{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Analyse du risque de défaillance des joints toriques de la navette Challenger" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Le 27 Janvier 1986, veille du décollage de la navette *Challenger*, eu\n", "lieu une télé-conférence de trois heures entre les ingénieurs de la\n", "Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La\n", "discussion portait principalement sur les conséquences de la\n", "température prévue au moment du décollage de 31°F (juste en dessous de\n", "0°C) sur le succès du vol et en particulier sur la performance des\n", "joints toriques utilisés dans les moteurs. En effet, aucun test\n", "n'avait été effectué à cette température.\n", "\n", "L'étude qui suit reprend donc une partie des analyses effectuées cette\n", "nuit là et dont l'objectif était d'évaluer l'influence potentielle de\n", "la température et de la pression à laquelle sont soumis les joints\n", "toriques sur leur probabilité de dysfonctionnement. Pour cela, nous\n", "disposons des résultats des expériences réalisées par les ingénieurs\n", "de la NASA durant les 6 années précédant le lancement de la navette\n", "Challenger.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Chargement des données\n", "Nous commençons donc par charger ces données:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountTemperaturePressureMalfunction
04/12/81666500
111/12/81670501
23/22/82669500
311/11/82668500
44/04/83667500
56/18/82672500
68/30/836731000
711/28/836701000
82/03/846572001
94/06/846632001
108/30/846702001
1110/05/846782000
1211/08/846672000
131/24/856532002
144/12/856672000
154/29/856752000
166/17/856702000
177/29/856812000
188/27/856762000
1910/03/856792000
2010/30/856752002
2111/26/856762000
221/12/866582001
\n", "
" ], "text/plain": [ " Date Count Temperature Pressure Malfunction\n", "0 4/12/81 6 66 50 0\n", "1 11/12/81 6 70 50 1\n", "2 3/22/82 6 69 50 0\n", "3 11/11/82 6 68 50 0\n", "4 4/04/83 6 67 50 0\n", "5 6/18/82 6 72 50 0\n", "6 8/30/83 6 73 100 0\n", "7 11/28/83 6 70 100 0\n", "8 2/03/84 6 57 200 1\n", "9 4/06/84 6 63 200 1\n", "10 8/30/84 6 70 200 1\n", "11 10/05/84 6 78 200 0\n", "12 11/08/84 6 67 200 0\n", "13 1/24/85 6 53 200 2\n", "14 4/12/85 6 67 200 0\n", "15 4/29/85 6 75 200 0\n", "16 6/17/85 6 70 200 0\n", "17 7/29/85 6 81 200 0\n", "18 8/27/85 6 76 200 0\n", "19 10/03/85 6 79 200 0\n", "20 10/30/85 6 75 200 2\n", "21 11/26/85 6 76 200 0\n", "22 1/12/86 6 58 200 1" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "data = pd.read_csv(\"shuttle.csv\")\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Le jeu de données nous indique la date de l'essai, le nombre de joints\n", "toriques mesurés (il y en a 6 sur le lançeur principal), la\n", "température (en Farenheit) et la pression (en psi), et enfin le\n", "nombre de dysfonctionnements relevés. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Inspection graphique des données\n", "Les vols où aucun incident n'est relevé n'apportant aucun information\n", "sur l'influence de la température ou de la pression sur les\n", "dysfonctionnements, nous nous concentrons sur les expériences où au\n", "moins un joint a été défectueux.\n", "Ben voyons !... " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountTemperaturePressureMalfunction
04/12/81666500
111/12/81670501
23/22/82669500
311/11/82668500
44/04/83667500
56/18/82672500
68/30/836731000
711/28/836701000
82/03/846572001
94/06/846632001
108/30/846702001
1110/05/846782000
1211/08/846672000
131/24/856532002
144/12/856672000
154/29/856752000
166/17/856702000
177/29/856812000
188/27/856762000
1910/03/856792000
2010/30/856752002
2111/26/856762000
221/12/866582001
\n", "
" ], "text/plain": [ " Date Count Temperature Pressure Malfunction\n", "0 4/12/81 6 66 50 0\n", "1 11/12/81 6 70 50 1\n", "2 3/22/82 6 69 50 0\n", "3 11/11/82 6 68 50 0\n", "4 4/04/83 6 67 50 0\n", "5 6/18/82 6 72 50 0\n", "6 8/30/83 6 73 100 0\n", "7 11/28/83 6 70 100 0\n", "8 2/03/84 6 57 200 1\n", "9 4/06/84 6 63 200 1\n", "10 8/30/84 6 70 200 1\n", "11 10/05/84 6 78 200 0\n", "12 11/08/84 6 67 200 0\n", "13 1/24/85 6 53 200 2\n", "14 4/12/85 6 67 200 0\n", "15 4/29/85 6 75 200 0\n", "16 6/17/85 6 70 200 0\n", "17 7/29/85 6 81 200 0\n", "18 8/27/85 6 76 200 0\n", "19 10/03/85 6 79 200 0\n", "20 10/30/85 6 75 200 2\n", "21 11/26/85 6 76 200 0\n", "22 1/12/86 6 58 200 1" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#data = data[data.Malfunction>0]\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Très bien, nous avons une variabilité de température importante mais\n", "la pression est quasiment toujours égale à 200, ce qui devrait\n", "simplifier l'analyse.