M2E5 all datat in

parent 1a4cecc5
...@@ -40,7 +40,7 @@ ...@@ -40,7 +40,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -261,33 +261,33 @@ ...@@ -261,33 +261,33 @@
"</div>" "</div>"
], ],
"text/plain": [ "text/plain": [
" Date Count Temperature Pressure Malfunction\n", " Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n", "0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n", "1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n", "2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n", "3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n", "4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n", "5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n", "6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n", "7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n", "8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n", "9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n", "10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n", "11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n", "12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n", "13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n", "14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n", "15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n", "16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n", "17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n", "18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n", "19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n", "20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n", "21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1" "22 1/12/86 6 58 200 1"
] ]
}, },
"execution_count": 1, "execution_count": 2,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -317,12 +317,13 @@ ...@@ -317,12 +317,13 @@
"Les vols où aucun incident n'est relevé n'apportant aucun information\n", "Les vols où aucun incident n'est relevé n'apportant aucun information\n",
"sur l'influence de la température ou de la pression sur les\n", "sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements, nous nous concentrons sur les expériences où au\n", "dysfonctionnements, nous nous concentrons sur les expériences où au\n",
"moins un joint a été défectueux.\n" "moins un joint a été défectueux.\n",
"Ben voyons !... "
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -355,6 +356,14 @@ ...@@ -355,6 +356,14 @@
" </thead>\n", " </thead>\n",
" <tbody>\n", " <tbody>\n",
" <tr>\n", " <tr>\n",
" <th>0</th>\n",
" <td>4/12/81</td>\n",
" <td>6</td>\n",
" <td>66</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n", " <th>1</th>\n",
" <td>11/12/81</td>\n", " <td>11/12/81</td>\n",
" <td>6</td>\n", " <td>6</td>\n",
...@@ -363,6 +372,54 @@ ...@@ -363,6 +372,54 @@
" <td>1</td>\n", " <td>1</td>\n",
" </tr>\n", " </tr>\n",
" <tr>\n", " <tr>\n",
" <th>2</th>\n",
" <td>3/22/82</td>\n",
" <td>6</td>\n",
" <td>69</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>11/11/82</td>\n",
" <td>6</td>\n",
" <td>68</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4/04/83</td>\n",
" <td>6</td>\n",
" <td>67</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>6/18/82</td>\n",
" <td>6</td>\n",
" <td>72</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>8/30/83</td>\n",
" <td>6</td>\n",
" <td>73</td>\n",
" <td>100</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>11/28/83</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>100</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n", " <th>8</th>\n",
" <td>2/03/84</td>\n", " <td>2/03/84</td>\n",
" <td>6</td>\n", " <td>6</td>\n",
...@@ -387,6 +444,22 @@ ...@@ -387,6 +444,22 @@
" <td>1</td>\n", " <td>1</td>\n",
" </tr>\n", " </tr>\n",
" <tr>\n", " <tr>\n",
" <th>11</th>\n",
" <td>10/05/84</td>\n",
" <td>6</td>\n",
" <td>78</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>11/08/84</td>\n",
" <td>6</td>\n",
" <td>67</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n", " <th>13</th>\n",
" <td>1/24/85</td>\n", " <td>1/24/85</td>\n",
" <td>6</td>\n", " <td>6</td>\n",
...@@ -395,6 +468,54 @@ ...@@ -395,6 +468,54 @@
" <td>2</td>\n", " <td>2</td>\n",
" </tr>\n", " </tr>\n",
" <tr>\n", " <tr>\n",
" <th>14</th>\n",
" <td>4/12/85</td>\n",
" <td>6</td>\n",
" <td>67</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>4/29/85</td>\n",
" <td>6</td>\n",
" <td>75</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>6/17/85</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>7/29/85</td>\n",
" <td>6</td>\n",
" <td>81</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>8/27/85</td>\n",
" <td>6</td>\n",
" <td>76</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>10/03/85</td>\n",
" <td>6</td>\n",
" <td>79</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n", " <th>20</th>\n",
" <td>10/30/85</td>\n", " <td>10/30/85</td>\n",
" <td>6</td>\n", " <td>6</td>\n",
...@@ -403,6 +524,14 @@ ...@@ -403,6 +524,14 @@
" <td>2</td>\n", " <td>2</td>\n",
" </tr>\n", " </tr>\n",
" <tr>\n", " <tr>\n",
" <th>21</th>\n",
" <td>11/26/85</td>\n",
" <td>6</td>\n",
" <td>76</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n", " <th>22</th>\n",
" <td>1/12/86</td>\n", " <td>1/12/86</td>\n",
" <td>6</td>\n", " <td>6</td>\n",
...@@ -416,22 +545,38 @@ ...@@ -416,22 +545,38 @@
], ],
"text/plain": [ "text/plain": [
" Date Count Temperature Pressure Malfunction\n", " Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n", "1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n", "8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n", "9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n", "10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n", "13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n", "20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1" "22 1/12/86 6 58 200 1"
] ]
}, },
"execution_count": 2, "execution_count": 3,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"data = data[data.Malfunction>0]\n", "#data = data[data.Malfunction>0]\n",
"data" "data"
] ]
}, },
...@@ -443,17 +588,31 @@ ...@@ -443,17 +588,31 @@
"la pression est quasiment toujours égale à 200, ce qui devrait\n", "la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.\n", "simplifier l'analyse.\n",
"\n", "\n",
"1/3 des experiences n'est pas à 200 psy \n",
"\n",
"Comment la fréquence d'échecs varie-t-elle avec la température ?\n" "Comment la fréquence d'échecs varie-t-elle avec la température ?\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFldJREFUeJzt3X2QZXV95/H3p2cGGB4UAhOjDBMxIoZSRGzxITEx8SHglhAXjWgiLruEUMLuulsbh00lhhhTlbBqJZYPiCxR2FKiokCyuAhurcaNBBochwfF9AIyzRgYRh5mYBhmpr/7x71zcqfp6b636TN3unm/qrr6nnN+9/T316dvf+55uL+TqkKSJICRYRcgSdp7GAqSpIahIElqGAqSpIahIElqGAqSpEZroZDkkiQPJLltN8uT5ONJxpOsTXJ8W7VIkvrT5p7C54ATZ1h+EnBU9+ss4NMt1iJJ6kNroVBV3wZ+OkOTU4BLq+MG4OAkz22rHknS7JYO8WcfDqzrmZ7ozvvJ1IZJzqKzN8EBBxzwihe/+MV7pEBJWixuvvnmB6tqxWzthhkKmWbetGNuVNVFwEUAo6OjNTY21mZdkrToJPlxP+2GefXRBHBEz/RKYP2QapEkMdxQuBo4vXsV0quBR6rqKYeOJEl7TmuHj5J8EXg9cFiSCeCPgWUAVXUhcA3wFmAceBw4o61aJEn9aS0Uqupdsywv4Jy2fr4kaXB+olmS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1Gg1FJKcmOTOJONJzptm+bOT/G2S7ye5PckZbdYjSZpZa6GQZAnwSeAk4BjgXUmOmdLsHOCOqnoZ8Hrgo0n2aasmSdLM2txTOAEYr6q7qupJ4HLglCltCjgoSYADgZ8C21usSZI0gzZD4XBgXc/0RHder08AvwisB24F/mNVTU5dUZKzkowlGduwYUNb9UrSM16boZBp5tWU6d8A1gDPA44DPpHkWU95UtVFVTVaVaMrVqyY/0olSUC7oTABHNEzvZLOHkGvM4CvVsc4cDfw4hZrkiTNoM1QuAk4KsmR3ZPHpwFXT2lzL/AGgCTPAY4G7mqxJknSDJa2teKq2p7kXOBaYAlwSVXdnuTs7vILgT8FPpfkVjqHm1ZX1YNt1SRJmllroQBQVdcA10yZd2HP4/XAm9usQZLUPz/RLElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpEaroZDkxCR3JhlPct5u2rw+yZoktyf5Vpv1SJJmtrSfRkleUlW3DbLiJEuATwJvAiaAm5JcXVV39LQ5GPgUcGJV3ZvkZwf5GZKk+dXvnsKFSW5M8r7uP/J+nACMV9VdVfUkcDlwypQ27wa+WlX3AlTVA32uW5LUgr5Coap+Gfht4AhgLMkXkrxplqcdDqzrmZ7ozuv1IuCQJP8nyc1JTp9uRUnOSjKWZGzDhg39lCxJmoO+zylU1T8BfwisBn4V+HiSHyb517t5SqZbzZTppcArgH8F/AbwR0leNM3PvqiqRqtqdMWKFf2WLEkaUL/nFI4FzqDzz/s64K1VdUuS5wHfBb46zdMm6OxZ7LQSWD9Nmwer6jHgsSTfBl4G/GigXkiS5kW/ewqfAG4BXlZV51TVLQBVtZ7O3sN0bgKOSnJkkn2A04Crp7S5CnhdkqVJ9gdeBfxg0E5IkuZHX3sKwFuALVW1AyDJCLBfVT1eVZdN94Sq2p7kXOBaYAlwSVXdnuTs7vILq+oHSf4XsBaYBC4e9ConSdL8SdXUw/zTNEpuAN5YVZu70wcC36iq17Zc31OMjo7W2NjYnv6xkrSgJbm5qkZna9fv4aP9dgYCQPfx/nMtTpK0d+o3FB5LcvzOiSSvALa0U5IkaVj6PafwfuDLSXZePfRc4J3tlCRJGpa+QqGqbkryYuBoOp8/+GFVbWu1MknSHtfvngLAK4Hnd5/z8iRU1aWtVCVJGop+P7x2GfALwBpgR3d2AYaCJC0i/e4pjALHVD/Xr0qSFqx+rz66Dfi5NguRJA1fv3sKhwF3JLkR2LpzZlWd3EpVkqSh6DcUzm+zCEnS3qHfS1K/leTngaOq6vru4HVL2i1NkrSn9XVOIcnvAl8BPtOddThwZVtFSZKGo98TzecAvwQ8Cs0Nd7yfsiQtMv2GwtbufZYBSLKUp95FTZK0wPUbCt9K8gfA8u69mb8M/G17ZUmShqHfUDgP2ADcCvwecA27v+OaJGmB6vfqo0ngs90vSdIi1e/YR3czzTmEqnrBvFckSRqaQcY+2mk/4B3Az8x/OZKkYerrnEJVbez5uq+q/hL49ZZrkyTtYf0ePjq+Z3KEzp7DQa1UJEkamn4PH3205/F24B7gt+a9GknSUPV79dGvtV2IJGn4+j189J9nWl5VH5ufciRJwzTI1UevBK7uTr8V+Dawro2iJEnDMchNdo6vqk0ASc4HvlxVZ7ZVmCRpz+t3mItVwJM9008Cz5/3aiRJQ9XvnsJlwI1Jvkbnk81vAy5trSpJ0lD0e/XRnyX5OvC67qwzqup77ZUlSRqGfg8fAewPPFpVfwVMJDmypZokSUPS7+04/xhYDfzX7qxlwP9oqyhJ0nD0u6fwNuBk4DGAqlqPw1xI0qLTbyg8WVVFd/jsJAe0V5IkaVj6DYUvJfkMcHCS3wWuxxvuSNKi0+/VRx/p3pv5UeBo4INVdV2rlUmS9rhZ9xSSLElyfVVdV1W/X1X/pd9ASHJikjuTjCc5b4Z2r0yyI8nbBylekjS/Zg2FqtoBPJ7k2YOsOMkS4JPAScAxwLuSHLObdn8BXDvI+iVJ86/fTzQ/Adya5Dq6VyABVNV/mOE5JwDjVXUXQJLLgVOAO6a0+/fAFXQG3JMkDVG/ofA/u1+DOJxdR1GdAF7V2yDJ4XQud/11ZgiFJGcBZwGsWrVqwDIkSf2aMRSSrKqqe6vq83NYd6aZV1Om/xJYXVU7kumad59UdRFwEcDo6OjUdUiS5sls5xSu3PkgyRUDrnsCOKJneiWwfkqbUeDyJPcAbwc+leQ3B/w5kqR5Mtvho9637y8YcN03AUd1x0i6DzgNeHdvg6pqxk9K8jng76rqSiRJQzFbKNRuHs+qqrYnOZfOVUVLgEuq6vYkZ3eXXzhQpZKk1s0WCi9L8iidPYbl3cd0p6uqnjXTk6vqGuCaKfOmDYOq+jd9VSxJas2MoVBVS/ZUIZKk4RvkfgqSpEXOUJAkNQwFSVLDUJAkNZ4xobBx81a+v+5hNm7eOuxSJA3I1++e0+/YRwvaVWvuY/UVa1k2MsK2yUkuOPVYTj7u8GGXJakPvn73rEW/p7Bx81ZWX7GWJ7ZNsmnrdp7YNskHrljrOw5pAfD1u+ct+lCYeGgLy0Z27eaykREmHtoypIok9cvX75636ENh5SHL2TY5ucu8bZOTrDxk+ZAqktQvX7973qIPhUMP3JcLTj2W/ZaNcNC+S9lv2QgXnHoshx6477BLkzQLX797XqoW1u0JRkdHa2xsbODnbdy8lYmHtrDykOX+QUkLjK/fpy/JzVU1Olu7Z8TVR9B5x+Efk7Qw+frdcxb94SNJUv8MBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkJya5M8l4kvOmWf7bSdZ2v/4hycvarEeSNLPWQiHJEuCTwEnAMcC7khwzpdndwK9W1bHAnwIXtVWPJGl2be4pnACMV9VdVfUkcDlwSm+DqvqHqnqoO3kDsLLFeiRJs2gzFA4H1vVMT3Tn7c6/A74+3YIkZyUZSzK2YcOGeSxRktSrzVDINPNq2obJr9EJhdXTLa+qi6pqtKpGV6xYMY8lSpJ6LW1x3RPAET3TK4H1UxslORa4GDipqja2WI8kaRZt7incBByV5Mgk+wCnAVf3NkiyCvgq8J6q+lGLtUiS+tDankJVbU9yLnAtsAS4pKpuT3J2d/mFwAeBQ4FPJQHYXlWjbdUkSZpZqqY9zL/XGh0drbGxsWGX0bqNm7cy8dAWVh6ynEMP3Hfe2i4ki7VfbRm/fxNr1j3McUcczAufc9Cwy9FeJsnN/bzpbvOcguboqjX3sfqKtSwbGWHb5CQXnHosJx83/YVbg7RdSBZrv9rywStv5dIb7m2mT3/NKj50ykuHWJEWKoe52Mts3LyV1Ves5Yltk2zaup0ntk3ygSvWsnHz1qfVdiFZrP1qy/j9m3YJBIBLv3sv4/dvGlJFWsgMhb3MxENbWDay62ZZNjLCxENbnlbbhWSx9qsta9Y9PNB8aSaGwl5m5SHL2TY5ucu8bZOTrDxk+dNqu5As1n615bgjDh5ovjQTQ2Evc+iB+3LBqcey37IRDtp3KfstG+GCU4+d9kTrIG0XksXar7a88DkHcfprVu0y7/TXrPJks+bEq4/2Ul59tHj71RavPtJMvPpogTv0wH37/kc4SNuFZLH2qy0vfM5BhoGeNg8fSZIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqdFqKCQ5McmdScaTnDfN8iT5eHf52iTHt1mPNKiNm7fy/XUPs3Hz1lnbjt29kY99407G7t44b+scpO34/Zv4ytg6xu/fNGvbQbRVbxs1+Dt4+pa2teIkS4BPAm8CJoCbklxdVXf0NDsJOKr79Srg093v0tBdteY+Vl+xlmUjI2ybnOSCU4/l5OMOn7bt71x8A98Z74TBx//3OK974aFcduarn9Y6B2n7wStv5dIb7m2mT3/NKj50yksH7fIeq7eNGvwdzI829xROAMar6q6qehK4HDhlSptTgEur4wbg4CTPbbEmqS8bN29l9RVreWLbJJu2bueJbZN84Iq1075LG7t7YxMIO/39+Man7DEMss5B2o7fv2mXf4YAl3733qf9brmtetuowd/B/ElVtbPi5O3AiVV1Znf6PcCrqurcnjZ/B/x5VX2nO/1NYHVVjU1Z11nAWd3Jo4E7Wyl67g4DHhx2ES1ZrH2bsV9Ztnz/pYc890UZGVmyc15NTu7Y/tBPflTbtjze23bJQYc9b8kBBz/lzcyOxx7+yY5ND66fyzoHaTuy/7MPXfqsFc8H2PH4IyzZ/9kAbH90wz2Tjz8y87GsGbRV71xr2Nm36dbb+zvotUB+B/P2tziLn6+qFbM1au3wEZBp5k1NoH7aUFUXARfNR1FtSDJWVaPDrqMNi7Vvi7lf2x95YNH1CxZv3/a2v8U2Dx9NAEf0TK8E1s+hjSRpD2kzFG4CjkpyZJJ9gNOAq6e0uRo4vXsV0quBR6rqJy3WJEmaQWuHj6pqe5JzgWuBJcAlVXV7krO7yy8ErgHeAowDjwNntFVPy/baQ1vzYLH2zX4tPIu1b3tVv1o70SxJWnj8RLMkqWEoSJIahsIcJLknya1J1iQZ6847P8l93Xlrkrxl2HUOKsnBSb6S5IdJfpDkNUl+Jsl1Sf6p+/2QYdc5qN30azFsr6N76l+T5NEk71/o22yGfi2Gbfafktye5LYkX0yy3962vTynMAdJ7gFGq+rBnnnnA5ur6iPDquvpSvJ54O+r6uLuFWP7A38A/LSq/rw7ftUhVbV6qIUOaDf9ej8LfHv16g4rcx+dYWLOYYFvs52m9OsMFvA2S3I48B3gmKrakuRLdC62OYa9aHu5pyAAkjwL+BXgvwNU1ZNV9TCdoUg+3232eeA3h1Ph3MzQr8XmDcD/q6ofs8C32RS9/VoMlgLLkyyl8+ZkPXvZ9jIU5qaAbyS5uTsEx07ndkd7vWTYu4Bz8AJgA/DXSb6X5OIkBwDP2fnZke73nx1mkXOwu37Bwt5eU50GfLH7eKFvs169/YIFvM2q6j7gI8C9wE/ofC7rG+xl28tQmJtfqqrj6Yzyek6SX6EzwusvAMfR2eAfHWJ9c7EUOB74dFW9HHgMeMpw5wvQ7vq10LdXo3tI7GTgy8OuZT5N068Fvc26IXYKcCTwPOCAJL8z3KqeylCYg6pa3/3+APA14ISqur+qdlTVJPBZOqPELiQTwERV/WN3+it0/pnev3Pk2u73B4ZU31xN269FsL16nQTcUlX3d6cX+jbbaZd+LYJt9kbg7qraUFXbgK8Cr2Uv216GwoCSHJDkoJ2PgTcDt2XXIb/fBtw2jPrmqqr+GViX5OjurDcAd9AZiuS93XnvBa4aQnlztrt+LfTtNcW72PUQy4LeZj126dci2Gb3Aq9Osn+S0Plb/AF72fby6qMBJXkBnb0D6Bya+EJV/VmSy+js1hZwD/B7C20cpyTHARcD+wB30bnaYwT4ErCKzh/1O6rqp0Mrcg5206+Ps8C3F0CS/YF1wAuq6pHuvENZ+Ntsun4thtfYnwDvBLYD3wPOBA5kL9pehoIkqeHhI0lSw1CQJDUMBUlSw1CQJDUMBUlSo7U7r0l7WvdSzG92J38O2EFniAvofMDwyaEUNoMk/xa4pvt5CmnovCRVi9LeNGptkiVVtWM3y74DnFtVawZY39Kq2j5vBUo9PHykZ4Qk701yY3cc/k8lGUmyNMnDSf5bkluSXJvkVUm+leSuneP1Jzkzyde6y+9M8od9rvfDSW4ETkjyJ0lu6o6jf2E63knnw1h/033+PkkmkhzcXferk1zfffzhJJ9Jch2dwf2WJvlY92evTXLmnv+tajEyFLToJXkJnWERXltVx9E5bHpad/GzgW90Bzh8EjifzvAD7wA+1LOaE7rPOR54d5Lj+ljvLVV1QlV9F/irqnol8NLushOr6m+ANcA7q+q4Pg5vvRx4a1W9BzgLeKCqTgBeSWdgxlVz+f1IvTynoGeCN9L5xznWGXKG5XSGUADYUlXXdR/fSmc44+1JbgWe37OOa6vqIYAkVwK/TOf1s7v1Psm/DIcC8IYkvw/sBxwG3Ax8fcB+XFVVT3Qfvxn4xSS9IXQUnWESpDkzFPRMEOCSqvqjXWZ2bnTS++58Etja87j39TH15FvNst4t1T1h1x3H5xN0Rme9L8mH6YTDdLbzL3vwU9s8NqVP76uqbyLNIw8f6ZngeuC3khwGnauU5nCo5c3p3Ot5fzpj4v/fAda7nE7IPNgdYffUnmWbgIN6pu8BXtF93NtuqmuB93UDaOd9jZcP2CfpKdxT0KJXVbd2R6e8PskIsA04m86tEPv1HeALdG7yctnOq4X6WW9VbUznPtG3AT8G/rFn8V8DFyfZQue8xfnAZ5P8M3DjDPV8hs6ommu6h64eoBNW0tPiJanSLLpX9rykqt4/7Fqktnn4SJLUcE9BktRwT0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1Pj/j/MoHNCThYAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF+FJREFUeJzt3Xu4XXV95/H3NxcgIeEi4EFJKCARn6iAHORSdUqE0oROSa1hCu0A0qEZZkxnoGNLHH3obehTwRYroqkihdjWPCCUi6QDgSdKxxKuQm4QPAJCCISLCAkBkpDv/LFWFjun57IPOevsRXi/nmc/7PVbv7335xzO3p+stddeOzITSZIARnU6gCSpOSwFSVLFUpAkVSwFSVLFUpAkVSwFSVKltlKIiCsi4tmIWN7P+oiIr0ZET0QsjYgj6soiSWpPnVsKVwLTB1g/A5hSXmYD36gxiySpDbWVQmbeAfx8gCkzgflZWALsERHvqSuPJGlwYzr42PsBT7Ysry7Hnu49MSJmU2xNMG7cuO7JkyePSMB2bNmyhVGjmvvWTNPzQfMzNj0fmHE4ND0fbF/GRx555PnM3GfQiZlZ2wU4AFjez7qbgY+3LN8OdA92n93d3dkkixcv7nSEATU9X2bzMzY9X6YZh0PT82VuX0bg3mzjdbuTtbgaaP0n/yRgTYeySJLo7CGpNwJnlEchHQO8lJn/bteRJGnk1PaeQkR8FzgO2DsiVgN/AowFyMx5wELgJKAH2ACcVVcWSVJ7aiuFzDxtkPUJfLaux5ckDV2z32qXJI0oS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEmVWkshIqZHxKqI6ImIuX2s3