{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analyse du risque de défaillance des joints toriques de la navette Challenger"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le 27 Janvier 1986, veille du décollage de la navette *Challenger*, eu\n",
"lieu une télé-conférence de trois heures entre les ingénieurs de la\n",
"Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La\n",
"discussion portait principalement sur les conséquences de la\n",
"température prévue au moment du décollage de 31°F (juste en dessous de\n",
"0°C) sur le succès du vol et en particulier sur la performance des\n",
"joints toriques utilisés dans les moteurs. En effet, aucun test\n",
"n'avait été effectué à cette température.\n",
"\n",
"L'étude qui suit reprend donc une partie des analyses effectuées cette\n",
"nuit là et dont l'objectif était d'évaluer l'influence potentielle de\n",
"la température et de la pression à laquelle sont soumis les joints\n",
"toriques sur leur probabilité de dysfonctionnement. Pour cela, nous\n",
"disposons des résultats des expériences réalisées par les ingénieurs\n",
"de la NASA durant les 6 années précédant le lancement de la navette\n",
"Challenger.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chargement des données\n",
"Nous commençons donc par charger ces données:"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Date
\n",
"
Count
\n",
"
Temperature
\n",
"
Pressure
\n",
"
Malfunction
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
4/12/81
\n",
"
6
\n",
"
66
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
1
\n",
"
11/12/81
\n",
"
6
\n",
"
70
\n",
"
50
\n",
"
1
\n",
"
\n",
"
\n",
"
2
\n",
"
3/22/82
\n",
"
6
\n",
"
69
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
3
\n",
"
11/11/82
\n",
"
6
\n",
"
68
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
4
\n",
"
4/04/83
\n",
"
6
\n",
"
67
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
5
\n",
"
6/18/82
\n",
"
6
\n",
"
72
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
6
\n",
"
8/30/83
\n",
"
6
\n",
"
73
\n",
"
100
\n",
"
0
\n",
"
\n",
"
\n",
"
7
\n",
"
11/28/83
\n",
"
6
\n",
"
70
\n",
"
100
\n",
"
0
\n",
"
\n",
"
\n",
"
8
\n",
"
2/03/84
\n",
"
6
\n",
"
57
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
9
\n",
"
4/06/84
\n",
"
6
\n",
"
63
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
10
\n",
"
8/30/84
\n",
"
6
\n",
"
70
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
11
\n",
"
10/05/84
\n",
"
6
\n",
"
78
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
12
\n",
"
11/08/84
\n",
"
6
\n",
"
67
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
13
\n",
"
1/24/85
\n",
"
6
\n",
"
53
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
14
\n",
"
4/12/85
\n",
"
6
\n",
"
67
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
15
\n",
"
4/29/85
\n",
"
6
\n",
"
75
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
16
\n",
"
6/17/85
\n",
"
6
\n",
"
70
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
17
\n",
"
7/29/85
\n",
"
6
\n",
"
81
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
18
\n",
"
8/27/85
\n",
"
6
\n",
"
76
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
19
\n",
"
10/03/85
\n",
"
6
\n",
"
79
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
20
\n",
"
10/30/85
\n",
"
6
\n",
"
75
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
21
\n",
"
11/26/85
\n",
"
6
\n",
"
76
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
22
\n",
"
1/12/86
\n",
"
6
\n",
"
58
\n",
"
200
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"data = pd.read_csv(\"shuttle.csv\")\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le jeu de données nous indique la date de l'essai, le nombre de joints\n",
"toriques mesurés (il y en a 6 sur le lançeur principal), la\n",
"température (en Farenheit) et la pression (en psi), et enfin le\n",
"nombre de dysfonctionnements relevés. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspection graphique des données\n",
"Les vols où aucun incident n'est relevé n'apportant aucun information\n",
"sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements, nous nous concentrons sur les expériences où au\n",
"moins un joint a été défectueux.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Date
\n",
"
Count
\n",
"
Temperature
\n",
"
Pressure
\n",
"
Malfunction
\n",
"
\n",
" \n",
" \n",
"
\n",
"
1
\n",
"
11/12/81
\n",
"
6
\n",
"
70
\n",
"
50
\n",
"
1
\n",
"
\n",
"
\n",
"
8
\n",
"
2/03/84
\n",
"
6
\n",
"
57
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
9
\n",
"
4/06/84
\n",
"
6
\n",
"
63
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
10
\n",
"
8/30/84
\n",
"
6
\n",
"
70
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
13
\n",
"
1/24/85
\n",
"
6
\n",
"
53
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
20
\n",
"
10/30/85
\n",
"
6
\n",
"
75
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
22
\n",
"
1/12/86
\n",
"
6
\n",
"
58
\n",
"
200
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"1 11/12/81 6 70 50 1\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"13 1/24/85 6 53 200 2\n",
"20 10/30/85 6 75 200 2\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = data[data.Malfunction>0]\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Très bien, nous avons une variabilité de température importante mais\n",
"la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.\n",
"\n",
"Comment la fréquence d'échecs varie-t-elle avec la température ?