\n", "\n", "1/3 des experiences n'est pas à 200 psy \n", "\n", "Comment la fréquence d'échecs varie-t-elle avec la température ?\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFldJREFUeJzt3X2QZXV95/H3p2cGGB4UAhOjDBMxIoZSRGzxITEx8SHglhAXjWgiLruEUMLuulsbh00lhhhTlbBqJZYPiCxR2FKiokCyuAhurcaNBBochwfF9AIyzRgYRh5mYBhmpr/7x71zcqfp6b636TN3unm/qrr6nnN+9/T316dvf+55uL+TqkKSJICRYRcgSdp7GAqSpIahIElqGAqSpIahIElqGAqSpEZroZDkkiQPJLltN8uT5ONJxpOsTXJ8W7VIkvrT5p7C54ATZ1h+EnBU9+ss4NMt1iJJ6kNroVBV3wZ+OkOTU4BLq+MG4OAkz22rHknS7JYO8WcfDqzrmZ7ozvvJ1IZJzqKzN8EBBxzwihe/+MV7pEBJWixuvvnmB6tqxWzthhkKmWbetGNuVNVFwEUAo6OjNTY21mZdkrToJPlxP+2GefXRBHBEz/RKYP2QapEkMdxQuBo4vXsV0quBR6rqKYeOJEl7TmuHj5J8EXg9cFiSCeCPgWUAVXUhcA3wFmAceBw4o61aJEn9aS0Uqupdsywv4Jy2fr4kaXB+olmS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1Gg1FJKcmOTOJONJzptm+bOT/G2S7ye5PckZbdYjSZpZa6GQZAnwSeAk4BjgXUmOmdLsHOCOqnoZ8Hrgo0n2aasmSdLM2txTOAEYr6q7qupJ4HLglCltCjgoSYADgZ8C21usSZI0gzZD4XBgXc/0RHder08AvwisB24F/mNVTU5dUZKzkowlGduwYUNb9UrSM16boZBp5tWU6d8A1gDPA44DPpHkWU95UtVFVTVaVaMrVqyY/0olSUC7oTABHNEzvZLOHkGvM4CvVsc4cDfw4hZrkiTNoM1QuAk4KsmR3ZPHpwFXT2lzL/AGgCTPAY4G7mqxJknSDJa2teKq2p7kXOBaYAlwSVXdnuTs7vILgT8FPpfkVjqHm1ZX1YNt1SRJmllroQBQVdcA10yZd2HP4/XAm9usQZLUPz/RLElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpEaroZDkxCR3JhlPct5u2rw+yZoktyf5Vpv1SJJmtrSfRkleUlW3DbLiJEuATwJvAiaAm5JcXVV39LQ5GPgUcGJV3ZvkZwf5GZKk+dXvnsKFSW5M8r7uP/J+nACMV9VdVfUkcDlwypQ27wa+WlX3AlTVA32uW5LUgr5Coap+Gfht4AhgLMkXkrxplqcdDqzrmZ7ozuv1IuCQJP8nyc1JTp9uRUnOSjKWZGzDhg39lCxJmoO+zylU1T8BfwisBn4V+HiSHyb517t5SqZbzZTppcArgH8F/AbwR0leNM3PvqiqRqtqdMWKFf2WLEkaUL/nFI4FzqDzz/s64K1VdUuS5wHfBb46zdMm6OxZ7LQSWD9Nmwer6jHgsSTfBl4G/GigXkiS5kW/ewqfAG4BXlZV51TVLQBVtZ7O3sN0bgKOSnJkkn2A04Crp7S5CnhdkqVJ9gdeBfxg0E5IkuZHX3sKwFuALVW1AyDJCLBfVT1eVZdN94Sq2p7kXOBaYAlwSVXdnuTs7vILq+oHSf4XsBaYBC4e9ConSdL8SdXUw/zTNEpuAN5YVZu70wcC36iq17Zc31OMjo7W2NjYnv6xkrSgJbm5qkZna9fv4aP9dgYCQPfx/nMtTpK0d+o3FB5LcvzOiSSvALa0U5IkaVj6PafwfuDLSXZePfRc4J3tlCRJGpa+QqGqbkryYuBoOp8/+GFVbWu1MknSHtfvngLAK4Hnd5/z8iRU1aWtVCVJGop+P7x2GfALwBpgR3d2AYaCJC0i/e4pjALHVD/Xr0qSFqx+rz66Dfi5NguRJA1fv3sKhwF3JLkR2LpzZlWd3EpVkqSh6DcUzm+zCEnS3qHfS1K/leTngaOq6vru4HVL2i1NkrSn9XVOIcnvAl8BPtOddThwZVtFSZKGo98TzecAvwQ8Cs0Nd7yfsiQtMv2GwtbufZYBSLKUp95FTZK0wPUbCt9K8gfA8u69mb8M/G17ZUmShqHfUDgP2ADcCvwecA27v+OaJGmB6vfqo0ngs90vSdIi1e/YR3czzTmEqnrBvFckSRqaQcY+2mk/4B3Az8x/OZKkYerrnEJVbez5uq+q/hL49ZZrkyTtYf0ePjq+Z3KEzp7DQa1UJEkamn4PH3205/F24B7gt+a9GknSUPV79dGvtV2IJGn4+j189J9nWl5VH5ufciRJwzTI1UevBK7uTr8V+Dawro2iJEnDMchNdo6vqk0ASc4HvlxVZ7ZVmCRpz+t3mItVwJM9008Cz5/3aiRJQ9XvnsJlwI1Jvkbnk81vAy5trSpJ0lD0e/XRnyX5OvC67qwzqup77ZUlSRqGfg8fAewPPFpVfwVMJDmypZokSUPS7+04/xhYDfzX7qxlwP9oqyhJ0nD0u6fwNuBk4DGAqlqPw1xI0qLTbyg8WVVFd/jsJAe0V5IkaVj6DYUvJfkMcHCS3wWuxxvuSNKi0+/VRx/p3pv5UeBo4INVdV2rlUmS9rhZ9xSSLElyfVVdV1W/X1X/pd9ASHJikjuTjCc5b4Z2r0yyI8nbBylekjS/Zg2FqtoBPJ7k2YOsOMkS4JPAScAxwLuSHLObdn8BXDvI+iVJ86/fTzQ/Adya5Dq6VyABVNV/mOE5JwDjVXUXQJLLgVOAO6a0+/fAFXQG3JMkDVG/ofA/u1+DOJxdR1GdAF7V2yDJ4XQud/11ZgiFJGcBZwGsWrVqwDIkSf2aMRSSrKqqe6vq83NYd6aZV1Om/xJYXVU7kumad59UdRFwEcDo6OjUdUiS5sls5xSu3PkgyRUDrnsCOKJneiWwfkqbUeDyJPcAbwc+leQ3B/w5kqR5Mtvho9637y8YcN03AUd1x0i6DzgNeHdvg6pqxk9K8jng76rqSiRJQzFbKNRuHs+qqrYnOZfOVUVLgEuq6vYkZ3eXXzhQpZKk1s0WCi9L8iidPYbl3cd0p6uqnjXTk6vqGuCaKfOmDYOq+jd9VSxJas2MoVBVS/ZUIZKk4RvkfgqSpEXOUJAkNQwFSVLDUJAkNZ4xobBx81a+v+5hNm7eOuxSJA3I1++e0+/YRwvaVWvuY/UVa1k2MsK2yUkuOPVYTj7u8GGXJakPvn73rEW/p7Bx81ZWX7GWJ7ZNsmnrdp7YNskHrljrOw5pAfD1u+ct+lCYeGgLy0Z27eaykREmHtoypIok9cvX75636ENh5SHL2TY5ucu8bZOTrDxk+ZAqktQvX7973qIPhUMP3JcLTj2W/ZaNcNC+S9lv2QgXnHoshx6477BLkzQLX797XqoW1u0JRkdHa2xsbODnbdy8lYmHtrDykOX+QUkLjK/fpy/JzVU1Olu7Z8TVR9B5x+Efk7Qw+frdcxb94SNJUv8MBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkJya5M8l4kvOmWf7bSdZ2v/4hycvarEeSNLPWQiHJEuCTwEnAMcC7khwzpdndwK9W1bHAnwIXtVWPJGl2be4pnACMV9VdVfUkcDlwSm+DqvqHqnqoO3kDsLLFeiRJs2gzFA4H1vVMT3Tn7c6/A74+3YIkZyUZSzK2YcOGeSxRktSrzVDINPNq2obJr9EJhdXTLa+qi6pqtKpGV6xYMY8lSpJ6LW1x3RPAET3TK4H1UxslORa4GDipqja2WI8kaRZt7incBByV5Mgk+wCnAVf3NkiyCvgq8J6q+lGLtUiS+tDankJVbU9yLnAtsAS4pKpuT3J2d/mFwAeBQ4FPJQHYXlWjbdUkSZpZqqY9zL/XGh0drbGxsWGX0bqNm7cy8dAWVh6ynEMP3Hfe2i4ki7VfbRm/fxNr1j3McUcczAufc9Cwy9FeJsnN/bzpbvOcguboqjX3sfqKtSwbGWHb5CQXnHosJx83/YVbg7RdSBZrv9rywStv5dIb7m2mT3/NKj50ykuHWJEWKoe52Mts3LyV1Ves5Yltk2zaup0ntk3ygSvWsnHz1qfVdiFZrP1qy/j9m3YJBIBLv3sv4/dvGlJFWsgMhb3MxENbWDay62ZZNjLCxENbnlbbhWSx9qsta9Y9PNB8aSaGwl5m5SHL2TY5ucu8bZOTrDxk+dNqu5As1n615bgjDh5ovjQTQ2Evc+iB+3LBqcey37IRDtp3KfstG+GCU4+d9kTrIG0XksXar7a88DkHcfprVu0y7/TXrPJks+bEq4/2Ul59tHj71RavPtJMvPpogTv0wH37/kc4SNuFZLH2qy0vfM5BhoGeNg8fSZIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqdFqKCQ5McmdScaTnDfN8iT5