z0iboqIByNiRUScVWceSdLAaiuFiBgNXAbMAKYCp0XE1F7TPguszMzDgOOAv46InerKJEkaWJ1bCkcBPZn5aGZuBBYAM3vNSWBiRAQwAfg5sLnGTJKkAURm1nPHEbOA6Zl5drl8OnB0Zs5pmTMRuBH4ADAR+O3MvLmP+5oNzAbo6urqXrBgQS2Z34r169czYcKETsfoV9PzQfMzNj0fmHE4ND0fbF/GadOm3ZeZRw46MTNruQCnAJe3LJ8OXNprzizgEiCAg4HHgN0Gut/u7u5sksWLF3c6woCani+z+Rmbni/TjMOh6fkyty8jcG+28dpd5+6j1cDkluVJwJpec84Crisz95Sl8IEaM0mSBlBnKdwDTImIA8s3j0+l2FXU6gngeICI6AIOAR6tMZMkaQBj6rrjzNwcEXOAW4DRwBWZuSIizinXzwP+ArgyIpZR7EI6PzOfryuTJGlgtZUCQGYuBBb2GpvXcn0NcGKdGSRJ7fMTzZKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSarUWgoRMT0iVkVET0TM7WfOcRHxQESsiIgf1plHkjSwMe1MiogPZebyodxxRIwGLgN+FVgN3BMRN2bmypY5ewBfB6Zn5hMR8e6hPIYkaXi1u6UwLyLujoj/Xr6Qt+MooCczH83MjcACYGavOb8DXJeZTwBk5rNt3rckqQaRme1NjJgC/B5wCnA38PeZuWiA+bMotgDOLpdPB47OzDktc74CjAU+CEwE/jYz5/dxX7OB2QBdXV3dCxYsaO+nGwHr169nwoQJnY7Rr6bng+ZnbHo+MONwaHo+2L6M06ZNuy8zjxx0Yma2fQFGA58GngIeAh4GfqufuacAl7csnw5c2mvO14AlwK7A3sBPgPcPlKG7uzubZPHixZ2OMKCm58tsfsam58s043Boer7M7csI3JttvM63+57CocBZwK8Di4DfyMz7I+K9wJ3AdX3cbDUwuWV5ErCmjznPZ+YrwCsRcQdwGPBIO7kkScOr3fcUvgbcDxyWmZ/NzPsBMnMN8MV+bnMPMCUiDoyInYBTgRt7zbkB+EREjImI8cDRFFsgkqQOaGtLATgJeDUz3wCIiFHALpm5ITO/09cNMnNzRMwBbqHY7XRFZq6IiHPK9fMy86GI+L/AUmALxe6mIR3lJEkaPu2Wwm3ACcD6cnk8cCvwywPdKDMXAgt7jc3rtXwxcHGbOSRJNWp399Eumbm1ECivj68nkiSpU9othVci4oitCxHRDbxaTyRJUqe0u/voXOCaiNh69NB7gN+uJ5IkqVPaKoXMvCciPgAcAgTwcGZuqjWZJGnEtbulAPBR4IDyNh+JCLKPTx9Lkt6+2v3w2neA9wEPAG+UwwlYCpK0A2l3S+FIYGr5UWlJ0g6q3aOPlgP71hlEktR57W4p7A2sjIi7gde3DmbmybWkkiR1RLul8Kd1hpAkNUO7h6T+MCJ+CZiSmbeVJ68bXW80SdJIa+s9hYj4feB7wN+VQ/sB19cVSpLUGe2+0fxZ4GPAywCZ+RPA71OWpB1Mu6XwehbfswxARIyh+JyCJGkH0m4p/DAi/jcwLiJ+FbgGuKm+WJKkTmi3FOYCzwHLgP9K8R0J/X3jmiTpbardo4+2AN8qL5KkHVS75z56jD7eQ8jMg4Y9kSSpY4Zy7qOtdgFOAd41/HEkSZ3U1nsKmflCy+WpzPwK8Mmas0mSRli7u4+OaFkcRbHlMLGWRJKkjml399Fft1zfDDwO/KdhTyNJ6qh2jz6aVncQSVLntbv76A8HWp+ZfzM8cSRJnTSUo48+CtxYLv8GcAfwZB2hJEmdMZQv2TkiM9cBRMSfAtdk5tl1BZMkjbx2T3OxP7CxZXkjcMCwp5EkdVS7WwrfAe6OiH+m+GTzp4D5taWSJHVEu0cfXRgR/wJ8ohw6KzN/XF8sSVIntLv7CGA88HJm/i2wOiIOrCmTJKlD2v06zj8Bzgc+Xw6NBf6hrlCSpM5od0vhU8DJwCsAmbkGT3MhSTucdkthY2Ym5emzI2LX+iJJkjql3VK4OiL+DtgjIn4fuA2/cEeSdjjtHn305fK7mV8GDgEuyMxFtSaTJI24QbcUImJ0RNyWmYsy848y83PtFkJETI+IVRHRExFzB5j30Yh4IyJmDSW8JGl4DVoKmfkGsCEidh/KHUfEaOAyYAYwFTgtIqb2M+9LwC1DuX9J0vBr9xPNrwHLImIR5RFIAJn5Pwa4zVFAT2Y+ChARC4CZwMpe8/4AuJbihHuSpA6K4qCiQSZFnNnXeGZeNcBtZgHTt540LyJOB47OzDktc/YD/oniqz2/DXw/M7/Xx33NBmYDdHV1dS9YsGDQzCNl/fr1TJgwodMx+tX0fND8jE3PB2YcDk3PB9uXcdq0afdl5pGDTszMfi/A/gOtH+S2pwCXtyyfDlzaa841wDHl9SuBWYPdb3d3dzbJ4sWLOx1hQE3Pl9n8jE3Pl2nG4dD0fJnblxG4N9t47R7sPYXrt16JiGuHWEyrgckty5OANb3mHAksiIjHgVnA1yPiN4f4OJKkYTLYewrRcv2gId73PcCU8hxJTwGnAr/TOiEzq/MnRcSVFLuPrkeS1BGDlUL2c31Qmbk5IuZQHFU0GrgiM1dExDnl+nlDSipJqt1gpXBYRLxMscUwrrxOuZyZudtAN87MhcDCXmN9lkFmfqatxJKk2gxYCpk5eqSCSJI6byjfpyBJ2sFZCpKkiqUgSapYCpKkiqUgSW8DPWvX8eKGTfSsXVfr41gKktRwF1y/jBMuuYPVL27ghEvu4IIbltX2WJaCJDVYz9p1zF/yxDZj8+98orYtBktBkhrsgSd/MaTx7WUpSFKDHT55jyGNby9LQZIa7OCuiZxx7P7bjJ1x7P4c3DWxlsdr95vXJEkd8uczP8wZxxzAsvuWcNt5x9RWCOCWgiS9LRzcNZE9x4+ttRDAUpAktbAUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVKm1FCJiekSsioieiJjbx/rfjYil5eXfIuKwOvNIkgZWWylExGjgMmAGMBU4LSKm9pr2GPArmXko8BfAN+vKI0kaXJ1bCkcBPZn5aGZuBBYAM1snZOa/ZeaL5eISYFKNeSRJg4jMrOeOI2YB0zPz7HL5dODozJzTz/zPAR/YOr/XutnAbICurq7uBQsW1JL5rVi/fj0TJkzodIx+NT0fND9j0/OBGYdD0/PB9mWcNm3afZl55KATM7OWC3AKcHnL8unApf3MnQY8BOw12P12d3dnkyxevLjTEQbU9HyZzc/Y9HyZZhwOTc+XuX0ZgXuzjdfuMW+pctqzGpjcsjwJWNN7UkQcClwOzMjMF2rMI0kaRJ3vKdwDTImIAyNiJ+BU4MbWCRGxP3AdcHpmPlJjFklSG2rbUsjMzRExB7gFGA1ckZkrIuKccv084AJgL+DrEQGwOdvZ5yVJqkWdu4/IzIXAwl5j81qunw38uzeW6/DC+tdZ/eKrTNpzHHtN2HkkHlKShs3tK5/hmRdf5faVz3D81H1re5xaS6EpbnjgKc6/diljR41i05YtXPTpQzn58P06HUuS2nLiJT/gkbWv8L8+vJkvzL+PQ7p25ZbzjqvlsXb401y8sP51zr92Ka9t2sK61zfz2qYt/PG1S3lh/eudjiZJg7p95TM8svaVbcZWrX2F21c+U8vj7fClsPrFVxk7atsfc+yoUax+8dUOJZKk9t26cu2QxrfXDl8Kk/Ycx6YtW7YZ27RlC5P2HNehRJLUvhOndg1pfHvt8KWw14SduejTh7LL2FFM3HkMu4wdxUWfPtQ3myW9LRw/dV8O6dp1m7FDunat7c3md8QbzScfvh8fO3hvjz6S9LZ0y3nHFUcfrfox3z7jIx59NBz2mrCzZSDpbev4qfvyg2fHcVyNhQDvgN1HkqT2WQqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpEqtpRAR0yNiVUT0RMTcPtZHRHy1XL80Io6oK8v19z/J2Vfdw/X3P1nXQ+gt6Fm7jhc3bKJn7bpOR5Ea7cKblvPwM+u48KbltT5ObaUQEaOBy4AZwFTgtIiY2mvaDGBKeZkNfKOOLMf85SLOvXoptz30LOdevZRj/3JRHQ+jIbrg+mWccMkdrH5xAydccgcX3LCs05GkRjpo7s1860c/Y9MbW/jWj37GQXNvru2x6txSOAroycxHM3MjsACY2WvOTGB+FpYAe0TEe4YzxPX3P8kzL2/cZuzplze6xdBhPWvXMX/JE9uMzb/zCbcYpF4uvGk5W3qNbSnH6xCZWc8dR8wCpmfm2eXy6cDRmTmnZc73gb/KzP9XLt8OnJ+Z9/a6r9kUWxIAhwCr2s0xZs/3vm/UzuP36D2+5fUNv9j84pqfDvHH6svewPPDcD91aWS+UeN332vMbvscAPDGhpcYPX53ADa//NzjWza89EIns/Whkb/DXsy4/RqZb+w+B3w4Ro/ZCbZ9ruQbmzdueu7xoWxe/1Jm7jPYpDFvLWZboo+x3g3Uzhwy85vAN4cj1HCLiHsz88hO5+hP0/NBkXHzS882NuPb5Xdoxu3T9HwwMs+VOncfrQYmtyxPAta8hTmSpBFSZyncA0yJiAMjYifgVODGXnNuBM4oj0I6BngpM5+uMZMkaQC17T7KzM0RMQe4BRgNXJGZKyLinHL9PGAhcBLQA2wAzqorT40auVurRdPzQfMzNj0fmHE4ND0fjEDG2t5oliS9/fiJZklSxVKQJFUshSGIiD0i4nsR8XBEPBQRx0bEuyJiUUT8pPzvnh3OeF5ErIiI5RHx3YjYpZMZI+KKiHg2Ipa3jPWbJyI+X572ZFVE/FoHM15c/n9eGhH/HBF7tKxrRMaWdZ+LiIyIvTuVsb98EfEHZYYVEXFRp/L1lzEiDo+IJRHxQETcGxFHdSpjREyOiMXla8uKiPif5fjIPl8y00ubF+Aq4Ozy+k7AHsBFwNxybC7wpQ7m2w94DBhXLl8NfKaTGYH/ABwBLG8Z6zMPxelQHgR2Bg4EfgqM7lDGE4Ex5fUvNTFjOT6Z4mCOnwF7dypjP7/DacBtwM7l8rub9jsEbgVmlNdPAn7Qwd/he4AjyusTgUfKHCP6fHFLoU0RsRvFH9W3ATJzY2b+guJUHVeV064CfrMzCStjgHERMQYYT/G5j45lzMw7gJ/3Gu4vz0xgQWa+npmPURyVdhQ16ytjZt6amZvLxSUUn6FpVMbSJcAfs+2HPkc8Yz/5/hvFGQteL+c826l8A2RMYLfy+u68+TmpTvwOn87M+8vr64CHKP6hN6LPF0uhfQcBzwF/HxE/jojLI2JXoCvLz1aU/313pwJm5lPAl4EngKcpPvdxa5MylvrLsx/QelKq1eVYp/0e8C/l9cZkjIiTgacy88Feq5qS8f3AJyLiroj4YUR8tBxvSj6Ac4GLI+JJiufO58vxjmaMiAOAjwB3McLPF0uhfWMoNj2/kZkfAV6h2JRrjHJf40yKTcn3ArtGxH/ubKohaeu0JyMpIr4AbAb+cetQH9NGPGNEjAe+AFzQ1+o+xjrxexwD7AkcA/wRcHVEBM3JB8XWzHmZORk4j3JPAB3MGBETgGuBczPz5YGm9jG23RkthfatBlZn5l3l8vcoSmJtlGd2Lf/7bD+3HwknAI9l5nOZuQm4DvjlhmVkgDyNOu1JRJwJ/Efgd7PciUtzMr6PovwfjIjHyxz3R8S+NCfjauC6LNxNcXLPvRuUD+BMiucJwDW8ufulIxkjYixFIfxjZm7NNaLPF0uhTZn5DPBkRBxSDh0PrKQ4VceZ5diZwA0diLfVE8AxETG+/BfZ8RT7JZuUEfrPcyNwakTsHBEHUnzPxt0dyEdETAfOB07OzA0tqxqRMTOXZea7M/OAzDyA4gXiiPLvtBEZgeuBTwJExPspDs54vkH5oHgR/ZXy+ieBn5TXRzxj+Zz9NvBQZv5Ny6qRfb7U+W76jnYBDgfuBZZS/MHvCewF3E7xx3Q78K4OZ/wz4GFgOfAdiiMTOpYR+C7F+xubKF64/stAeSh2ifyU4vToMzqYsYdif+0D5WVe0zL2Wv845dFHncjYz+9wJ+Afyr/F+4FPNu13CHwcuI/iKJ67gO4O/g4/TrH7Z2nL391JI/188TQXkqSKu48kSRVLQZJUsRQkSRVLQZJUsRQkSZXavnlNarqIeANYRvE8eAg4M7f9TIL0juOWgt7JXs3MwzPzQ8BG4JzWlVEYsedIRIweqceS+mMpSIV/BQ6OiAPK89l/neIDV5Mj4sSIuDMi7o+Ia8pz0xARfxURK8vvXPhyOXZKFN9l8WBE3FGOfSYivrb1gSLi+xFxXHl9fUT8eUTcBRwbEd3lyePui4hbtp7eQBoploLe8crTjM+g2JUEcAgwP9888eEXgRMy8wiKT7T/YUS8C/gU8MHMPBT4P+VtLwB+LTMPA05u4+F3pTi//9EUn6i9FJiVmd3AFcCFw/EzSu3yPQW9k42LiAfK6/9Kcd6Z9wI/y8wl5fgxFF9m8qPi1DTsBNwJvAy8BlweETcD3y/n/wi4MiKu5s0TrQ3kDYoToEFRRh8CFpWPNZritAzSiLEU9E72amYe3jpQvhi/0joELMrM03rfuPzqxuOBU4E5FOf2OScijgZ+HXggIg6nOPV261b5Li3XX8vMN1oea0VmHrt9P5b01rn7SBrYEuBjEXEwFN9jEBHvL99X2D0zF1J8Ucvh5fr3ZeZdmXkBxRlBJ1OcrO7wiBgVEZPp/9uxVgH7RMSx5X2NjYgP1vnDSb25pSANIDOfi4jPAN+NiJ3L4S8C64AbImIXin/hn1euuzgippRjt1OcfROK785exptnDO3rsTZGxCzgqxGxO8Xz8yvAimH/waR+eJZUSVLF3UeSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpMr/B7ZTo8X/XbLnAAAAAElFTkSuQmCC\n",
"text/plain": [ "text/plain": [
"<Figure size 432x288 with 1 Axes>" "<Figure size 432x288 with 1 Axes>"
] ]
...@@ -471,6 +630,7 @@ ...@@ -471,6 +630,7 @@
"\n", "\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n", "data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"data.plot(x=\"Pressure\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)" "plt.grid(True)"
] ]
}, },
...@@ -500,7 +660,7 @@ ...@@ -500,7 +660,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -509,10 +669,10 @@ ...@@ -509,10 +669,10 @@
"<table class=\"simpletable\">\n", "<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n", "<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n", "<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 7</td> \n", " <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 23</td> \n",
"</tr>\n", "</tr>\n",
"<tr>\n", "<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 5</td> \n", " <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 21</td> \n",
"</tr>\n", "</tr>\n",
"<tr>\n", "<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n", " <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
...@@ -521,16 +681,16 @@ ...@@ -521,16 +681,16 @@
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n", " <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n", "</tr>\n",
"<tr>\n", "<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -2.5250</td> \n", " <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -3.9210</td> \n",
"</tr>\n", "</tr>\n",
"<tr>\n", "<tr>\n",
" <th>Date:</th> <td>Sat, 13 Apr 2019</td> <th> Deviance: </th> <td> 0.22231</td> \n", " <th>Date:</th> <td>Wed, 28 Feb 2024</td> <th> Deviance: </th> <td> 3.0144</td> \n",
"</tr>\n", "</tr>\n",
"<tr>\n", "<tr>\n",
" <th>Time:</th> <td>19:11:24</td> <th> Pearson chi2: </th> <td> 0.236</td> \n", " <th>Time:</th> <td>20:44:24</td> <th> Pearson chi2: </th> <td> 5.00</td> \n",
"</tr>\n", "</tr>\n",
"<tr>\n", "<tr>\n",
" <th>No. Iterations:</th> <td>4</td> <th> Covariance Type: </th> <td>nonrobust</td>\n", " <th>No. Iterations:</th> <td>6</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n", "</tr>\n",
"</table>\n", "</table>\n",
"<table class=\"simpletable\">\n", "<table class=\"simpletable\">\n",
...@@ -538,10 +698,10 @@ ...@@ -538,10 +698,10 @@
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n", " <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n", "</tr>\n",
"<tr>\n", "<tr>\n",
" <th>Intercept</th> <td> -1.3895</td> <td> 7.828</td> <td> -0.178</td> <td> 0.859</td> <td> -16.732</td> <td> 13.953</td>\n", " <th>Intercept</th> <td> 5.0850</td> <td> 7.477</td> <td> 0.680</td> <td> 0.496</td> <td> -9.570</td> <td> 19.740</td>\n",
"</tr>\n", "</tr>\n",
"<tr>\n", "<tr>\n",
" <th>Temperature</th> <td> 0.0014</td> <td> 0.122</td> <td> 0.012</td> <td> 0.991</td> <td> -0.238</td> <td> 0.240</td>\n", " <th>Temperature</th> <td> -0.1156</td> <td> 0.115</td> <td> -1.004</td> <td> 0.316</td> <td> -0.341</td> <td> 0.110</td>\n",
"</tr>\n", "</tr>\n",
"</table>" "</table>"
], ],
...@@ -550,24 +710,24 @@ ...@@ -550,24 +710,24 @@
"\"\"\"\n", "\"\"\"\n",
" Generalized Linear Model Regression Results \n", " Generalized Linear Model Regression Results \n",
"==============================================================================\n", "==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 7\n", "Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 5\n", "Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n", "Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n", "Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -2.5250\n", "Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Sat, 13 Apr 2019 Deviance: 0.22231\n", "Date: Wed, 28 Feb 2024 Deviance: 3.0144\n",
"Time: 19:11:24 Pearson chi2: 0.236\n", "Time: 20:44:24 Pearson chi2: 5.00\n",
"No. Iterations: 4 Covariance Type: nonrobust\n", "No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n", "===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n", " coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n", "-------------------------------------------------------------------------------\n",
"Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n", "Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n", "Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n", "===============================================================================\n",
"\"\"\"" "\"\"\""
] ]
}, },
"execution_count": 4, "execution_count": 5,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -593,6 +753,89 @@ ...@@ -593,6 +753,89 @@
"estimations avec des pincettes.\n" "estimations avec des pincettes.\n"
] ]
}, },
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 23</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 21</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -4.2246</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Wed, 28 Feb 2024</td> <th> Deviance: </th> <td> 3.6216</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>21:05:19</td> <th> Pearson chi2: </th> <td> 3.94</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>6</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>Intercept</th> <td> -4.3835</td> <td> 3.487</td> <td> -1.257</td> <td> 0.209</td> <td> -11.219</td> <td> 2.452</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Pressure</th> <td> 0.0102</td> <td> 0.019</td> <td> 0.549</td> <td> 0.583</td> <td> -0.026</td> <td> 0.047</td>\n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -4.2246\n",
"Date: Wed, 28 Feb 2024 Deviance: 3.6216\n",
"Time: 21:05:19 Pearson chi2: 3.94\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"==============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept -4.3835 3.487 -1.257 0.209 -11.219 2.452\n",
"Pressure 0.0102 0.019 0.549 0.583 -0.026 0.047\n",
"==============================================================================\n",
"\"\"\""
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Pressure']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -605,12 +848,12 @@ ...@@ -605,12 +848,12 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n",
"text/plain": [ "text/plain": [
"<Figure size 432x288 with 1 Axes>" "<Figure size 432x288 with 1 Axes>"
] ]
...@@ -648,7 +891,34 @@ ...@@ -648,7 +891,34 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHyNJREFUeJzt3XlwXeWd5vHvT1f77lW2ZbVtwOAYvOA1xFlkgjGQCUsPCRAqCVQoh6qQTDqdVEOFCpnpUE3G6RTdmQTiSVx0kgkmkwZDgmsw6Y6aTMJiCI7X8YIxWLLxbu3bvfrNH+dIyLJkXUlXutbR86m6dc55z3vueV8f+dHRe+99r7k7IiISLRnpboCIiKSewl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCKo33A3s/VmdszMdvSx38zsn81sv5ltM7NFqW+miIgMRDJ37k8A151n//XA7PCxBnhs6M0SEZGh6Dfc3f0l4NR5qtwE/MwDrwClZjY1VQ0UEZGBy0zBc5QDh7ptV4dlR3pWNLM1BHf35OXlLa6oqBjUCTs6OsjIGFsvF6jPY4P6PDYMpc979+494e6T+quXinC3Xsp6ndPA3dcB6wCWLFnir7/++qBOWFVVRWVl5aCOHa3U57FBfR4bhtJnM3snmXqp+HVZDXS/BZ8OHE7B84qIyCClItyfAz4Xvmvmg0Ctu58zJCMiIiOn32EZM3sSqAQmmlk18BCQBeDujwObgBuA/UATcPdwNVZERJLTb7i7+x397HfgSylrkYiMCu3t7VRXV9PS0jKk5ykpKWH37t0patXokEyfc3NzmT59OllZWYM6RypeUBWRMai6upqioiJmzpyJWW/vq0hOfX09RUVFKWzZha+/Prs7J0+epLq6mlmzZg3qHGPr/UcikjItLS1MmDBhSMEuvTMzJkyYMKS/ihTuIjJoCvbhM9R/W4W7iEgEacxdREatWCzGvHnzurY3btzIzJkz09egC4jCXURGrby8PLZu3drn/ng8Tmbm2Iw5DcuISKQ88cQTfOpTn+KTn/wk1157LQBr165l6dKlzJ8/n4ceeqir7sMPP8xll13GNddcwx133MH3vvc9ACorK+mcHuXEiRNdfw0kEgm+8Y1vdD3Xj3/8Y+D96QRuvfVW5syZw5133knwLnHYsmULH/rQh1iwYAHLli2jvr6e1atXn/VLacWKFWzbti2l/w5j81eaiKTUf/3NTnYdrhvUsYlEglgsdk753GnFPPTJy897bHNzMwsXLgRg1qxZPPPMMwC8/PLLbNu2jfHjx7N582b27dvHa6+9hrtz44038tJLL1FQUMCGDRt48803icfjLFq0iMWLF5/3fD/96U8pKSlhy5YttLa2smLFiq5fIG+++SY7d+5k2rRprFixgj/+8Y8sW7aM2267jaeeeoqlS5dSV1dHXl4en/vc53jiiSd49NFH2bt3L62trcyfP38w/3x9UriLyKjV17DMqlWrGD9+PACbN29m8+bNXHnllQA0NDSwb98+6uvrueWWW8jPzwfgxhtv7Pd8mzdvZtu2bfz6178GoLa2ln379pGdnc2yZcuYPn06AAsXLuTgwYOUlJQwdepUli5dCkBxcTEAt9xyCytWrGDt2rWsX7+eu+66a2j/EL1QuIvIkPV3h30+w/EhpoKCgq51d+eBBx7gi1/84ll1Hn300T7fbpiZmUlHRwfAWe81d3d+8IMfsHr16rPqV1VVkZOT07Udi8WIx+O4e6/nyM/PZ9WqVTz77LP86le/YrAz5J6PxtxFJNJWr17N+vXraWhoAKCmpoZjx47x0Y9+lGeeeYbm5mbq6+v5zW9+03XMzJkzeeONNwC67tI7n+uxxx6jvb0dgL1799LY2NjnuefMmcPhw4fZsmULEPwii8fjANxzzz185StfYenSpV1/ZaSS7txFJNKuvfZadu/ezVVXXQVAYWEhv/jFL1i0aBG33XYbCxcuZMaMGXzkIx/pOubrX/86n/70p/n5z3/O1Vdf3VV+zz33cPDgQRYtWoS7M2nSJDZu3NjnubOzs3nqqaf48pe/THNzM3l5efzud78DYPHixRQXF3P33cM016K7p+WxePFiH6zf//73gz52tFKfx4bR1Oddu3al5Hnq6upS8jxD9dBDD/natWtH5Fx1dXVeU1Pjs2fP9kQi0We93v6Ngdc9iYzVsIyIyAj75S9/yfLly3n44YeH7SsGNSwjIgJ8+9vfHrFzfeYznznnBd5U0527iAyae69flywpMNR/W4W7iAxKbm4uJ0+eVMAPAw/nc8/NzR30c2hYRkQGZfr06VRXV3P8+PEhPU9LS8uQQmw0SqbPnd/ENFgKdxEZlKysrEF/S1B3VVVVXZ8eHStGos8alhERiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEZRUuJvZdWa2x8z2m9n9vewvMbPfmNlfzGynmd2d+qaKiEiy+g13M4sBPwSuB+YCd5jZ3B7VvgTscvcFQCXwj2aWneK2iohIkpK5c18G7Hf3A+7eBmwAbupRx4EiMzOgEDgFxFPaUhERSZr1983lZnYrcJ273xNufxZY7u73datTBDwHzAGKgNvc/flenmsNsAagrKxs8YYNGwbV6IaGBgoLCwd17GilPo8N6vPYMJQ+r1y58g13X9JfvWS+INt6Kev5G2E1sBW4GrgYeNHM/uDudWcd5L4OWAewZMkSr6ysTOL056qqqmKwx45W6vPYoD6PDSPR52SGZaqBim7b04HDPercDTztgf3A2wR38SIikgbJhPsWYLaZzQpfJL2dYAimu3eBjwOYWRlwGXAglQ0VEZHk9Tss4+5xM7sPeAGIAevdfaeZ3Rvufxz4e+AJM9tOMIzzd+5+YhjbLSIi55HMmDvuvgnY1KPs8W7rh4FrU9s0EREZLH1CVUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEZRUuJvZdWa2x8z2m9n9fdSpNLOtZrbTzP4jtc0UEZGByOyvgpnFgB8Cq4BqYIuZPefuu7rVKQV+BFzn7u+a2eTharCIiPQvmTv3ZcB+dz/g7m3ABuCmHnU+Azzt7u8CuPux1DZTREQGwtz9/BXMbiW4I78n3P4ssNzd7+tW51EgC7gcKAL+yd1/1stzrQHWAJSVlS3esGHDoBrd0NBAYWHhoI4drdTnsUF9HhuG0ueVK1e+4e5L+qvX77AMYL2U9fyNkAksBj4O5AEvm9kr7r73rIPc1wHrAJYsWeKVlZVJnP5cVVVVDPbY0Up9HhvU57FhJPqcTLhXAxXdtqcDh3upc8LdG4FGM3sJWADsRURERlwyY+5bgNlmNsvMsoHbged61HkW+IiZZZpZPrAc2J3apoqISLL6vXN397iZ3Qe8AMSA9e6+08zuDfc/7u67zez/ANuADuAn7r5jOBsuIiJ9S2ZYBnffBGzqUfZ4j+21wNrUNU1ERAZLn1AVEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCIoqXA3s+vMbI+Z7Tez+89Tb6mZJczs1tQ1UUREBqrfcDezGPBD4HpgLnCHmc3to953gRdS3UgRERmYZO7clwH73f2Au7cBG4Cbeqn3ZeBfgWMpbJ+IiAxCZhJ1yoFD3bargeXdK5hZOXALcDWwtK8nMrM1wBqAsrIyqqqqBtjcQENDw6CPHa3U57FBfR4bRqLPyYS79VLmPbYfBf7O3RNmvVUPD3JfB6wDWLJkiVdWVibZzLNVVVUx2GNHK/V5bFCfx4aR6HMy4V4NVHTbng4c7lFnCbAhDPaJwA1mFnf3jSlppYiIDEgy4b4FmG1ms4Aa4HbgM90ruPusznUzewL4rYJdRCR9+g13d4+b2X0E74KJAevdfaeZ3Rvuf3yY2ygiIgOUzJ077r4J2NSjrNdQd/e7ht4sEREZCn1CVUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiJp8eDG7Vz8wCa219Ry8QObeHDj9nQ3KVKSeiukiEgqPbhxO7945d2u7YR71/Z3bp6XrmZFiu7cRWTEPfnqoQGVy8Ap3EVkxCW859yD5y+XgVO4i8iIi/Uxe2xf5TJwCncRGXF3LK8YULkMnF5QFZER1/miaecYe8yMO5ZX6MXUFFK4i0hafOfmeXzn5nlUVVXx1p2V6W5O5GhYRkQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiKKlwN7PrzGyPme03s/t72X+nmW0LH38yswWpb6qIiCSr33A3sxjwQ+B6YC5wh5nN7VHtbeBj7j4f+HtgXaobKiIiyUvmzn0ZsN/dD7h7G7ABuKl7BXf/k7ufDjdfAaantpkiIjIQ5u7nr2B2K3Cdu98Tbn8WWO7u9/VR/+vAnM76PfatAdYAlJWVLd6wYcOgGt3Q0EBhYeGgjh2t1OexQX0eG4bS55UrV77h7kv6q5eZxHNZL2W9/kYws5XAF4AP97bf3dcRDtksWbLEKysrkzj9uaqqqhjssaOV+jw2qM9jw0j0OZlwrwYqum1PBw73rGRm84GfANe7+8nUNE9ERAYjmTH3LcBsM5tlZtnA7cBz3SuY2V8BTwOfdfe9qW+miIgMRL937u4eN7P7gBeAGLDe3Xea2b3h/seBbwETgB+ZGUA8mTEhEREZHkm9z93dN7n7pe5+sbs/HJY9HgY77n6Pu49z94XhQ8GeIhvfrGHFI//O9ppaVjzy72x8sybdTRJJiVXfr2Lm/c+zvaaWmfc/z6rvV6W7SZGiT6hewDa+WcMDT2+n5kwzADVnmnng6e0KeBn1Vn2/in3HGs8q23esUQGfQgr3C9jaF/bQ3J44q6y5PcHaF/akqUUiqdEz2Psrl4FTuF/ADod37MmWi4h0UrhfwKaV5g2oXESkk8L9AvaN1ZeRlxU7qywvK8Y3Vl+WphaJpMbsyQUDKpeBU7hfwG6+spx/+Ot5lId36uWlefzDX8/j5ivL09wykaF58WuV5wT57MkFvPi1yvQ0KIKS+YSqpNHNV5Zz85XlVFVV8eU7K9PdHJGU6QzyqqoqDupnO+UU7iIiw6ijw3nreANbD53peswrame4p9NRuIuIpIi7U3OmmW3Vtfyl+gzbDtWyvaaWhtY4AEU5mSyoKKU0p3XY26JwFxEZBHfnSG0L22tq2VEThPi26lpONbYBkBUzPjC1mFuuLGdBRSkLppdw8aRCMjKMqqqqYW+fwl1EpB/uzqFTzew8XMuOw7XsqKljR00tJ8Mgj2UYsycXcs0HJjNveinzy0uYM7WInMxYP888fBTuIiLdtMU72H+sgd1H6th5uI5dR2rZdbiOupZgaCUzw7hkciEr50xmXnkJV5SXMHdqMXnZ6Qvy3ijcRWTMOtHQyp736tl9pI5dR+rYfaSe/cfqaU8E30eUm5XBZVOK+eSCaVw+rYTLpxVz2ZQicrMurCDvjcJdRCKvuS3B/mMN/L/36tjzXj17jtaz+0g9Jxref2FzclEOc6YW87FLJzF3WjFzpxYxa2IhsYzevozuwqdwF5HIaI0nOHC8kb1H69l3tIG9R+vZe7Sed0410fl10TmZGVxaVkTlZZOYM6WID0wN7sYnFuakt/EppnAXkVGnqS3OgeON7D/WwL5j9cHyaAMHTzbSEYZ4LMOYOSGfudOKuWlhOXOmFHHplCJmTigYtXfjA6FwF5ELkrtzrL6Vt443cOB4I28db+Ct4428dayh6zsOIAjxGRPyubSsiE/Mn8rssiIuLStk1sSCtL5bJd0U7iKSVs1xZ3t1LQdONPD2iUbePtHIgePBsvPDPxBMmnfx5AIWzxjHbUsruGRyIZdMLmTmhAKyMzVNVk8KdxEZdvUt7bxzsomDJxuD5YlGDp5s5O0TTcGLmr/7vwCYwbSSPC6aVMB/XlTORZMKuWhSARdPKmRKcS4ZY2A4JVUU7iIyZB0dwRDKu6eaeOdkI4dONfHOqSbeOdnEu6eauj612WlyUQ4zJxZw9ZxJdNQd5Zpl85k1sYAZE/JHxdsMRwOFu4j0y9053dRO9ekmqk83c+hUE4dON3HoVDOHwrK2eEdX/QyDqSV5zJiQz+rLy5gxoYAZ4/OZObGAvxqfT0HO+9FTVVVF5RVT0tGtSFO4iwiJDud4fSs1Z5qDx+lmas4EoR2sN9PUdvb3+ZbkZVExPo/LyopY9YEyKsbnUzE+nxnj85lWmqdx8DRTuItEXOdd9+EzzbxX28KR2mYO17Zw5Eyw7CyPd76HMFSSl0V5aR6zJhbw4dkTqRiXT/m4PCrG5TN9fB7FuVlp6pEkQ+EuMoq1Jzo4Xt/Ke3UtHK1t4b26lq71I+H2kdqWs4ZMIJgfZUpJLtNK8lgyYxxTS/MoDx/TSvMoH5dHYY7iYTTT1RO5ALXGE5xoaONYXQvH6ls5Vt/K8boWjta1cqz+/eXJxrauT152yo5lUFaSw5TiXOaVl7D68imUFecyrSSXqaV5TC3JZVJhjt55EnEKd5ER0p7o4FRjG8frWznR0MqJhrZgWd/K8YZWjte3cvBoE00vbeZMU/s5x2cYTCjMoaw4hykluSyoKGVyUbBeVpxDWXEuU4pzGV+QjZmCe6xTuIsMUqLDOd3UxqnGNk42BMtTjUFoB+tBeJ8Ml70FNgQfzplUlMOkohymFmQwd9Y0JhbmMLk4h8lFOUwuymVycQ4TCrLJjOlFSkmOwl0EiCc6ONPczpmmNk43tXO6sY0zTe1BeDe1caaxnVNhkJ9uDMpqm9vPGRLpVJqfxfiCbCYW5jB7ciFXXTSBiYU5TCgMyiYVBcuJhTnnvi2w8ooR6rVEmcJdIsPdaWpLUNvcfvajKVieaQ4C+UzndlNQdqaxnfpuH3PvKTuW0RXW4wuy+cDUYsYXZDOuIJsJYdn4gmwmFAbLcfnZZOkOW9JM4S4XjESH09ASp66lnfqWOHtOJYjvOkp9azt1zXHqW9qpawmXzUG9ujDA61ri1DW3n/N2vu4yDErzsynNy6I4L4uJhdlcPKmA0vwgkEvzsyjNz2Jct+1xBdkUZMc0hi2jjsJdhqSjw2lqT9DYGqehNd5t+X5ZZ3l9S/yssvowqBta4zS0xGns8SEZAF57/azNnMwMSvKyKMrNpDgvCN+/mlBASV4mRblZlOT1/ijNz6IwJ1MhLWOGwn2MSHQ4Le0JmtoSNLclaG5P0NQWp6ktET7iNLclaGxL0NwWD5dBQDe1JWhsi9PUGi7bEl2B3fNTi30xg8KcTIpyMinIyaQoN3iUlwbvpy4MtwtzMinODcL7wJ5dfHj54q4gL8rNHNNTuIoMhMI9jdyd1ngHLe0JWtrDZbzbeljeGk+wtbqdd/50kOawvLk9QWt7R1dQd5V3325L0BSWtfb4EEt/smJGfnYm+dkx8rNjFOZkkpcdY2pJLvnZQUAXhPsKwsAuDJcFObGu9aIwuPOyBj60UXVyDwsqSgd0jIgExmS4xxMdtCectngHrYkEbfH3t9viHbQleizjHbQlgjDtLGvteiS6trvK2xNd+4Lt99dbuq33/NRgv3bs7FrNzswgNzODvOwYuVkx8rJiwXpmjJK8LHKzg7L87Pf3dW2HoZ2XHSM/K0Z+dhDc+dkxCsJ1zQsiMrqNunB/893T/HhbC78+/Gfaw5BuDwO3+3Z7twBvT7wfyu2JDs7zmtuAZccyyMnMICcrI1jPipGTmRGGbxCWEwoyyMmMhfWCZW63ZW5WsD8369zyYBlj6+uvUfmRFV3bY+FrwkRk8JIKdzO7DvgnIAb8xN0f6bHfwv03AE3AXe7+5xS3FYAzTe3sP93B0fY6sjKCEM2MGVkZGeRnZ5IVMzJjQXlWhgXLWPDICdezw/DtWo9ZuIyR1bmeGdTPjsW6trvKMjO6Qn24X6Bb/vCLHK1v42/nxVn8nd9RVpTNq99cNaznTLcHN27nyVcP8dUr2vnCA5u4Y3kF37l5XrqbJSk26/7nceBv58W56/7nMeDtRz6R7mZFRr/hbmYx4IfAKqAa2GJmz7n7rm7Vrgdmh4/lwGPhMuVWzpnM2o/lU1lZORxPf0HpDPbujta3sfzhFyMb8A9u3M4vXnm3azvh3rWtgI+OzmDvzsNyBXxqJDOwugzY7+4H3L0N2ADc1KPOTcDPPPAKUGpmU1Pc1jGnZ7D3Vx4FT756aEDlMjr1NTKawhHTMS+ZYZlyoPv/rGrOvSvvrU45cKR7JTNbA6wJNxvMbM+AWvu+icCJQR47amRPuWRx5/rfNNUSyy/p2mff/U9vpKVRw+y8fX7kE5Hscw/62Y7oz3YPQ7nOM5KplEy49zao3PMXbDJ1cPd1wLokznn+Bpm97u5Lhvo8o4mZvR6vPaY+R5x+tseGkbjOyQzLVAMV3banA4cHUUdEREZIMuG+BZhtZrPMLBu4HXiuR53ngM9Z4INArbsf6flEIiIyMvodlnH3uJndB7xA8FbI9e6+08zuDfc/DmwieBvkfoK3Qt49fE0GUjC0Mwqpz2OD+jw2DHufzfuakFpEREYtfcZcRCSCFO4iIhE06sLdzK4zsz1mtt/M7k93e4aLmR00s+1mttXMXg/LxpvZi2a2L1yOS3c7h8LM1pvZMTPb0a2szz6a2QPhdd9jZqvT0+qh6aPP3zazmvBabzWzG7rtG9V9NrMKM/u9me02s51m9l/C8she5/P0eWSvs7uPmgfBC7pvARcB2cBfgLnpbtcw9fUgMLFH2X8H7g/X7we+m+52DrGPHwUWATv66yMwN7zeOcCs8Ocglu4+pKjP3wa+3kvdUd9nYCqwKFwvAvaG/YrsdT5Pn0f0Oo+2O/dkpkKIspuAfwnX/wW4OY1tGTJ3fwk41aO4rz7eBGxw91Z3f5vgnVnLRqShKdRHn/sy6vvs7kc8nETQ3euB3QSfXo/sdT5Pn/syLH0ebeHe1zQHUeTAZjN7I5y2AaDMw88PhMvJaWvd8Omrj1G/9veZ2bZw2KZziCJSfTazmcCVwKuMkevco88wgtd5tIV7UtMcRMQKd19EMOPml8zso+luUJpF+do/BlwMLCSYj+kfw/LI9NnMCoF/Bb7q7nXnq9pLWVT6PKLXebSF+5iZ5sDdD4fLY8AzBH+mHe2cbTNcHktfC4dNX32M7LV396PunnD3DuB/8v6f5JHos5llEYTc/3L3p8PiSF/n3vo80td5tIV7MlMhjHpmVmBmRZ3rwLXADoK+fj6s9nng2fS0cFj11cfngNvNLMfMZhF8d8BraWhfyvWYHvsWgmsNEehz+EU+PwV2u/v3u+2K7HXuq88jfp3T/cryIF6JvoHg1ee3gG+muz3D1MeLCF49/wuws7OfwATg34B94XJ8uts6xH4+SfDnaTvB3csXztdH4Jvhdd8DXJ/u9qewzz8HtgPbwv/oU6PSZ+DDBEMM24Ct4eOGKF/n8/R5RK+zph8QEYmg0TYsIyIiSVC4i4hEkMJdRCSCFO4iIhGkcBcRiaBkviBb5IJmZgmCt5hlEszj8Xl3b0pvq0TSS3fuEgXN7r7Q3a8A2oB7u+8Mv9t3xH7WzSw2UucS6YvCXaLmD8AlZjYznE/7R8CfgQozu9bMXjazP5vZ/w7n/sDMHjGzXeGETt8Lyz5lZjvM7C9m9lJYdpeZ/Y/OE5nZb82sMlxvMLP/ZmavAleZ2WIz+49w4rcXenw6UWTYKdwlMswsk2Cite1h0WXAz9z9SqAReBC4xoMJ2V4HvmZm4wk+Cn65u88HvhMe+y1gtbsvAG5M4vQFBHO0LyeYAfAHwK3uvhhYDzycij6KJEtj7hIFeWa2NVz/A8G8HtOAd9z9lbD8gwRfivDHYOoPsoGXgTqgBfiJmT0P/Das/0fgCTP7FdA52dX5JAgmioLgl8oVwIvhuWIEUw6IjBiFu0RBs7sv7F4Qhmpj9yLgRXe/o+fBZrYM+DjBRHT3AVe7+71mthz4BLDVzBYCcc7+aze323qLuye6nWunu181tG6JDJ6GZWSseAVYYWaXAJhZvpldGo67l7j7JuCrBHNtY2YXu/ur7v4t4ATBlKwHgYVmlmFmFfT9bTl7gElmdlX4XFlmdvlwdk6kJ925y5jg7sfN7C7gSTPLCYsfBOqBZ80sl+CO+2/CfWvNbHZY9m8EM3QCvE0wpr+D4IXa3s7VZma3Av9sZiUE/88eJZjhU2REaFZIEZEI0rCMiEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhH0/wF83YvoRFEFUAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Pressure': np.linspace(start=0, stop=250, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Pressure']])\n",
"data_pred.plot(x=\"Pressure\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Pressure\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -705,7 +975,7 @@ ...@@ -705,7 +975,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.3" "version": "3.6.4"
} }
}, },
"nbformat": 4, "nbformat": 4,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment