From bfd33e2fb9eebead8d92e037f880427a8e243957 Mon Sep 17 00:00:00 2001 From: d9296cd34ebf6095e86d55029050e083 Date: Wed, 13 Jan 2021 22:57:57 +0000 Subject: [PATCH] Replace toy_document_fr.Rmd --- module2/exo1/toy_document_fr.Rmd | 52 +++++++++++++++++++++----------- 1 file changed, 35 insertions(+), 17 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 4541732..53da568 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,33 +1,51 @@ --- -title: "Votre titre" -author: "Julien MARTY" -date: "04/04/2020" +title: "À propos du calcul de Pi" +author: "Teonas" +date: "13 janvier 2021" output: html_document --- -```{r setup, include=FALSE} -knitr::opts_chunk$set(echo = TRUE) +## En demandant à la lib maths + +Mon ordinateur m'indique que $\pi$ vaut *approximativement* +```{r} +pi ``` -## Quelques explications -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +## En utilisant la méthode des aiguilles de Buffon -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r cars} -summary(cars) +```{r } +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) ``` -Et on peut aussi aisément inclure des figures. Par exemple: - -```{r pressure, echo=FALSE} -plot(pressure) +## Avec un argument “fréquentiel” de surface + +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si +$X \sim U(0,1)$ et +$Y \sim U(0,1)$ alors +$P[X^{2} + Y^{2} \le 1]= \pi /4$ +(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait: + +```{r } +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $X^{2}+Y^{2}$ est inférieur à 1: -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. +```{r } +4*mean(df$Accept) +``` -- 2.18.1