\n"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFYRJREFUeJzt3XuQpXV95/H3Zy7AIBMhsJm4MxBBCFlKAXG4GEx2IokLbgmxiBHcDS5ZMqGE3TK7m8BariHGVEWM2WiJjiOLCqmERFEgu+MiJNUaExCQTIaLgcwiQjMGBFFoHObW3/3jnHlyprun5/TQzzlM9/tV1TXnufa3vz6cj8/l/E6qCkmSABYMuwBJ0kuHoSBJahgKkqSGoSBJahgKkqSGoSBJarQWCkmuSfJkkvt2szxJPppkY5INSU5qqxZJUn/aPFP4DHDmNMvPAo7p/qwGPtFiLZKkPrQWClX1VeB706xyDnBtddwBHJzkFW3VI0nas0VD/N3Lgcd6pke7874zccUkq+mcTbBkyZLXHX744QMp8MUaHx9nwQJv2/SyJ5PZk6nZl8leTE8eeuihp6rqX+xpvWGGQqaYN+WYG1W1FlgLsHLlyrr77rvbrGvWjIyMsGrVqmGX8ZJiTyazJ1OzL5O9mJ4k+XY/6w0zhkeB3v/LvwLYNKRaJEkMNxRuBi7oPoV0GvCDqpp06UiSNDitXT5K8qfAKuCwJKPAbwOLAapqDbAOeDOwEfghcGFbtUiS+tNaKFTV+XtYXsAlbf1+SdLMeWtfktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktRoNRSSnJnkwSQbk1w+xfKXJ/mLJH+f5P4kF7ZZjyRpeq2FQpKFwFXAWcBxwPlJjpuw2iXAA1V1ArAK+HCS/dqqSZI0vTbPFE4BNlbVw1W1FbgeOGfCOgUsTRLgIOB7wPYWa5IkTWNRi/teDjzWMz0KnDphnY8BNwObgKXA26tqfOKOkqwGVgMsW7aMkZGRNuqddWNjY/tMrYNiTyazJ1OzL5MNoidthkKmmFcTpv8NsB54I/Aq4NYkf11Vz+6yUdVaYC3AypUra9WqVbNfbQtGRkbYV2odFHsymT2Zmn2ZbBA9afPy0ShweM/0CjpnBL0uBL5QHRuBbwE/1WJNkqRptBkKdwHHJDmye/P4PDqXino9CpwBkGQZcCzwcIs1SZKm0drlo6ranuRS4BZgIXBNVd2f5OLu8jXA7wKfSXIvnctNl1XVU23VJEmaXpv3FKiqdcC6CfPW9LzeBLypzRokSf3zE82SpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5M8mCSjUku3806q5KsT3J/kq+0WY8kaXqL+lkpyaur6r6Z7DjJQuAq4BeAUeCuJDdX1QM96xwMfBw4s6oeTfJjM/kdkqTZ1e+ZwpokdyZ5V/eNvB+nABur6uGq2gpcD5wzYZ13AF+oqkcBqurJPvctSWpBX2cKVfWGJMcAvwrcneRO4NNVdes0my0HHuuZHgVOnbDOTwKLk4wAS4GPVNW1E3eUZDWwGmDZsmWMjIz0U/bQjY2N7TO1Doo9mcyeTM2+TDaInvQVCgBV9Y9J3gvcDXwUeG2SAO+pqi9MsUmm2s0Uv/91wBnAEuD2JHdU1UMTfvdaYC3AypUra9WqVf2WPVQjIyPsK7UOij2ZzJ5Mzb5MNoie9HtP4XjgQuDfArcCb6mqe5L8S+B2YKpQGAUO75leAWyaYp2nqup54PkkXwVOAB5CkjRw/d5T+BhwD3BCVV1SVfcAVNUm4L272eYu4JgkRybZDzgPuHnCOjcBP5NkUZID6Vxe+uZM/whJ0uzo9/LRm4HNVbUDIMkC4ICq+mFVXTfVBlW1PcmlwC3AQuCaqro/ycXd5Wuq6ptJ/i+wARgHrp7pU06SpNnTbyjcBvw8MNadPhD4MvDT021UVeuAdRPmrZkw/SHgQ33WIUlqUb+Xjw6oqp2BQPf1ge2UJEkaln5D4fkkJ+2cSPI6YHM7JUmShqXfy0fvBj6XZOfTQ68A3t5OSZKkYen3w2t3Jfkp4Fg6nz/4h6ra1mplkqSB6/vDa8DJwCu727w2CVN9+liStO/q98Nr1wGvAtYDO7qzCzAUJGkO6fdMYSVwXFVNHKZCkjSH9Pv00X3Aj7dZiCRp+Po9UzgMeKA7OuqWnTOr6uxWqpIkDUW/oXBFm0VIkl4a+n0k9StJfgI4pqpu6w5et7Dd0iRJg9bXPYUkvwZ8Hvhkd9Zy4Ma2ipIkDUe/N5ovAU4HnoXOF+4Afp+yJM0x/YbClu73LAOQZBGTv0VNkrSP6zcUvpLkPcCSJL8AfA74i/bKkiQNQ7+hcDnwXeBe4NfpfEfC7r5xTZK0j+r36aNx4FPdH0nSHNXv2EffYop7CFV11KxXJEkampmMfbTTAcDbgB+d/XIkScPU1z2Fqnq65+fxqvoj4I0t1yZJGrB+Lx+d1DO5gM6Zw9JWKpIkDU2/l48+3PN6O/AI8MuzXo0kaaj6ffro59ouRJI0fP1ePvov0y2vqj+cnXIkScM0k6ePTgZu7k6/Bfgq8FgbRUmShmMmX7JzUlU9B5DkCuBzVXVRW4VJkgav32EujgC29kxvBV4569VIkoaq3zOF64A7k3yRzieb3wpc21pVkqSh6Pfpo99L8iXgZ7qzLqyqv2uvLEnSMPR7+QjgQODZqvoIMJrkyJZqkiQNSb9fx/nbwGXAf+/OWgz8cVtFSZKGo98zhbcCZwPPA1TVJhzmQpLmnH5DYWtVFd3hs5O8rL2SJEnD0m8o/HmSTwIHJ/k14Db8wh1JmnP6ffroD7rfzfwscCzwvqq6tdXKJEkDt8czhSQLk9xWVbdW1W9W1X/rNxCSnJnkwSQbk1w+zXonJ9mR5JdmUrwkaXbtMRSqagfwwyQvn8mOkywErgLOAo4Dzk9y3G7W+yBwy0z2L0maff1+ovkF4N4kt9J9Agmgqv7zNNucAmysqocBklwPnAM8MGG9/wTcQGfAPUnSEPUbCv+n+zMTy9l1FNVR4NTeFZIsp/O46xuZJhSSrAZWAyxbtoyRkZEZljIcY2Nj+0ytg2JPJrMnU7Mvkw2iJ9OGQpIjqurRqvrsXuw7U8yrCdN/BFxWVTuSqVbvblS1FlgLsHLlylq1atVelDN4IyMj7Cu1Doo9mcyeTM2+TDaInuzpnsKNO18kuWGG+x4FDu+ZXgFsmrDOSuD6JI8AvwR8PMkvzvD3SJJmyZ4uH/X+3/ejZrjvu4BjumMkPQ6cB7yjd4WqasZPSvIZ4H9X1Y1IkoZiT6FQu3m9R1W1PcmldJ4qWghcU1X3J7m4u3zNjCqVJLVuT6FwQpJn6ZwxLOm+pjtdVfUj021cVeuAdRPmTRkGVfUf+qpYktSaaUOhqhYOqhBJ0vDN5PsUJElznKEgSWoYCpKkhqEgSWrMq1B4emwLf//Y93l6bMuwS5GkGXl6bAubt+1o/f1r3oTCTesf5/QP/hX//uqvc/oH/4qb1z8+7JIkqS8737++9d3nW3//mheh8PTYFi67YQMvbBvnuS3beWHbOL91wwbPGCS95PW+f+2oav39a16Ewugzm1m8YNc/dfGCBYw+s3lIFUlSfwb9/jUvQmHFIUvYNj6+y7xt4+OsOGTJkCqSpP4M+v1rXoTCoQftz5XnHs8BixewdP9FHLB4AVeeezyHHrT/sEuTpGn1vn8tTFp//+r3S3b2eWefuJzTjz6M0Wc2s+KQJQaCpH3GzvevO2//Gn9z9htaff+aN6EAncQ1DCTtiw49aH+WLF7Y+nvYvLh8JEnqj6EgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkRquhkOTMJA8m2Zjk8imW/7skG7o/f5vkhDbrkSRNr7VQSLIQuAo4CzgOOD/JcRNW+xbwr6vqeOB3gbVt1SNJ2rM2zxROATZW1cNVtRW4Hjind4Wq+tuqeqY7eQewosV6JEl7sKjFfS8HHuuZHgVOnWb9/wh8aaoFSVYDqwGWLVvGyMjILJXYrrGxsX2m1kGxJ5PZk6nZl8kG0ZM2QyFTzKspV0x+jk4ovGGq5VW1lu6lpZUrV9aqVatmqcR2jYyMsK/UOij2ZDJ7MjX7MtkgetJmKIwCh/dMrwA2TVwpyfHA1cBZVfV0i/VIkvagzXsKdwHHJDkyyX7AecDNvSskOQL4AvArVfVQi7VIkvrQ2plCVW1PcilwC7AQuKaq7k9ycXf5GuB9wKHAx5MAbK+qlW3VJEmaXpuXj6iqdcC6CfPW9Ly+CLiozRrmi6fHtjD6zGZWHLKEQw/av/Xt5jJ7Mnwbn3iOZ364jY1PPMfRy5YOu5x5pdVQ0GDctP5xLrthA4sXLGDb+DhXnns8Z5+4vLXt5jJ7Mnzvu/Ferr3jUf7ra7bzG//zq1zw+iN4/zmvGXZZ84bDXOzjnh7bwmU3bOCFbeM8t2U7L2wb57du2MDTY1ta2W4usyfDt/GJ57j2jkd3mXft7Y+y8YnnhlTR/GMo7ONGn9nM4gW7/s+4eMECRp/Z3Mp2c5k9Gb71j31/RvM1+wyFfdyKQ5awbXx8l3nbxsdZcciSVraby+zJ8J14+MEzmq/ZZyjs4w49aH+uPPd4Dli8gKX7L+KAxQu48tzj93iDdG+3m8vsyfAdvWwpF7z+iF3mXfD6I7zZPEDeaJ4Dzj5xOacffdiMn5jZ2+3mMnsyfO8/5zVccNorufcbd3Dbb5xmIAyYoTBHHHrQ/nv1Bra3281l9mT4jl62lNEDFxsIQ+DlI0lSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkZyZ5MMnGJJdPsTxJPtpdviHJSW3WI0maXmuhkGQhcBVwFnAccH6S4yasdhZwTPdnNfCJtuqRJO1Zm2cKpwAbq+rhqtoKXA+cM2Gdc4Brq+MO4OAkr2ixJknSNBa1uO/lwGM906PAqX2ssxz4Tu9KSVbTOZMAGEvy4OyW2prDgKeGXcRLjD2ZzJ5Mzb5M9mJ68hP9rNRmKGSKebUX61BVa4G1s1HUICW5u6pWDruOlxJ7Mpk9mZp9mWwQPWnz8tEocHjP9Apg016sI0kakDZD4S7gmCRHJtkPOA+4ecI6NwMXdJ9COg34QVV9Z+KOJEmD0drlo6ranuRS4BZgIXBNVd2f5OLu8jXAOuDNwEbgh8CFbdUzJPvcJa8BsCeT2ZOp2ZfJWu9JqiZdwpckzVN+olmS1DAUJEkNQ2EWJXkkyb1J1ie5uzvviiSPd+etT/LmYdc5SEkOTvL5JP+Q5JtJXp/kR5PcmuQfu/8eMuw6B2k3PZm3x0mSY3v+7vVJnk3y7vl8nEzTk9aPE+8pzKIkjwArq+qpnnlXAGNV9QfDqmuYknwW+Ouqurr7FNqBwHuA71XV73fHxDqkqi4baqEDtJuevJt5fJzs1B0e53E6H3S9hHl8nOw0oScX0vJx4pmCWpPkR4CfBf4XQFVtrarv0xne5LPd1T4L/OJwKhy8aXqijjOA/1dV32YeHycT9PakdYbC7Crgy0m+0R2aY6dLu6PAXjOfToGBo4DvAp9O8ndJrk7yMmDZzs+jdP/9sWEWOWC76wnM3+Ok13nAn3Zfz+fjpFdvT6Dl48RQmF2nV9VJdEZ/vSTJz9IZ+fVVwIl0xnT68BDrG7RFwEnAJ6rqtcDzwKQh1OeZ3fVkPh8nAHQvpZ0NfG7YtbxUTNGT1o8TQ2EWVdWm7r9PAl8ETqmqJ6pqR1WNA5+iM3rsfDEKjFbV17vTn6fzhvjEztFwu/8+OaT6hmHKnszz42Sns4B7quqJ7vR8Pk522qUngzhODIVZkuRlSZbufA28CbhvwlDgbwXuG0Z9w1BV/wQ8luTY7qwzgAfoDG/yzu68dwI3DaG8odhdT+bzcdLjfHa9TDJvj5Meu/RkEMeJTx/NkiRH0Tk7gM4lgj+pqt9Lch2dU70CHgF+fT6N75TkROBqYD/gYTpPTywA/hw4AngUeFtVfW9oRQ7YbnryUeb3cXIgnWH0j6qqH3TnHcr8Pk6m6knr7yeGgiSp4eUjSVLDUJAkNQwFSVLDUJAkNQwFSVKjtW9ekwat+wjjX3YnfxzYQWdICeh8kHDrUAqbRpJfBdZ1P78gDZ2PpGpOeimNTptkYVXt2M2yrwGXVtX6GexvUVVtn7UCpR5ePtK8kOSdSe7sjkH/8SQLkixK8v0kH0pyT5Jbkpya5CtJHt45Vn2Si5J8sbv8wSTv7XO/H0hyJ3BKkt9JcleS+5KsScfb6XwQ6c+62++XZDTJwd19n5bktu7rDyT5ZJJb6QymtyjJH3Z/94YkFw2+q5qLDAXNeUleTWdIgJ+uqhPpXDY9r7v45cCXuwMZbgWuoDP0xNuA9/fs5pTuNicB70hyYh/7vaeqTqmq24GPVNXJwGu6y86sqj8D1gNvr6oT+7i89VrgLVX1K8Bq4MmqOgU4mc4AjEfsTX+kXt5T0Hzw83TeOO9OArCEzvABAJur6tbu63uBH1TV9iT3Aq/s2cctVfUMQJIbgTfQ+e9nd/vdyj8PewJwRpLfBA4ADgO+AXxphn/HTVX1Qvf1m4B/laQ3hI6hMxyEtNcMBc0HAa6pqv+xy8xkEZ03753GgS09r3v/+5h48632sN/N1b1h1x3D5mN0RkN9PMkH6ITDVLbzz2fwE9d5fsLf9K6q+kukWeTlI80HtwG/nOQw6DyltBeXWt6UzncrH0jnG8H+Zgb7XUInZJ7qjqR7bs+y54ClPdOPAK/rvu5db6JbgHd1A2jnd/oumeHfJE3imYLmvKq6N8nvALclWQBsAy4GNs1gN18D/oTOF5xct/NpoX72W1VPp/O9zPcB3wa+3rP408DVSTbTuW9xBfCpJP8E3DlNPZ+kM3ro+u6lqyfphJX0ovhIqrQH3Sd7Xl1V7x52LVLbvHwkSWp4piBJanimIElqGAqSpIahIElqGAqSpIahIElq/H/IxmFZztFAcQAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"À première vue, ce n'est pas flagrant mais bon, essayons quand même\n",
"d'estimer l'impact de la température $t$ sur la probabilité de\n",
"dysfonctionnements d'un joint. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de l'influence de la température\n",
"\n",
"Supposons que chacun des 6 joints toriques est endommagé avec la même\n",
"probabilité et indépendamment des autres et que cette probabilité ne\n",
"dépend que de la température. Si on note $p(t)$ cette probabilité, le\n",
"nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n",
"température $t$ suit une loi binomiale de paramètre $n=6$ et\n",
"$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n",
"régression logistique."
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
7
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
5
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-2.5250
\n",
"
\n",
"
\n",
"
Date:
Wed, 26 Aug 2020
Deviance:
0.22231
\n",
"
\n",
"
\n",
"
Time:
16:53:28
Pearson chi2:
0.236
\n",
"
\n",
"
\n",
"
No. Iterations:
4
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
-1.3895
7.828
-0.178
0.859
-16.732
13.953
\n",
"
\n",
"
\n",
"
Temperature
0.0014
0.122
0.012
0.991
-0.238
0.240
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 7\n",
"Model: GLM Df Residuals: 5\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -2.5250\n",
"Date: Wed, 26 Aug 2020 Deviance: 0.22231\n",
"Time: 16:53:28 Pearson chi2: 0.236\n",
"No. Iterations: 4 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n",
"Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"L'estimateur le plus probable du paramètre de température est 0.0014\n",
"et l'erreur standard de cet estimateur est de 0.122, autrement dit on\n",
"ne peut pas distinguer d'impact particulier et il faut prendre nos\n",
"estimations avec des pincettes.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de la probabilité de dysfonctionnant des joints toriques\n",
"La température prévue le jour du décollage est de 31°F. Essayons\n",
"d'estimer la probabilité de dysfonctionnement des joints toriques à\n",
"cette température à partir du modèle que nous venons de construire:\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGzdJREFUeJzt3X+UVOWd5/H3t6tBGhohoGGAJoHM4cA6UX41jUriNkYBc+KvWQ2io4k7LHEnJJPdIxs5J7OaWT1n57S7h0zWiIwyTOLR1nEVNcsG1E3HiauxQRAEhh9riDadBDGj0Noo3f3dP+6t6qrqbrq6qO6qevy8zulD3VvPfe7z7aI+dfupW7fM3RERkbBUFHsAIiJSeAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA9RvuZrbBzI6a2Rt93G9m9rdmdsjMdpnZ3MIPU0REBiKXI/eNwNLT3H8FMD3+WQncf+bDEhGRM9FvuLv7i8AfTtPkauDHHnkFGGtmEws1QBERGbjKAvQxGXg7bbklXvfb7IZmtpLo6J6qqqp5U6ZMyWuHXV1dVFSE8XaBailNodQSSh2gWpIOHDhwzN3P7a9dIcLdelnX6zUN3H09sB6gtrbWt23bltcOm5qaqK+vz2vbUqNaSlMotYRSB6iWJDP7TS7tCvEy2AKkH4LXAK0F6FdERPJUiHB/BrglPmvmQuB9d+8xJSMiIkOn32kZM3sUqAfOMbMW4E5gGIC7rwM2A18GDgEfArcO1mBFRCQ3/Ya7uy/v534HvlmwEYlIWTh16hQtLS2cPHlySPY3ZswY9u3bNyT7Gmy51DJixAhqamoYNmxYXvsoxBuqIvIJ1NLSwujRo5k6dSpmvZ1XUVgnTpxg9OjRg76fodBfLe7Ou+++S0tLC9OmTctrH2GcVyQiQ+7kyZOMHz9+SIL9k8bMGD9+/Bn9VaRwF5G8KdgHz5n+bhXuIiIB0py7iJStRCLB+eefn1retGkTU6dOLd6ASojCXUTKVlVVFTt37uzz/o6ODiorP5kxp2kZEQnKxo0buf7667nyyitZvHgxAA0NDcyfP58LLriAO++8M9X2nnvuYcaMGVx22WUsX76ce++9F4D6+nqSl0c5duxY6q+Bzs5OVq9enerrgQceALovJ3Ddddcxc+ZMbrrpJqKzxKG5uZmLL76YWbNmUVdXx4kTJ1iyZEnGi9LChQvZtWtXQX8Pn8yXNBEpqO8/u4e9rccL2ud5k87mziv/5LRt2tvbmT17NgDTpk3jqaeeAuDll19m165djBs3jq1bt3Lw4EFeffVV3J2rrrqKF198kVGjRtHY2MiOHTvo6Ohg7ty5zJs377T7e+ihhxgzZgzNzc189NFHLFy4MPUCsmPHDvbs2cOkSZNYuHAhL730EnV1dSxbtozHHnuM+fPnc/z4caqqqrjlllvYuHEja9eu5cCBA3z00UdccMEFBfitdVO4i0jZ6mta5vLLL2fcuHEAbN26la1btzJnzhwA2traOHjwICdOnODaa69l5MiRAFx11VX97m/r1q3s2rWLJ554AoD333+fgwcPMnz4cOrq6qipqQFg9uzZHD58mDFjxjBx4kTmz58PwNlnnw3Atddey8KFC2loaGDDhg18/etfP7NfRC8U7iJyxvo7wh5qo0aNSt12d9asWcM3vvGNjDZr167t83TDyspKurq6ADLONXd3fvjDH7JkyZKM9k1NTZx11lmp5UQiQUdHB+7e6z5GjhzJ5ZdfztNPP83jjz9OvlfIPR3NuYtI0JYsWcKGDRtoa2sD4MiRIxw9epRLLrmEp556ivb2dk6cOMGzzz6b2mbq1Kls374dIHWUnuzr/vvv59SpUwAcOHCADz74oM99z5w5k9bWVpqbm4Hok6kdHR0ArFixgm9/+9vMnz8/9VdGIenIXUSCtnjxYvbt28dFF10EQHV1NQ8//DBz585l2bJlzJ49m89+9rN88YtfTG1z++2389WvfpWf/OQnXHrppan1K1as4PDhw8ydOxd359xzz2XTpk197nv48OE89thjfOtb36K9vZ2qqiqef/55AObNm8fZZ5/NrbcO0rUW3b0oP/PmzfN8/fznP89721KjWkpTKLUMZh179+4dtL57c/z48UHt/8477/SGhoZB3UfS8ePH/ciRIz59+nTv7Ozss11vv2Ngm+eQsZqWEREZYo888ggLFizgnnvuGbSvDtS0jIgIcNdddw3Zvm688cYeb/AWmo7cRSRv7r1+XbIUwJn+bhXuIpKXESNG8O677yrgB4HH13MfMWJE3n1oWkZE8lJTU0NLSwvvvPPOkOzv5MmTZxR2pSSXWpLfxJQvhbuI5GXYsGF5f0tQPpqamlKfMi13Q1GLpmVERAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA5RTuZrbUzPab2SEzu6OX+8eY2bNm9rqZ7TGzWws/VBERyVW/4W5mCeA+4ArgPGC5mZ2X1eybwF53nwXUA//NzIYXeKwiIpKjXI7c64BD7v6mu38MNAJXZ7VxYLSZGVAN/AHoKOhIRUQkZ9bfN5eb2XXAUndfES/fDCxw91VpbUYDzwAzgdHAMnf/X730tRJYCTBhwoR5jY2NeQ26ra2N6urqvLYtNaqlNIVSSyh1gGpJWrRo0XZ3r+2vXS5fkG29rMt+RVgC7AQuBf4YeM7M/sndj2ds5L4eWA9QW1vr9fX1Oey+p6amJvLdttSoltIUSi2h1AGqZaBymZZpAaakLdcArVltbgWe9Mgh4NdER/EiIlIEuYR7MzDdzKbFb5LeQDQFk+4t4EsAZjYBmAG8WciBiohI7vqdlnH3DjNbBWwBEsAGd99jZrfF968D/guw0cx2E03jfNfdjw3iuEVE5DRymXPH3TcDm7PWrUu73QosLuzQREQkX/qEqohIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0NmdkcfberNbKeZ7TGzXxR2mCIiMhCV/TUwswRwH3A50AI0m9kz7r43rc1Y4EfAUnd/y8w+PVgDFhGR/uVy5F4HHHL3N939Y6ARuDqrzY3Ak+7+FoC7Hy3sMEVEZCDM3U/fwOw6oiPyFfHyzcACd1+V1mYtMAz4E2A08AN3/3Evfa0EVgJMmDBhXmNjY16Dbmtro7q6Oq9tS41qKU2h1BJKHaBakhYtWrTd3Wv7a9fvtAxgvazLfkWoBOYBXwKqgJfN7BV3P5Cxkft6YD1AbW2t19fX57D7npqamsh321KjWkpTKLWEUgeoloHKJdxbgClpyzVAay9tjrn7B8AHZvYiMAs4gIiIDLlc5tybgelmNs3MhgM3AM9ktXka+KKZVZrZSGABsK+wQxURkVz1e+Tu7h1mtgrYAiSADe6+x8xui+9f5+77zOxnwC6gC3jQ3d8YzIGLiEjfcpmWwd03A5uz1q3LWm4AGgo3NBERyZc+oSoiEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0Nmdsdp2s03s04zu65wQxQRkYHqN9zNLAHcB1wBnAcsN7Pz+mj3N8CWQg9SREQGJpcj9zrgkLu/6e4fA43A1b20+xbwP4GjBRyfiIjkwdz99A2iKZal7r4iXr4ZWODuq9LaTAYeAS4FHgJ+6u5P9NLXSmAlwIQJE+Y1NjbmNei2tjaqq6vz2rbUqJbSFEotodQBqiVp0aJF2929tr92lTn0Zb2sy35FWAt81907zXprHm/kvh5YD1BbW+v19fU57L6npqYm8t221KiW0hRKLaHUAaploHIJ9xZgStpyDdCa1aYWaIyD/Rzgy2bW4e6bCjJKEREZkFzCvRmYbmbTgCPADcCN6Q3cfVrytpltJJqWUbCLiBRJv+Hu7h1mtoroLJgEsMHd95jZbfH96wZ5jCIiMkC5HLnj7puBzVnreg11d//6mQ9LRETOhD6hKiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzOlhEZLJt2HKFhy35a32tn0tgqVi+ZwTVzJhd7WJIjPX6lS+EuRbNpxxHWPLmb9lOdABx5r501T+4GUECUAT1+pU3TMlI0DVv2p4Ihqf1UJw1b9hdpRDIQevxKm8Jdiqb1vfYBrZfSosevtCncpWgmja0a0HopLXr8SpvCXYpm9ZIZVA1LZKyrGpZg9ZIZRRqRDIQev9KmN1SlaJJvuulsi/Kkx6+0KdylqK6ZM1lhUMb0+JUuTcuIiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgPQdqiKSoavL6XSns8txhy6Plru6onVdyXVdTpdHbTq7utt0xcvpbaKf7vVdXaS173ubzi5Sbfa9dYq3X/lNarm7PXGfcT/ueHx/97hJG0e0nN0muW16ne6Zv4vM9k6nkzEeT+/D02qNl5P7rJ8E9fWD+zgq3KVkZD8hkqHicRBET55kG9KehJlP8vQnWXKb04ZH6knXHQxvHDnFse0tWWPKDLfsfWYHTPc2PYOlOxy6t+m+Py18soIlo413B1SX9+yz050PPzzJWS+/EPeT2Wdv++3yYv8v6MfeN3JqVmFQYUZFhZEwi5YrjES8bPG6RIVRYfH6CsMMEvFytH3cT2pdtDy8siJubyTifsBIVGT22b0tGcuf+uh3g/t7IsdwN7OlwA+ABPCgu//XrPtvAr4bL7YB/97dXy/kQAdD8kmf+YSnO0RSr7ZpbdJDp7cnd3/bpx21uDu7ftfB8ddb+36SZh0Z9NwHWUcSWUHQ1d1PakwZYdMzJLt6CZLMcfUMlU532to+ZETzz+Px9AzAjPBLO5JJLpec3fn9F06GQPTETwuF7Cd7HDLpwVIRbxMFUWawGFEflRUVnFVpcX+k2ifDKn2/R3//eyZNPKc76LL67G2/6X2mB1oqsNLWRTWQ6is7BLtDMnus3WNJtkn1k94mDthEhfHKyy/zhYULM+usyBpDfNvMCvt/ocCamo4N+j76DXczSwD3AZcDLUCzmT3j7nvTmv0a+Nfu/i9mdgWwHlgwGAP+xYF3+N4vP6TqtV9kBFnGEVp6qPU4ius+qvJSyZOdO864i+wndnqYdB8xdD+Zsp8MmUcZWdvHbXo7WrG0J+CxinYm/tHYVD+ZT0LSjpjiJ3bqqCrtyCrtiZ1ZU+YTurfwSMT9ZuwjOzxS9VtakKSHV7T9tldf5eKLLszpd5PcPjn2UtLU1ER9/axiD6MgPjWignNHn1XsYZSNXI7c64BD7v4mgJk1AlcDqXB39/+b1v4VoKaQg0xXfVaCCaMqmPDp6h5BlgqKrCd1X0FD9vanOUrp7jvz6Cc9ELqDI3P/GUdyWcG0fds2Llwwv8f22WPv3nd32Gb3XWxRkMwp9jAK4u1RFUwZN7LYwxDJm3k/h69mdh2w1N1XxMs3AwvcfVUf7W8HZibbZ923ElgJMGHChHmNjY15DbqtrY3q6uq8ti01qqU0hVJLKHWAaklatGjRdnev7a9dLkfuvR0S9vqKYGaLgD8HvtDb/e6+nmjKhtraWq/P8+3i6Agxv21LjWopTaHUEkodoFoGKpdwbwGmpC3XAK3ZjczsAuBB4Ap3f7cwwxMRkXzk8iGmZmC6mU0zs+HADcAz6Q3M7DPAk8DN7n6g8MMUEZGB6PfI3d07zGwVsIXoVMgN7r7HzG6L718H/GdgPPCj+I29jlzmhEREZHDkdJ67u28GNmetW5d2ewXQ4w1UkaG2accRGrbsp/W9diaNrWL1khkAPdZdM2fykOx7MPaTi+9t2s2jv3qb73z+FH++ZjPLF0zh7mvOL8pYpDj0CVUJxqYdR1jz5G7aT3UCcOS9dlb/4+tgcKrTU+vWPLkboKDB29u+B2M/ufjept08/MpbqeVO99SyAv6TQxcOk2A0bNmfCtekU12eCvak9lOdNGzZP+j7Hoz95OLRX709oPUSJoW7BKP1vfZBaXsm/RV6P7no7OOzK32tlzAp3CUYk8ZWDUrbM+mv0PvJRaKPTyv3tV7CpHCXYKxeMoOqYYmMdcMqjGGJzFCrGpZIvdE6mPsejP3kYvmCKQNaL2HSG6oSjOQbl8U4W6avfRfjbJnkm6bJOfaEmc6W+QRSuEtQrpkzuddAHYqQ7WvfxXD3Nedz9zXn09TUxP+7qb7Yw5Ei0LSMiEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzC3cyWmtl+MztkZnf0cr+Z2d/G9+8ys7mFH6qIiOSq33A3swRwH3AFcB6w3MzOy2p2BTA9/lkJ3F/gcYqIyADkcuReBxxy9zfd/WOgEbg6q83VwI898gow1swmFnisIiKSo8oc2kwG3k5bbgEW5NBmMvDb9EZmtpLoyB6gzcz2D2i03c4BjuW5balRLaUplFpCqQNUS9Jnc2mUS7hbL+s8jza4+3pgfQ77PP2AzLa5e+2Z9lMKVEtpCqWWUOoA1TJQuUzLtABT0pZrgNY82oiIyBDJJdybgelmNs3MhgM3AM9ktXkGuCU+a+ZC4H13/212RyIiMjT6nZZx9w4zWwVsARLABnffY2a3xfevAzYDXwYOAR8Ctw7ekIECTO2UENVSmkKpJZQ6QLUMiLn3mBoXEZEyp0+oiogESOEuIhKgkg93MxthZq+a2etmtsfMvh+vH2dmz5nZwfjfTxV7rLkws4SZ7TCzn8bL5VrHYTPbbWY7zWxbvK5caxlrZk+Y2T+b2T4zu6gcazGzGfHjkfw5bmbfKdNa/kP8fH/DzB6Nc6Ds6gAws7+M69hjZt+J1w16LSUf7sBHwKXuPguYDSyNz8i5A3jB3acDL8TL5eAvgX1py+VaB8Aid5+ddr5uudbyA+Bn7j4TmEX0+JRdLe6+P348ZgPziE5ueIoyq8XMJgPfBmrd/fNEJ3LcQJnVAWBmnwf+HdEn/WcBXzGz6QxFLe5eNj/ASOA1ok/I7gcmxusnAvuLPb4cxl8TP5CXAj+N15VdHfFYDwPnZK0ru1qAs4FfE59cUM61ZI1/MfBSOdZC9yfexxGd0ffTuJ6yqiMe5/XAg2nLfwX8p6GopRyO3JNTGTuBo8Bz7v4rYILH59LH/366mGPM0VqiB7YrbV051gHRJ5C3mtn2+LISUJ61fA54B/j7eLrsQTMbRXnWku4G4NH4dlnV4u5HgHuBt4guYfK+u2+lzOqIvQFcYmbjzWwk0SnjUxiCWsoi3N2906M/NWuAuvhPnbJiZl8Bjrr79mKPpUAWuvtcoiuCftPMLin2gPJUCcwF7nf3OcAHlMGf+6cTf9jwKuAfiz2WfMTzz1cD04BJwCgz+7Pijio/7r4P+BvgOeBnwOtAx1DsuyzCPcnd3wOagKXA75NXnoz/PVrEoeViIXCVmR0murLmpWb2MOVXBwDu3hr/e5RoXreO8qylBWiJ/xoEeIIo7MuxlqQrgNfc/ffxcrnVchnwa3d/x91PAU8CF1N+dQDg7g+5+1x3vwT4A3CQIail5MPdzM41s7Hx7SqiB/6fiS558LW42deAp4szwty4+xp3r3H3qUR/Mv8fd/8zyqwOADMbZWajk7eJ5kPfoAxrcfffAW+b2Yx41ZeAvZRhLWmW0z0lA+VXy1vAhWY20syM6DHZR/nVAYCZfTr+9zPAnxI9NoNeS8l/QtXMLgD+gegd8wrgcXf/azMbDzwOfIboP8P17v6H4o00d2ZWD9zu7l8pxzrM7HNER+sQTWs84u73lGMtAGY2G3gQGA68SXT5jArKs5aRRG9Gfs7d34/Xld3jEp/yvIxoCmMHsAKopszqADCzfwLGA6eA/+juLwzFY1Ly4S4iIgNX8tMyIiIycAp3EZEAKdxFRAKkcBcRCZDCXUQkQLl8QbbIkIpPE3shXvwjoJPoEgEAde7+cVEGdhpm9m+BzfF58yJFp1MhpaSZ2V1Am7vfWwJjSbh7Zx/3/RJY5e47B9BfpbsPyUfR5ZNH0zJSVszsaxZd33+nmf3IzCrMrNLM3jOzBjN7zcy2mNkCM/uFmb1pZl+Ot11hZk/F9+83s+/l2O/dZvYq0XWNvm9mzfH1uddZZBnR5agfi7cfbmYtaZ+svtDMno9v321mD5jZc0QXK6s0s/8e73uXma0Y+t+qhEjhLmUjvmDctcDF8YXkKoku5QAwBtgaX8zsY+Auoo+tXw/8dVo3dfE2c4EbzWx2Dv2+5u517v4y8AN3nw+cH9+31N0fA3YCyzy6nnp/00ZzgCvd/WZgJdEF5eqA+UQXYftMPr8fkXSac5dychlRAG6LLjlCFdFH7QHa3f25+PZuosvEdpjZbmBqWh9b3P1fAMxsE/AFoudBX/1+TPelFgC+ZGargRHAOcB24H8PsI6n3f1kfHsx8K/MLP3FZDrRR9JF8qZwl3JiwAZ3/6uMlWaVRCGc1EX0DV7J2+n/z7PfZPJ++m33+I2p+Lot/wOY6+5HzOxuopDvTQfdfxlnt/kgq6a/cPcXECkgTctIOXke+KqZnQPRWTV5TGEstug7U0cSXTP8pQH0W0X0YnEsvirmv0m77wQwOm35MNFX3ZHVLtsW4C/iF5Lk96BWDbAmkR505C5lw913x1cLfN7MKoiusncb0DqAbn4JPAL8MfCT5NktufTr7u+a2T8QXd74N8Cv0u7+e+BBM2snmte/C/g7M/sd8OppxvMA0ZUBd8ZTQkeJXnREzohOhZRPjPhMlM+7+3eKPRaRwaZpGRGRAOnIXUQkQDpyFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJ0P8HfLcy7/zjy3oAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"source": [
"Comme on pouvait s'attendre au vu des données initiales, la\n",
"température n'a pas d'impact notable sur la probabilité d'échec des\n",
"joints toriques. Elle sera d'environ 0.2, comme dans les essais\n",
"précédents où nous il y a eu défaillance d'au moins un joint. Revenons\n",
"à l'ensemble des données initiales pour estimer la probabilité de\n",
"défaillance d'un joint:\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.06521739130434782\n"
]
}
],
"source": [
"data = pd.read_csv(\"shuttle.csv\")\n",
"print(np.sum(data.Malfunction)/np.sum(data.Count))"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.01270572944054793"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p = np.sum(data.Malfunction)/np.sum(data.Count)\n",
"1-(1-p**2)**3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe\n",
"un joint primaire un joint secondaire sur chacune des trois parties du\n",
"lançeur, la probabilité de défaillance des deux joints d'un lançeur\n",
"est de $p^2 \\approx 0.00425$. La probabilité de défaillance d'un des\n",
"lançeur est donc de $1-(1-p^2)^3 \\approx$ 1.2\\%. Ça serait vraiment\n",
"pas de chance... Tout est sous contrôle, le décollage peut donc avoir\n",
"lieu demain comme prévu.\n",
"\n",
"Seulement, le lendemain, la navette Challenger explosera et emportera\n",
"avec elle ses sept membres d'équipages. L'opinion publique est\n",
"fortement touchée et lors de l'enquête qui suivra, la fiabilité des\n",
"joints toriques sera directement mise en cause. Au delà des problèmes\n",
"de communication interne à la NASA qui sont pour beaucoup dans ce\n",
"fiasco, l'analyse précédente comporte (au moins) un petit\n",
"problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette\n",
"analyse et de regarder ce jeu de données sous tous les angles afin\n",
"d'expliquer ce qui ne va pas."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Nouvelle perspective"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv(\"shuttle.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tout d'abord, nous allons inspecter graphiquement la relation entre le dysfonctionnement des joints toriques et la température."
