{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Savoir faire un calcul simple soi-même" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On importe les packages" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "\n", "data = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, \n", " 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, \n", " 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, \n", " 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, \n", " 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, \n", " 15.7, 10.2, 8.9, 21.0]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On définit la liste de données " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "mean = np.mean(data)\n", "std_dev = np.std(data)\n", "minimum = np.min(data)\n", "median = np.median(data)\n", "maximum = np.max(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On calcule les statistiques demandées" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MaximumMeanMedianMinimumStandard Deviation
023.414.11314.52.84.31237
\n", "
" ], "text/plain": [ " Maximum Mean Median Minimum Standard Deviation\n", "0 23.4 14.113 14.5 2.8 4.31237" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results = pd.DataFrame({\n", " 'Mean': [mean],\n", " 'Standard Deviation': [std_dev],\n", " 'Minimum': [minimum],\n", " 'Median': [median],\n", " 'Maximum': [maximum]\n", "})\n", "\n", "results" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On crée un DataFrame pour afficher les résultats" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }