# -*- mode: org -*-
# -*- coding: utf-8 -*-
#+STARTUP: overview indent inlineimages logdrawer
#+TITLE: Journal
#+AUTHOR: Put your name here
#+LANGUAGE: en
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+LATEX_HEADER: \usepackage[utf8]{inputenc}
#+LATEX_HEADER: \usepackage[T1]{fontenc}
#+LATEX_HEADER: \usepackage[a4paper,margin=.8in]{geometry}
#+LATEX_HEADER: \usepackage[french]{babel}
#+TAGS: LIG(L) HOME(H) Europe(E) Blog(B) noexport(n) Stats(S)
#+TAGS: Epistemology(E) Vulgarization(V) Teaching(T) R(R) OrgMode(O) Python(P)
#+EXPORT_SELECT_TAGS: Blog
#+OPTIONS: H:3 num:t toc:t \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
#+OPTIONS: TeX:t LaTeX:nil skip:nil d:nil todo:t pri:nil tags:not-in-toc
#+EXPORT_SELECT_TAGS: export
#+EXPORT_EXCLUDE_TAGS: noexport
#+COLUMNS: %25ITEM %TODO %3PRIORITY %TAGS
#+SEQ_TODO: TODO(t!) STARTED(s!) WAITING(w@) APPT(a!) | DONE(d!) CANCELLED(c!) DEFERRED(f!)
* 2021
** 2021-03 mars
*** 2021-03-02 mardi
**** Premier pas avec org mode
-note1
-note2
#+begin_src R :results output :session *R* :exports both
summary(cars)
#+end_src
#+RESULTS:
: speed dist
: Min. : 4.0 Min. : 2.00
: 1st Qu.:12.0 1st Qu.: 26.00
: Median :15.0 Median : 36.00
: Mean :15.4 Mean : 42.98
: 3rd Qu.:19.0 3rd Qu.: 56.00
: Max. :25.0 Max. :120.00
#+begin_src R :results output graphics :file (org-babel-temp-file "figure" ".png") :exports both :width 600 :height 400 :session *R*
plot(cars)
#+end_src
#+RESULTS:
#+begin_src R :results output graphics :file (org-babel-temp-file "figure" ".png") :exports both :width 600 :height 400 :session *R*
plot(cars)
#+end_src
#+RESULTS:
[[file:/tmp/babel-cFH86o/figureNFJuq7.png]]
#+begin_src python :results output :exports both
print("hello word")
#+end_src
#+RESULTS:
: hello word
#+begin_src python :results output :session :exports both
x=10
#+end_src
#+RESULTS:
#+begin_src python :results file :session :var matplot_lib_filename="foo.png") :exports both
import matplotlib.pyplot as plt
import numpy
x=numpy.linspace(-15,15)
plt.figure(figsize=(10,5))
plt.plot(x,numpy.cos(x)/x)
plt.tight_layout()
plt.savefig(matplot_lib_filename)
matplot_lib_filename
#+end_src
#+RESULTS:
[[file:foo.png]]
Entered on [2021-03-02 mar. 14:09]
[[file:~/org/journal.org::*Org-mode Babel (for literate programming)][Org-mode Babel (for literate programming)]]
*** 2021-03-03 mercredi
**** FUN MOOC reproductibility
***** Exercice 2.4
I worked on the Cars data from R, i trained myself on the usage of
orgmode en the realisation of a journal following the Mooc
recommendation.
Firts I create a csv file in R with the Cars data
#+begin_src R :results output :session *R* :exports both
data <- cars
write.csv(data, 'data_cars_exercice2_3.csv')
#+end_src
Then i load to make statistic on it, the goal here is
to see if the distance cross by a car is influenced by its speed.
#+begin_src R :results output graphics :file data_cars_graph.png :exports both :width 600 :height 400 :session *R*
data <- read.csv('data_cars_exercice2_3.csv')
scatter.smooth(x=data$speed, y=data$dist, main="Dist ~ Speed")
#+end_src
#+RESULTS:
file:data_cars_graph
Here the graph is almost a line, so it will be insteresting to made a
correlation analasys of this data
#+begin_src R :results output :session *R* :exports both
cor(data$speed, data$dist)
#+end_src
#+RESULTS:
: [1] 0.8068949
The correlation between speed and distance is high ( < 0.5) and
positive, which mean higher is the speed, higher will be the
distance. Now to be sure that my hypthesis is good i will apply a the
linear regression.
#+begin_src R :results output :session *R* :exports both
linearMod <- lm(dist ~ speed, data=data)
summary(linearMod)
#+end_src
#+RESULTS:
#+begin_example
Call:
lm(formula = dist ~ speed, data = data)
Residuals:
Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***
---
codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
#+end_example
LinearMod, both these p-Values are well below the 0.05
threshold, so I can conclude our model is indeed statistically
significant, which mean, now i'm sure that the speed influence the distance