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n",
"/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6571: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n",
" warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl0FNeZ9/Hvo9a+77uEBEgCgQ2I1XjFK9iOZWfzRuw4yRAnOJPEmWQ8mWTeN5kzeT0nk5nYiQPxmjixTRw72Ngm3jdsA2bfERICISGhDbTv3ff9Q+2MrAjUoJaqu+v5nKMjddXt7qeQ9FNx69a9YoxBKaWUfQRZXYBSSqmJpcGvlFI2o8GvlFI2o8GvlFI2o8GvlFI2o8GvlFI2o8GvlFI2o8GvlFI2o8GvlFI2E2x1ASNJTk42eXl5VpehlFJ+Y9u2bU3GmBRP2vpk8Ofl5bF161ary1BKKb8hIlWettWuHqWUshkNfqWUshkNfqWUshkNfqWUshkNfqWUshkNfqWUshkNfqWUshkNfqWUshkNfqWUshmfvHNXqUD39OZjVpfwN7ctzLW6BDXB9IxfKaVsRoNfKaVsxqPgF5GlIlImIhUict8I+0VEHnTv3y0iJUP2xYvIcyJyUEQOiMgF3jwApZRSZ2fU4BcRB/AQsAwoBm4VkeJhzZYBBe6PFcCqIfseAF41xkwDZgEHvFC3Ukqpc+TJGf8CoMIYU2mM6QPWAKXD2pQCT5pBm4B4EckQkVjgEuAxAGNMnzGmxYv1K6WUOkueBH8WUD3kcY17mydtJgONwBMiskNEHhWRqDHUq5RSaow8CX4ZYZvxsE0wUAKsMsbMATqBv7tGACAiK0Rkq4hsbWxs9KAspZRS58KT4K8BcoY8zgZqPWxTA9QYYza7tz/H4B+Cv2OMedgYM88YMy8lxaPVw5RSSp0DT4J/C1AgIvkiEgrcAqwb1mYdcId7dM8ioNUYU2eMOQFUi0iRu90VwH5vFa+UUursjXrnrjFmQETuAV4DHMDjxph9InK3e/9qYD1wLVABdAF3DXmJbwFPuf9oVA7bp5RSaoJ5NGWDMWY9g+E+dNvqIV8bYOVpnrsTmDeGGpVSSnmR3rmrlFI2o8GvlFI2o8GvlFI2o9MyKzUBWrr6eH1/Pa1d/XT3OznW3MW09Bgiw/RXUE08/alTahxVn+zioXcqeGHncXr6XZ/aJ8CUlGiumZlOVnyENQUqW9LgV2qcfFTRxDee2k7vgJOb5mRx+8JJTEqKJDzEwS/fKGd/XStbjp7iN+9UsHhKElcWpxEW7LC6bGUDGvxKjYOnNlfxby/uY3JyFI/dOZ/cpMhP7c9KiCArIYKLpqbw+v4TfHS4mSNNndyxOI/Y8BCLqlZ2oRd3lfKyV/fW8a9r93JxQTJ/+ebivwv9oSJCHZTOzuLOxXk0dfSx+t3D1Lf1TGC1yo40+JXyovL6dr737C5m58Tz2y/NJcbDs/fCtBj+4ZLJDLgMj2yopKFdw1+NHw1+pbykraefr/9hGxGhwaxePves++uz4iP4+iWTERF+9+FRWrv7x6lSZXca/Ep5yf1/PUjVyS5+c3sJ6XHh5/QaSdFh3LU4j+5+J098eITuPqeXq1RKg18pr9hT08ozHx/jjgsmsSA/cUyvlRkfwfJFk2ju6OPZrdW4zPDlL5QaGw1+pcbI5TL8+MW9JEWF8d2rCr3ymlNSorl+VgZl9e28daDBK6+p1Cc0+JUao+e21bCzuoV/WTbNq0MxF+QlMjc3gXfKGjhQ1+a111VKg1+pMejpd/KLN8ooyY3npjnDl6IeGxHhhtmZZMaH89y2Glq6+rz6+sq+NPiVGoPnt9dQ39bLvVcVERQ00tLTYxPiCOKW+bk4XYY/b6vR/n7lFRr8Sp2jAaeL1e8dZlZOPBdOTRq390mODuMzszI50tTJe4cax+19lH1o8Ct1jtbtqqX6ZDf3LJmKiPfP9ocqyY3n/Ow43jpQT82prnF9LxX4NPiVOgcul+E37x6mKC2GK6aljvv7iQils7KIDgvm+e01DDhdoz9JqdPQ4FfqHLx3qJGKhg6+uWTKuPTtjyQi1MGNc7Kob+vl7TId4qnOnQa/Uufgqc1VJEeHsWxmxoS+77T0WEpy43n/UKN2+ahzpsGv1Fmqbenm7YMN3Dw/m9Dgif8Vuu68TO3yUWOiwa/UWVqzpRoD3DI/15L31y4fNVYa/EqdhX6nizUfH+PSwhRyEk8/z/540y4fNRYeBb+ILBWRMhGpEJH7RtgvIvKge/9uESkZsu+oiOwRkZ0istWbxSs10d460EBDey+3L5xkdSmf7vJxaZeP8tyowS8iDuAhYBlQDNwqIsXDmi0DCtwfK4BVw/YvMcbMNsbMG3vJSlnnz1urSYsNY0lRitWl/G31rvq2Xj4ob7K6HOVHPDnjXwBUGGMqjTF9wBqgdFibUuBJM2gTEC8iEzvcQalxdrKzj/cONVI6O4tgh2/0kk7PiGVmVhxvH2ygqb3X6nKUn/DkpzcLqB7yuMa9zdM2BnhdRLaJyIpzLVQpq72yp44Bl+HG2d6djG2srj8/g2CHsHbncYzO5aM84Enwj3R3yvCfrjO1udAYU8Jgd9BKEblkxDcRWSEiW0Vka2OjzkeifM+LO45TmBbN9IwYq0v5lNjwEJbNyOBIUyfbqk5ZXY7yA54Efw2QM+RxNlDraRtjzCefG4C1DHYd/R1jzMPGmHnGmHkpKdb3nyo1VPXJLrZWnaJ0dta4z8tzLubmJZCXFMlf956gvUfX6lVn5knwbwEKRCRfREKBW4B1w9qsA+5wj+5ZBLQaY+pEJEpEYgBEJAq4GtjrxfqVmhDrdg2e65TOzrS4kpEFiXDjnCz6nC5e2VNndTnKxwWP1sAYMyAi9wCvAQ7gcWPMPhG5271/NbAeuBaoALqAu9xPTwPWus+QgoGnjTGvev0olBpHxhhe2HGc+XkJZCdYN3Z/NKkx4VxWlMJbBxqYk9NGUXqs1SUpHzVq8AMYY9YzGO5Dt60e8rUBVo7wvEpg1hhrVMpSFQ0dlDd08O+lM6wuZVSXFqawp6aVF3fW8u0rowgLdlhdkvJBvjEmTSkf9te9JxCBa2akW13KqIKDgrhpThYt3f28ub/e6nKUj9LgV2oUf917gpLcBFJjw60uxSOTkqJYmJ/IR4ebdToHNSINfqXOoKq5kwN1bSyb6ftn+0NdMyOdmPBg1u44jtOlY/vVp2nwK3UGr+49AfhHN89Q4SEOrj8/k7rWHjYe1ukc1Kdp8Ct1Bq/uO8HMrFhLZ+I8VzMyYylKi+HNgw20duvYfvW/NPiVOo261m52HGuZ8FW2vEVE+MysTFwuw8u7h99zqezMo+GcSvm7pzcfO+vnbKxsBqB/wHVOz/cFiVGhLJmWyhv76yk70U5Rum9NN6GsoWf8Sp3Gwbo2kqJC/WY0z+lcPDWZ5OgwXtpdS78u1ajQ4FdqRL39TiqbOpme4f93vwY7giidncnJzj7eLdMJEJUGv1IjqmjswOkyAdM1MiUlmtk58bxf3qjz9isNfqVGcrCunfCQIPKSoqwuxWuWzUwnxCG8uEvn7bc7DX6lhnEZw8H6dgrTYnAE+d4UzOcqJjyEq4vTOdzYye6aVqvLURbS4FdqmJpT3XT2DjAtAGe3XJCfSFZ8BOv31NHT77S6HGURDX6lhjlY10aQQGFatNWleF2QCKWzM+noHeANncTNtjT4lRqmrL6d3MQoIkMD8zaX7IRIFk5OZFNlM7Ut3VaXoyygwa/UEG09/dS19lAUgGf7Q101PZ3IUAcv767VC702pMGv1BAV9R0AFKQFxjDO04kIdXBlcRpHm7tYv+eE1eWoCabBr9QQhxraiQ4LJj3Ov+/W9cT8vETSY8P52foDeqHXZjT4lXJzGUNFQwcFqdEESeAM4zydIBGuOz+D4y3dPLqh0upy1ATS4FfKrbalm64+JwUB3r8/1JSUaK6ZkcZv3j1MfVuP1eWoCaLBr5TbofoOBJiaGtj9+8P967XFDDgN//nqQatLURNEg18pt/KGdjLjI4gOC8xhnKeTmxTJVy7K5y/bj7OzusXqctQE0OBXCujpd1J9souCVPt08wy1cskUkqPD+OlL+3R4pw1o8CsFVDR04DKBP4zzdGLCQ/inqwvZfqyF1/bpHb2BToNfKQa7ecKCg8j1w7V1veXzc7OZkhLFL14vw+nSs/5A5lHwi8hSESkTkQoRuW+E/SIiD7r37xaRkmH7HSKyQ0Re9lbhSnmLMYby+g6mpEQH1GycZyvYEcT3ri6ivKGDtTuOW12OGkejBr+IOICHgGVAMXCriBQPa7YMKHB/rABWDdv/beDAmKtVahw0dvTS0t1vq2Gcp7NsZjrnZcXxP28condAb+oKVJ6c8S8AKowxlcaYPmANUDqsTSnwpBm0CYgXkQwAEckGrgMe9WLdSnlNuXuahkKbDeMciYjw/WuKON7SzTN+usC8Gp0nwZ8FVA95XOPe5mmbXwI/AM64yrOIrBCRrSKytbFR1wVVE6e8oZ3k6DASokKtLsUnXFyQzKLJifz6nQo6ewesLkeNA0+Cf6ROz+FXfkZsIyLXAw3GmG2jvYkx5mFjzDxjzLyUlBQPylJq7PqdLo40dWo3zxAiwg+WTqOpo48nPjxidTlqHHgS/DVAzpDH2UCth20uBG4QkaMMdhFdLiJ/POdqlfKyo02d9DsNhTYdv386JbkJXDk9jd++X0lLV5/V5Sgv8yT4twAFIpIvIqHALcC6YW3WAXe4R/csAlqNMXXGmH8xxmQbY/Lcz3vbGLPcmweg1FiUN3QQHCTkJ2vwD/f9a4ro6B1g1XuHrS5Fedmo96YbYwZE5B7gNcABPG6M2Scid7v3rwbWA9cCFUAXcNf4layU9xyqbycvKYrQYPve0vL0GS7izsqO5/EPjpAcFUbUBE1lcdvC3Al5Hzvz6DtpjFnPYLgP3bZ6yNcGWDnKa7wLvHvWFSo1Tlq6+mho72XupASrS/FZlxWmsKu6hY8ON3FVcbrV5Sgvse9pjrK9igZ7rLY1Fqmx4RRnxrKxslkXawkgGvzKtg41dBAbHkxaTJjVpfi0ywpT6el3sbmy2epSlJdo8CtbcroMFQ3tFKTGIDZYbWssshIiKEyL5oOKJvoGzng7jvITGvzKlo6f6qKn36Xj9z10aWEqnX1OtladtLoU5QUa/MqWDjV8stqWBr8n8pOjyEuKZEN5EwMuPev3dxr8ypbK69vJToggMtReq22NxWVFqbR297PzmK7S5e80+JXtdPUOUHOqW0fznKWC1Giy4iN471AjLl2ly69p8CvbqWjswIBO03CWRIRLC1No7uxjz/FWq8tRY6DBr2ynvL6DiBAHWQn2XW3rXBVnxpISHcaG8kZdm9ePafArWzHGUN7QzpRUe6+2da6CRFg8NYnalh6qmrusLkedIw1+ZSv1bb209QxoN88YzMlJICLEwYeHm6wuRZ0jDX5lK+UN7YBO0zAWocFBLMhPZH9tG6c6dcpmf6TBr2ylvL6D1Jgw4iJCrC7Fry2anIQIbNRpHPySBr+yjb4BF0eaOynUs/0xi4sIYWZWHFuOnqRXJ2/zOxr8yjaONHXgdBmdpsFLLpySTO+Ai23HTlldijpLGvzKNsrq2wlxCHlJUVaXEhByEiPJTYzko8PNekOXn9HgV7ZgjKHsRDtTUqIJceiPvbcsnpLEyc4+yk60W12KOgv6G6BsoaG9l1Nd/RSla/++N83IjCMuIkSHdvoZDX5lC5+ckRbphV2vcgQJF0xOorKxk7rWbqvLUR7S4Fe2UFbfTnpsOPGRoVaXEnDm5yUS4hA2Vepc/f5Cg18FvLaefqqaO7WbZ5xEhDo4PzueXdUtui6vn9DgVwFvw6EmXEa7ecbTwvxE+pwudlbrXP3+QINfBby3DzYQEeIgJ1Fn4xwv2QmRZMVHsPlIs87a6Qc0+FVAc7kM7x1qoCBNZ+McbwvyE6lv6+XYSZ2109d5FPwislREykSkQkTuG2G/iMiD7v27RaTEvT1cRD4WkV0isk9EfuLtA1DqTPYcb6Wpo49p2r8/7mZlxxMWHMTmI3qR19eNGvwi4gAeApYBxcCtIlI8rNkyoMD9sQJY5d7eC1xujJkFzAaWisgiL9Wu1KjePtiACBSmavCPt9DgIObkJrDneCudvQNWl6POwJMz/gVAhTGm0hjTB6wBSoe1KQWeNIM2AfEikuF+3OFuE+L+0A5ANWHeKWtgTk48kWG6qPpEWJifiNNl2Fal8/f4Mk+CPwuoHvK4xr3NozYi4hCRnUAD8IYxZvO5l6uU5xrae9hd08rl01KtLsU20mLDyUuK5OOjJ3X+Hh/mSfCPdEVs+Hf0tG2MMU5jzGwgG1ggIjNHfBORFSKyVUS2NjY2elCWUmf2btngz9ESDf4JtTB/cP6eww0dozdWlvAk+GuAnCGPs4Has21jjGkB3gWWjvQmxpiHjTHzjDHzUlJSPChLqTN7t6yB9NhwijNirS7FVmZkxhIV6tCLvD7Mk+DfAhSISL6IhAK3AOuGtVkH3OEe3bMIaDXG1IlIiojEA4hIBHAlcNCL9Ss1on6niw2HmlgyLQURHcY5kYIdQcydlMiBujZau/utLkeNYNTgN8YMAPcArwEHgGeNMftE5G4RudvdbD1QCVQAjwDfdG/PAN4Rkd0M/gF5wxjzspePQam/s7nyJO29Aywp0m4eK8zPS8AA26r0rN8XeTTUwRiznsFwH7pt9ZCvDbByhOftBuaMsUalztqr++qICHFwSaF2G1ohKTqMKSlRbK06xWVFqQTp/7p8it65qwKOy2V4fV89lxWlEB7isLoc25qfl0hLVz8VepHX52jwq4Czo7qFhvZels5Mt7oUWyvOiCUy1MGWo9rd42s0+FXAeX3fCUIcosM4LRbsCKIkN4EDdW209+hFXl+iwa8CijGGV/edYPGUZGLDQ6wux/bm5SXgMrD9mE7X7Es0+FVAOXiinarmLu3m8RGpMYN38m49elKna/YhGvwqoLy69wQicOX0NKtLUW7z8xJp7uyjsqnT6lKUmwa/ChjGGF7aXcvC/ERSYsKsLke5zcyKIzwkSC/y+hANfhUw9te1UdnYyQ2zhs8hqKwU4ghidk4C+2rb6NLpmn2CBr8KGOt21RIcJCzT/n2fsyBvcLrm7bomr0/Q4FcBwRjDy7vquLggmYSoUKvLUcOkx4WTkxDBFr3I6xM0+FVA2H7sFMdbuvnMrEyrS1GnMT8vkcZ2XZPXF2jwq4Dw0q46woKDuKpYR/P4qvOy4wgN1ou8vkCDX/m9AaeLl3fXcfm0VGL0pi2fFRbsYFZ2PHuOt9Ld57S6HFvT4Fd+792yRpo6evlsSbbVpahRzM9LoN9p2FWjF3mtpMGv/N6zW6tJjg7jsiKdgtnXZcVHkBEXrhd5LabBr/xaY3svbx9s4HMlWYQ49MfZ14kI8/MSqWvt4XhLt9Xl2Jb+pii/9sKO4wy4DF+Yp908/mJ2TjwhDtGLvBbyaAUu5R+e3nzM6hI+5baFueP6+sYYnt1aTUluPFNTY8b1vZT3hIc4OC8rnl01rVx7XgZhwbpYzkTTM37lt3ZWt1De0MEX5uVYXYo6S/PzEugbcLG7ptXqUmxJg1/5rSc3VhEdFsz152dYXYo6S7mJkaTGhGl3j0U0+JVfamjv4eXdtXx+braO3fdDn1zkrTnVTV2rXuSdaBr8yi89tekY/U7DnYvzrC5FnaM5OfEEBwlbjp6yuhTb0eBXfqd3wMlTm4+xpCiF/OQoq8tR5ygyLJgZmbHsrD5F34DL6nJsRYNf+Z1XdtfR1NHLXRfmW12KGqP5eYn09LvYW6sXeSeSR8EvIktFpExEKkTkvhH2i4g86N6/W0RK3NtzROQdETkgIvtE5NvePgBlL8YYHtlwhCkpUVw0NdnqctQY5SdHkRQVqhd5J9iowS8iDuAhYBlQDNwqIsXDmi0DCtwfK4BV7u0DwPeMMdOBRcDKEZ6rlMfe2F/Pgbo2vnHZVIKCxOpy1Bh9cpG3qrmLhrYeq8uxDU/O+BcAFcaYSmNMH7AGKB3WphR40gzaBMSLSIYxps4Ysx3AGNMOHAB0XTx1TowxPPBWOZOSIrlxts67Hyjm5MYTJLC1Si/yThRPgj8LqB7yuIa/D+9R24hIHjAH2Hy2RSoF8NaBBvbVtrFyyVSCdV6egBETHsL0jFi2HzvFgFMv8k4ET357Rvr/9PBp9c7YRkSigeeB7xhj2kZ8E5EVIrJVRLY2NjZ6UJayE2MMD75dTm5iJDfN0f80BpoFeYl09TnZXzdiPCgv8yT4a4Ch98RnA7WethGREAZD/yljzF9O9ybGmIeNMfOMMfNSUnR6XfVpr+ypY3dNK/csmaqzcAagKanRJESG6EXeCeLJb9AWoEBE8kUkFLgFWDeszTrgDvfonkVAqzGmTkQEeAw4YIz5b69Wrmyju8/Jz145QHFGLJ+bq7NwBqIgEeZOSuRwYydVzZ1WlxPwRg1+Y8wAcA/wGoMXZ581xuwTkbtF5G53s/VAJVABPAJ80739QuBLwOUistP9ca23D0IFtlXvHaa2tYf/e8MMHDqSJ2DNnZSAAGu2VI/aVo2NR9MyG2PWMxjuQ7etHvK1AVaO8LwPGLn/XymPVJ/s4rfvHeaGWZksyE+0uhw1juIiQihKj+HPW2u496pC7dIbR/ovq3yWy2X44do9BInwL9dOs7ocNQHm5yXS1NHLWwcarC4loGnwK5/1u4+OsqG8iR9dP52MuAiry1EToDAthvTYcNZs8a1FhQKNBr/ySWUn2rn/1YNcOT2V2xaM70peync4goQvzsvmvUONuibvONLgVz6no3eAf3xmB7Hhwdz/ufMZHBym7OKL8wdHhj+rF3nHjQa/8in9ThfffGo7FY0d/M/Ns0mODrO6JDXBshMiubgghWe3VuN0Db9XVHmDBr/yGcYYfvzCXt4/1MjPbprJxQV6I59d3To/h7rWHt47pBd5x4MGv/IJTpfh/6zbx5ot1Xzr8qncPF/79e3siulpJEeH8szH2t0zHjT4leV6+p3c8/R2ntxYxT9cnM+9VxVaXZKyWGhwEJ+fm8PbBxv0Iu840OBXlqpo6ODm327kr3tP8KPrpvOv1xXrxVwFwJcumATAkx8dtbaQAKTBryzR73Tx2AdHuO7BDVSd7GL18hK+dvFkq8tSPiQrPoKlM9N55uNjdPYOWF1OQPFoygalvKVvwMXaHTX86u0Kak51c/m0VO7/7HmkxoZbXZryQV+5MJ9Xdtfx/PYa7rggz+pyAoYGvxp3Pf1OtlWd4uXddazfU0drdz+zcuL599KZXFaUol076rTmTkpgdk48T3x4lOULJ+lym16iwa+8xhhDa3c/jR29NLb3cqCujbIT7eysbqHP6SIy1ME1M9L5bEkWF01N1sBXHvnqRfl865kdvFPWwBXT06wuJyBo8KuzZoyhvWeAutZu6lp7qG/robGjl6b2PvqGLJ0XEx7M1NRovnxhHhdMTmLh5EQiQ/VHTp2dpTPTyYgL57EPjmjwe4n+FqpRuYzh+KluKho7ONLUSW1LN119zr/tj48IISUmjLy8KFJiwkiJDiMlJowVl0zWs3o1ZiGOIO5cnMf9fz3I/to2ijNjrS7J72nwqxEZYzja3MXumhb21rb9bVRFemw40zNiyYgLJyMugvTYcCJCHSO+hoa+8pZb5+fywJvlPPHhEX7+hVlWl+P3NPjVp/QOONl+rIXNlc00tPcS4hCK0mOZkRnLlJRoosP0R0ZNvLjIED4/N5s/banmB0unkRKjcziNhf4WKwB6+51sqmxmQ0UTXX1OshMi+FxJFjOz4ggLHvmMXqmJdNeFefxhUxV/3FTFd/Xu7jHR4Lc5lzFsO3qK1w/U09k7QGFaNJcXpZKbFGV1aUp9yuSUaK6YlsofNlXx9Usn60CBMdA7d22s+mQXD71Twdqdx0mOCuUbl07hy4vzNfSVz/rmkimc7OxjjU7eNib6J9OG+gZcvHmgng8rmogJD+aW+TmclxWnF2OVz5s7KZEF+Yk8/H4lyxdNIjRYz13Phf6r2czxlm5+/U4FH1Q0MT8vke9cWcj52fEa+spvrFwylRNtPazdUWN1KX5Lg98mjDF8UN7I6ncP0zfg5CsX5nPjnCzCQ/TCrfIvlxQkMzMrllXvHtYVus6RBr8N9A24eGZLNev3nqAoPYZ/vLyAqanRVpel1DkREVZeNpWjzV28tKvW6nL8kgZ/gDvZ2cfq9w6z73grS2ekc/vCXCJ1LL7yc9fMSGdaegwPvFXOwJBpQpRnPAp+EVkqImUiUiEi942wX0TkQff+3SJSMmTf4yLSICJ7vVm4Gl1FQwcPvVNBS3cfdy7O45JCnQlTBYagIOG7VxVypKmTtTuOW12O3xk1+EXEATwELAOKgVtFpHhYs2VAgftjBbBqyL7fAUu9Uazy3IcVTTzx4RFiwoNZedlUCtNirC5JKa+6ujiNmVmxPPh2Of161n9WPDnjXwBUGGMqjTF9wBqgdFibUuBJM2gTEC8iGQDGmPeBk94sWp2eMYa/7qnjlT11TM+I5RuXTiEpWm9vV4FHRLj3qkKqT3bz3DYd4XM2PAn+LGDo3RI17m1n2+aMRGSFiGwVka2NjY1n81Tl5nQZnt9ew4aKJhZNTuS2hbmE6agdFcCWFKUyJzeeX755iK4+XZ7RU54E/0idwsPHUHnS5oyMMQ8bY+YZY+alpKSczVMV0N3n5I+bqth+rIUrpqfymfMzCdL+fBXgRIQfXjud+rZeHv/giNXl+A1Pgr8GyBnyOBsYPobKkzZqnLR09bH8sc0cqm+ndHYmV0xL04u4yjbm5yVydXEaq9+rpKmj1+py/IInwb8FKBCRfBEJBW4B1g1rsw64wz26ZxHQaoyp83KtagR1rd188bcb2VPTyi0LclmYn2R1SUpNuH9eNo3uficPvlVudSl+YdTgN8YMAPcArwEHgGeNMftE5G4RudvdbD1QCVQAjwDf/OT5IvIMsBEoEpEaEfmql4/BtioaOvj8qo3UtvTwu7vmc15WnNUlKWWJKSnR3Logh6fpdcydAAALLUlEQVQ2H6PsRLvV5fg8j+7kMcasZzDch25bPeRrA6w8zXNvHUuBamQ7q1u464mPcQQJa1YsYmZWHEebj1ldllKWufeqIl7eXce/vbiXNSsWaXfnGeidu37o/UON3PbIJqLDg3nu7sXM1DN9pUiMCuX71xSx+chJ1ulUDmekwe9nXtx5nK/+fguTkqJ4/u7F5CXr3PlKfeKW+bmclxXHz9YfoKNXh3eejk7a4kee+PAIP3lpPwvyE3nkjnnERYRYXdIZPb1Zu57UxHIECT8tncFnV33Ez189yE9KZ1pdkk/SM34/YIzhv14r4ycv7efq4jSe/MoCnw99pawyJzeBOy/I4/cbq/j4iE4aMBINfh834HTxw7V7+PU7Fdw8L4ff3F6ic+grNYofLC0iJzGCf35+Nz39TqvL8Tka/D6sp9/Jyqe388zH1axcMoX7P3cewQ79lik1msjQYO7/7PkcaerkF6+XWV2Oz9EU8VGnOvtY/uhmXttXz79dX8z3r5mmw9OUOgsXTk3m9oW5PLLhCBvKdf6voTT4fVD1yS4+t/ojdte08uvb5vCVi/KtLkkpv/Sj64qZmhrNvc/u0ukchtDg9zF7alq56Tcf0dzRxx+/tpDrz8+0uiSl/FZEqINf3zaH1u5+vvfsLly6Ri+gwe9T3jnYwM0PbyQsOIjnv3EBC/ITrS5JKb83LT2WH19fzHuHGnlA5/IBdBy/TzDG8NgHR/jZ+gMUZ8by+J3zSY0Nt7ospQLG8oW57DzWwgNvlTMtPYZl52VYXZKlNPgt1tPv5L7nd/PCzlqWzkjnF1+cRZQuhq6UV4kI/3HTTCqbOrj32V3kJkUyI9O+U51oV4+Fjrd08/nVH/Hirlr+6epCVi0v0dBXapyEhzj47fK5xEWE8OUntlDV3Gl1SZbR4LfIxsPN3PCrD6hq6uLRO+Zxz+UFOlxTqXGWGhvOk19dQL/TxfLHNlPf1mN1SZbQ4J9gfQMufv7aQW5/dBNxkSG8cM+FXDE9zeqylLKNwrQYfnfXApo7+vjSY5tpaLdf+GvwT6CKhg4+t+ojHnrnMF+Ym8O6ey5iSkq01WUpZTuzc+J59M55VJ/s5ourN1JzqsvqkiaUBv8EMMbwx01VXP+rDVSf6mL18hL+8/PnE639+UpZZvGUZP74tYWc7OzjC6s3cqjePit3afCPs6NNndzx+Mf86IW9zM9L5LXvXMLSmfYeSqaUr5g7KYE1Ky5gwGW46aEPeW3fCatLmhAa/OOku8/JA2+Wc/Uv32fHsRZ+WjqD39+1gDQdn6+UTynOjOWley5iamo0X//DNn7xehn9TpfVZY0r7WvwMpfLsHbHcf7r9TLqWnu47vwM/u36Yg18pXxYelw4f/r6Bfz4hb386u0K3j/UyH/fPDtgr8Fp8HuJ02V4ZU8dv3qrnPKGDs7PjuOXN89m4eQkq0tTSnkgPMTBz78wiyXTUvnh2j1c+8AGvnHZFO6+dErArYGhwT9Gnb0DPL+9hic+PMqRpk4KUqP51a1zuO68DIKCdFy+Uv7m2vMymDcpgZ++vJ9fvlnOn7fW8L2rC7lhVmbArIehwX8OjDHsrG7huW01rNtVS3vPALNz4nnothKWzUzXwFfKz6