eHf52iTHt1mPNKiNm7fy/XUPs3Hz1lnbjt29kY99407G7t44b+scpO34/Zv4ytg6xu/fNGvbQbRVbxs1+Dt4+pa2teIkS4BPAm8CJoCbklxdVXf0NDsJOKr79Srg093v0tBdteY+Vl+xlmUjI2ybnOSCU4/l5OMOn7bt71x8A98Z74TBx//3OK974aFcduarn9Y6B2n7wStv5dIb7m2mT3/NKj50yksH7fIeq7eNGvwdzI829xROAMar6q6qehK4HDhlSptTgEur4wbg4CTPbbEmqS8bN29l9RVreWLbJJu2bueJbZN84Iq1075LG7t7YxMIO/39+Man7DEMss5B2o7fv2mXf4YAl3733qf9brmtetuowd/B/ElVtbPi5O3AiVV1Znf6PcCrqurcnjZ/B/x5VX2nO/1NYHVVjU1Z11nAWd3Jo4E7Wyl67g4DHhx2ES1ZrH2bsV9Ztnz/pYc890UZGVmyc15NTu7Y/tBPflTbtjze23bJQYc9b8kBBz/lzcyOxx7+yY5ND66fyzoHaTuy/7MPXfqsFc8H2PH4IyzZ/9kAbH90wz2Tjz8y87GsGbRV71xr2Nm36dbb+zvotUB+B/P2tziLn6+qFbM1au3wEZBp5k1NoH7aUFUXARfNR1FtSDJWVaPDrqMNi7Vvi7lf2x95YNH1CxZv3/a2v8U2Dx9NAEf0TK8E1s+hjSRpD2kzFG4CjkpyZJJ9gNOAq6e0uRo4vXsV0quBR6rqJy3WJEmaQWuHj6pqe5JzgWuBJcAlVXV7krO7yy8ErgHeAowDjwNntFVPy/baQ1vzYLH2zX4tPIu1b3tVv1o70SxJWnj8RLMkqWEoSJIahsIcJLknya1J1iQZ6847P8l93Xlrkrxl2HUOKsnBSb6S5IdJfpDkNUl+Jsl1Sf6p+/2QYdc5qN30azFsr6N76l+T5NEk71/o22yGfi2Gbfafktye5LYkX0yy3962vTynMAdJ7gFGq+rBnnnnA5ur6iPDquvpSvJ54O+r6uLuFWP7A38A/LSq/rw7ftUhVbV6qIUOaDf9ej8LfHv16g4rcx+dYWLOYYFvs52m9OsMFvA2S3I48B3gmKrakuRLdC62OYa9aHu5pyAAkjwL+BXgvwNU1ZNV9TCdoUg+3232eeA3h1Ph3MzQr8XmDcD/q6ofs8C32RS9/VoMlgLLkyyl8+ZkPXvZ9jIU5qaAbyS5uTsEx07ndkd7vWTYu4Bz8AJgA/DXSb6X5OIkBwDP2fnZke73nx1mkXOwu37Bwt5eU50GfLH7eKFvs169/YIFvM2q6j7gI8C9wE/ofC7rG+xl28tQmJtfqqrj6Yzyek6SX6EzwusvAMfR2eAfHWJ9c7EUOB74dFW9HHgMeMpw5wvQ7vq10LdXo3tI7GTgy8OuZT5N068Fvc26IXYKcCTwPOCAJL8z3KqeylCYg6pa3/3+APA14ISqur+qdlTVJPBZOqPELiQTwERV/WN3+it0/pnev3Pk2u73B4ZU31xN269FsL16nQTcUlX3d6cX+jbbaZd+LYJt9kbg7qraUFXbgK8Cr2Uv216GwoCSHJDkoJ2PgTcDt2XXIb/fBtw2jPrmqqr+GViX5OjurDcAd9AZiuS93XnvBa4aQnlztrt+LfTtNcW72PUQy4LeZj126dci2Gb3Aq9Osn+S0Plb/AF72fby6qMBJXkBnb0D6Bya+EJV/VmSy+js1hZwD/B7C20cpyTHARcD+wB30bnaYwT4ErCKzh/1O6rqp0Mrcg5206+Ps8C3F0CS/YF1wAuq6pHuvENZ+Ntsun4thtfYnwDvBLYD3wPOBA5kL9pehoIkqeHhI0lSw1CQJDUMBUlSw1CQJDUMBUlSo7U7r0l7WvdSzG92J38O2EFniAvofMDwyaEUNoMk/xa4pvt5CmnovCRVi9LeNGptkiVVtWM3y74DnFtVawZY39Kq2j5vBUo9PHykZ4Qk701yY3cc/k8lGUmyNMnDSf5bkluSXJvkVUm+leSuneP1Jzkzyde6y+9M8od9rvfDSW4ETkjyJ0lu6o6jf2E63knnw1h/033+PkkmkhzcXferk1zfffzhJJ9Jch2dwf2WJvlY92evTXLmnv+tajEyFLToJXkJnWERXltVx9E5bHpad/GzgW90Bzh8EjifzvAD7wA+1LOaE7rPOR54d5Lj+ljvLVV1QlV9F/irqnol8NLushOr6m+ANcA7q+q4Pg5vvRx4a1W9BzgLeKCqTgBeSWdgxlVz+f1IvTynoGeCN9L5xznWGXKG5XSGUADYUlXXdR/fSmc44+1JbgWe37OOa6vqIYAkVwK/TOf1s7v1Psm/DIcC8IYkvw/sBxwG3Ax8fcB+XFVVT3Qfvxn4xSS9IXQUnWESpDkzFPRMEOCSqvqjXWZ2bnTS++58Etja87j39TH15FvNst4t1T1h1x3H5xN0Rme9L8mH6YTDdLbzL3vwU9s8NqVP76uqbyLNIw8f6ZngeuC3khwGnauU5nCo5c3p3Ot5fzpj4v/fAda7nE7IPNgdYffUnmWbgIN6pu8BXtF93NtuqmuB93UDaOd9jZcP2CfpKdxT0KJXVbd2R6e8PskIsA04m86tEPv1HeALdG7yctnOq4X6WW9VbUznPtG3AT8G/rFn8V8DFyfZQue8xfnAZ5P8M3DjDPV8hs6ommu6h64eoBNW0tPiJanSLLpX9rykqt4/7Fqktnn4SJLUcE9BktRwT0GS1DAUJEkNQ0GS1DAUJEkNQ0GS1Pj/j/MoHNCThYAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF+FJREFUeJzt3Xu4XXV95/H3NxcgIeEi4EFJKCARn6iAHORSdUqE0oROSa1hCu0A0qEZZkxnoGNLHH3obehTwRYroqkihdjWPCCUi6QDgSdKxxKuQm4QPAJCCISLCAkBkpDv/LFWFjun57IPOevsRXi/nmc/7PVbv7335xzO3p+stddeOzITSZIARnU6gCSpOSwFSVLFUpAkVSwFSVLFUpAkVSwFSVKltlKIiCsi4tmIWN7P+oiIr0ZET0QsjYgj6soiSWpPnVsKVwLTB1g/A5hSXmYD36gxiySpDbWVQmbeAfx8gCkzgflZWALsERHvqSuPJGlwYzr42PsBT7Ysry7Hnu49MSJmU2xNMG7cuO7JkyePSMB2bNmyhVGjmvvWTNPzQfMzNj0fmHE4ND0fbF/GRx555PnM3GfQiZlZ2wU4AFjez7qbgY+3LN8OdA92n93d3dkkixcv7nSEATU9X2bzMzY9X6YZh0PT82VuX0bg3mzjdbuTtbgaaP0n/yRgTYeySJLo7CGpNwJnlEchHQO8lJn/bteRJGnk1PaeQkR8FzgO2DsiVgN/AowFyMx5wELgJKAH2ACcVVcWSVJ7aiuFzDxtkPUJfLaux5ckDV2z32qXJI0oS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEmVWkshIqZHxKqI6ImIuX2s3z0iboqIByNiRUScVWceSdLAaiuFiBgNXAbMAKYCp0XE1F7TPguszMzDgOOAv46InerKJEkaWJ1bCkcBPZn5aGZuBBYAM3vNSWBiRAQwAfg5sLnGTJKkAURm1nPHEbOA6Zl5drl8OnB0Zs5pmTMRuBH4ADAR+O3MvLmP+5oNzAbo6urqXrBgQS2Z34r169czYcKETsfoV9PzQfMzNj0fmHE4ND0fbF/GadOm3ZeZRw46MTNruQCnAJe3LJ8OXNprzizgEiCAg4HHgN0Gut/u7u5sksWLF3c6woCani+z+Rmbni/TjMOh6fkyty8jcG+28dpd5+6j1cDkluVJwJpec84Crisz95Sl8IEaM0mSBlBnKdwDTImIA8s3j0+l2FXU6gngeICI6AIOAR6tMZMkaQBj6rrjzNwcEXOAW4DRwBWZuSIizinXzwP+ArgyIpZR7EI6PzOfryuTJGlgtZUCQGYuBBb2GpvXcn0NcGKdGSRJ7fMTzZKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSarUWgoRMT0iVkVET0TM7WfOcRHxQESsiIgf1plHkjSwMe1MiogPZebyodxxRIwGLgN+FVgN3BMRN2bmypY5ewBfB6Zn5hMR8e6hPIYkaXi1u6UwLyLujoj/Xr6Qt+MooCczH83MjcACYGavOb8DXJeZTwBk5rNt3rckqQaRme1NjJgC/B5wCnA38PeZuWiA+bMotgDOLpdPB47OzDktc74CjAU+CEwE/jYz5/dxX7OB2QBdXV3dCxYsaO+nGwHr169nwoQJnY7Rr6bng+ZnbHo+MONwaHo+2L6M06ZNuy8zjxx0Yma2fQFGA58GngIeAh4GfqufuacAl7csnw5c2mvO14AlwK7A3sBPgPcPlKG7uzubZPHixZ2OMKCm58tsfsam58s043Boer7M7csI3JttvM63+57CocBZwK8Di4DfyMz7I+K9wJ3AdX3cbDUwuWV5ErCmjznPZ+YrwCsRcQdwGPBIO7kkScOr3fcUvgbcDxyWmZ/NzPsBMnMN8MV+bnMPMCUiDoyInYBTgRt7zbkB+EREjImI8cDRFFsgkqQOaGtLATgJeDUz3wCIiFHALpm5ITO/09cNMnNzRMwBbqHY7XRFZq6IiHPK9fMy86GI+L/AUmALxe6mIR3lJEkaPu2Wwm3ACcD6cnk8cCvwywPdKDMXAgt7jc3rtXwxcHGbOSRJNWp399Eumbm1ECivj68nkiSpU9othVci4oitCxHRDbxaTyRJUqe0u/voXOCaiNh69NB7gN+uJ5IkqVPaKoXMvCciPgAcAgTwcGZuqjWZJGnEtbulAPBR4IDyNh+JCLKPTx9Lkt6+2v3w2neA9wEPAG+UwwlYCpK0A2l3S+FIYGr5UWlJ0g6q3aOPlgP71hlEktR57W4p7A2sjIi7gde3DmbmybWkkiR1RLul8Kd1hpAkNUO7h6T+MCJ+CZiSmbeVJ68bXW80SdJIa+s9hYj4feB7wN+VQ/sB19cVSpLUGe2+0fxZ4GPAywCZ+RPA71OWpB1Mu6XwehbfswxARIyh+JyCJGkH0m4p/DAi/jcwLiJ+FbgGuKm+WJKkTmi3FOYCzwHLgP9K8R0J/X3jmiTpbardo4+2AN8qL5KkHVS75z56jD7eQ8jMg4Y9kSSpY4Zy7qOtdgFOAd41/HEkSZ3U1nsKmflCy+WpzPwK8Mmas0mSRli7u4+OaFkcRbHlMLGWRJKkjml399Fft1zfDDwO/KdhTyNJ6qh2jz6aVncQSVLntbv76A8HWp+ZfzM8cSRJnTSUo48+CtxYLv8GcAfwZB2hJEmdMZQv2TkiM9cBRMSfAtdk5tl1BZMkjbx2T3OxP7CxZXkjcMCwp5EkdVS7WwrfAe6OiH+m+GTzp4D5taWSJHVEu0cfXRgR/wJ8ohw6KzN/XF8sSVIntLv7CGA88HJm/i2wOiIOrCmTJKlD2v06zj8Bzgc+Xw6NBf6hrlCSpM5od0vhU8DJwCsAmbkGT3MhSTucdkthY2Ym5emzI2LX+iJJkjql3VK4OiL+DtgjIn4fuA2/cEeSdjjtHn305fK7mV8GDgEuyMxFtSaTJI24QbcUImJ0RNyWmYsy848y83PtFkJETI+IVRHRExFzB5j30Yh4IyJmDSW8JGl4DVoKmfkGsCEidh/KHUfEaOAyYAYwFTgtIqb2M+9LwC1DuX9J0vBr9xPNrwHLImIR5RFIAJn5Pwa4zVFAT2Y+ChARC4CZwMpe8/4AuJbihHuSpA6K4qCiQSZFnNnXeGZeNcBtZgHTt540LyJOB47OzDktc/YD/oniqz2/DXw/M7/Xx33NBmYDdHV1dS9YsGDQzCNl/fr1TJgwodMx+tX0fND8jE3PB2YcDk3PB9uXcdq0afdl5pGDTszMfi/A/gOtH+S2pwCXtyyfDlzaa841wDHl9SuBWYPdb3d3dzbJ4sWLOx1hQE3Pl9n8jE3Pl2nG4dD0fJnblxG4N9t47R7sPYXrt16JiGuHWEyrgckty5OANb3mHAksiIjHgVnA1yPiN4f4OJKkYTLYewrRcv2gId73PcCU8hxJTwGnAr/TOiEzq/MnRcSVFLuPrkeS1BGDlUL2c31Qmbk5IuZQHFU0GrgiM1dExDnl+nlDSipJqt1gpXBYRLxMscUwrrxOuZyZudtAN87MhcDCXmN9lkFmfqatxJKk2gxYCpk5eqSCSJI6byjfpyBJ2sFZCpKkiqUgSapYCpKkiqUgSW8DPWvX8eKGTfSsXVfr41gKktRwF1y/jBMuuYPVL27ghEvu4IIbltX2WJaCJDVYz9p1zF/yxDZj8+98orYtBktBkhrsgSd/MaTx7WUpSFKDHT55jyGNby9LQZIa7OCuiZxx7P7bjJ1x7P4c3DWxlsdr95vXJEkd8uczP8wZxxzAsvuWcNt5x9RWCOCWgiS9LRzcNZE9x4+ttRDAUpAktbAUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVKm1FCJiekSsioieiJjbx/rfjYil5eXfIuKwOvNIkgZWWylExGjgMmAGMBU4LSKm9pr2GPArmXko8BfAN+vKI0kaXJ1bCkcBPZn5aGZuBBYAM1snZOa/ZeaL5eISYFKNeSRJg4jMrOeOI2YB0zPz7HL5dODozJzTz/zPAR/YOr/XutnAbICurq7uBQsW1JL5rVi/fj0TJkzodIx+NT0fND9j0/OBGYdD0/PB9mWcNm3afZl55KATM7OWC3AKcHnL8unApf3MnQY8BOw12P12d3dnkyxevLjTEQbU9HyZzc/Y9HyZZhwOTc+XuX0ZgXuzjdfuMW+pctqzGpjcsjwJWNN7UkQcClwOzMjMF2rMI0kaRJ3vKdwDTImIAyNiJ+BU4MbWCRGxP3AdcHpmPlJjFklSG2rbUsjMzRExB7gFGA1ckZkrIuKccv084AJgL+DrEQGwOdvZ5yVJqkWdu4/IzIXAwl5j81qunw38uzeW6/DC+tdZ/eKrTNpzHHtN2HkkHlKShs3tK5/hmRdf5faVz3D81H1re5xaS6EpbnjgKc6/diljR41i05YtXPTpQzn58P06HUuS2nLiJT/gkbWv8L8+vJkvzL+PQ7p25ZbzjqvlsXb401y8sP51zr92Ka9t2sK61zfz2qYt/PG1S3lh/eudjiZJg7p95TM8svaVbcZWrX2F21c+U8vj7fClsPrFVxk7atsfc+yoUax+8dUOJZKk9t26cu2QxrfXDl8Kk/Ycx6YtW7YZ27RlC5P2HNehRJLUvhOndg1pfHvt8KWw14SduejTh7LL2FFM3HkMu4wdxUWfPtQ3myW9LRw/dV8O6dp1m7FDunat7c3md8QbzScfvh8fO3hvjz6S9LZ0y3nHFUcfrfox3z7jIx59NBz2mrCzZSDpbev4qfvyg2fHcVyNhQDvgN1HkqT2WQqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpEqtpRAR0yNiVUT0RMTcPtZHRHy1XL80Io6oK8v19z/J2Vfdw/X3P1nXQ+gt6Fm7jhc3bKJn7bpOR5Ea7cKblvPwM+u48KbltT5ObaUQEaOBy4AZwFTgtIiY2mvaDGBKeZkNfKOOLMf85SLOvXoptz30LOdevZRj/3JRHQ+jIbrg+mWccMkdrH5xAydccgcX3LCs05GkRjpo7s1860c/Y9MbW/jWj37GQXNvru2x6txSOAroycxHM3MjsACY2WvOTGB+FpYAe0TEe4YzxPX3P8kzL2/cZuzplze6xdBhPWvXMX/JE9uMzb/zCbcYpF4uvGk5W3qNbSnH6xCZWc8dR8wCpmfm2eXy6cDRmTmnZc73gb/KzP9XLt8OnJ+Z9/a6r9kUWxIAhwCr2s0xZs/3vm/UzuP36D2+5fUNv9j84pqfDvHH6svewPPDcD91aWS+UeN332vMbvscAPDGhpcYPX53ADa//NzjWza89EIns/Whkb/DXsy4/RqZb+w+B3w4Ro/ZCbZ9ruQbmzdueu7xoWxe/1Jm7jPYpDFvLWZboo+x3g3Uzhwy85vAN4cj1HCLiHsz88hO5+hP0/NBkXHzS882NuPb5Xdoxu3T9HwwMs+VOncfrQYmtyxPAta8hTmSpBFSZyncA0yJiAMjYifgVODGXnNuBM4oj0I6BngpM5+uMZMkaQC17T7KzM0RMQe4BRgNXJGZKyLinHL9PGAhcBLQA2wAzqorT40auVurRdPzQfMzNj0fmHE4ND0fjEDG2t5oliS9/fiJZklSxVKQJFUshSGIiD0i4nsR8XBEPBQRx0bEuyJiUUT8pPzvnh3OeF5ErIiI5RHx3YjYpZMZI+KKiHg2Ipa3jPWbJyI+X572ZFVE/FoHM15c/n9eGhH/HBF7tKxrRMaWdZ+LiIyIvTuVsb98EfEHZYYVEXFRp/L1lzEiDo+IJRHxQETcGxFHdSpjREyOiMXla8uKiPif5fjIPl8y00ubF+Aq4Ozy+k7AHsBFwNxybC7wpQ7m2w94DBhXLl8NfKaTGYH/ABwBLG8Z6zMPxelQHgR2Bg4EfgqM7lDGE4Ex5fUvNTFjOT6Z4mCOnwF7dypjP7/DacBtwM7l8rub9jsEbgVmlNdPAn7Qwd/he4AjyusTgUfKHCP6fHFLoU0RsRvFH9W3ATJzY2b+guJUHVeV064CfrMzCStjgHERMQYYT/G5j45lzMw7gJ/3Gu4vz0xgQWa+npmPURyVdhQ16ytjZt6amZvLxSUUn6FpVMbSJcAfs+2HPkc8Yz/5/hvFGQteL+c826l8A2RMYLfy+u68+TmpTvwOn87M+8vr64CHKP6hN6LPF0uhfQcBzwF/HxE/jojLI2JXoCvLz1aU/313pwJm5lPAl4EngKcpPvdxa5MylvrLsx/QelKq1eVYp/0e8C/l9cZkjIiTgacy88Feq5qS8f3AJyLiroj4YUR8tBxvSj6Ac4GLI+JJiufO58vxjmaMiAOAjwB3McLPF0uhfWMoNj2/kZkfAV6h2JRrjHJf40yKTcn3ArtGxH/ubKohaeu0JyMpIr4AbAb+cetQH9NGPGNEjAe+AFzQ1+o+xjrxexwD7AkcA/wRcHVEBM3JB8XWzHmZORk4j3JPAB3MGBETgGuBczPz5YGm9jG23RkthfatBlZn5l3l8vcoSmJtlGd2Lf/7bD+3HwknAI9l5nOZuQm4DvjlhmVkgDyNOu1JRJwJ/Efgd7PciUtzMr6PovwfjIjHyxz3R8S+NCfjauC6LNxNcXLPvRuUD+BMiucJwDW8ufulIxkjYixFIfxjZm7NNaLPF0uhTZn5DPBkRBxSDh0PrKQ4VceZ5diZwA0diLfVE8AxETG+/BfZ8RT7JZuUEfrPcyNwakTsHBEHUnzPxt0dyEdETAfOB07OzA0tqxqRMTOXZea7M/OAzDyA4gXiiPLvtBEZgeuBTwJExPspDs54vkH5oHgR/ZXy+ieBn5TXRzxj+Zz9NvBQZv5Ny6qRfb7U+W76jnYBDgfuBZZS/MHvCewF3E7xx3Q78K4OZ/wz4GFgOfAdiiMTOpYR+C7F+xubKF64/stAeSh2ifyU4vToMzqYsYdif+0D5WVe0zL2Wv845dFHncjYz+9wJ+Afyr/F+4FPNu13CHwcuI/iKJ67gO4O/g4/TrH7Z2nL391JI/188TQXkqSKu48kSRVLQZJUsRQkSRVLQZJUsRQkSZXavnlNarqIeANYRvE8eAg4M7f9TIL0juOWgt7JXs3MwzPzQ8BG4JzWlVEYsedIRIweqceS+mMpSIV/BQ6OiAPK89l/neIDV5Mj4sSIuDMi7o+Ia8pz0xARfxURK8vvXPhyOXZKFN9l8WBE3FGOfSYivrb1gSLi+xFxXHl9fUT8eUTcBRwbEd3lyePui4hbtp7eQBoploLe8crTjM+g2JUEcAgwP9888eEXgRMy8wiKT7T/YUS8C/gU8MHMPBT4P+VtLwB+LTMPA05u4+F3pTi//9EUn6i9FJiVmd3AFcCFw/EzSu3yPQW9k42LiAfK6/9Kcd6Z9wI/y8wl5fgxFF9m8qPi1DTsBNwJvAy8BlweETcD3y/n/wi4MiKu5s0TrQ3kDYoToEFRRh8CFpWPNZritAzSiLEU9E72amYe3jpQvhi/0joELMrM03rfuPzqxuOBU4E5FOf2OScijgZ+HXggIg6nOPV261b5Li3XX8vMN1oea0VmHrt9P5b01rn7SBrYEuBjEXEwFN9jEBHvL99X2D0zF1J8Ucvh5fr3ZeZdmXkBxRlBJ1OcrO7wiBgVEZPp/9uxVgH7RMSx5X2NjYgP1vnDSb25pSANIDOfi4jPAN+NiJ3L4S8C64AbImIXin/hn1euuzgippRjt1OcfROK785exptnDO3rsTZGxCzgqxGxO8Xz8yvAimH/waR+eJZUSVLF3UeSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpMr/B7ZTo8X/XbLnAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n", "import matplotlib.pyplot as plt\n", "\n", "data[\"Frequency\"]=data.Malfunction/data.Count\n", "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", "data.plot(x=\"Pressure\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "À première vue, ce n'est pas flagrant mais bon, essayons quand même\n", "d'estimer l'impact de la température $t$ sur la probabilité de\n", "dysfonctionnements d'un joint. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimation de l'influence de la température\n", "\n", "Supposons que chacun des 6 joints toriques est endommagé avec la même\n", "probabilité et indépendamment des autres et que cette probabilité ne\n", "dépend que de la température. Si on note $p(t)$ cette probabilité, le\n", "nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n", "température $t$ suit une loi binomiale de paramètre $n=6$ et\n", "$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n", "régression logistique." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 23
Model: GLM Df Residuals: 21
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3.9210
Date: Wed, 28 Feb 2024 Deviance: 3.0144
Time: 20:44:24 Pearson chi2: 5.00
No. Iterations: 6 Covariance Type: nonrobust
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err z P>|z| [0.025 0.975]
Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740
Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110
" ], "text/plain": [ "\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: Frequency No. Observations: 23\n", "Model: GLM Df Residuals: 21\n", "Model Family: Binomial Df Model: 1\n", "Link Function: logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -3.9210\n", "Date: Wed, 28 Feb 2024 Deviance: 3.0144\n", "Time: 20:44:24 Pearson chi2: 5.00\n", "No. Iterations: 6 Covariance Type: nonrobust\n", "===============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "-------------------------------------------------------------------------------\n", "Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n", "Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n", "===============================================================================\n", "\"\"\"" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import statsmodels.api as sm\n", "\n", "data[\"Success\"]=data.Count-data.Malfunction\n", "data[\"Intercept\"]=1\n", "\n", "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n", "\n", "logmodel.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "L'estimateur le plus probable du paramètre de température est 0.0014\n", "et l'erreur standard de cet estimateur est de 0.122, autrement dit on\n", "ne peut pas distinguer d'impact particulier et il faut prendre nos\n", "estimations avec des pincettes.\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 23
Model: GLM Df Residuals: 21
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -4.2246
Date: Wed, 28 Feb 2024 Deviance: 3.6216
Time: 21:05:19 Pearson chi2: 3.94
No. Iterations: 6 Covariance Type: nonrobust
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err z P>|z| [0.025 0.975]
Intercept -4.3835 3.487 -1.257 0.209 -11.219 2.452
Pressure 0.0102 0.019 0.549 0.583 -0.026 0.047
