Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
d855edac499e900af8bfe5ca379300e4
mooc-rr
Commits
f1ae5d99
Commit
f1ae5d99
authored
Nov 14, 2025
by
d855edac499e900af8bfe5ca379300e4
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Un premier essai ave Jupyter
parent
fd6681c8
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
205 additions
and
0 deletions
+205
-0
Tutorial.ipynb
module2/exo1/Tutorial.ipynb
+6
-0
Untitled.ipynb
module2/exo1/Untitled.ipynb
+199
-0
No files found.
module2/exo1/Tutorial.ipynb
0 → 100644
View file @
f1ae5d99
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}
module2/exo1/Untitled.ipynb
0 → 100644
View file @
f1ae5d99
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Titre du document\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
" 2+2 "
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'pritn' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-14-faa952c1b3ac>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m \u001b[0;36m18\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mpritn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'pritn' is not defined"
]
}
],
"source": [
"x= 18\n",
"pritn(x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x=18\n",
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x = x + 10\n",
"print(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Petit exemple de completion "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"mu, sigma = 100, 15"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"x = np.random.normal(loc=mu, scale=sigma, size=10000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADfZJREFUeJzt3V2MXOddx/Hvr3YDCX1JhA1K/IJdyRR80aTp4oaX0tAUsFOEBUIoLhAaNbKMEpSGC2KEVIR6Q1WKqqppLCs1obzEhTYqJpg6F1ByUYJsQ5LaSRy2Toi3DsQhUCBFct3+uZhpNAyznrPr2V3v0+9HWmnOOY93/482+vb4eGebqkKS1JZXLfUAkqTJM+6S1CDjLkkNMu6S1CDjLkkNMu6S1CDjLkkNMu6S1CDjLkkNWrlUX3jVqlW1YcOGpfrykrQsHT169MWqWj1u3ZLFfcOGDRw5cmSpvrwkLUtJ/rnLOh/LSFKDjLskNci4S1KDjLskNci4S1KDxsY9yb4kLyQ5Nsv1JPlokukkjye5dvJjSpLmosud+33A1vNc3wZs6n/sBO658LEkSRdibNyr6mHgpfMs2Q58snoeAS5PcuWkBpQkzd0knrmvAU4NHM/0z0mSlsgk3qGaEedG/r9uJ9lJ79EN69evn8CXlhbGht1/uSRf99nfedeSfF21ZxJ37jPAuoHjtcDpUQuram9VTVXV1OrVY381giRpniYR9wPAzf2fmrkO+EpVPT+BzytJmqexj2WS3A9cD6xKMgP8FvBqgKraAxwEbgSmga8CtyzUsJKkbsbGvap2jLlewG0Tm0iSdMF8h6okNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDjLskNci4S1KDOsU9ydYkJ5JMJ9k94vrrk/xFkseSHE9yy+RHlSR1NTbuSVYAdwPbgM3AjiSbh5bdBjxRVVcD1wMfTnLJhGeVJHXU5c59CzBdVSer6iywH9g+tKaA1yYJ8BrgJeDcRCeVJHXWJe5rgFMDxzP9c4M+Bnw/cBr4InBHVX1jIhNKkuasS9wz4lwNHf8k8ChwFXAN8LEkr/t/nyjZmeRIkiNnzpyZ87CSpG66xH0GWDdwvJbeHfqgW4AHqmcaeAb4vuFPVFV7q2qqqqZWr14935klSWN0ifthYFOSjf1/JL0JODC05jngBoAk3w28ETg5yUElSd2tHLegqs4luR04BKwA9lXV8SS7+tf3AB8A7kvyRXqPce6qqhcXcG5J0nmMjTtAVR0EDg6d2zPw+jTwE5MdTZI0X75DVZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIa1CnuSbYmOZFkOsnuWdZcn+TRJMeT/O1kx5QkzcXKcQuSrADuBn4cmAEOJzlQVU8MrLkc+DiwtaqeS/JdCzWwJGm8LnfuW4DpqjpZVWeB/cD2oTXvBh6oqucAquqFyY4pSZqLLnFfA5waOJ7pnxv0vcAVST6f5GiSmyc1oCRp7sY+lgEy4lyN+DxvAW4ALgX+LskjVfX0//lEyU5gJ8D69evnPq0kqZMud+4zwLqB47XA6RFrPldVL1fVi8DDwNXDn6iq9lbVVFVNrV69er4zS5LG6BL3w8CmJBuTXALcBBwYWvPnwNuSrExyGfBW4MnJjipJ6mrsY5mqOpfkduAQsALYV1XHk+zqX99TVU8m+RzwOPAN4N6qOraQg0uSZtflmTtVdRA4OHRuz9Dxh4APTW40SdJ8+Q5VSWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBnWKe5KtSU4kmU6y+zzrfiDJ15P83ORGlCTN1di4J1kB3A1sAzYDO5JsnmXdB4FDkx5SkjQ3Xe7ctwDTVXWyqs4C+4HtI9b9KvAZ4IUJzidJmocucV8DnBo4numfe0WSNcDPAHsmN5okab66xD0jztXQ8UeAu6rq6+f9RMnOJEeSHDlz5kzXGSVJc7Syw5oZYN3A8Vrg9NCaKWB/EoBVwI1JzlXVZwcXVdVeYC/A1NTU8P9ASJImpEvcDwObkmwEvgzcBLx7cEFVbfzm6yT3AQ8Oh12StHjGxr2qziW5nd5PwawA9lXV8SS7+td9zi5JF5kud+5U1UHg4NC5kVGvqvdc+FiSpAvhO1QlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUGd4p5ka5ITSaaT7B5x/ReSPN7/+EKSqyc/qiSpq7FxT7ICuBvYBmwGdiTZPLTsGeDtVfUm4APA3kkPKknqrsud+xZguqpOVtVZYD+wfXBBVX2hqv69f/gIsHayY0qS5qJL3NcApwaOZ/rnZvNe4K9GXUiyM8mRJEfOnDnTfUpJ0px0iXtGnKuRC5Mfoxf3u0Zdr6q9VTVVVVOrV6/uPqUkaU5WdlgzA6wbOF4LnB5elORNwL3Atqr6t8mMJ0majy537oeBTUk2JrkEuAk4MLggyXrgAeCXqurpyY8pSZqLsXfuVXUuye3AIWAFsK+qjifZ1b++B3g/8J3Ax5MAnKuqqYUbW5J0Pl0ey1BVB4GDQ+f2DLy+Fbh1sqNJkubLd6hKUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1qFPck2xNciLJdJLdI64nyUf71x9Pcu3kR5UkdTU27klWAHcD24DNwI4km4eWbQM29T92AvdMeE5J0hx0uXPfAkxX1cmqOgvsB7YPrdkOfLJ6HgEuT3LlhGeVJHXUJe5rgFMDxzP9c3NdI0laJCs7rMmIczWPNSTZSe+xDcB/JznR4etfbFYBLy71EIvMPS+SfHCxv+Ir/B4vH9/TZVGXuM8A6waO1wKn57GGqtoL7O0y2MUqyZGqmlrqORaTe27ft9p+of09d3kscxjYlGRjkkuAm4ADQ2sOADf3f2rmOuArVfX8hGeVJHU09s69qs4luR04BKwA9lXV8SS7+tf3AAeBG4Fp4KvALQs3siRpnC6PZaiqg/QCPnhuz8DrAm6b7GgXrWX9WGme3HP7vtX2C43vOb0uS5Ja4q8fkKQGGfe+JPuSvJDk2MC5TyV5tP/xbJJHZ/mzlyf5dJKnkjyZ5AcXb/L5u8A935nkeJJjSe5P8u2LN/n8zbLna5I80t/zkSRbZvmz5/01HBej+e43ybokf9P/7/l4kjsWd/L5u5DvcX/tiiT/mOTBxZl4gVSVH71HUz8KXAscm+X6h4H3z3LtD4Bb+68vAS5f6v0s5J7pvUHtGeDS/vGfAu9Z6v3Md8/AQ8C2/usbgc+P+HMrgC8Bb+h/jx8DNi/1fhZwv1cC1/ZfvxZ4ejns90L2PLD214A/AR5c6r1cyId37n1V9TDw0qhrSQL8PHD/iGuvo/cf0yf6n+dsVf3HAo46MfPdc99K4NIkK4HLGPG+hovRLHsu4HX9169n9F66/BqOi85891tVz1fVP/Rf/xfwJMvkXecX8D0myVrgXcC9CzbgIun00zLibcC/VtU/jbj2BuAM8PtJrgaOAndU1cuLOeACmHXPVfXlJL8LPAf8D/BQVT202ANO0PuAQ/09vQr4oRFrRv2KjbcuwmwLoct+X5FkA/Bm4O8XfLKF03XPHwF+nd7fVpY179y72cH572CvBe6pqjcDLwPL4nnsGLPuOckV9O5aNwJXAd+R5BcXcbZJ+xXgzqpaB9xJ/29hQzr9io1lost+AUjyGuAzwPuq6j8Xab6FMHbPSX4KeKGqji72cAvBuI/Rf+zws8CnZlkyA8xU1Tfvaj5NL/bLVoc9vxN4pqrOVNXXgAcYc/d3kftlensA+DN6j2CGdfoVG8tEl/2S5NX0wv7HVfXAqDXLSJc9/zDw00mepffY7R1J/mhxxps84z7eO4Gnqmpm1MWq+hfgVJI39k/dADyxWMMtkPPumd7jmOuSXNZ/Nn8DvWeyy9Vp4O391+8ARj1+6/JrOJaLsfvtf18/ATxZVb+3iLMtlLF7rqrfqKq1VbWB3vf3r6tq+f6NdKn/Rfdi+aD3COJ54Gv07tLe2z9/H7BraO1VwMGB42uAI8DjwGeBK5Z6P4uw598GngKOAX8IfNtS72e+ewZ+hN6/lTxG77nyW2bZ8430fmrkS8BvLvVeFnK//TXV/2/60f7HjUu9n4X+Hg98jutZ5j8t4ztUJalBPpaRpAYZd0lqkHGXpAYZd0lqkHGXpAYZd0lqkHGXpAYZd0lq0P8ClKbPUIHiWJIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"plt.hist(x)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Utilisation d'autres langages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext rpy2.ipython"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"UsageError: Cell magic `%%R` not found.\n"
]
}
],
"source": [
"%%R\n",
"plot(cars)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment