{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Autour du Paradoxe de Simpson \"réalisé par Wahb ZOUHRI\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Importation des librairies et des données"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import numpy as np\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les données sont disponibles dans ce [fichier CSV](https://gitlab.inria.fr/learninglab/mooc-rr/mooc-rr-ressources/blob/master/module3/Practical_session/Subject6_smoking.csv). Vous trouverez sur chaque ligne si la personne fume ou non, si elle est vivante ou décédée au moment de la seconde étude, et son âge lors du premier sondage."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"url = \"https://filebin.net/ldwl9zcu2wjz0rv9/module3_Practical_session_Subject6_smoking.csv?t=t2k6oqq8\"\n",
"raw_data = pd.read_csv(url, skiprows=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyse 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Représentez dans un tableau le nombre total de femmes vivantes et décédées sur la période en fonction de leur habitude de tabagisme."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Alive
\n",
"
Dead
\n",
"
\n",
" \n",
" \n",
"
\n",
"
Smoker
\n",
"
1329.0
\n",
"
417.0
\n",
"
\n",
"
\n",
"
Non_Smoker
\n",
"
1506.0
\n",
"
690.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Alive Dead\n",
"Smoker 1329.0 417.0\n",
"Non_Smoker 1506.0 690.0"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Smokers = raw_data['Smoker'] == \"Yes\"\n",
"Non_smokers = raw_data['Smoker'] == \"No\"\n",
"dead = raw_data['Status'] == \"Dead\"\n",
"alive = raw_data['Status'] == \"Alive\"\n",
"\n",
"SA = raw_data[Smokers & alive]\n",
"SD = raw_data[Smokers & dead]\n",
"NSA = raw_data[Non_smokers & alive]\n",
"NSD = raw_data[Non_smokers & dead]\n",
"\n",
"Totals = np.zeros((2,2))\n",
"\n",
"Totals[0,0]= SA.size\n",
"Totals[0,1]= SD.size\n",
"Totals[1,0]= NSA.size\n",
"Totals[1,1]= NSD.size\n",
"\n",
"Table = pd.DataFrame(data=Totals, index=[\"Smoker\", \"Non_Smoker\"], columns=[\"Alive\", \"Dead\"])\n",
"Table"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calculez dans chaque groupe (fumeuses / non fumeuses) le taux de mortalité (le rapport entre le nombre de femmes décédées dans un groupe et le nombre total de femmes dans ce groupe). "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Taux_mortalité_fumeuses: 0.23883161512027493\n",
"Taux_mortalité_NON_fumeuses: 0.31420765027322406\n"
]
}
],
"source": [
"Taux_mortalité_fumeuses = (Totals[0,1])/(Totals[0,0]+Totals[0,1]) \n",
"Taux_mortalité_NON_fumeuses = (Totals[1,1])/(Totals[1,0]+Totals[1,1])\n",
"\n",
"print(\"Taux_mortalité_fumeuses: \"+str(Taux_mortalité_fumeuses))\n",
"print(\"Taux_mortalité_NON_fumeuses: \"+str(Taux_mortalité_NON_fumeuses))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Représentation graphique de ces résultas"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD9CAYAAAC7iRw+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFD1JREFUeJzt3XGwZ2V93/H3x93ZYCmRBG7Q7LJZDDvqGsEhK5KqcZiKgdhkcXTqomjGhtmhQqlOrN12rLENmcFGncYOulmRseoQnLRi1rIIapwgReIudQWWgL3Z0HJdCQtqEqoFVr7945wLPy+/u/fcu3fvBZ73a+bOPec5z3POc3773M89v+d3z9lUFZKkdjxruTsgSVpaBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMSuXuwPjHH/88bVu3brl7oYkPW3ceuutD1TVxJC6T8ngX7duHbt3717ubkjS00aS/z20rlM9ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMY8JW/gkp7J1m29drm7oKeoey573ZIcxyt+SWqMwS9JjTH4JakxBr8kNcbgl6TGDAr+JGcnuTvJZJKtY7ZvSnJbkj1Jdid55dC2kqSlNWfwJ1kBXA6cA2wAzkuyYUa1rwCnVtVLgX8GXDGPtpKkJTTkiv90YLKq9lXVI8DVwKbRClX1UFVVv3o0UEPbSpKW1pDgXw3cO7I+1Zf9hCSvT3IXcC3dVf/gtpKkpTMk+DOmrJ5UUHVNVb0QOBf4vfm0BUiypf98YPeBAwcGdEuStBBDgn8KOHFkfQ2wf7bKVXUj8ItJjp9P26raXlUbq2rjxMSg/y9YkrQAQ4J/F7A+yUlJVgGbgR2jFZKcnCT98mnAKuDBIW0lSUtrzoe0VdXBJBcD1wMrgCuram+SC/vt24A3AG9L8ijwI+BN/Ye9Y9seoXORJA0w6OmcVbUT2DmjbNvI8geADwxtK0laPt65K0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5Jasyg4E9ydpK7k0wm2Tpm+1uS3NZ/3Zzk1JFt9yS5PcmeJLsXs/OSpPlbOVeFJCuAy4GzgClgV5IdVXXnSLW/Bl5dVd9Pcg6wHXj5yPYzq+qBRey3JGmBhlzxnw5MVtW+qnoEuBrYNFqhqm6uqu/3q7cAaxa3m5KkxTIk+FcD946sT/Vls/lt4LqR9QJuSHJrki3z76IkaTHNOdUDZExZja2YnEkX/K8cKX5FVe1P8nPAl5LcVVU3jmm7BdgCsHbt2gHdkiQtxJAr/ingxJH1NcD+mZWSnAJcAWyqqgeny6tqf//9fuAauqmjJ6mq7VW1sao2TkxMDD8DSdK8DAn+XcD6JCclWQVsBnaMVkiyFvgc8Naq+vZI+dFJjpleBl4L3LFYnZckzd+cUz1VdTDJxcD1wArgyqram+TCfvs24H3AccBHkwAcrKqNwAnANX3ZSuCqqvriETkTSdIgQ+b4qaqdwM4ZZdtGli8ALhjTbh9w6sxySdLy8c5dSWqMwS9JjRk01fN0sm7rtcvdBT1F3XPZ65a7C9JTglf8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0ZFPxJzk5yd5LJJFvHbH9Lktv6r5uTnDq0rSRpac0Z/ElWAJcD5wAbgPOSbJhR7a+BV1fVKcDvAdvn0VaStISGXPGfDkxW1b6qegS4Gtg0WqGqbq6q7/ertwBrhraVJC2tIcG/Grh3ZH2qL5vNbwPXLbCtJOkIWzmgTsaU1diKyZl0wf/KBbTdAmwBWLt27YBuSZIWYsgV/xRw4sj6GmD/zEpJTgGuADZV1YPzaQtQVduramNVbZyYmBjSd0nSAgwJ/l3A+iQnJVkFbAZ2jFZIshb4HPDWqvr2fNpKkpbWnFM9VXUwycXA9cAK4Mqq2pvkwn77NuB9wHHAR5MAHOyv3se2PULnIkkaYMgcP1W1E9g5o2zbyPIFwAVD20qSlo937kpSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhozKPiTnJ3k7iSTSbaO2f7CJF9P8nCSd8/Ydk+S25PsSbJ7sTouSVqYlXNVSLICuBw4C5gCdiXZUVV3jlT7HnAJcO4suzmzqh443M5Kkg7fkCv+04HJqtpXVY8AVwObRitU1f1VtQt49Aj0UZK0iIYE/2rg3pH1qb5sqAJuSHJrki3z6ZwkafHNOdUDZExZzeMYr6iq/Ul+DvhSkruq6sYnHaT7pbAFYO3atfPYvSRpPoZc8U8BJ46srwH2Dz1AVe3vv98PXEM3dTSu3vaq2lhVGycmJobuXpI0T0OCfxewPslJSVYBm4EdQ3ae5Ogkx0wvA68F7lhoZyVJh2/OqZ6qOpjkYuB6YAVwZVXtTXJhv31bkucCu4GfBh5L8k5gA3A8cE2S6WNdVVVfPDKnIkkaYsgcP1W1E9g5o2zbyPJ9dFNAM/0dcOrhdFCStLi8c1eSGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktSYQcGf5OwkdyeZTLJ1zPYXJvl6koeTvHs+bSVJS2vO4E+yArgcOAfYAJyXZMOMat8DLgE