" ], "text/plain": [ "\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: Frequency No. Observations: 23\n", "Model: GLM Df Residuals: 21\n", "Model Family: Binomial Df Model: 1\n", "Link Function: logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -4.2246\n", "Date: Wed, 28 Feb 2024 Deviance: 3.6216\n", "Time: 21:05:19 Pearson chi2: 3.94\n", "No. Iterations: 6 Covariance Type: nonrobust\n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "Intercept -4.3835 3.487 -1.257 0.209 -11.219 2.452\n", "Pressure 0.0102 0.019 0.549 0.583 -0.026 0.047\n", "==============================================================================\n", "\"\"\"" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[\"Success\"]=data.Count-data.Malfunction\n", "data[\"Intercept\"]=1\n", "\n", "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Pressure']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n", "\n", "logmodel.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimation de la probabilité de dysfonctionnant des joints toriques\n", "La température prévue le jour du décollage est de 31°F. Essayons\n", "d'estimer la probabilité de dysfonctionnement des joints toriques à\n", "cette température à partir du modèle que nous venons de construire:\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n", "data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n", "data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n", "plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false, "scrolled": true }, "source": [ "Comme on pouvait s'attendre au vu des données initiales, la\n", "température n'a pas d'impact notable sur la probabilité d'échec des\n", "joints toriques. Elle sera d'environ 0.2, comme dans les essais\n", "précédents où nous il y a eu défaillance d'au moins un joint. Revenons\n", "à l'ensemble des données initiales pour estimer la probabilité de\n", "défaillance d'un joint:\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHyNJREFUeJzt3XlwXeWd5vHvT1f77lW2ZbVtwOAYvOA1xFlkgjGQCUsPCRAqCVQoh6qQTDqdVEOFCpnpUE3G6RTdmQTiSVx0kgkmkwZDgmsw6Y6aTMJiCI7X8YIxWLLxbu3bvfrNH+dIyLJkXUlXutbR86m6dc55z3vueV8f+dHRe+99r7k7IiISLRnpboCIiKSewl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCKo33A3s/VmdszMdvSx38zsn81sv5ltM7NFqW+miIgMRDJ37k8A151n//XA7PCxBnhs6M0SEZGh6Dfc3f0l4NR5qtwE/MwDrwClZjY1VQ0UEZGBy0zBc5QDh7ptV4dlR3pWNLM1BHf35OXlLa6oqBjUCTs6OsjIGFsvF6jPY4P6PDYMpc979+494e6T+quXinC3Xsp6ndPA3dcB6wCWLFnir7/++qBOWFVVRWVl5aCOHa3U57FBfR4bhtJnM3snmXqp+HVZDXS/BZ8OHE7B84qIyCClItyfAz4Xvmvmg0Ctu58zJCMiIiOn32EZM3sSqAQmmlk18BCQBeDujwObgBuA/UATcPdwNVZERJLTb7i7+x397HfgSylrkYiMCu3t7VRXV9PS0jKk5ykpKWH37t0patXokEyfc3NzmT59OllZWYM6RypeUBWRMai6upqioiJmzpyJWW/vq0hOfX09RUVFKWzZha+/Prs7J0+epLq6mlmzZg3qHGPr/UcikjItLS1MmDBhSMEuvTMzJkyYMKS/ihTuIjJoCvbhM9R/W4W7iEgEacxdREatWCzGvHnzurY3btzIzJkz09egC4jCXURGrby8PLZu3drn/ng8Tmbm2Iw5DcuISKQ88cQTfOpTn+KTn/wk1157LQBr165l6dKlzJ8/n4ceeqir7sMPP8xll13GNddcwx133MH3vvc9ACorK+mcHuXEiRNdfw0kEgm+8Y1vdD3Xj3/8Y+D96QRuvfVW5syZw5133knwLnHYsmULH/rQh1iwYAHLli2jvr6e1atXn/VLacWKFWzbti2l/w5j81eaiKTUf/3NTnYdrhvUsYlEglgsdk753GnFPPTJy897bHNzMwsXLgRg1qxZPPPMMwC8/PLLbNu2jfHjx7N582b27dvHa6+9hrtz44038tJLL1FQUMCGDRt48803icfjLFq0iMWLF5/3fD/96U8pKSlhy5YttLa2smLFiq5fIG+++SY7d+5k2rRprFixgj/+8Y8sW7aM2267jaeeeoqlS5dSV1dHXl4en/vc53jiiSd49NFH2bt3L62trcyfP38w/3x9UriLyKjV17DMqlWrGD9+PACbN29m8+bNXHnllQA0NDSwb98+6uvrueWWW8jPzwfgxhtv7Pd8mzdvZtu2bfz6178GoLa2ln379pGdnc2yZcuYPn06AAsXLuTgwYOUlJQwdepUli5dCkBxcTEAt9xyCytWrGDt2rWsX7+eu+66a2j/EL1QuIvIkPV3h30+w/EhpoKCgq51d+eBBx7gi1/84ll1Hn300T7fbpiZmUlHRwfAWe81d3d+8IMfsHr16rPqV1VVkZOT07Udi8WIx+O4e6/nyM/PZ9WqVTz77LP86le/YrAz5J6PxtxFJNJWr17N+vXraWhoAKCmpoZjx47x0Y9+lGeeeYbm5mbq6+v5zW9+03XMzJkzeeONNwC67tI7n+uxxx6jvb0dgL1799LY2NjnuefMmcPhw4fZsmULEPwii8fjANxzzz185StfYenSpV1/ZaSS7txFJNKuvfZadu/ezVVXXQVAYWEhv/jFL1i0aBG33XYbCxcuZMaMGXzkIx/pOubrX/86n/70p/n5z3/O1Vdf3VV+zz33cPDgQRYtWoS7M2nSJDZu3NjnubOzs3nqqaf48pe/THNzM3l5efzud78DYPHixRQXF3P33cM016K7p+WxePFiH6zf//73gz52tFKfx4bR1Oddu3al5Hnq6upS8jxD9dBDD/natWtH5Fx1dXVeU1Pjs2fP9kQi0We93v6Ngdc9iYzVsIyIyAj75S9/yfLly3n44YeH7SsGNSwjIgJ8+9vfHrFzfeYznznnBd5U0527iAyae69flywpMNR/W4W7iAxKbm4uJ0+eVMAPAw/nc8/NzR30c2hYRkQGZfr06VRXV3P8+PEhPU9LS8uQQmw0SqbPnd/ENFgKdxEZlKysrEF/S1B3VVVVXZ8eHStGos8alhERiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEZRUuJvZdWa2x8z2m9n9vewvMbPfmNlfzGynmd2d+qaKiEiy+g13M4sBPwSuB+YCd5jZ3B7VvgTscvcFQCXwj2aWneK2iohIkpK5c18G7Hf3A+7eBmwAbupRx4EiMzOgEDgFxFPaUhERSZr1983lZnYrcJ273xNufxZY7u73datTBDwHzAGKgNvc/flenmsNsAagrKxs8YYNGwbV6IaGBgoLCwd17GilPo8N6vPYMJQ+r1y58g13X9JfvWS+INt6Kev5G2E1sBW4GrgYeNHM/uDudWcd5L4OWAewZMkSr6ysTOL056qqqmKwx45W6vPYoD6PDSPR52SGZaqBim7b04HDPercDTztgf3A2wR38SIikgbJhPsWYLaZzQpfJL2dYAimu3eBjwOYWRlwGXAglQ0VEZHk9Tss4+5xM7sPeAGIAevdfaeZ3Rvufxz4e+AJM9tOMIzzd+5+YhjbLSIi55HMmDvuvgnY1KPs8W7rh4FrU9s0EREZLH1CVUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEZRUuJvZdWa2x8z2m9n9fdSpNLOtZrbTzP4jtc0UEZGByOyvgpnFgB8Cq4BqYIuZPefuu7rVKQV+BFzn7u+a2eTharCIiPQvmTv3ZcB+dz/g7m3ABuCmHnU+Azzt7u8CuPux1DZTREQGwtz9/BXMbiW4I78n3P4ssNzd7+tW51EgC7gcKAL+yd1/1stzrQHWAJSVlS3esGHDoBrd0NBAYWHhoI4drdTnsUF9HhuG0ueVK1e+4e5L+qvX77AMYL2U9fyNkAksBj4O5AEvm9kr7r73rIPc1wHrAJYsWeKVlZVJnP5cVVVVDPbY0Up9HhvU57FhJPqcTLhXAxXdtqcDh3upc8LdG4FGM3sJWADsRURERlwyY+5bgNlmNsvMsoHbged61HkW+IiZZZpZPrAc2J3apoqISLL6vXN397iZ3Qe8AMSA9e6+08zuDfc/7u67zez/ANuADuAn7r5jOBsuIiJ9S2ZYBnffBGzqUfZ4j+21wNrUNU1ERAZLn1AVEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiSOEuIhJBCncRkQhSuIuIRJDCXUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCIoqXA3s+vMbI+Z7Tez+89Tb6mZJczs1tQ1UUREBqrfcDezGPBD4HpgLnCHmc3to953gRdS3UgRERmYZO7clwH73f2Au7cBG4Cbeqn3ZeBfgWMpbJ+IiAxCZhJ1yoFD3bargeXdK5hZOXALcDWwtK8nMrM1wBqAsrIyqqqqBtjcQENDw6CPHa3U57FBfR4bRqLPyYS79VLmPbYfBf7O3RNmvVUPD3JfB6wDWLJkiVdWVibZzLNVVVUx2GNHK/V5bFCfx4aR6HMy4V4NVHTbng4c7lFnCbAhDPaJwA1mFnf3jSlppYiIDEgy4b4FmG1ms4Aa4HbgM90ruPusznUzewL4rYJdRCR9+g13d4+b2X0E74KJAevdfaeZ3Rvuf3yY2ygiIgOUzJ077r4J2NSjrNdQd/e7ht4sEREZCn1CVUQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiJp8eDG7Vz8wCa219Ry8QObeHDj9nQ3KVKSeiukiEgqPbhxO7945d2u7YR71/Z3bp6XrmZFiu7cRWTEPfnqoQGVy8Ap3EVkxCW859yD5y+XgVO4i8iIi/Uxe2xf5TJwCncRGXF3LK8YULkMnF5QFZER1/miaecYe8yMO5ZX6MXUFFK4i0hafOfmeXzn5nlUVVXx1p2V6W5O5GhYRkQkghTuIiIRpHAXEYkghbuISAQp3EVEIkjhLiISQQp3EZEIUriLiESQwl1EJIIU7iIiEaRwFxGJIIW7iEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhGkcBcRiSCFu4hIBCncRUQiKKlwN7PrzGyPme03s/t72X+nmW0LH38yswWpb6qIiCSr33A3sxjwQ+B6YC5wh5nN7VHtbeBj7j4f+HtgXaobKiIiyUvmzn0ZsN/dD7h7G7ABuKl7BXf/k7ufDjdfAaantpkiIjIQ5u7nr2B2K3Cdu98Tbn8WWO7u9/VR/+vAnM76PfatAdYAlJWVLd6wYcOgGt3Q0EBhYeGgjh2t1OexQX0eG4bS55UrV77h7kv6q5eZxHNZL2W9/kYws5XAF4AP97bf3dcRDtksWbLEKysrkzj9uaqqqhjssaOV+jw2qM9jw0j0OZlwrwYqum1PBw73rGRm84GfANe7+8nUNE9ERAYjmTH3LcBsM5tlZtnA7cBz3SuY2V8BTwOfdfe9qW+miIgMRL937u4eN7P7gBeAGLDe3Xea2b3h/seBbwETgB+ZGUA8mTEhEREZHkm9z93dN7n7pe5+sbs/HJY9HgY77n6Pu49z94XhQ8GeIhvfrGHFI//O9ppaVjzy72x8sybdTRJJiVXfr2Lm/c+zvaaWmfc/z6rvV6W7SZGiT6hewDa+WcMDT2+n5kwzADVnmnng6e0KeBn1Vn2/in3HGs8q23esUQGfQgr3C9jaF/bQ3J44q6y5PcHaF/akqUUiqdEz2Psrl4FTuF/ADod37MmWi4h0UrhfwKaV5g2oXESkk8L9AvaN1ZeRlxU7qywvK8Y3Vl+WphaJpMbsyQUDKpeBU7hfwG6+spx/+Ot5lId36uWlefzDX8/j5ivL09wykaF58WuV5wT57MkFvPi1yvQ0KIKS+YSqpNHNV5Zz85XlVFVV8eU7K9PdHJGU6QzyqqoqDupnO+UU7iIiw6ijw3nreANbD53peswrame4p9NRuIuIpIi7U3OmmW3Vtfyl+gzbDtWyvaaWhtY4AEU5mSyoKKU0p3XY26JwFxEZBHfnSG0L22tq2VEThPi26lpONbYBkBUzPjC1mFuuLGdBRSkLppdw8aRCMjKMqqqqYW+fwl1EpB/uzqFTzew8XMuOw7XsqKljR00tJ8Mgj2UYsycXcs0HJjNveinzy0uYM7WInMxYP888fBTuIiLdtMU72H+sgd1H6th5uI5dR2rZdbiOupZgaCUzw7hkciEr50xmXnkJV5SXMHdqMXnZ6Qvy3ijcRWTMOtHQyp736tl9pI5dR+rYfaSe/cfqaU8E30eUm5XBZVOK+eSCaVw+rYTLpxVz2ZQicrMurCDvjcJdRCKvuS3B/mMN/L/36tjzXj17jtaz+0g9Jxref2FzclEOc6YW87FLJzF3WjFzpxYxa2IhsYzevozuwqdwF5HIaI0nOHC8kb1H69l3tIG9R+vZe7Sed0410fl10TmZGVxaVkTlZZOYM6WID0wN7sYnFuakt/EppnAXkVGnqS3OgeON7D/WwL5j9cHyaAMHTzbSEYZ4LMOYOSGfudOKuWlhOXOmFHHplCJmTigYtXfjA6FwF5ELkrtzrL6Vt443cOB4I28db+Ct4428dayh6zsOIAjxGRPyubSsiE/Mn8rssiIuLStk1sSCtL5bJd0U7iKSVs1xZ3t1LQdONPD2iUbePtHIgePBsvPDPxBMmnfx5AIWzxjHbUsruGRyIZdMLmTmhAKyMzVNVk8KdxEZdvUt7bxzsomDJxuD5YlGDp5s5O0TTcGLmr/7vwCYwbSSPC6aVMB/XlTORZMKuWhSARdPKmRKcS4ZY2A4JVUU7iIyZB0dwRDKu6eaeOdkI4dONfHOqSbeOdnEu6eauj612WlyUQ4zJxZw9ZxJdNQd5Zpl85k1sYAZE/JHxdsMRwOFu4j0y9053dRO9ekmqk83c+hUE4dON3HoVDOHwrK2eEdX/QyDqSV5zJiQz+rLy5gxoYAZ4/OZObGAvxqfT0HO+9FTVVVF5RVT0tGtSFO4iwiJDud4fSs1Z5qDx+lmas4EoR2sN9PUdvb3+ZbkZVExPo/LyopY9YEyKsbnUzE+nxnj85lWmqdx8DRTuItEXOdd9+EzzbxX28KR2mYO17Zw5Eyw7CyPd76HMFSSl0V5aR6zJhbw4dkTqRiXT/m4PCrG5TN9fB7FuVlp6pEkQ+EuMoq1Jzo4Xt/Ke3UtHK1t4b26lq71I+H2kdqWs4ZMIJgfZUpJLtNK8lgyYxxTS/MoDx/TSvMoH5dHYY7iYTTT1RO5ALXGE5xoaONYXQvH6ls5Vt/K8boWjta1cqz+/eXJxrauT152yo5lUFaSw5TiXOaVl7D68imUFecyrSSXqaV5TC3JZVJhjt55EnEKd5ER0p7o4FRjG8frWznR0MqJhrZgWd/K8YZWjte3cvBoE00vbeZMU/s5x2cYTCjMoaw4hykluSyoKGVyUbBeVpxDWXEuU4pzGV+QjZmCe6xTuIsMUqLDOd3UxqnGNk42BMtTjUFoB+tBeJ8Ml70FNgQfzplUlMOkohymFmQwd9Y0JhbmMLk4h8lFOUwuymVycQ4TCrLJjOlFSkmOwl0EiCc6ONPczpmmNk43tXO6sY0zTe1BeDe1caaxnVNhkJ9uDMpqm9vPGRLpVJqfxfiCbCYW5jB7ciFXXTSBiYU5TCgMyiYVBcuJhTnnvi2w8ooR6rVEmcJdIsPdaWpLUNvcfvajKVieaQ4C+UzndlNQdqaxnfpuH3PvKTuW0RXW4wuy+cDUYsYXZDOuIJsJYdn4gmwmFAbLcfnZZOkOW9JM4S4XjESH09ASp66lnfqWOHtOJYjvOkp9azt1zXHqW9qpawmXzUG9ujDA61ri1DW3n/N2vu4yDErzsynNy6I4L4uJhdlcPKmA0vwgkEvzsyjNz2Jct+1xBdkUZMc0hi2jjsJdhqSjw2lqT9DYGqehNd5t+X5ZZ3l9S/yssvowqBta4zS0xGns8SEZAF57/azNnMwMSvKyKMrNpDgvCN+/mlBASV4mRblZlOT1/ijNz6IwJ1MhLWOGwn2MSHQ4Le0JmtoSNLclaG5P0NQWp6ktET7iNLclaGxL0NwWD5dBQDe1JWhsi9PUGi7bEl2B3fNTi30xg8KcTIpyMinIyaQoN3iUlwbvpy4MtwtzMinODcL7wJ5dfHj54q4gL8rNHNNTuIoMhMI9jdyd1ngHLe0JWtrDZbzbeljeGk+wtbqdd/50kOawvLk9QWt7R1dQd5V3325L0BSWtfb4EEt/smJGfnYm+dkx8rNjFOZkkpcdY2pJLvnZQUAXhPsKwsAuDJcFObGu9aIwuPOyBj60UXVyDwsqSgd0jIgExmS4xxMdtCectngHrYkEbfH3t9viHbQleizjHbQlgjDtLGvteiS6trvK2xNd+4Lt99dbuq33/NRgv3bs7FrNzswgNzODvOwYuVkx8rJiwXpmjJK8LHKzg7L87Pf3dW2HoZ2XHSM/K0Z+dhDc+dkxCsJ1zQsiMrqNunB/893T/HhbC78+/Gfaw5BuDwO3+3Z7twBvT7wfyu2JDs7zmtuAZccyyMnMICcrI1jPipGTmRGGbxCWEwoyyMmMhfWCZW63ZW5WsD8369zyYBlj6+uvUfmRFV3bY+FrwkRk8JIKdzO7DvgnIAb8xN0f6bHfwv03AE3AXe7+5xS3FYAzTe3sP93B0fY6sjKCEM2MGVkZGeRnZ5IVMzJjQXlWhgXLWPDICdezw/DtWo9ZuIyR1bmeGdTPjsW6trvKMjO6Qn24X6Bb/vCLHK1v42/nxVn8nd9RVpTNq99cNaznTLcHN27nyVcP8dUr2vnCA5u4Y3kF37l5XrqbJSk26/7nceBv58W56/7nMeDtRz6R7mZFRr/hbmYx4IfAKqAa2GJmz7n7rm7Vrgdmh4/lwGPhMuVWzpnM2o/lU1lZORxPf0HpDPbujta3sfzhFyMb8A9u3M4vXnm3azvh3rWtgI+OzmDvzsNyBXxqJDOwugzY7+4H3L0N2ADc1KPOTcDPPPAKUGpmU1Pc1jGnZ7D3Vx4FT756aEDlMjr1NTKawhHTMS+ZYZlyoPv/rGrOvSvvrU45cKR7JTNbA6wJNxvMbM+AWvu+icCJQR47amRPuWRx5/rfNNUSyy/p2mff/U9vpKVRw+y8fX7kE5Hscw/62Y7oz3YPQ7nOM5KplEy49zao3PMXbDJ1cPd1wLokznn+Bpm97u5Lhvo8o4mZvR6vPaY+R5x+tseGkbjOyQzLVAMV3banA4cHUUdEREZIMuG+BZhtZrPMLBu4HXiuR53ngM9Z4INArbsf6flEIiIyMvodlnH3uJndB7xA8FbI9e6+08zuDfc/DmwieBvkfoK3Qt49fE0GUjC0Mwqpz2OD+jw2DHufzfuakFpEREYtfcZcRCSCFO4iIhE06sLdzK4zsz1mtt/M7k93e4aLmR00s+1mttXMXg/LxpvZi2a2L1yOS3c7h8LM1pvZMTPb0a2szz6a2QPhdd9jZqvT0+qh6aPP3zazmvBabzWzG7rtG9V9NrMKM/u9me02s51m9l/C8she5/P0eWSvs7uPmgfBC7pvARcB2cBfgLnpbtcw9fUgMLFH2X8H7g/X7we+m+52DrGPHwUWATv66yMwN7zeOcCs8Ocglu4+pKjP3wa+3kvdUd9nYCqwKFwvAvaG/YrsdT5Pn0f0Oo+2O/dkpkKIspuAfwnX/wW4OY1tGTJ3fwk41aO4rz7eBGxw91Z3f5vgnVnLRqShKdRHn/sy6vvs7kc8nETQ3euB3QSfXo/sdT5Pn/syLH0ebeHe1zQHUeTAZjN7I5y2AaDMw88PhMvJaWvd8Omrj1G/9veZ2bZw2KZziCJSfTazmcCVwKuMkevco88wgtd5tIV7UtMcRMQKd19EMOPml8zso+luUJpF+do/BlwMLCSYj+kfw/LI9NnMCoF/Bb7q7nXnq9pLWVT6PKLXebSF+5iZ5sDdD4fLY8AzBH+mHe2cbTNcHktfC4dNX32M7LV396PunnD3DuB/8v6f5JHos5llEYTc/3L3p8PiSF/n3vo80td5tIV7MlMhjHpmVmBmRZ3rwLXADoK+fj6s9nng2fS0cFj11cfngNvNLMfMZhF8d8BraWhfyvWYHvsWgmsNEehz+EU+PwV2u/v3u+2K7HXuq88jfp3T/cryIF6JvoHg1ee3gG+muz3D1MeLCF49/wuws7OfwATg34B94XJ8uts6xH4+SfDnaTvB3csXztdH4Jvhdd8DXJ/u9qewzz8HtgPbwv/oU6PSZ+DDBEMM24Ct4eOGKF/n8/R5RK+zph8QEYmg0TYsIyIiSVC4i4hEkMJdRCSCFO4iIhGkcBcRiaBkviBb5IJmZgmCt5hlEszj8Xl3b0pvq0TSS3fuEgXN7r7Q3a8A2oB7u+8Mv9t3xH7WzSw2UucS6YvCXaLmD8AlZjYznE/7R8CfgQozu9bMXjazP5vZ/w7n/sDMHjGzXeGETt8Lyz5lZjvM7C9m9lJYdpeZ/Y/OE5nZb82sMlxvMLP/ZmavAleZ2WIz+49w4rcXenw6UWTYKdwlMswsk2Cite1h0WXAz9z9SqAReBC4xoMJ2V4HvmZm4wk+Cn65u88HvhMe+y1gtbsvAG5M4vQFBHO0LyeYAfAHwK3uvhhYDzycij6KJEtj7hIFeWa2NVz/A8G8HtOAd9z9lbD8gwRfivDHYOoPsoGXgTqgBfiJmT0P/Das/0fgCTP7FdA52dX5JAgmioLgl8oVwIvhuWIEUw6IjBiFu0RBs7sv7F4Qhmpj9yLgRXe/o+fBZrYM+DjBRHT3AVe7+71mthz4BLDVzBYCcc7+aze323qLuye6nWunu181tG6JDJ6GZWSseAVYYWaXAJhZvpldGo67l7j7JuCrBHNtY2YXu/ur7v4t4ATBlKwHgYVmlmFmFfT9bTl7gElmdlX4XFlmdvlwdk6kJ925y5jg7sfN7C7gSTPLCYsfBOqBZ80sl+CO+2/CfWvNbHZY9m8EM3QCvE0wpr+D4IXa3s7VZma3Av9sZiUE/88eJZjhU2REaFZIEZEI0rCMiEgEKdxFRCJI4S4iEkEKdxGRCFK4i4hEkMJdRCSCFO4iIhH0/wF83YvoRFEFUAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "data_pred = pd.DataFrame({'Pressure': np.linspace(start=0, stop=250, num=121), 'Intercept': 1})\n", "data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Pressure']])\n", "data_pred.plot(x=\"Pressure\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n", "plt.scatter(x=data[\"Pressure\"],y=data[\"Frequency\"])\n", "plt.grid(True)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.06521739130434782\n" ] } ], "source": [ "data = pd.read_csv(\"shuttle.csv\")\n", "print(np.sum(data.Malfunction)/np.sum(data.Count))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe\n", "un joint primaire un joint secondaire sur chacune des trois parties du\n", "lançeur, la probabilité de défaillance des deux joints d'un lançeur\n", "est de $p^2 \\approx 0.00425$. La probabilité de défaillance d'un des\n", "lançeur est donc de $1-(1-p^2)^3 \\approx 1.2%$. Ça serait vraiment\n", "pas de chance... Tout est sous contrôle, le décollage peut donc avoir\n", "lieu demain comme prévu.\n", "\n", "Seulement, le lendemain, la navette Challenger explosera et emportera\n", "avec elle ses sept membres d'équipages. L'opinion publique est\n", "fortement touchée et lors de l'enquête qui suivra, la fiabilité des\n", "joints toriques sera directement mise en cause. Au delà des problèmes\n", "de communication interne à la NASA qui sont pour beaucoup dans ce\n", "fiasco, l'analyse précédente comporte (au moins) un petit\n", "problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette\n", "analyse et de regarder ce jeu de données sous tous les angles afin\n", "d'expliquer ce qui ne va pas." ] } ], "metadata": { "celltoolbar": "Hide code", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }