4HXKWNNrx8fffhEsoqCJQ1S/QNdaNbtcOiWV9axPFWyWCdQqnIoF//FH1+Ki1V34xE8OY2ohrrfOMPKJO7bjVq3yvVoGu21Y22vHr075l3RsiXQWChcHHatFrBiQppQiGE/DH0ni+HRYjzdcPKQWWl4wpLOG4mm4mpwAASwv5jAA4EVCyAEAewD8jFL6BIBPAbiFEHICwC3abVBK3wDwfQCHATwB4AFKKTuD9wP4CtQg9SkAjy/juFYkS01lZQVwvQXN80Y8DiTTWZzxRQCg6V9ep2JZkaNCs1maF0xk52/Ea2/VIelsHnDh/rdsQCZL8ctTviVN6SvHdRs9+PUpf02zpBdiKTz62gTiqQx3KxlQqnArRZIZfTbHS6d8ukv5osEuiALJK4QLxtW5Hc1myXJEKT0N4NIS2/0Abi7zmAcBPFhi+14AO5Z6LJ2AXV5aEVwgnD8DmrG6x+AqQPMtB6eSGxXKWni3M5RS3P/N/fj54SlIooCnP/pmDLvtOOvXxKHFlgPjirVuEKKuJusrDl58Z88YDk0s4PK17rL7+cMJ/Pp0AO+4ZBA/OXABf/Wfr8MmibjU0FrE7FglsWLAOGiY2f2rU369qHKgy4oBl6JbDtksRTix8iwHTh2xyyLSWVpTz/ZHX5vAf72hVkQXDp/pd6nicE6LYzTbJ7zSZjo8d3wWT7wxhVu2DSCRzuK547MAVMuh36W0jcB12yRs0Ron1lMcrt3gBaA2f1uM7+8dxwPf3o/5aFK/AMZSGd6R1YCayrr495glFLjtEl4+E8BMUD2XHqeM1T023WKNJNOgFFwczEytzffCiTT+5Luv4eGXzgEothz6u9SVyHlNHJptObAP80pJZ/3csyexutuK//v+K7Cqy6r738/6InqjwnZh14i6sq+nOPRqLdqfP7G4OPg13/hsKJHX8JF3ZM1hq6IIjlkOt25bhYVYCk+8PgVC1ILEG7f249Xz8zg9G9ZTWlvhVuLvaJvApsFVW+twYlrt7f6Bq9biz2/fUiQOvXa1A+uYbjk0uQhOXhmWw/PHZ/E/fnAAr5ydw31vWg/ZIuDaDR68dMqPbJbirL/9xOHKkV4AuaZ79eKdlw5iz5kAnj06U3afgJbuOhtOaONSFUgi4dlKBqySqKeQl4Nd9H9r1zDcdgl7zgbQa5chCgTv3TUMi0Dw7ZfP660zXFwczAtrlhar0nJgPVY+dMN6/NFbNhZV7AoCgdepYFLr09L0mIN1ZcyR/vC39+OxQ5N4x8WDuGu3Wjtz7UYvApEk9p2fgy+c1NtStAu7NHFw17kz7L3Xj2LzgBN/+cihvH4+RlgVtT+chD+cxPo+Bz571+X4/evX1/VYVjJWqXK2EnMrDbis+ODV6wDkhm71u6y4bfsq/HD/OHwh9Xxzt5KJcbBRoVW2nDg+HYJiEbCmt3wWDXMtAc3PVmIuj/lY+/ZXiibTCMbT+PBNm/C5D1yhr35ZncA//fwYgPYJRjOGemx46IM78b5dayrvXAOKRcSD77kYFxbi+NnByZL7sNRpXzgBf0Rt2/K2iwdx8TAPSDOsFjVbabFMvaCh5frvXLMOsijkjet9/+61mI+m8NODaslXK8ShPaJsHL2COVKl5XBsOoSN/c5FZzH0G9pKN9ty6NP+dzPK/JcKO7a+gvbbq3ts2NjvxK9PBzDqdeCKtc1vl1GJ23fUVstQLaw1SLn3jVVR+8IJ+MMJXL2+tyHHsZJhC7FEusj138AAABK8SURBVHzDy6DBXSQKBJ+4Y3uea/jKUTdkUcAvjs3q+zUbLg5twjqPAwIBnjo8o2eOLMaJ6TCuqVAJ26dlLAkEkMTmNopza/5TVtzTjsxoF8D+ErMZvv7frkQkkcHmAWfTm+y1EtkiwCGLemyhEOZWmg4mMB9LFdXXcHKZgYlFuiEvFFS4/z9X5bcDUiwiLh7uxr5zcwDQ9C7AAHcrtQ1DPTb85hXD+ObL54qGfRSyEEthKhjHpgHnovuxi55NEpt+gRMFgl6HvCItB0Adu7lllctUwsDosct5Y0O/v3cMt33meSTTWT2QemImrM7SdjZ3It5KIDcNrryLOBhLl6xwN7JzXa7epNK+jYCLQxvxxzdvAqUU//rMyUX3OzmjZipt7nctuh+LObQqk6TPqbS1OMxo4z9LWQ5mpteRPxnuycPTODYdwmlfbpYAy5YrzJLjVDcNLhhPVYwjMHGQRNKSCnQuDm3Eml47bt22Si/AKkU6k8WLJ9Qc/M0DFcRBcyu1Shy8LqWt3Uqz4QQsAoHbzi9wRnrsUl777kPjC3m/ZYugV/N7uFupCPZ9W6yFRjCWqmgNXKFVqrusUkssWC4ObcbGficuzMdKDgtJZ7K46Z+ew2eeOo7V3Va9RXc52Iq4VQVK7W85qHn6wiJBfTPitst6bGEmGMeUZmG9PqGKw4a+nDvTw91KRdhk9fu2WK3DQixVsYixz6VgncfekkwlgItD2zHiVUd9js8Vxx184STOB6L40A2jeOqjb654UWu1W8nrkuELJ9u2+d5MKJGX7stRMbqVDmjWAgAc0sRhsyHW5eFupSKqcSuF4umqqp7ft2sNbtzSX3G/RsCzldoMNs3rnD+St0IDcmMErxzprWpOsNepgJDmp7Ey+pwKkpksgrE0uu3ND6hVYjaU0GcZcHL02CWE4mmkM1kcHJ+HoH2GDk8GAQCb+tXPJSG5QUGcHIpURcwhlqqqwv2BGzfW7bhqhVsObQYruGJzBIywMYLVmvKSKKDXLrcuIM1qHZoQd5gJxfVWIdU/hlsOpWAxmPlYCgfHF7B5wIV1HofuQ9+oJUKwdg+cfPRspTIxh0yWIpSob1fdRsDFoc1w2yW4rBac01pFG2FNz2oJAo54HSVTNZtBn7N5hXD/73++jvu/ta/q/TNZikAkoR8jJ0ePZuXNRZI4OD6PS4a7MaTFt6ySoMe6eKZSafQ6hzKprKw1SSua6dUCdyu1GYQQjHjUKW6F+MO1WQ4A8MXf2QlJaFFAWhOlZmQsnZwJ44I2crGazA5/OIEsBfq6uFupEHbRPzoVwlw0he2ru/UW0r12WX9feTC6NNYKbqVgTOu02uaWAxeHNmSdx65nhhjxRRKQLQKcNcwW8LZwZextkuWQzVKMzcWQTGfhCyfhtkvIUjXlshysOppbDsUwt9LeswEAaowhpU2I67HLunjwNNbSWC2Lu5VY071WVD3XAncrtSEjHgfG52L6F5LhDyfhdcgrpmq32yZBEknDYw7Tobg+JOl8IIpPPn4U7/3iS0X7PfraBN730EuglOqCxWMOxTC30itn1dYNG/udea4kSRQw4rG3XSvzdoEli5TrbMv6KrV7zKG9pcukrPPYkc5SXJiP6dlLgOoK8aygla4gEHgcCnwNthzOGVxwY4Eofn3aj+PTIWSyNC9g+oO949hzNoCZUAIzITV3n1sOxTDL4ehUEC6rBX0uBUM9avdfJhyPPnA9rDJfW5bCJotY3+fQ+yIVkuvI2t7iwN/dNoTND2B+XoY/klxxft4+l9Jwy+G8IUvp9GwYJ6bDSGWoLgCA6v/do7lJTs2GMTEXg0C45VAKuyxCtgjIUtVqIIQUBaG77RIfDboI123w4uUzgZJjfw9qLuN2rxHh4tCGrNfE4eRMOG+7P5xccX7ePpeC6WBjxWEsEIUoEHidMn5xfBZJzR1nLCTcY/iinvFFcHQqhBGvg1/gSkAIgVuzEDZqtTY9dgm7R3vzmsFxynPdRi+iyQwOjM/nbX/jwgK+/PxpvPuy1ehv82QILg5tiMepwOOQ9WlvAEAphS+cWHFdMNd57DjnjzS0SvqcP4rVPVas9zpx0FDROz6XsyheODELWRSgWAScmVXFYeuqxXtTmRnmWtqgF7wRfP8PrsGdlw218rBWDNes90AgwIvaTO75aBJ//ejr+L2vvwK3Q8Yn7tje4iOsDBeHNmXTgBPHte6rgDpbOpHOrji30oY+J6LJjN6fpxGcD0SxtteuT8VjsyvGAznL4YUTPuwacWPU68DrFxZwPhDFloGuhh3TSoeJw8a+xdvCc0rTbZdw8VA3fnVKFYfPPXsS//7rc9iyqgsPffCKFVFZzsWhTdk84MLJ6bC+4l5KAVw7wFqAnJopLuqrFzlxUP3imwdc6HMpultpJhTH0akQbtjUhw19Tuw5o8YetnDLoSxuh+ZW6ufisFSu3+TFq+fnMRdJ4vnjPlyzwYNv/N5u7Fy3MqbncXFoUzYNuBBKpDG5oK64fVoBXO9Ksxz61fjJqdlwhT1r5+dvTOFzz55EIJLE2l4H1mqWw0WDXRh22zA+r7qVfnlSXb3dsMmLUa8DWc3Dxd1K5fE4lIozyjmL8/aLB5HOUvzbr87i2LS6OFlJ8FTWNmWztmI7NLGAr714RhcF7wqzHPqcClyKpe7ikMlS/MUjr+vV12t77RjQMo+2rnIhkVabxgHAC8d96HXI2DbYhePakBqbJOpiwinmQzesx80X9fPeSctg22AXNvY78dAvTgEA3sTFgVMP2CCfTz9+FKd9Ef1LutJiDoQQrO931l0cXjkbgC+cwEdv2QxBILj5IrWt8V1XrsE7LhmEP5LEE69PIpOleOGkD9dt9EIQiF64tXnAyec4LMJajx1rPVw8lwMhBO++bDX+98+Pw+tUVpylyt1KbYrbIcPrVHDaF4HHISOj+UJWYrOzDX2OZcccKKWYmM8FmB87NAmrJODeG0bxwI0bYZVEWCURn/rNSzDYbcOw24ZUhuL5E7OYDSVwwyYvAGC9V7XIeLyB0wzuuFTN7nrTJu+KW4xwcWhj2FCVL3xwJ65Y2wO3XWpZ++3lsKHPialgHOGE2nAsnSk/PrEcDz13Gtd96hk8dki1Bh5/fQo3bukvO9dijVtd9X5BM+mZOHTbJXzkpo14/+61S3kpHE5NrPXY8c/vuxQfuXlTqw+lZrhbqY25a/da7Bjqxu7RXnzp7l0lp8OtBFjG0unZMFZ1W3HT/34On/rNi3HLtgE88K39uPOyIbzr0tVlHz8WiOJfnj4OgQAf/49DePGkD7OhBN5+8WDZx7CK3j1nAnjXpasx2J0bqfrRW7fU6ZVxOJX5jSuGW30IS4KLQxtzx6WrcYd20fQ6lZZ2WF0OzIWz/9wcJIuAcCKN7+8dhywKeOrIDJ4/7sOQ26YPVC/kb35yGCIh+Oa9V+Heh/fi2y+fxweuWou37VhV9n+Oeh34q3dchO2ru3HNBk9DXheH08lwceA0nFGvA1tXufDIqxN68c8vT/qQyWbR65DhVCy4/5v78PRH34KphTh+evAC/vDNG2CVRJz3R/HUkWn86Vs34dqNXnznvqshEOCS4Z5F/ychBL9/w/pmvDwOpyPhMQdOU/itncM4ML6AF0/6cN1GDzJZil+e9OOdlwziX+66DNPBBP71mZP48Lf34/88dQJ3f3UPFmIpfH/vGAQC/PaVawAAl63pqSgMHA5n+bSNOBBCbieEHCOEnCSEfKzVx8OpL3deNgRRIMhkKf70rZsxoqVJ3nnZaly+1o13XboaDz13CkenQrjnmnV4dWwOv/3Fl/CDfWN48+a+vJgBh8NpPG0hDoQQEcDnALwNwDYA7yeEbGvtUXHqSZ9LwU1b+9HvUnDFWjfuuXYEu0d79TjDn9+2BVZJwDsvGcTf3LkD//a7uzEWiGI6mNCtBg6H0zxII7tlVn0QhFwD4BOU0tu02x8HAErpJ8s9ZteuXXTv3r1NOkJOPViIphBKpDDsLl1cNR2Mw+OQYRHVNcvrEwt44vUp/MlbN0ES22Idw+GseAgh+yiluyrt1y4B6SEAY4bb4wCuatGxcBpEt11Ct7389KuBgv72O4a6sWOou9GHxeFwStAuy7FSpYNFJg0h5D5CyF5CyN7Z2dkmHBaHw+GYk3YRh3EARsfyMIALhTtRSr9EKd1FKd3V17eymlhxOBzOSqJdxOEVAJsIIaOEEBnAXQB+3OJj4nA4HNPSFjEHSmmaEPJhAP8FQATwNUrpGy0+LA6HwzEtbSEOAEApfQzAY60+Dg6Hw+G0j1uJw+FwOG0EFwcOh8PhFMHFgcPhcDhFtEWF9FIghIQAHCtxlxeAr47/qhvAgomer53PHz93nf187Xz+OuHcsX3WUUor1wJQSlfkD4C9tWxfxv/5ksmer23PHz93Hf98bXv+OuHc1Xp+uVupMj8x2fPVm3oeHz93nf189YZ/9pbBSnYr7aUlmkeV286pDn7+lg4/d8uDn7+lU825q/X8rmTL4Us1budUBz9/S4efu+XBz9/Sqebc1XR+V6zlwOFwOJzGsZItBw6Hw+E0iLYXB0LIGkLIs4SQI4SQNwghf6Jt7yWEPEkIOaH9dmvbPdr+YULIvxY8128TQg5qz/MPrXg9zWYJ5+8WQsg+Qsgh7fdNhufaqW0/SQj5LCGkVKv1jqHO5+5BQsgYISTcqtfTbOp1/gghdkLIzwghR7Xn+VQrX1czqPNn7wlCyAHteR7SJm9Wpp7pVI34ATAI4ArtbxeA41BHif4DgI9p2z8G4NPa3w4A1wP4QwD/angeD4DzAPq02w8DuLnVr68Nz9/lAFZrf+8AMGF4rj0AroE6f+NxAG9r9etbQefuau35wq1+XSvt/AGwA7hR+1sG8AL/7NX02evSfhMAPwJwV1XH0OqTsIST9iiAW6AWwA0aTuSxgv1+t0AcrgTwlOH27wD4fKtfT7ueP8OHyQ9A0fY5arjv/QC+2OrXsxLOXcF204hDI86fdt+/APhQq1/PSjt3ACSoKbS/Xc3/bHu3khFCyAhUhXwZwACldBIAtN/9FR5+EsBWQsgIIcQC4N3IHzDU8Szh/P0mgFcppQmoo1zHDfeNa9tMwTLPnemp1/kjhPQAeBeApxt5vO1EPc4dIeS/AMwACAH4YTX/d8WIAyHECdUk+lNKabDWx1NK5wDcD+B7UM3SswDS9TzGdqbW80cI2Q7g0wD+gG0qsZspUt3qcO5MTb3O3//f3t2EuFWFYRz/P5giSMUPsFIQcSeKiKKgYkXoptiNGzcizlhxIQriThRBF3YjWkrrYlpsxS+KCApVQZGCBRXBTdHWEcoUQaEIYq21xZWPi3OCYW4yTepNk0yfH1wSTm7OnPsS5r3n3OS99aRuH7DD9rFxjHXatBU725soM42LgY193towE8lB0hpKgN61/UFt/lXS+vr6ekpWXJHtj2zfYfsuyvTs6LjGPE1GjZ+ka4APgTnbS7X5F8rtW7v63sp1tWkpdhesluO3Gzhqe/v4Rz55bX/2bP9NucPm/cP8/alPDvUbMXuARdvbel7aD8zX5/OUNbmz9bWuPl4BPAG83u5op8+o8avT9k+AZ21/1d25TmFPSbqz9jnHEDGfZW3F7kLVZvwkvUQpVvf0uMc9DdqKnaS1PcmkA2wGfhxqEJO+0DLEhZgNlOWL74BDddtM+fbRAcrZ/wHgyp73/AT8DvxFOeO9sbbvA36o21BX7Gd9GzV+wPPA6Z59DwHr6mu3A4eBJeA16o8oV+vWcuxerp/Ff+rji5M+vlmJH2WWamCxp/2xSR/fjMTuauDb2s8RYCfQGWYM+YV0REQ0TP2yUkREnH9JDhER0ZDkEBERDUkOERHRkOQQERENSQ4RYyDpcUlzI+x/naTD4xxTxCg6kx5AxGojqWN7YdLjiPg/khwi+qjFzj6lFDu7lVIyeQ64AdgGrAV+Ax6xfVzSF8DXwN3AfkmXUiqwviLpFmCBUnp6CXjU9glJtwF7gTPAl+fv6CLOLstKEYNdD+y2fTPwJ/Ak5RemD9ju/mPf2rP/5bbvtf3qsn7eAp6p/XwPvFDb3wCecqn1FTFVMnOIGOxn/1en5h3gOcqNVD4vpW+4CDjes/97yzuQdBklaRysTW8C7/dpfxu4r/1DiDg3SQ4Rgy2vLXMKOLLCmf7pEfpWn/4jpkaWlSIGu1ZSNxE8CHwDXNVtk7Sm1s8fyPZJ4ISke2rTw8BB238AJyVtqO0PtT/8iHOXmUPEYIvAvKRdlCqYO4HPgB11WagDbKdUu1zJPLAg6RLgGLCltm8B9ko6U/uNmBqpyhrRR/220se2b5rwUCImIstKERHRkJlDREQ0ZOYQERENSQ4REdGQ5BAREQ1JDhER0ZDkEBERDUkOERHR8C+7sZSkTO2ZdQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1990,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_september_week[:-1],\n", " first_september_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHCxJREFUeJzt3X9wndV95/H3x8iRgNrEBpn4B2A6cZgYkkJ8x3Y32W6JW9tsOthMIdGGBs3iGSfApqSzM2AHdpgFdwY6O5vWkwmLJxQMhB9ebxncFi8RZjP17jq25UAKhrhSAjEODhIrB0xmrCL83T/uUX2lyFfPla703Hv1ec3cuc/96jnnPseP5O99zjnPuYoIzMzMspiW9wGYmVn9cNIwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMmvK+wCq7bzzzouFCxfmfRhmZnXlwIED70RE62j7NVzSWLhwIZ2dnXkfhplZXZH08yz7uXvKzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jBrcD3vneCLD+yh5/iJvA/FGoCThlmD27yri/1v9LH5+a68D8UaQMPdp2FmRZfcuZP+gZP/8vqxvYd5bO9hmpumcWjTVTkemdUzX2mMgS/3rR7svu1Krr58Hi3Ti3/mLdOnsebyeey+/cqcj8zqmZPGGPhy3+rBnJktzGhuon/gJM1N0+gfOMmM5ibmzGgZcX9/GLIs3D1VAV/uW7155/1+rl92EV9eeiGP7ztMb5mEUPphaNM1n5rEo7R6oojI+xiqqlAoxEStPdXz3gk2Pfsa3z/4S058cJKW6dNYdenHuOMLnzztpzezWjf8w9AgfxiaWiQdiIjCaPu5e6oClV7um9UDj31YJdw9VaFKLvfN6oE/DFklnDQq9MBXTl29bVp7WY5HYlY9/jBkWXlMw8zMPKZhZmbV56RhZmaZZUoakv5M0kFJr0h6QlKLpNmSOiR1pedZJftvlNQt6ZCkVSXxJZJeTj/bLEkp3izpqRTfK2lhSZn29B5dktqr13QzM6vUqElD0nzgT4FCRFwGnAG0ARuAXRGxCNiVXiNpcfr5pcBq4DuSzkjV3Q+sBxalx+oUXwcci4iPA98C7kt1zQbuApYBS4G7SpOTmZlNrqzdU03AmZKagLOAt4A1wNb0863A2rS9BngyIvoj4nWgG1gqaS4wMyL2RHH0/ZFhZQbr2g6sSFchq4COiOiLiGNAB6cSjZmZTbJRk0ZE/AL4L8Bh4CjwbkR8Hzg/Io6mfY4Cc1KR+cCbJVUcSbH5aXt4fEiZiBgA3gXOLVOXmZnlIEv31CyKVwIXA/OAsyX9SbkiI8SiTHysZUqPcb2kTkmdvb29ZQ7NzMzGI0v31B8Ar0dEb0R8APwN8K+At1OXE+m5J+1/BLigpPwCit1ZR9L28PiQMqkL7Bygr0xdQ0TElogoREShtbU1Q5PMzGwssiSNw8BySWelcYYVwGvADmBwNlM78Eza3gG0pRlRF1Mc8N6XurCOS1qe6rlhWJnBuq4FXkjjHs8BKyXNSlc8K1PMzGzcvBx85UZdRiQi9kraDvwIGABeBLYAvwVsk7SOYmK5Lu1/UNI24NW0/y0R8WGq7ibgYeBMYGd6ADwIPCqpm+IVRluqq0/SPcD+tN/dEdE3rhabmSVeDr5yXkbE7DR63jvBf3jiRb795Su8eF+D8XLwv8nLiJiNk7+hsXF5Ofix8yq3ZsP4Gxobn5eDHztfaZgN40+hU8PgcvBP3/xZrl92Eb3v9+d9SHXBVxpmw/hT6NTg78YZGycNsxH4S4nMRubZUzaleEaU2cg8e8pyUes3S3lGlNn4uHvKqqpWb5byjCiz6nD3lFVFrd8s1fPeCTY9+xrfP/hLTnxwkpbp01h16ce44wufrNtuKne1WTW5e8omVa1PU23EGVHuarM8uHvKqqIe/lNulBlR7mqzPDlpWNXU+n/KjTIvf/dtV562q81sojlpWNU0yn/Kta4eruqscTlpmNWhWr+qs8bl2VNmZubZU2ZmVn1OGmZmlpmThpmZZeakYVZjan39LpvanDTMaozv9LZa5im3ZjXCd3pbPfCVhlmNqPX1u8zAScOsZvhOb6sHoyYNSZdIeqnk8Z6kb0iaLalDUld6nlVSZqOkbkmHJK0qiS+R9HL62WZJSvFmSU+l+F5JC0vKtKf36JLUXt3mm9WWwTu9n775s1y/7CJ63+/P+5DMhqjojnBJZwC/AJYBtwB9EXGvpA3ArIi4XdJi4AlgKTAPeB74RER8KGkfcCvwQ+BZYHNE7JR0M/DpiPiapDbgmoj4kqTZQCdQAAI4ACyJiGOnO0bfEW5Wf/zdIPmbqDvCVwA/jYifA2uArSm+FVibttcAT0ZEf0S8DnQDSyXNBWZGxJ4oZqpHhpUZrGs7sCJdhawCOiKiLyWKDmB1hcdsZjXOM8bqR6Wzp9ooXkUAnB8RRwEi4qikOSk+n+KVxKAjKfZB2h4eHyzzZqprQNK7wLml8RHKmFmd84yx+pP5SkPSR4Crgf8+2q4jxKJMfKxlSo9tvaROSZ29vb2jHJ6Z1QrPGKs/lXRPXQX8KCLeTq/fTl1OpOeeFD8CXFBSbgHwVoovGCE+pIykJuAcoK9MXUNExJaIKEREobW1tYImmVmeKp0x5rvl81dJ0vh3nOqaAtgBDM5mageeKYm3pRlRFwOLgH2pK+u4pOVpvOKGYWUG67oWeCGNezwHrJQ0K83OWpliViX+I7S8VTJjzGMf+cs0e0rSWRTHFn47It5NsXOBbcCFwGHguojoSz+7A7gRGAC+ERE7U7wAPAycCewEvh4RIakFeBS4guIVRltE/CyVuRH4ZjqUP4+Ih8odq2dPVebOp1/me/sOc/3SC9l0zafyPhyzEQ0f+xjksY/qyTp7yl/CNEVV+kfoKZGWp573Tpz2e9H9+1gd/hImK6vSAUh3C1iefLd87fCChVNU1j9CT4m0WuHvRa8NThpTWJY/wt23XXnabgGzyfTAV071nGxae1mORzK1OWlMYVn+CN0tYGalPKZRA2p92qsX0TOzQZ49VQM87dXM8pZ19pS7p3LkQWYzqzfunspRpdNea70by8wan5NGjiodZPa9EmaWN3dP5SzLtFd3Y5lZrfBA+ASq1tIbXkLBao2XlWk8XkakBlSrO8n3SlitcVfp1OXuqQkwEd1JXkLBaoG7Ss3dUxPA3Uk2kkbo0vHvduNy91SO3J00tWSdCt0IXTr+3TZ3T00QdydNHaXJYKQ7+hutS8e/21Obu6fMxijrF1lN5S6dRuiSmyrcPWUNoZbvgs96R/9U7tJphC45G8rdU5aLrJ9AR+v6yVMlyWCqdek0WpecneLuKcvFaCv7Vvod5nn56qOdtM5oGZIMSr+nZKqayl1y9cqr3FpNyvoJtF6+MdDfJjeyqdwl1+g8pmGTyuMAU4e/vKsx+UrDJpXHAaaOPK/CPGtr4mS60pD0UUnbJf1E0muSflfSbEkdkrrS86yS/TdK6pZ0SNKqkvgSSS+nn22WpBRvlvRUiu+VtLCkTHt6jy5J7dVruuUl6yfQB75SYNPay1g8byab1l7msQLLzLO2Jk6mgXBJW4HdEfFdSR8BzgK+CfRFxL2SNgCzIuJ2SYuBJ4ClwDzgeeATEfGhpH3ArcAPgWeBzRGxU9LNwKcj4muS2oBrIuJLkmYDnUABCOAAsCQijp3uWD0QbjZ11csEilpUtfs0JM0Efg94ECAi/jkifgWsAbam3bYCa9P2GuDJiOiPiNeBbmCppLnAzIjYE8VM9ciwMoN1bQdWpKuQVUBHRPSlRNEBrB7tmM1saqr02zCtclm6p34b6AUekvSipO9KOhs4PyKOAqTnOWn/+cCbJeWPpNj8tD08PqRMRAwA7wLnlqlrCEnrJXVK6uzt7c3QJDNrRJ5AMfGyJI0m4DPA/RFxBfBrYEOZ/TVCLMrEx1rmVCBiS0QUIqLQ2tpa5tDMrNF51tbEyjJ76ghwJCL2ptfbKSaNtyXNjYijqeupp2T/C0rKLwDeSvEFI8RLyxyR1AScA/Sl+O8PK/ODTC0zsympXu6dqdcZXqNeaUTEL4E3JV2SQiuAV4EdwOBspnbgmbS9A2hLM6IuBhYB+1IX1nFJy9N4xQ3DygzWdS3wQhr3eA5YKWlWmp21MsXMzOpavc7wynqfxteB76WZUz8D/j3FhLNN0jrgMHAdQEQclLSNYmIZAG6JiA9TPTcBDwNnAjvTA4qD7I9K6qZ4hdGW6uqTdA+wP+13d0T0jbGtZma5q/d1ubz2lJnZJKrVdbm8NLqZWQ2q9xleXkbEzGyS1fMSOe6eMjMzd09NZbX8bXdmVt+cNBpQvU7lM7Pa5zGNBlLvU/nMrPb5SqNEvXfreLE2M5toThol6r1bp96n8pnVqnr/QFlN7p6isbp16nkqn1mtKv1AuemaT+V9OLnylFtq9w5NM8vXVPpSJ0+5rYC7dcxsJGMZJ2z0riwnjcRr8JvZcGP5QFnvY6OjcfeUmVkZX320k9YZLUPGCUu/s2NQvXdlZe2ectIwM6uCeh8b9ZiGmdkkmipjo55ya2ZWJVNhyru7p8zMzN1TZmZWfU4a1hAafW68Wa1w0rCG0Ohz481qhQfCra410rphZvXAVxpW17wcvNnkctKwujZV5sab1YpMSUPSG5JelvSSpM4Umy2pQ1JXep5Vsv9GSd2SDklaVRJfkurplrRZklK8WdJTKb5X0sKSMu3pPboktVer4dY4vG6Y2eTJdJ+GpDeAQkS8UxL7C6AvIu6VtAGYFRG3S1oMPAEsBeYBzwOfiIgPJe0DbgV+CDwLbI6InZJuBj4dEV+T1AZcExFfkjQb6AQKQAAHgCURcex0x+r7NMzMKjcZ92msAbam7a3A2pL4kxHRHxGvA93AUklzgZkRsSeKmeqRYWUG69oOrEhXIauAjojoS4miA1g9jmM2M7NxyJo0Avi+pAOS1qfY+RFxFCA9z0nx+cCbJWWPpNj8tD08PqRMRAwA7wLnlqlrCEnrJXVK6uzt7c3YJDMzq1TWKbefjYi3JM0BOiT9pMy+GiEWZeJjLXMqELEF2ALF7qkyx2ZmZuOQ6UojIt5Kzz3A0xTHK95OXU6k5560+xHggpLiC4C3UnzBCPEhZSQ1AecAfWXqMjOzHIyaNCSdLWnG4DawEngF2AEMzmZqB55J2zuAtjQj6mJgEbAvdWEdl7Q8jVfcMKzMYF3XAi+kcY/ngJWSZqXZWStTzMzMcpCle+p84Ok0O7YJeDwi/qek/cA2SeuAw8B1ABFxUNI24FVgALglIj5Mdd0EPAycCexMD4AHgUcldVO8wmhLdfVJugfYn/a7OyL6xtFeMzMbBy+NbmZmXhrdzMyqz0nDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMsucNCSdIelFSX+XXs+W1CGpKz3PKtl3o6RuSYckrSqJL5H0cvrZZklK8WZJT6X4XkkLS8q0p/foktRejUabmdnYVHKlcSvwWsnrDcCuiFgE7EqvkbQYaAMuBVYD35F0RipzP7AeWJQeq1N8HXAsIj4OfAu4L9U1G7gLWAYsBe4qTU5mZja5MiUNSQuALwDfLQmvAbam7a3A2pL4kxHRHxGvA93AUklzgZkRsSciAnhkWJnBurYDK9JVyCqgIyL6IuIY0MGpRGNmZpMs65XGXwK3ASdLYudHxFGA9DwnxecDb5bsdyTF5qft4fEhZSJiAHgXOLdMXWZmloNRk4akPwJ6IuJAxjo1QizKxMdapvQY10vqlNTZ29ub8TDNzKxSWa40PgtcLekN4Eng85IeA95OXU6k5560/xHggpLyC4C3UnzBCPEhZSQ1AecAfWXqGiIitkREISIKra2tGZpkZmZjMWrSiIiNEbEgIhZSHOB+ISL+BNgBDM5mageeSds7gLY0I+piigPe+1IX1nFJy9N4xQ3DygzWdW16jwCeA1ZKmpUGwFemmJmZ5aBpHGXvBbZJWgccBq4DiIiDkrYBrwIDwC0R8WEqcxPwMHAmsDM9AB4EHpXUTfEKoy3V1SfpHmB/2u/uiOgbxzGbmdk4qPiBvnEUCoXo7OzM+zDMzOqKpAMRURhtP98RbmbWAHreO8EXH9hDz/ETE/o+ThpmZg1g864u9r/Rx+bnuyb0fcYzpmFmZjm75M6d9A+cuoXusb2HeWzvYZqbpnFo01VVfz9faZiZ1bHdt13J1ZfPo2V68b/zlunTWHP5PHbffuWEvJ+ThplZHZszs4UZzU30D5ykuWka/QMnmdHcxJwZLRPyfu6eMjOrc++838/1yy7iy0sv5PF9h+mdwMFwT7k1MzNPuTUzs+pz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy2zUpCGpRdI+ST+WdFDSf07x2ZI6JHWl51klZTZK6pZ0SNKqkvgSSS+nn22WpBRvlvRUiu+VtLCkTHt6jy5J7dVsvJmZVSbLlUY/8PmI+B3gcmC1pOXABmBXRCwCdqXXSFoMtAGXAquB70g6I9V1P7AeWJQeq1N8HXAsIj4OfAu4L9U1G7gLWAYsBe4qTU5mZja5Rk0aUfR+ejk9PQJYA2xN8a3A2rS9BngyIvoj4nWgG1gqaS4wMyL2RPE7Zh8ZVmawru3AinQVsgroiIi+iDgGdHAq0ZiZ2STLNKYh6QxJLwE9FP8T3wucHxFHAdLznLT7fODNkuJHUmx+2h4eH1ImIgaAd4Fzy9RlZmY5yJQ0IuLDiLgcWEDxquGyMrtrpCrKxMda5tQbSusldUrq7O3tLXNoZmY2HhXNnoqIXwE/oNhF9HbqciI996TdjgAXlBRbALyV4gtGiA8pI6kJOAfoK1PX8OPaEhGFiCi0trZW0iQzM6tAltlTrZI+mrbPBP4A+AmwAxiczdQOPJO2dwBtaUbUxRQHvPelLqzjkpan8YobhpUZrOta4IU07vEcsFLSrDQAvjLFzMwsB00Z9pkLbE0zoKYB2yLi7yTtAbZJWgccBq4DiIiDkrYBrwIDwC0R8WGq6ybgYeBMYGd6ADwIPCqpm+IVRluqq0/SPcD+tN/dEdE3ngabmdnYqfiBvnEUCoXo7OzM+zDMzOqKpAMRURhtP98RbmZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmdWwnvdO8MUH9tBz/ETehwI4aZiZ1bTNu7rY/0Yfm5/vyvtQAGjK+wDMzOw3XXLnTvoHTv7L68f2HuaxvYdpbprGoU1X5XZcvtIwM6tBu2+7kqsvn0fL9OJ/0y3Tp7Hm8nnsvv3KXI/LScPMrAbNmdnCjOYm+gdO0tw0jf6Bk8xobmLOjJZcj8vdU2ZmNeqd9/u5ftlFfHnphTy+7zC9NTAYrogov4N0AfAI8DHgJLAlIv5K0mzgKWAh8AbwxYg4lspsBNYBHwJ/GhHPpfgS4GHgTOBZ4NaICEnN6T2WAP8P+FJEvJHKtAN3psPZFBFbyx1voVCIzs7O7P8CZmaGpAMRURhtvyzdUwPAf4yITwLLgVskLQY2ALsiYhGwK70m/awNuBRYDXxH0hmprvuB9cCi9Fid4uuAYxHxceBbwH2prtnAXcAyYClwl6RZGY7ZzMwmwKhJIyKORsSP0vZx4DVgPrAGGPzUvxVYm7bXAE9GRH9EvA50A0slzQVmRsSeKF7ePDKszGBd24EVkgSsAjoioi9dxXRwKtGYmdkkq2ggXNJC4ApgL3B+RByFYmIB5qTd5gNvlhQ7kmLz0/bw+JAyETEAvAucW6YuMzPLQeakIem3gP8BfCMi3iu36wixKBMfa5nSY1svqVNSZ29vb5lDMzOz8ciUNCRNp5gwvhcRf5PCb6cuJ9JzT4ofAS4oKb4AeCvFF4wQH1JGUhNwDtBXpq4hImJLRBQiotDa2pqlSWZmNgajJo00tvAg8FpE/NeSH+0A2tN2O/BMSbxNUrOkiykOeO9LXVjHJS1Pdd4wrMxgXdcCL6Rxj+eAlZJmpQHwlSlmZmY5yDLl9nPAbuBlilNuAb5JcVxjG3AhcBi4LiL6Upk7gBspzrz6RkTsTPECp6bc7gS+nqbctgCPUhwv6QPaIuJnqcyN6f0A/jwiHhrleHuBn4/wo/OAd8o2tj40SjvAbalFjdIOcFsqdVFEjNpVM2rSaBSSOrPMQa51jdIOcFtqUaO0A9yWieJlRMzMLDMnDTMzy2wqJY0teR9AlTRKO8BtqUWN0g5wWybElBnTMDOz8ZtKVxpmZjZOdZs0JP21pB5Jr5TEfkfSHkkvS/pbSTNT/COSHkrxH0v6/ZIyS1K8W9LmdA9JvbblB5IOSXopPeaM8HYT2Y4LJP0vSa9JOijp1hSfLalDUld6nlVSZmP6tz8kaVVJPNfzUuW25HZeKm2HpHPT/u9L+vawuurqnIzSlrr6W5H0h5IOpH//A5I+X1LX5J6XiKjLB/B7wGeAV0pi+4F/k7ZvBO5J27cAD6XtOcABYFp6vQ/4XYpLluwErqrjtvwAKOR4TuYCn0nbM4B/AhYDfwFsSPENwH1pezHwY6AZuBj4KXBGLZyXKrclt/MyhnacDXwO+Brw7WF11ds5KdeWevtbuQKYl7YvA36R13mp2yuNiPgHijcClroE+Ie03QH8cdpeTHH5diKiB/gVUFD5lXcnTTXaMgmHOaqYnBWRJ0W12jKZxzySStsREb+OiP8NDPm2n3o8J6drSy0YQ1tejIjBJZQOAi0qrrox6eelbpPGabwCXJ22r+PUulU/BtZIalJxaZMl6WflVt7NW6VtGfRQutz+T5PdfVBKE7ci8qQbZ1sG5X5eMrbjdOrxnIwm93MCY2rLHwMvRkQ/OZyXRksaN1L8kqgDFC/5/jnF/5riP2Yn8JfA/6W4xEmmVXRzUmlbAK6PiE8B/zo9vjKpR5xoYldEnlRVaAvUwHmpoB2nrWKEWK2fk3JyPydQeVskXUrxS+q+OhgaYbcJPS8NlTQi4icRsTIilgBPUOxXJiIGIuLPIuLyiFgDfBToovzKu7kaQ1uIiF+k5+PA4+TQPaKJXxF50lSpLbmflwrbcTr1eE5OK+9zApW3RdIC4Gnghoj4aQpP+nlpqKQxOANC0jSK3yv+39LrsySdnbb/EBiIiFej/Mq7uaq0Lam76rwUnw78EcUursk85slYEXlSVKsteZ+XMbRjRHV6Tk5XT939rUj6KPD3wMaI+D+DO+dyXiZylH0iHxQ/fR8FPqCYbdcBt1KchfBPwL2cunlxIXCI4mDT8xRXcxysp0DxF+anwLcHy9RbWyjOFDkA/CPFgbK/Is3emcR2fI7ipfE/Ai+lx7+l+C2MuyheEe0CZpeUuSP92x+iZNZH3uelWm3J+7yMsR1vUJyY8X76fVxcx+fkN9qS9zkZS1sofnD8dcm+LwFz8jgvviPczMwya6juKTMzm1hOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZ/X+iAsdYpH8kLgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 221186\n", "2021 376290\n", "2002 516689\n", "2018 542312\n", "2017 551041\n", "1991 553090\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEICAYAAACQzXX2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEa5JREFUeJzt3XuQZGV5x/Hvwy7owgCiC0MFMEPQGImrImPwUsFZsCwV1BJNvCCBlGZNeSNmUxZJqWgSlcRgaSxIakWUEuOoYEoB46Wio+IF2VXLFQlqBBGIRGJAl6Cw8uSP9wyZXXd2zlx6pp/N91M1Nae7T/d5nj7dv3P67dPdkZlIkmrZa6ULkCTNn+EtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJU0OpB3fDatWtzbGxsh/PuvPNO9ttvv0EtclnYw3Cwh+FgD0tvy5Ytt2XmwXPNN7DwHhsbY/PmzTucNzU1xcTExKAWuSzsYTjYw3Cwh6UXET/oM5/DJpJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUN7EM6kn7V2FlX3De9cd12zphxepBuOOekZVmOlo973pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUUO/wjohXR8Q1EfGtiPhARNx/kIVJkmbXK7wj4jDgVcB4Zj4CWAU8f5CFSZJmN59hk9XAmohYDewL3DKYkiRJc4nM7DdjxJnAm4C7gE9l5qm7mGcDsAFgdHT02MnJyR0u37ZtGyMjI4uteUXZw3Co2sPWm++4b3p0Ddx61/Isd91hBw7kdquuh5mGrYf169dvyczxuebrFd4RcRBwKfA84Hbgw8AlmXnxbNcZHx/PzZs373De1NQUExMTcy5vmNnDcKjaw9hZV9w3vXHdds7dunpZlnvDOScN5HarroeZhq2HiOgV3n2HTZ4MXJ+ZP87Me4CPAE9YTIGSpIXrG943Ao+LiH0jIoATgWsHV5YkaXd6hXdmXgVcAnwN2Npdb9MA65Ik7UbvAbfMPBs4e4C1SJJ68hOWklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklRQ7/COiAdExCUR8W8RcW1EPH6QhUmSZrd6HvO+A/hEZj43IvYB9h1QTZKkOfQK74g4ADgeOAMgM+8G7h5cWZKk3YnMnHumiEcDm4BvA48CtgBnZuadO823AdgAMDo6euzk5OQOt7Nt2zZGRkaWpvIVYg/DoWoPW2++477p0TVw610rWMwS6NPDusMOXJ5iFmjYHkvr16/fkpnjc83XN7zHga8AT8zMqyLiHcBPM/N1s11nfHw8N2/evMN5U1NTTExMzLm8YWYPw6FqD2NnXXHf9MZ12zl363xGLodPnx5uOOekZapmYYbtsRQRvcK77xuWNwE3ZeZV3elLgMcstDhJ0uL0Cu/M/BHww4h4WHfWibQhFEnSCpjPa7ZXAu/vjjT5PvCHgylJkjSX3uGdmd8A5hyHkSQNnp+wlKSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCav90tbQAM3/BXarKPW9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKmhe4R0RqyLi6xFx+aAKkiTNbb573mcC1w6iEElSf73DOyIOB04CLhhcOZKkPiIz+80YcQnwFmB/4M8y8+RdzLMB2AAwOjp67OTk5A6Xb9u2jZGRkcXWvKLsYTgspoetN9+xxNUszOgauPWula5icexh19YdduCCr7t+/fotmTk+13yr+9xYRJwM/GdmbomIidnmy8xNwCaA8fHxnJjYcdapqSl2Pq8aexgOi+nhjLOuWNpiFmjjuu2cu7XXU3Bo2cOu3XDqxJLe3q70HTZ5IvDMiLgBmAROiIiLB1aVJGm3eoV3Zv55Zh6emWPA84HPZOaLBlqZJGlWHuctSQXNe6AnM6eAqSWvRJLUm3veklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklRQr/COiCMi4rMRcW1EXBMRZw66MEnS7Fb3nG87sDEzvxYR+wNbIuLTmfntAdYmSZpFrz3vzPyPzPxaN/0z4FrgsEEWJkmaXWTm/K4QMQZ8HnhEZv50p8s2ABsARkdHj52cnNzhutu2bWNkZGQR5a48exgOi+lh6813LHE1CzO6Bm69a6WrWBx72LV1hx244OuuX79+S2aOzzXfvMI7IkaAzwFvysyP7G7e8fHx3Lx58w7nTU1NMTEx0Xt5w8gehsNiehg764qlLWaBNq7bzrlb+45cDid72LUbzjlpwdeNiF7h3ftok4jYG7gUeP9cwS1JGqy+R5sE8G7g2sx822BLkiTNpe+e9xOB04ATIuIb3d/TB1iXJGk3eg30ZOaVQAy4FklST37CUpIKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKGsqffV7JX/dezK8+L8Zy9rxx3XbOmLG8ij3v3IP0/4173pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUUO/wjoinRsR1EfG9iDhrkEVJknavV3hHxCrgPOBpwNHACyLi6EEWJkmaXd89798BvpeZ38/Mu4FJ4FmDK0uStDuRmXPPFPFc4KmZ+ZLu9GnAcZn5ip3m2wBs6E4+DLhup5taC9y22KJXmD0MB3sYDvaw9H49Mw+ea6bVPW8sdnHer6R+Zm4CNs16IxGbM3O85zKHkj0MB3sYDvawcvoOm9wEHDHj9OHALUtfjiSpj77hfTXw0Ig4MiL2AZ4PfGxwZUmSdqfXsElmbo+IVwCfBFYBF2bmNQtY3qxDKoXYw3Cwh+FgDyuk1xuWkqTh4icsJakgw1uSCjK8JamgoQ/viDghIo5c6ToWo3oP1euftif0YQ/DYRh6GNo3LLvvTpkEbgfuBc7OzM+tbFXzU72H6vVP2xP6sIfhMEw9DM2ed0QcHhEHzDjrecClmXk87c56QUQ8fmWq66d6D/OpPyJ29anboVB9PYA9DIth7mHFwzsiHh4RHweuBP4yIqa/8OrnwL7d9Ido3z3wuGEMjeo9LKT+HMKXbNXXA9jDsKjQw4qEd0TsN+Pko4GbMnMM+Azwd935PwF+ERH7Z+ZPgO8Ao8DYMpY6q+o97Kb+z/Kr9Y909X+XIal/WvX1APaAPSzIsoV3RBwUEe+NiKuBcyLi4G5r9Ujgi93e3MeA2yPiJNqdsj+wrruJ79K+/evu5ap5Z9V72E3962bU/9Fd1P/I7ia+s5L1T6u+HsAeupuwh0VYzj3v44HtwNNp31L4F8ABXQ2HzngZfhHwQuCrwM9oPwBBZn4ZOAH46TLWvLPqPcxW/ypq1D+t+noAe7CHxcrMJf2jBcFLgc/Rvtt7bXf+h4BXddNHAud0lz+WNq60qrtsBPhxdzuHAdcCrwDeA5wP7LvUNe9pPVSvf0/qwx7sYVB/g9jzPhl4JvBG4PHA33bnfxp4Qjf9Q+ALwNMy82raFm89QGZuA64CHpuZNwOn0caUfgS8NjP/ZwA172k9VK9/T+rDHuxhIPr+GMMOpo82iIjH0l5KfAG4IjN/Afwm8P3M/ExEXA+8NSKeAmwBnh0RazPztoj4LnBnRDwYeCfwoog4hPZd4f9Fe3lCZm4GNi+yzz2uh+r172l9dL3Yg8/pZTPvPe8Zd9DxwIW0Q2eeDLylm+Ve4DsRsSYzr6e9vHgkbZzoFtpxkgC/pL0E2Qu4lPa1jKcCxwKbMvPeBXc1dw+ruh6eRHvZU6qHrq6MiAmKroOujwOq9xERD+r+PwF4b9EeDomIB0XEOG1st2IP+1R+Ti9In7EV2nGNfwz8E/BHwN7AnwAv7y4/CPgmcAztTjgHGOsuO5l2B6ztprcCB9IG+T8O7DNjOXsNanwI2A94CW2FbKS9KVGth/2BK2jfpw7w6kr1z3gsnQ78K+3DDqX64P8+lfx7tDHRKdrvtVZ7LO0HnEEbNrgDOKlgD3sDLwMuA/4BeAhwZqUeFvM35553RBwKXA5MAO+jDeafQhs32g6Qmf8NfBR4VfdgOAR4eHcTnweeBNydmZcD7wYuAc6jbeXvmV5WDm5PdT9aWJwAvAt4CvAc2psS91boobMGuB9wVESsBY6i7SWUqD8i9gauAZ4LvDUzn9NddMyM5Q91H5mZEXEg8PvA2zNzIjOvo+2ZleghIh5CG1I4EXgtcDNwI+0NuzKPJ+DltOf022m/qXtKd/qXhXpYuB5btzW0X4qfPn0GbbD/dOCrM87/NeCWbvrltI+OHtRd/zLgwTPmXbvcWyngATOmX0NboacW6+F04K3A64AXA88Arq5Sf7fcjwCn7nTe84CrqvRB29v7q256ek/8lCo90AL6fjNOX0jboD6rSg/dMi8D/qCbfjHwyu6xVOY5vZi/PmPePwe+2h24Du1lyHGZeRFtD/BQgMy8BbgmIo7LzPOA7wEfpP148ZWZeeP0DWbmbT2Wu6Qy8/aIOCAi3ksbNllLW3lHRcToMPcw477fC/h32t7rCZl5GXDksNe/kwuBsyPi3IiYiojXA1+h/UbqIV1tw97HbcDvRsSpwJaIuIi2t/db3Suioe4hM3+Z7U286TH7oH3R0mW09VDiOQ38C3B6RHwYeAPwKOBbtB4O7uoa9h4Wbh5buek9jIuAM7vp9wF/000/ELiAbktGG496BHD/ld5C7dTHy2gvDzfRxsC/BLye9gAe6h6AD9P2mg6kHa/6WtqD9XXF1sEnaR+GOIL2RDoT+HKh9fDQrt6/p+3FvRB4G+044NfQNrJD3cNO/XwdOKWbvrjSc7p7Dl9I2xl7A3A2cF33+Cq1Hub71/tok8zMiDgcOJS2xaO7s4iIy2ljyquy25Jl5j2Z+a3M/HnfZSyHzDw/27vN59PGKf+R9hLqYwxxDxExQtvjexfwCdo75ccBLwAOiojLGOL6d/LszHxzZv4QeDPtMK53UmA9dG6kfRx6dbZx1cu78y6nvSFboQciYvr5fyXtzT6AN7WLyjyejgamsu01v4e2c/MB6jyWFm6eW7ln0L6gZW/aFu+ptDvrhcBjVnpLNM9ejgA+BTyoO/0i4JiVrms39d6f9qrnAtobTRPAp2ZcPtT176avX6e9mfTASn3QPh69pZt+AO0VxDGVeuhq3Ze24Txlp/NPHfYeuuz5U+CC7vRa2o7lkdXWw0L+5vVjDBHxReA3gBtox0a+MTO/2fsGVlh3lMCJtI3N0bShk/My857dXnEIdR8iOAWYzMwfrXQ98xER96Nt+E8Dfpt2mNf5mbl9RQubp4h4E+35cAxtR+DsbHvipUTEdcDrM/OD05/jWOma+oqIo2jP47tp6+Kfgb/O9onIPVrv8O4O8zobuB64OLs3PCqJiNW07zf4Ba2Hci+dImIVcG+lJ9iuRMRLaYdpvq/iepgWEQ8DflCxhxkfuHs07U3w7RUfV92OzEOBL2XmXStdz3IZ2p9BkyTNbsV/SUeSNH+GtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkH/C8/eKgfp5789AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 4 }