+uIC2kqQlNOSK/3Rgsqr2VdUjwNXAptEKVXV/Ve0CHp1vW0nS0hoS/KuBe0fWp/qyIQa3TbIlye4kuw8cODBw95Kk+RoS/BlTVgP3P7htVW2vqo1VtXFiYmLg7iVJ8zUk+KeAE0fW1wD7B+7/cNpKko6AIcG/C1if5KQkq4DNwI6B+z+ctpKkI2DlXBWq6mCSi4HrgRXAlVW1N8mF/fZtSZ4L7AZ+GngsyTuBDVX1d+PaHqmTkSTNbc7gB6iqncDOGWXbRpbvo5vGGdRWkrR8vHNXkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUmEHBn+TsJHcnmUyydcz2JPlIv/22JKeNbLsnye1J9iTZvZidlyTN38q5KiRZAVwOnAVMAbuS7KiqO0eqnQOs779eDnys/z7tzKp6YNF6LUlasCFX/KcDk1W1r6oeAa4GNs2oswn4VHVuAY5N8rxF7qskaREMCf7VwL0j61N92dA6BdyQ5NYkW2Y7SJItSXYn2X3gwIEB3ZIkLcSQ4M+YsppHnVdU1Wl000EXJfnVcQepqu1VtbGqNk5MTAzoliRpIYYE/xRw4sj6GmD/0DpVNf39fuAauqkjSdIyGRL8u4D1SU5KsgrYDOyYUWcH8Lb+r3vOAP62qr6b5OgkxwAkORp4LXDHIvZfkjRPc/5VT1UdTHIxcD2wAriyqvYmubDfvg3YCfw6MAn8EHh73/wE4Jok08e6qqq+uOhnIUkabM7gB6iqnXThPlq2bWS5gIvGtNsHnHqYfZQkLSLv3JWkxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDVmUPAnOTvJ3Ukmk2wdsz1JPtJvvy3JaUPbSpKW1pzBn2QFcDlwDrABOC/JhhnVzgHW919bgI/No60kaQkNueI/HZisqn1V9QhwNbBpRp1NwKeqcwtwbJLnDWwrSVpCKwfUWQ3cO7I+Bbx8QJ3VA9sCkGQL3bsFgIeS3D2gbzq044EHlrsTTxX5wHL3QLNwnPYOc4z+wtCKQ4I/Y8pqYJ0hbbvCqu3A9gH90UBJdlfVxuXuh3QojtOlNyT4p4ATR9bXAPsH1lk1oK0kaQkNmePfBaxPclKSVcBmYMeMOjuAt/V/3XMG8LdV9d2BbSVJS2jOK/6qOpjkYuB6YAVwZVXtTXJhv30bsBP4dWAS+CHw9kO1PSJnonGcOtPTgeN0iaVq7JS7JOkZyjt3JakxBr8kNcbgb1iS85OsWe5+6JnPsfbU8owO/iTHJdnTf92X5Dsj66uWu39DJHnW0GccJZlKcmySFUm+1pc9P8nmMXW3AMdW1dQc+/xwkr1JLlvQCTTCsXZ4Yy3JyUkqyT8fKduW5Px+OUl+t3/m17eTfCXJi2b057Mj65uTXHGI4z07yZ/1/z5vHHLOzyRD/o7/aauqHgReCpDk/cBDVfXBZe3UPCQJ3b/RVmBw8FbVj4FX9avPp/sz2qtn1JnzLyn6418AHFdVjw49fosca8BhjLXe3wDvSvLxqjo4Y9u/BF4GvKSqfpTkHOALSV5cVQ/3dV6e5AVVNeSu/1/uulYvHdi3Z5Rn9BX/oST5QpJb+6vZC/qylUl+MFLn8auGJNcmeXO/fFGS/3KIfd/UXyl/LcmdSTYmuSbJ/+pDYbree5Lc0X/9i77s5H59G/A/gT8CjumvTD41W99nHH/0PC4DzuzbX9Jv+3CSb6R7kuqT2o+4Fjga2JXkjUk+k+TckeM81H9/TZKvJvmv/TlemuRtSXb1x1jX1zshyeeS7O6Pf0ZffmmSd47s964ka5Ick+S6JN/qX5M39ttfluTP+9fguiQn9OXv6l/vbyX5zCHOa0k51gaNNYD7gK8Bbx2z7T3ARVX1I4Cquo7uPqHRdxgfAv7tHMcgyc8DnwQ29n1dl/4dTL/9jCRf7pcvTfLJJDckuSfJuUk+1L9u1yZZ2debbUzelGT6guC5SSb75Zf0Px97+tfm+X35b/Wv154kH033Lmxlkk8nub0/7iVzneOcqqqJL+D9wLtH1n+2//4PgDuBn6G74vnBSJ3NwBX98vPo7lN4FXA33VvX2Y51E/D7/fLv0N3ZfAJwFN2dy8fSPcDuW/3xjwH+EjgFOBl4DHhZ3/4n+jRb3/v1qX7fj7cBXgN8fqTtO4Ct/fJPAd8E1s5yHjNfj88A546sPzRyjO+NnON9wPtGzv+D/fJngTP65XXAHf3ypcA7R/Z7F91d3m8CPjZS/py+zzcDx/dlbwG298vfBVb1y7P++zjWnpJj7WRgT//9TrqL0m3A+cDPAgfGtPkd4D+O9Of4/vU6afT1nOV4M/s6Nf06A2cAXx4Zm3/en+cv092ndFa/7QvAP5ljTN4EvLRffi7dQyuhe4Lxm0Zem6OAXwI+D6zsy7cDb6Z7vtl1I3097LH9jJ7qmcO7kvxmv7wG+EW6gTdWVX03yX8Avgr8RlX9YLa6vek7lG8Hbq+qvwFIck9/vFcB/62qftiXfx54JXAD8FdVtWuefd89R3+mvRZ4UZ6Yi30O3eO0/8/A9rP5i5Fz3Ed30x505/8r/fJrgBckjz/C6WeSPPsQ+7wNuCzd5wtfqKr/0V89vRj4cr+fFXQ/tAB7gc8k+VO6H6CnCsdaZ86xVlWTSfbQ/dKfFsY/42tm+UG6q/6tdK/dYtlZ3c2ot/d9/FJffjvdBcyLmH1MzuZm4L1JfgH4XH/er6Gbztrd7+fZdA+5vJ7u5+YP6W6WveFwT6jJ4O9f4F+lu/r8UZKb6H7jPsZPPljuqBlNXwI8CPz8gMNMzzs+NrI8vb5yxnFm+r8L6PtQAd5RVV+ZR5tpB+mnB9P9Xwuj42fmOY6e/3S9AKdX94juJzqUPL7f3lEAVfWXSTbS3RX+B0n+O3AdcFtVvYon+zXg1XSP/n5vkl+qbg562TjWFjTWfh+4CrgFus9Pkvw4ydqqGv2lcRpPXGBM+yTdtNC353nM0TE48xxHX9/RsTv6+s42Jsfut6o+neTrwOuALyX5rX4/V1bVv5u5kySn0P2/JpcAb+CJJxkvSKtz/M8BvtcP5hfT/Zalqh4Dvp9kfZJnAa+fbpDkV4B/TDfY/k2StYfZhxuB16f764J/SBdWX5tZqfoPuabnEmfr+yH8Pd3b+2nXA+8YmZt8wRxX3aPuoXu7C91rs2Jgu2lfBi6aXpme+xzdb5LT6R/sl2Q13XTSp4EP0732dwKr+3okWZXkxf0vojVV9WfAvwIm6KYnlptjbZ5jrbrHuvwVXdBN+wPgPyc5qt/Xr9FNgXx2RttHgI/QfRg8H/fwxNh+wzzbjh2TY/b7+F8PJXl+VU1W1R/SfZZ2Ct3Pxz9Ncnxf57gka5NM0D1l4U+A36UbF4elySt+uhd6S5Jv0c0n/8XItn8NfJHu7eidwE/1g3U7cH5VfSfJe4Ark5xV/aTbfFXVN5L8Md0HVNDNZd+e5OQx1T8B3JZkN91v+tn6Ps43gRV9/U/Q/Y9oa4E9/dvJ+xn+n+P8EfCnSc6ie7v58Bz1Z7oI+FiSt9ONva/2ZX8CnJ/km8A3gH19/VPppnqmr7QurKqH033I+5Ekx/T7+RDdnPhVfdmzgA9U1d/Ps39HgmNtYWPtUuDWkfX/RPeL6I5+PHwH+M2q+n9j2n6cAR/yzvB+4ONJ7qMbg4MdYkzupfuF9dl+zI9OP705yXnAo3Sfxby3qn6Q5N/TTRk9q992IfBj4BPpXsSiGzeHxWf1SFJjWp3qkaRmtTrVsyjS/f3zGTOKP1xVn1qO/ixUP9f+yRnFP6yqf7QM3dEYjrUFH+8C4OIZxTdW1eH/LfzTmFM9ktQYp3okqTEGvyQ1xuCXpMYY/JLUGINfkhrz/wFphtuPBMuIrgAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.bar([\"Taux_mortalité_fumeuses\",\"Taux_mortalité_NON_fumeuses\"],[Taux_mortalité_fumeuses,Taux_mortalité_NON_fumeuses])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Remarque : le taux de mortalité des femmes fumeuses est moins élevé."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyse 2\n",
"la même analyse qu'auparavant, en tenant compte cette fois du paramètre \"Age\"."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" Smoker Age class Taux_Mortalité\n",
"0 Yes Age_1 0.548387\n",
"4 No Age_1 0.461538\n",
"1 Yes Age_2 0.478723\n",
"5 No Age_2 0.316667\n",
"2 Yes Age_3 0.558621\n",
"6 No Age_3 0.439560\n",
"3 Yes Age_4 0.800000\n",
"7 No Age_4 0.797101"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Taux_Mortalité = np.zeros((8,1))\n",
"for i in range(0,8):\n",
" Taux_Mortalité[i,0]= (Totals_2[i][3])/(Totals_2[i][3]+Totals_2[i][2])\n",
"\n",
"Table_21 = Table_2[[\"Smoker\",\"Age class\"]]\n",
"\n",
"Table_3 = pd.DataFrame(data=Taux_Mortalité, columns=[\"Taux_Mortalité\"])\n",
"Table_3 = Table_21.join(Table_3)\n",
"Table_3 = Table_3.sort_values(by=[\"Age class\"])\n",
"Table_3"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAELCAYAAAAiIMZEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHYFJREFUeJzt3X+cVXW97/HX2wGZUtCUCX8Mvyx/gYymIx1/XOUIIpxM9JgieiQ171xugWKmkplx8vS4VPbLtMvhUUSnQ6GmKAImFphihPwQQVQIyXTCEih/YM2Fgc/9Y21wMw7Mmpm92TNr3s/HYx7stdZ3vuuzv8PjPWuvWeu7FBGYmVm27FfqAszMrPAc7mZmGeRwNzPLIIe7mVkGOdzNzDLI4W5mlkEOdzOzDHK4m5llkMPdzCyDOpVqx927d48+ffqUavdmZu3SsmXLNkVERVPtShbuffr0YenSpaXavZlZuyTpj2na+bSMmVkGOdzNzDLI4W5mlkElO+femG3btlFbW0tdXV2pS+nQysvLqayspHPnzqUuxcxaqE2Fe21tLV27dqVPnz5IKnU5HVJEsHnzZmpra+nbt2+pyzGzFkp1WkbSMElrJK2TNKGR7QdJekTSc5JWS7q6JcXU1dVx6KGHOthLSBKHHnqoPz2ZtXNNhrukMuAeYDjQDxglqV+DZp8DXoiIE4FBwLck7d+SghzspeefgVn7l+bIfSCwLiLWR8RWYAYwokGbALoqSYUDgb8C9QWt1MzMUksT7kcCr+Ut1+bW5bsbOB7YAKwCro+IHa0trm7b9tZ20aL+vva1r9G/f3+qqqo46aSTWLx4cav2+8QTT3D++ee3qg8zs+ZI8wfVxj6jN3yq9nnACuAc4CPA45Keioi3d+tIqgFqAHr16tXkjss7l9FnwpwUJabzyqRPNNlm0aJFzJ49m+XLl9OlSxc2bdrE1q1bC1ZDc9XX19OpU5v6u7dZq9Vt205557IOu/99IU1q1AI985YrSY7Q810NTIqIANZJ+gNwHPBMfqOImAJMAaiurm74C6JNeP311+nevTtdunQBoHv37kAyXcLll1/OggUL2LZtG1OmTOGLX/wi69at46abbmLMmDFEBDfffDOPPvookrjtttsYOXLkbv0vWbKEmpoaHnjgAXr06MG4ceNYtWoV9fX1TJw4kREjRjBt2jTmzJlDXV0d7777LvPnz9/n42BWTIU+cGuuV+4YDJQw3LfVQefyou4iTbgvAY6W1Bf4E3AZcHmDNq8Cg4GnJPUAjgXWF7LQfWXo0KF89atf5ZhjjmHIkCGMHDmSs88+G4CePXuyaNEibrjhBq666iqefvpp6urq6N+/P2PGjOHBBx9kxYoVPPfcc2zatIlTTz2Vs846a1ffv/3tbxk3bhwPP/wwvXr14tZbb+Wcc85h6tSpvPnmmwwcOJAhQ4YAySeIlStXcsghh5RkHMwyrXM5TDyodPuf+FbRd9FkuEdEvaSxwGMkv+qmRsRqSWNy2ycDdwDTJK0iOY1zS0RsKmLdRXPggQeybNkynnrqKRYsWMDIkSOZNGkSABdccAEAAwYMYMuWLXTt2pWuXbtSXl7Om2++ycKFCxk1ahRlZWX06NGDs88+myVLltCtWzdefPFFampqmDdvHkcccQQA8+bNY9asWdx5551Acinoq6++CsC5557rYDezFkt1Mjci5gJzG6ybnPd6AzC0sKWVTllZGYMGDWLQoEEMGDCAn/zkJwC7TtXst99+u17vXK6vryc5K9W4ww8/nLq6Op599tld4R4RPPDAAxx77LG7tV28eDEHHHBAod+WmXUgnlumgTVr1vD73/9+1/KKFSvo3bt3qu8966yzuPfee9m+fTsbN27kySefZODAgQAcfPDBzJkzh1tvvZUnnngCgPPOO4/vf//7u34pPPvss4V9M2bWYbXpyzDqtm1PdYVLc/pr6i/kW7ZsYdy4cbz55pt06tSJj370o0yZMoXZs2c32f9FF13EokWLOPHEE5HEN77xDQ477DBeeuklAHr06MEjjzzC8OHDmTp1Kl/+8pcZP348VVVVRAR9+vRJtR8zs6Zob6cSiqm6ujoaPqzjxRdf5Pjjjy9JPbY7/yys2Ep6tcykT7TbP6hKWhYR1U2182kZM7MMcribmWWQw93MLIMc7mZmGeRwNzPLIIe7mVkGte1w31bgpwEVuj8zszaqTd/EVPDJfVJcWyqJz3/+83zrW98C4M4772TLli1MnDixICXs2LGD8ePHM3/+fCRRXl7Offfd1+rnlU6bNo2lS5dy9913F6ROM2vf2vaRewl06dKFBx98kE2bijPv2b333suGDRtYuXIlq1atYubMmRx88MFF2Vda9fV+aJZZ1jjcG+jUqRM1NTV85zvfed+2P/7xjwwePJiqqioGDx68awbHq666iuuuu47TTz+do446il/84hd77P/111/n8MMPZ7/9kqGvrKzkQx/6EJDMSHnLLbdwyimnMGTIEJ555hkGDRrEUUcdxaxZs4Bk5sirr76aAQMG8LGPfYwFCxa8bx9z5szhtNNOY9OmTWzcuJGLL76YU089lVNPPZWnn34agIkTJ1JTU8PQoUMZPXp06wbNzNoch3sjPve5zzF9+nTeemv30zhjx45l9OjRrFy5kiuuuILrrrtu17bXX3+dhQsXMnv2bCZMmLDHvi+99FIeeeQRTjrpJG688cbdJgt79913GTRoEMuWLaNr167cdtttPP7448ycOZPbb78dgHvuuQeAVatW8fOf/5xPf/rT1NW997eEmTNnMmnSJObOnUv37t25/vrrueGGG1iyZAkPPPAA11577a62y5Yt4+GHH+ZnP/tZ6wbMzNqctn3OvUS6devG6NGjueuuu/jABz6wa/2iRYt48MEHAbjyyiu5+eabd2278MIL2W+//ejXrx9/+ctf9th3ZWUla9asYf78+cyfP5/Bgwdz//33M3jwYPbff3+GDRsGJHPGd+nShc6dOzNgwABeeeUVABYuXMi4ceMAOO644+jduzdr164FYMGCBSxdupR58+bRrVs3AH71q1/xwgsv7Nr/22+/zTvvvAMk89Pnvz8zyw6H+x6MHz+ek08+mauvvnqPbaT3Hi+bP797U5OxdenSheHDhzN8+HB69OjBQw89xODBg+ncufOuPvPnjN85X3xTfR911FGsX7+etWvXUl2dzCu0Y8cOFi1a1GiIe854s+xq2+G+ra6wj6NqxnMLDznkEC699FJ+9KMfcc011wBw+umnM2PGDK688kqmT5/OmWee2ewSli9fzmGHHcYRRxzBjh07WLlyJVVVVam//6yzzmL69Omcc845rF27lldffZVjjz2W5cuX07t3b+68804uuugi7r//fvr378/QoUO5++67uemmm4BkfvqTTjqp2XWbWfuS6py7pGGS1khaJ+l9J5Ql3SRpRe7reUnbJbX+GXGFfoBsM/u78cYbd7tq5q677uLHP/4xVVVV/PSnP+V73/tes0t44403+OQnP8kJJ5xAVVUVnTp1YuzYsam//7Of/Szbt29nwIABjBw5kmnTpu32qeHYY49l+vTpXHLJJbz88svcddddLF26lKqqKvr168fkyZP30ruZZUWT87lLKgPWAucCtSQPzB4VES/sof0ngRsi4py99ev53Ns2/yys2Dyfe8sUcj73gcC6iFgfEVuBGcCIvbQfBfw8XZlmZlYMac65Hwm8lrdcC3y8sYaSPggMA9KfZ8ioVatWceWVV+62rkuXLixevLhEFZlZR5Im3NXIuj2dy/kk8HRE/LXRjqQaoAagV69ejXYQEbtdhdJeDRgwgBUrVpS6jBYp1aMXzaxw0pyWqQV65i1XAhv20PYy9nJKJiKmRER1RFRXVFS8b3t5eTmbN292uJRQRLB582bKywv8x2wz26fSHLkvAY6W1Bf4E0mAX96wkaSDgLOBf2tpMZWVldTW1rJx48aWdmEFUF5eTmVlZanLMLNWaDLcI6Je0ljgMaAMmBoRqyWNyW3feW3dRcC8iHi3pcV07ty51bMjmplZypuYImIuMLfBuskNlqcB0wpVmJmZtZwnDjMzyyCHu5lZBjnczcwyyOFuZpZBDnczswxyuJuZZZDD3cwsgxzuZmYZ5HA3M8sgh7uZWQY53M3MMsjhbmaWQQ53M7MMcribmWWQw93MLIMc7mZmGeRwNzPLoFThLmmYpDWS1kmasIc2gyStkLRa0m8KW6aZmTVHk4/Zk1QG3AOcC9QCSyTNiogX8tocDPwAGBYRr0r6cLEKNjOzpqU5ch8IrIuI9RGxFZgBjGjQ5nLgwYh4FSAi3ihsmWZm1hxpwv1I4LW85drcunzHAB+S9ISkZZJGF6pAMzNrviZPywBqZF000s8pwGDgA8AiSb+LiLW7dSTVADUAvXr1an61ZmaWSpoj91qgZ95yJbChkTa/jIh3I2IT8CRwYsOOImJKRFRHRHVFRUVLazYzsyakCfclwNGS+kraH7gMmNWgzcPA/5DUSdIHgY8DLxa2VDMzS6vJ0zIRUS9pLPAYUAZMjYjVksbktk+OiBcl/RJYCewAfhgRzxezcDMz27M059yJiLnA3AbrJjdY/ibwzcKVZmZmLeU7VM3MMsjhbmaWQQ53M7MMcribmWWQw93MLIMc7mYtULdte4fev7V9qS6FNLPdlXcuo8+EOSXb/yuTPlGyfVv74CN3M7MMapfhXuqPpKXev5lZU9rlaRl/JDYz27t2eeRuZmZ753A3M8sgh7uZWQY53M3MMsjhbmaWQQ53M7MMcribmWVQqnCXNEzSGknrJE1oZPsgSW9JWpH7ur3wpZqZWVpN3sQkqQy4BzgXqAWWSJoVES80aPpURJxfhBrNzKyZ0hy5DwTWRcT6iNgKzABGFLcsMzNrjTThfiTwWt5ybW5dQ6dJek7So5L6N9aRpBpJSyUt3bhxYwvKNTOzNNKEuxpZFw2WlwO9I+JE4PvAQ411FBFTIqI6IqorKiqaV6mZmaWWJtxrgZ55y5XAhvwGEfF2RGzJvZ4LdJbUvWBVmplZs6QJ9yXA0ZL6StofuAyYld9A0mGSlHs9MNfv5kIXa2Zm6TR5tUxE1EsaCzwGlAFTI2K1pDG57ZOBTwH/W1I98A/gsohoeOrGzMz2kVTzuedOtcxtsG5y3uu7gbsLW5qZmbWU71DtoEr9NKlS798s69rlk5is9fw0K7Ns85G7mVkGOdzNzDLI4d4S2+o69v7NrM3zOfeW6FwOEw8q3f4nvlW6fZtZu+AjdzOzDHK4m5llkMPdzCyDHO5mZhnkcDdrj0p9xVSp929N8tUyZu2Rr9iyJvjI3cwsgxzuZmYZ5HA3M8sgh7uZWQY53M3MMihVuEsaJmmNpHWSJuyl3amStkv6VOFKNDOz5moy3CWVAfcAw4F+wChJ/fbQ7uskz1o1M7MSSnPkPhBYFxHrI2IrMAMY0Ui7ccADwBsFrM/MzFogTbgfCbyWt1ybW7eLpCOBi4DJ7IWkGklLJS3duHFjc2s1M7OU0oS7GlkXDZa/C9wSEXt96nFETImI6oiorqioSFujmZk1U5rpB2qBnnnLlcCGBm2qgRmSALoD/yKpPiIeKkiVZmbWLGnCfQlwtKS+wJ+Ay4DL8xtERN+dryVNA2Y72M3MSqfJcI+IekljSa6CKQOmRsRqSWNy2/d6nt3MzPa9VLNCRsRcYG6DdY2GekRc1fqyzMysNXyHqplZBjnczcwyyOFuZpZBDnczswxyuJuZZZDD3cwsgxzuZmYZ5HA3M8sgh7uZWQY53M3MMsjhbmaWQQ53M7MMcribmWWQw93MLIMc7mZmGeRwNzPLoFThLmmYpDWS1kma0Mj2EZJWSlohaamkMwtfqmXKtrqOvX+zImvySUySyoB7gHNJHpa9RNKsiHghr9mvgVkREZKqgPuA44pRsGVE53KYeFDp9j/xrdLt22wfSHPkPhBYFxHrI2IrMAMYkd8gIrZEROQWDwACMzMrmTThfiTwWt5ybW7dbiRdJOklYA5wTWHKMzOzlkgT7mpk3fuOzCNiZkQcB1wI3NFoR1JN7pz80o0bNzavUjMzSy1NuNcCPfOWK4ENe2ocEU8CH5HUvZFtUyKiOiKqKyoqml2smZmlkybclwBHS+oraX/gMmBWfgNJH5Wk3OuTgf2BzYUu1szM0mnyapmIqJc0FngMKAOmRsRqSWNy2ycDFwOjJW0D/gGMzPsDq5mZ7WNNhjtARMwF5jZYNznv9deBrxe2NDMzaynfoWpmlkEOdzOzDHK4m5llkMPdzCyDHO5mZhnkcDczyyCHu5lZBjnczcwyyOFuZpZBDnczswxyuJuZZZDD3cwsgxzuZmYZ5HA3M8sgh7uZWQY53M3MMsjhbmaWQanCXdIwSWskrZM0oZHtV0hamfv6raQTC1+qmZml1WS4SyoD7gGGA/2AUZL6NWj2B+DsiKgC7gCmFLpQMzNLL82R+0BgXUSsj4itwAxgRH6DiPhtRPwtt/g7oLKwZZqZWXOkCfcjgdfylmtz6/bkM8CjrSnKzMxap1OKNmpkXTTaUPpnknA/cw/ba4AagF69eqUs0czMmivNkXst0DNvuRLY0LCRpCrgh8CIiNjcWEcRMSUiqiOiuqKioiX1mplZCmnCfQlwtKS+kvYHLgNm5TeQ1At4ELgyItYWvkwzM2uOJk/LRES9pLHAY0AZMDUiVksak9s+GbgdOBT4gSSA+oioLl7ZZma2N2nOuRMRc4G5DdZNznt9LXBtYUszM7OW8h2qZmYZ5HA3M8sgh7uZWQY53M3MMsjhbmaWQQ53M7MMcribmWWQw93MLIMc7mZmGeRwNzPLIIe7mVkGOdzNzDLI4W5mlkEOdzOzDHK4m5llkMPdzCyDHO5mZhmUKtwlDZO0RtI6SRMa2X6cpEWS/p+kLxS+TDMza44mH7MnqQy4BzgXqAWWSJoVES/kNfsrcB1wYVGqNDOzZklz5D4QWBcR6yNiKzADGJHfICLeiIglwLYi1GhmZs2UJtyPBF7LW67NrTMzszYqTbirkXXRkp1JqpG0VNLSjRs3tqQLMzNLIU241wI985YrgQ0t2VlETImI6oiorqioaEkXZmaWQppwXwIcLamvpP2By4BZxS3LzMxao8mrZSKiXtJY4DGgDJgaEasljcltnyzpMGAp0A3YIWk80C8i3i5i7WZmtgdNhjtARMwF5jZYNznv9Z9JTteYmVkb4DtUzcwyyOFuZpZBDnczswxyuJuZZZDD3cwsgxzuZmYZ5HA3M8sgh7uZWQY53M3MMsjhbmaWQQ53M7MMcribmWWQw93MLIMc7mZmGeRwNzPLIIe7mVkGOdzNzDIoVbhLGiZpjaR1kiY0sl2S7sptXynp5MKXamZmaTUZ7pLKgHuA4UA/YJSkfg2aDQeOzn3VAP+3wHWamVkzpDlyHwisi4j1EbEVmAGMaNBmBPBfkfgdcLCkwwtcq5mZpZQm3I8EXstbrs2ta24bMzPbRzqlaKNG1kUL2iCphuS0DcAWSWtS7L/N0dfpDmwqWQH/3thwty8ew9bx+LVOOx+/3mkapQn3WqBn3nIlsKEFbYiIKcCUNIW1ZZKWRkR1qetozzyGrePxa52OMH5pTsssAY6W1FfS/sBlwKwGbWYBo3NXzfwT8FZEvF7gWs3MLKUmj9wjol7SWOAxoAyYGhGrJY3JbZ8MzAX+BVgH/B24unglm5lZU9KcliEi5pIEeP66yXmvA/hcYUtr09r9qaU2wGPYOh6/1sn8+CnJZTMzyxJPP2BmlkEOdzOzDOrw4S7pIkkh6bgC93uJpNWSdkjK7CVXRRy/b0p6KTdX0UxJBxey/7aiiON3R27sVkiaJ+mIQvbfVhRr/PL6/0Ku/+7F6L+YOny4A6OAhSSXeBbS88C/Ak8WuN+2pljj9zhwQkRUAWuBLxa4/7aiWOP3zYioioiTgNnA7QXuv60o1vghqSdwLvBqofveFzp0uEs6EDgD+Ay5/xyS9pP0g9xR92xJcyV9KrftFEm/kbRM0mN7mz8nIl6MiHZ5B25aRR6/eRFRn1v8HcmNcZlS5PF7O2/xABq5Y7y9K+b45XwHuJl2OnapLoXMsAuBX0bEWkl/zU1VfBTQBxgAfBh4EZgqqTPwfWBERGyUNBL4GnBNaUpvE/bV+F0D3FuMN1BiRR0/SV8DRgNvAf9c1HdSGkUbP0kXAH+KiOek9jnVQkcP91HAd3OvZ+SWOwP3R8QO4M+SFuS2HwucADye+2GXAR39Ltyij5+kLwH1wPTClt4mFHX8IuJLwJckfREYC3yl4O+gtIoyfpI+CHwJGFq80ouvw4a7pEOBc4ATJAXJDzuAmXv6FmB1RJy2j0ps0/bF+En6NHA+MDgydkPGPv7/9zNgDhkK9yKP30eAvsDOo/ZKYLmkgRHx51YXv4905HPunyKZg753RPSJiJ7AH0hmirs4d+6uBzAo134NUCHpNABJnSX1L0XhbURRx0/SMOAW4IKI+Hsx30iJFHv8js5bvAB4qRhvooSKNn4RsSoiPpzrtw/JxIgnt6dgh44d7qN4/2/5B4AjSH6YzwP/CSwmmQhtK8l/qK9Leg5YAZy+p85zl2jVAqcBcyQ9Vvi3UFJFHT/gbqArycfoFZIm76Vte1Ts8Zsk6XlJK0lOL1xf4PpLrdjj1+55+oFGSDowIrbkPvo9A5zR3n5rl5LHr3U8fq3j8Ut02HPuTZit5KaZ/YE7OuJ/jFby+LWOx691PH74yL3VJN1Dcq1tvu9FxI9LUU974/FrHY9f62R5/BzuZmYZ1JH/oGpmllkOd7OMkTRG0tmlrsNKy+FuBSXpFSWz6DX8eqUEtUzO7fvMZn7fwtz3vZS37py89/JvLajlQEkTJY1O2f6/c/s6SdJHc68fym07P9dXr0a+76tAf5LJtKwD89UyVmjjSCaqOh+4ApgM/AZ4t5RFtdCxks6IiKdpxRxCkjoBB5LcIfpr4L+a2cWfSa7rrs0tnw/8L+BXNJixMCKyOvujNZOP3K2gIuKRiJhBcpMIwOKImBERj0g6TNKzkrZIekfJDH3HAUj6j9zR6YW55Zck1edefzu3bYikj0j6u6RfNty3Et+V9LfcnCJHNNg+Qskc5+/mbow6p4m3sx64RtJBJNM3v9ygv7MkPZN7P7+X9Jnc+p1H2gslzScJ4KW5bxuc23abpPMkvSypTtImST9TMtNhQ4cBPwe+IOlakmAHeCpvjM6UtDhXy9qWfLqwbHG42760neQuwuuBbwCnkEyr2pQvkdw+Phn4IbAVuLaRdv+a63tFbj+7ZkKUdDxwP7AFuINkMrKHJH14L/v9MXBp3r7uy+uvAphFMu/IjcBm4IeSzsr7/jNIpiv+CnBrbt3zJEfhDwLvkNyJex3JrJejaPpB8/NJjtgBJgKXK3mQxCNAOfAF4PfATyR9rIm+LMN8Wsb2pS7AJ4CPk0zkBMnUrHsVEf+QdBXwNMmkTtdERG0jTQfl/p0YEb+RdAbvPcRhKMmMgaflvnb6J5KQbsx04DaSqWHvB/LnSD8DOIjkmuj/lPQqMBcYDvwo12ZJRNwKIOmw3Lq/5D7ZIGkIyWmsvnn97nU8ImK9pJeBIcCvI2KhpBHAwUA3kl8WIjlwOxt4dm/9WXY53G1fGk8SpneRzFI4jeRoE5Kjenjv/2TDx+r14L1Pmk09ZGEnNfL6/5Ac/e70wl6+/2/AQ8BIkqP4gY202duNIhuaaDcJ6E1ymuUdktkbyxtp19Q+d763H5DMp7LTX1P0ZRnlcLd9aWcIHUByVHk4yekMgFdy/14i6RiSMN8OIOkQklMyK0jOg39F0qyIeL5B/wtI5i2fKOkBkk8JOz0GbAMuJpk98EMkoT2iiZr/g+R8+QJ2D/enSR6C8T8lbQCuzq1/dA/9vEUSysdIugJ4iveOsLsB5zVRR76/5f69RFI3kitj3iQ5hbSG5Lb7T5E8RWhDoz1Y5vmcu+1L3wOWkQRsd5Kn5Ox0H8mVJMOB44E/5m27G6ggeZzaZ0mOcn+Suwol38zcPj5GEnQ7H9RARLxIEnj/yLUZT/Js1rf2VnBEPB8RdzacTz4iNpJMpbuB5O8G3YFrI6LRZ+ZGRB3wbeAQ4L9JZiS8heQKmPHA8r3V0cBPc7WPA74dEZtIrqB5meTTwARgI7uPoXUwnn7AzCyDfORuZpZBDnczswxyuJuZZZDD3cwsgxzuZmYZ5HA3M8sgh7uZWQY53M3MMuj/A3oCiKyX4pTVAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# set width of bar\n",
"barWidth = 0.4\n",
" \n",
"# set height of bar\n",
"bars1=np.zeros((4,))\n",
"bars2=np.zeros((4,))\n",
"\n",
"for i in range(0,4):\n",
" bars1[i] = Table_3.iat[2*i,-1]\n",
" bars2[i] = Table_3.iat[2*i+1,-1]\n",
" \n",
"# Set position of bar on X axis\n",
"r1 = np.arange(len(bars1))\n",
"r2 = [x + barWidth for x in r1]\n",
"r3 = [x + barWidth for x in r2]\n",
" \n",
"# Make the plot\n",
"plt.bar(r2, bars1, width=barWidth, edgecolor='white')\n",
"plt.bar(r3, bars2, width=barWidth, edgecolor='white')\n",
" \n",
"# Add xticks on the middle of the group bars\n",
"plt.xlabel('Taux de Mortalité', fontweight='bold')\n",
"plt.xticks([r + barWidth*1.5 for r in range(len(bars1))], ['Age_1', 'Age_2', 'Age_3', 'Age_4'])\n",
" \n",
"# Create legend & Show graphic\n",
"plt.legend(['Smoker','Non_Smoker'])\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Remarque:\n",
"\n",
"En tenant compte du paramètre \"AGE\", on constate que le tabagisme augmente le taux de mortalité des femmes. Cependant, nous ne pouvons pas voir cet impact des cigarettes pour les personnes âgées de 65 ans et plus. Cette étude montre que le fait de négliger un paramètre dans une étude peut biaiser l'analyse."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}