XGhvPr20pYvqiZn760n3uf3cUDb5Xz9UumcOOcTCJD/Ts6/bv6CTTgdLHneCuv7avn1b11HG3uIjwkiGtnZrD8gkmU5CZYXaJSyssWTU7i5W9dxJsH6vnV2xX8cO0e/t/6A9w4J4vS2ZmU5Cb45YmeR8EvIkuBBwAH8Kgx5v5h+8W9/1qgC/iyMWa7J8/1VU6XYX9tGxsrm9hUeZItR07S3jtAcJBwwZQk7r50Ctedn0FMuC56rlQgCwoSrp6RzlXFaWyrOsXTm4/xp63V/GFTFWmxYVwxPY2LpiazaHISiVGhVpfrkVGDX0QcwEPAVUANsEVE1hlj9g9ptgwocH8sBFYBCz18rqXae/qpb+uhqrmLQ/UdlNe3U1bfTkVDB70Dg0O6JqdEccPsTBZNTuLigmTiI/3jm6uU8h4RYV5eIvPyEvlJ6QzePtjA+j11rNtZy9ObjwGQFR/B9IxYijNjKc6IYWpqDJnx4T7XNeRJNQuACmNMJYCIrAFKgaHhXQo8aYwxwCYRiReRDCDPg+d6zat76+gdcNHvNAw4XfS7DH0DLjp7B2jv6ae9Z4C2nn5au/s50drDidYeOvucn3qN9NhwCtNjuGByEudlx7FocpIOxVRKfUpMeAils7MonZ1Fv9PF7ppWthw9yf7aNvbXtfH2wXqGLvYVGx5Melw46XERJEWFEh0WTHR4MNFhwcSEBxMWHESII4jI0GCWzkwf9/o9Cf4soHrI4xoGz+pHa5Pl4XO95rt/2kV3v3PEfREhDmLCB/+R4yJCKEyL4eKCFDLiwkmPCycrPoKCtBjiIrTrRinluRBHEHMnJTB30v9e5+vpd1J2op3Kpg5OtPZyorWbutYeTrT1cKSpg46eAdp7BhgYthRkcnSYzwT/SFcuhi9cebo2njx38AVEVgAr3A87RKTMg9oCQTLQZHURFrLz8euxj+D2CS7EAqc99ipAfnzOrzvJ04aeBH8NkDPkcTZQ62GbUA+eC4Ax5mHgYQ/qCSgistUYM8/qOqxi5+PXY9djt4ondyNsAQpEJF9EQoFbgHXD2qwD7pBBi4BWY0ydh89VSik1gUY94zfGDIjIPcBrDA7JfNwYs09E7nbvXw2sZ3AoZwWDwznvOtNzx+VIlFJKecSjMUbGmPUMhvvQbauHfG2AlZ4+V32K7bq3hrHz8eux25Plxy6Dma2UUsouAmPGIaWUUh7T4J9gInJURPaIyE4R2ereligib4hIuftzQE78476x7zkROSgiB0TkAjscu4gUub/fn3y0ich37HDsACLyXRHZJyJ7ReQZEQm3y7EDiMi33ce+T0S+495m6fFr8FtjiTFm9pAhXfcBbxljCoC33I8D0QPAq8aYacAs4AA2OHZjTJn7+z0bmMvgAIi12ODYRSQL+EdgnjFmJoODPG7BBscOICIzgX9gcAaEWcD1IlKAxcevwe8bSoHfu7/+PXCjhbWMCxGJBS4BHgMwxvQZY1qwwbEPcwVw2BhThX2OPRiIEJFgIJLBe3nscuzTgU3GmC5jzADwHnATFh+/Bv/EM8DrIrLNfbcyQJr7vgfcn1Mtq278TAYagSdEZIeIPCoiUdjj2Ie6BXjG/XXAH7sx5jjwX8AxoI7Be3xexwbH7rYXuEREkkQkksFh7zlYfPwa/BPvQmNMCYMzmq4UkUusLmiCBAMlwCpjzBygkwD97/3puG9ivAH4s9W1TBR333UpkA9kAlEistzaqiaOMeYA8J/AG8CrwC5gwNKi0OCfcMaYWvfnBgb7eRcA9e7ZTHF/brCuwnFTA9QYYza7Hz/H4B8COxz7J5YB240x9e7Hdjj2K4EjxphGY0w/8BdgMfY4dgCMMY8ZY0qMMZcAJ4FyLD5+Df4JJCJRIhLzydfA1Qz+V3AdcKe72Z3Ai9ZUOH6MMSeAahEpcm+6gsHpuQP+2Ie4lf/t5gF7HPsxYJGIRLoXbLqCwYv6djh2AEQk1f05F/gsgz8Dlh6/3sA1gURkMoNn+TDY9fG0MeY/RCQJeBbIZfAX5QvGmJMWlTluRGQ28CiDk/dVMji1RxD2OPZIBqcon2yMaXVvs8v3/SfAzQx2cewAvgZEY4NjBxCRDUAS0A/ca4x5y+rvvQa/UkrZjHb1KKWUzWjwK6WUzWjwK6WUzWjwK6WUzWjwK6WUzWjwK6WUzWjwK6WUzWjwK6WUzfx/7z3LGff52BgAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import seaborn as sns\n",
"sns.distplot(data.Temperature.tolist())"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n",
"/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6571: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n",
" warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl0XOWd5vHvr0qlzdp3WYst7zYGb7IxS4JNWAxJxyQBAoSkQyfNkIRM5/RMT2d6m17SMz2nl0mnQ4cmDIfhJEBnxyEGx4DZAsaWd8vyIsuLZO2Wtdra3/lDMq0IY5Xtkm7p6vmco4OrdKl6KJvHr9773veacw4REfGXgNcBREQk8lTuIiI+pHIXEfEhlbuIiA+p3EVEfEjlLiLiQyp3EREfUrmLiPiQyl1ExIdivHrjrKwsN3PmTK/eXkRkUtqxY0ezcy57rOM8K/eZM2dSVlbm1duLiExKZnYinOM0LSMi4kMqdxERH1K5i4j4kMpdRMSHVO4iIj6kchcR8SGVu4iID6ncRUR8SOUuIuJDnl2hKt569r2TXke4Ig9cW+x1BJGoppG7iIgPqdxFRHxI5S4i4kMqdxERHxqz3M3sKTNrNLP9H/J9M7PvmFmlme01s+WRjykiIpcinJH708C6i3z/DmDu8NfDwPeuPJaIiFyJMcvdOfcm0HKRQ9YDz7ghW4E0M8uPVEAREbl0kZhzLwCqRzyuGX7uA8zsYTMrM7OypqamCLy1iIhcSCTK3S7wnLvQgc65J5xzpc650uzsMW8BKCIilykS5V4DFI14XAjURuB1RUTkMkWi3DcAXxheNbMaaHPO1UXgdUVE5DKNubeMmT0HrAGyzKwG+B9ACMA59ziwEbgTqATOAg+NV1gREQnPmOXunLt/jO874GsRSyQiIldMV6iKiPiQyl1ExIdU7iIiPqRyFxHxIZW7iIgPqdxFRHxI5S4i4kMqdxERH1K5i4j4kMpdRMSHVO4iIj6kchcR8SGVu4iID6ncRUR8SOUuIuJDKncRER9SuYuI+JDKXUTEh1TuIiI+pHIXEfEhlbuIiA+p3EVEfEjlLiLiQyp3EREfUrmLiPiQyl1ExIdU7iIiPqRyFxHxIZW7iIgPqdxFRHworHI3s3VmdsjMKs3smxf4fqqZ/dLM9phZuZk9FPmoIiISrjHL3cyCwGPAHcAi4H4zWzTqsK8BB5xzS4A1wD+aWWyEs4qISJjCGbmvAiqdc1XOuV7geWD9qGMckGxmBiQBLUB/RJOKiEjYwin3AqB6xOOa4edG+i6wEKgF9gF/4JwbjEhCERG5ZOGUu13gOTfq8e3AbmA6sBT4rpmlfOCFzB42szIzK2tqarrksCIiEp5wyr0GKBrxuJChEfpIDwE/c0MqgWPAgtEv5Jx7wjlX6pwrzc7OvtzMIiIyhnDKfTsw18xKhk+S3gdsGHXMSeBjAGaWC8wHqiIZVEREwhcz1gHOuX4zexTYBASBp5xz5Wb2yPD3Hwf+BnjazPYxNI3zx8655nHMLSIiFzFmuQM45zYCG0c99/iIX9cCt0U2moiIXC5doSoi4kMqdxERH1K5i4j4kMpdRMSHwjqhKv5R23qO6paz7KluJS0xRFFGIgG70HVqIjKZqdyniOqWs/yvlyrYuK/+t55PSwixrDiNNfNzCAX1g5yIX6jcp4Cn3j7G3710kGDA+M83z2FlSQZlx89Q23qOvTVtbDnUxOGGTh5YVUz6NG3mKeIHKnefe/KtKr71qwpuWZjLt+5aTF5qPADVLefITYlnWXE6FXXt/Kismu9uqeR3r5tBceY0j1OLyJXSz+E+9v/eOc63flXBx6/O5/EHl79f7KMtzE/h0bVzSIwN8szWE7R09U5wUhGJNJW7T71ztJn/saGc2xbl8u37lhIzxnx6ZlIcv3vdTJyDZ949TnffwMQEFZFxoXL3ofbuPv7ox3uZlTWNf75vWdgnSrOS43jg2mKaO3v4cVk1zo3e2VlEJguVuw/99S8PUNd2jn+8dwkJscFL+ndnZyexbnE+FfUd7KlpG6eEIjLeVO4+89rBBn6yo4avrZ3DsuL0y3qN62dnUpSewIt7a+nq0d0SRSYjlbuP9A8M8j83HmRW9jS+fvPcy36dgBmfWl5Id98AG/fVRTChiEwUlbuP/HRnDZWNnfy32xcQG3Nlv7V5KfHcNC+bXdWtVDV3RiihiEwUlbtPdPcN8H82H2FZcRq3X5UbkddcMz+HlPgYNu2v18lVkUlG5e4TT79znPr2br65bgEWob1iQsEAH1uQS/WZcxys74jIa4rIxFC5+8C53gH+7Y2jrJ2fzbWzMiP62stnpJM5LZZfH6hnUKN3kUlD5e4DP9lZw5mzfXx17ZyIv3YwYNy6KJeG9h72VLdG/PVFZHyo3Ce5wUHHU28fY0lRGqUzLm/p41gWF6SSnxrPlkNNGr2LTBIq90nulYoGjjV38fsfKYnYXPtoATM+Oi+b5s4eDta1j8t7iEhkqdwnuSffOkZBWgLrrsob1/dZPD2V9MQQbxxu0soZkUlA5T6J7atpY9vxFn7vxpIxNwa7UsGAcePcbKrPnOP46bPj+l4icuVU7pPYs9tOEh8KcE9p4YS834ridBJjg7x1pGlC3k9ELp/KfZLq6ulnw+5TfPzq6aTEhybkPWNjAlw3K5OD9R00dfRMyHuKyOVRuU9Sv9pbR1fvAPevKprQ911VkkHQjK3HTk/o+4rIpVG5T1LPbT/JnJwkVozT8scPkxwfYnFBCjtPnKGnXzf0EIlWKvdJ6FB9B7tOtnLfyqJxW/54MdfNyqSnf5DduqhJJGqp3Cehf99eTShofHr5xJxIHa0oI5HpqfG8e/S0lkWKRCmV+yTTPzDIhj2n+NiCXDKmxXqSwcxYPSuTxo4ejp3u8iSDiFycyn2S+c3R0zR39nLXsume5lhSlEZ8KMD2Yy2e5hCRCwur3M1snZkdMrNKM/vmhxyzxsx2m1m5mb0R2Zhy3gu7TpEcH8Oa+Tme5ggFAywtSqO8tp1zvTqxKhJtxix3MwsCjwF3AIuA+81s0ahj0oB/BT7pnLsKuGccsk5553oH2FRez52L84kPXdqNr8dD6YwM+gcdu6vPeB1FREYJZ+S+Cqh0zlU553qB54H1o455APiZc+4kgHOuMbIxBYY2CevqHWC9x1My501PS2B6WjxlJ87oxKpIlAmn3AuA6hGPa4afG2kekG5mr5vZDjP7QqQCyn94Yfcp8lLiWV0S2RtyXInSGRnUtXVT29rtdRQRGSGccr/QQurRw7QYYAXwceB24M/NbN4HXsjsYTMrM7OypibtT3IpWs/28sbhJj65dDqBwMSvbf8wSwrTiAkY20/oxKpINAmn3GuAkde4FwK1FzjmZedcl3OuGXgTWDL6hZxzTzjnSp1zpdnZ2ZebeUr69YEG+gYcn7gm3+sovyUhNsjVBansqW6lt3/Q6zgiMiycct8OzDWzEjOLBe4DNow65gXgI2YWY2aJwLVARWSjTm0v7aujMD2BqwtSvY7yAStmptPTP8j+2javo4jIsDHL3TnXDzwKbGKosH/knCs3s0fM7JHhYyqAl4G9wDbgSefc/vGLPbW0nevj7cpm7rw635PtBsZSkjmNzGmxlB3XqhmRaBETzkHOuY3AxlHPPT7q8d8Dfx+5aHLe5uEpmTuvjq4pmfPMjNIZ6Ww60EBzRw9ZyXFeRxKZ8nSF6iSwcV8dBWkJLCmMvimZ85bNSCdgUHZCo3eRaKByj3Lt3X28daSJOxbnReWUzHkp8SHm5yaz8+QZBga15l3Eayr3KPdqxfCUTJStkrmQ0pkZdPb0c6i+w+soIlOeyj3KbdrfQG5KHEsL07yOMqZ5uckkxcWw46SmZkS8pnKPYt19A7x5pIlbFuZG1YVLHyYYMJYVp3Govp2O7j6v44hMaSr3KPbO0WbO9g5w66Jcr6OEbUVxOoMO3aVJxGMq9yj26/IGkuJiuG529OwlM5aclHiK0hPYoc3ERDylco9Sg4OOVyoauWl+NnEx3m/veymWz0insaOHU63nvI4iMmWp3KPUrupWmjt7uG0STcmcd34zMa15F/GOyj1K/fpAPTEB8/yOS5cjPhRkcUEqe2ta6RvQZmIiXlC5R6nNBxpYPSuT1ISQ11Euy/LidLr7BjlQ2+51FJEpSeUehSobO6lq6ppUq2RGm5U9jbTEEDs0NSPiCZV7FNp8oAGAWyZxuQfMWF6cztGmTlrP9nodR2TKUblHoc0H6llckEJBWoLXUa7I8uJ0HLBTV6yKTDiVe5Rp7OhmV3Urty7M8zrKFcuYFsusrGnsOHGGQa15F5lQKvco82pFI84xqefbRyqdmc6Zs31UNXV5HUVkSlG5R5nNBxooSEtgYX6y11Ei4qrpqcSHAmw/rhtoi0wklXsU6erp5+3KZm67Kjeq926/FKFggGVF6Ryoa6erp9/rOCJThso9irx1pIne/kFuXeiPKZnzVs7MYGDQsUsnVkUmjMo9imw+0EhKfAwrSzK8jhJRealDm4lt12ZiIhNG5R4lBgYdWw41snZBDqGg/35bVs7MoKmjhxOnz3odRWRK8F+LTFK7Tp6hpauXW3w2JXPeNYVpxMUE2KYTqyITQuUeJTZXNBATMG6an+11lHERGxNgeXE6+0610akTqyLjTuUeJV4Z3igsJX5ybhQWjmtLhk6slmn0LjLuVO5RoKqpk6NNXdyycPJt73spclLimZU9jW3HWnTFqsg4U7lHgVcrGgH4mE/n20daXZJJ67k+DtV3eB1FxNdU7lFgc0UDC/KSKcpI9DrKuFuYn0JKfAxbq057HUXE11TuHjvT1UvZ8RbfrpIZLRgwVpVkcqSxk4b2bq/jiPiWyt1jWw41Mugm997tl+rakgxCQeM3lc1eRxHxLZW7x16paCA7OY5rClK9jjJhpsXFsKw4nd3VrVoWKTJOVO4e6ukf4M3DzdyyMIdAwB8bhYXrhtlZ9A863tPcu8i4CKvczWydmR0ys0oz++ZFjltpZgNmdnfkIvrXe1UtdPb0T5n59pGyk+NYkJfM1qrT9A0Meh1HxHfGLHczCwKPAXcAi4D7zWzRhxz3v4FNkQ7pV69UNBAfCnDDnCyvo3jixjlZdPUO6CbaIuMgnJH7KqDSOVflnOsFngfWX+C4rwM/BRojmM+3nHO8cqCBj8zNJj4U9DqOJ0qyplGckcgbh5voH9ToXSSSwin3AqB6xOOa4efeZ2YFwKeAxy/2Qmb2sJmVmVlZU1PTpWb1lQN17dS2dftu7/ZLYWbcvCCHtnN97DrZ6nUcEV8Jp9wvdKZv9LXj3wb+2Dk3cLEXcs494Zwrdc6VZmf7c4OscL1yoBEzWLvA31sOjGVuThIFaQm8cbiJgUFtSSASKeGUew1QNOJxIVA76phS4HkzOw7cDfyrmd0VkYQ+9UpFA8uK0shOjvM6iqfOj95bunrZU6PRu0ikhFPu24G5ZlZiZrHAfcCGkQc450qcczOdczOBnwBfdc79IuJpfaKu7Rz7TrVNib1kwrEgL5npqfG8WtFAv1bOiETEmOXunOsHHmVoFUwF8CPnXLmZPWJmj4x3QD86v1HYrVPoqtSLMTNuX5zHmbN9vHdM2wGLREJMOAc55zYCG0c9d8GTp865L155LH97taKB4oxE5uYkeR0laszNSWZOThKvHWxkeXE6CbFTcwWRSKToCtUJ1tXTz2+OnuaWhbmYTa2rUsey7qo8zvUN8OaRqb2SSiQSVO4T7K0jTfT2D3LLoqm9SuZCpqclsLQojd9UNnO6s8frOCKTmsp9gr28v560xBArZ2Z4HSUq3X5VHsGAsWFPLU53axK5bCr3CdTTP8CrFY3cujCXUFAf/YWkJoS4dVEuRxo72Xeqzes4IpOWGmYC/aaymY6efu68Ot/rKFFt9axMCtIS+NXeOs71XvS6OBH5ECr3CfTSvnqS42K4fk6m11GiWsCMu5YW0NnTz4t7R18vJyLhULlPkL6BQTZXNHDLolziYrTMbywF6QmsXZDDrupWdldr10iRS6VynyBbq07TeraPdYvzvI4yaaydn8OMjERe2F1LS1ev13FEJhWV+wR5aX89ibFBbpo3tTdMuxTBgHHvyiLM4LltJ+nt19YEIuEK6wpVuTIDg45fl9ezdkHOlN27/XKlJ8Zyz4oifrD1BD/eUc39q4oJmPHseye9jnZFHri22OsI4nMauU+A7cdbaO7s5c7FWiVzORbmp3Dn1fmU17azqbze6zgik4JG7hPg5f31xMUEWDNfUzKX6/rZmZzu6uGtI83ExQRYOz9H2zeIXITKfZwNDjpe2l/HmvnZTIvTx325zIxPXDOdnr5BXqlopG/Acdsi7c8j8mHUNuNsV3UrDe093KEpmSsWMOMzKwoJBQO8cbiJrp5+PrlkOjG62lfkA1Tu4+zl/XXEBgPcvFAbhUVCwIz1S6eTGBvk9cNN1Ld388CqYtISY72OJhJVNOQZR845Nu6r58a5WaTEh7yO4xtmxm1X5fHgtcU0dfTwL69Vsv1YC4PaaEzkfSr3cbS3po1Tred04dI4WTQ9lUfXziEvNZ6f7z7FE29WceJ0l9exRKKCyn0cbdhTS2wwwO1XqdzHS2ZSHF++sYS7lxdyurOHf3uziiffruJwQ4dG8jKlac59nAwMOn65p5a1C7JJTdCUzHgyM5bPSGdxQSrvHTvNW0eaefqd46QlhlhenM5V01PIS4nXyhqZUlTu42Rr1WkaO3pYv7TA6yhTRmxMgI/MzWb1rEwO1LWz4/gZXjvYyGsHG0lNCDE/N5kFecnMyk4iNkY/tIq/qdzHyS92nSI5LoabF2iVzEQLBQMsKUxjSWEa7d19HK7v4GB9B7urW9l2vIWYgDEjM5E5wzflzk+NJ6BRvfiMyn0cdPcN8PL+em5fnKe9ZDyWEh+idGYGpTMz6B8Y5NjpLg7Xd1DZ1Mmm8no2lUNibJB5uckszE9hXk4Scfo9Ex9QuY+D1w810tHTz12akokqMcEAc3OSmZuTDEB7dx9HGzs50tjJ4YahkX1MwFiQn8KyojTm5SYTDGhEL5OTyn0c/HTnKbKT47hutu64FM1S4kMsK05nWXE6A4OOky1n2XeqjX01rew/1UZyfAyrZmawsiRD1ynIpKNyj7Dmzh62HGzkSzeWaNQ3iQQDRknWNEqypvHxq/M53NDBe8dO8+rBRl4/3ETpjHRumpetK2Fl0lC5R9gvdp2if9Bx94pCr6PIZQoGjIX5KSzMT6G5c2gnyrLjZyg7fobVszJYuyCHxFj9ryPRTX9CI8g5x4/LalhSlMbc3GSv40gEZCXF8allBaydn82WQ428c/Q0O0+28rGFOayelalVNhK1tNg3gvadauNQQwf3aNTuO2mJsXxqWSFf/9hcCtITeHFvHY+/cZS6tnNeRxO5IJV7BP24rIa4mAC/s2S611FknOSlxPPQ9TP5bGkRZ8728diWSl4/1KitDiTqaFomQrr7Btiwp5bbr8rTdgM+Z2bDU29JvLC7ll8faOBIYyf3rCjUCVeJGmGN3M1snZkdMrNKM/vmBb7/OTPbO/z1jpktiXzU6Pbi3jrazvVx36oir6PIBEmMjeG+lUXcvbyQU2fO8S+vVbL/VJvXsUSAMMrdzILAY8AdwCLgfjNbNOqwY8BNzrlrgL8Bnoh00Gj3g60nmJ09jetmaW37VHJ+07JHb55DxrRYnt12kp/vOkXfwKDX0WSKC2fkvgqodM5VOed6geeB9SMPcM6945w7M/xwKzClzijuP9XG7upWHlw9QzsPTlFZSXH8p5tm8dG52Ww/3sL336qi7Vyf17FkCgun3AuA6hGPa4af+zBfAl66klCTzQ+2niAhFOTTy6fU32kySkwgwLrFeTywqpjGjh4e21LJ8WbdPES8EU65X2goesGlAWa2lqFy/+MP+f7DZlZmZmVNTU3hp4xi7d19vLC7lk8uma4TqQLA4oJUvnLTbOJiAjz5dhVbq07jtJpGJlg45V4DjDxLWAjUjj7IzK4BngTWO+dOX+iFnHNPOOdKnXOl2dnZl5M36vy4rIZzfQM8uHqG11EkiuSmxPPVNXOYm5PMhj21/HzXKfo1Dy8TKJxy3w7MNbMSM4sF7gM2jDzAzIqBnwGfd84djnzM6NQ/MMhTbx9j5cx0ri5M9TqORJmE2CCfv24Ga+ZnU3bijObhZUKNWe7OuX7gUWATUAH8yDlXbmaPmNkjw4f9BZAJ/KuZ7TazsnFLHEVeLq/nVOs5vvyRWV5HkSgVMOO2RUPz8A3tmoeXiRPWRUzOuY3AxlHPPT7i118GvhzZaNHNOcf33zrGzMxEblmY63UciXKLC1LJTo7jB1tP8OTbVRRlJGh1lYwrbT9wmcpOnGFPdau29pWwjZyH//MXyvmjn+ylu2/A61jiU9p+4DI98WYVaYkh7l6hK1IlfOfn4Rs7evjOq0c43NDB4w+uYHpagtfRxGc0cr8M5bVtbD7QwO9eN5OEWN1vUy5NwIw/vHUe3/9CKVVNXXz8O2/xyoEGr2OJz6jcL8N3Xj1CcnwMv3djiddRZBK7dVEuGx69gfzUBL78TBl/8cJ+TdNIxKjcL9GB2nY2lTfw0A0lumhJrtis7CR+/rXr+fKNJTzz7gnWf/c3HKrv8DqW+IDK/RJ959UjJMfF8KUbNGqXyIiLCfJnn1jE0w+t5HRXD5/87ts89fYxBgZ1VatcPpX7Jdh/qo2Xy+t56MYSUhM1apfIWjM/h5f+4KNcPzuTv37xAJ/53jscrG/3OpZMUir3MDnn+NtfVZCeGOJLmmuXcZKdHMdTX1zJtz+7lJMtZ/n4d97mLzeU03q21+toMsmo3MP0akUj71ad5hu3zNNcu4wrM+OuZQW88oc3cd/KIp559zg3/f3rPP7GUbp6+r2OJ5OEebVbXWlpqSsrmxy7FPQNDHL7t98EYNM3PkooOPn/Tnz2vZNeR5Aw1bd183J5HYcbOkmMDXLDnCxWzswgKc67y1QeuLbYs/ee6sxsh3OudKzjdBFTGJ597yRVTV18/wulvih2mVzyUuP54vUlnGw5y2sHG9h8oIEtBxu5pjCVZcXplGRNI6BtDGQUlfsYGtq7+YdNh7hxTha3LMzxOo5MYcUZiXzx+hIa2rvZWnWaXdWt7DzZSnJ8DIvyU5ifm0xJ9jTiYnRhnajcx/SXG8rpHRjkW3ct1iZPEhVyU+JZv7SAOxbnc7C+nT01bew8eYb3jrUQsKGRflF6Ijkp8WROiyVzWixpibHaA2mKUblfxOYDDby0v54/un0+M7OmeR1H5LfExgS4pjCNawrT6B8Y5ETLWY42dlJ95iy7q1vp6f+Pm4MEDFITQkyLiyEhFCQhNjj0z1CQuFCQuJjA8FeQuNAHfx0bDGhwM8mo3D9E29k+/uKF/czPTebhj2q/doluMcEAs7OTmJ2dBAwt3e3o6aels5fTXb20dPVw5mwfZ3v7Ods7QEtXL+f6BujuGyCca6VCQSMlPkRqYojU+BC1reeYk5PEgvxkZmcn6VxUFFK5X4Bzjm/+bC9NHT382+dX6A+uTDpmQ2WcEh+66E+dzjn6Bx3dfQP09g/S3T9IT/8APX2D9Iz4dWdPP23n+mg710dVcxd7T7W9fwVtbDDAnJwkFuancO2sDG6Yk0WBdrn0nMr9Ap7fXs1L++v55h0LuKYwzes4IuPGzAgF7ZIHMPeUFlLV1EVFXTsV9e1U1HWw5VAjP91ZA8CMzESun53FR+ZmsWZ+NomxqpqJpk98lCMNHfzVL8u5YU4mD+v2eSIXFAoGmJ+XzPy8ZO6iABj6KeBQQwfvVJ7mnaPNvLinlue2nSQ+FGDNvBzuvCafmxfkeLo+fyrRpzzCma5evvxMGUlxMfzTvUsJaHWBSNjMjAV5KSzIS+H3biyhf2CQshNneGlfHS/tr+fl8nriYgLcvCCHe0uL+MjcLGI05TluVO7D+gYG+coPd1DX2s1zD68mNyXe60gik1pMMMDqWZmsnpXJX/zOVew4cYaN++rYsKeWl/bXk5sSx90rCrlnRZFWo40DlTtDP07+2c/3s7WqhX+6dwkrZqR7HUnEV4IBY1VJBqtKMviTOxfy2sEGflRWw/deP8pjW46yelYGD66ewW2L8oiN0Wg+EqZ8uTvn+KtfHuDfy6r5+s1z+PTyQq8jifhabEyAdYvzWbc4n4b2bn6yo4bntp3k0Wd3kZUUy72lRdy/qpiijESvo05qU7rcnXP83UsHefqd43zpxhL+8NZ5XkcSmVJyU+L52to5fOWm2bx5pIkfbD3J428c5XtvHOWmedl87toZ3LwgR1fXXoYpW+79A4P8+QvlPLftJA+uLubPPr5QV+CJeCQQMNbMz2HN/BxqW8/x/PZqnt92kt9/pozpqfHct6qYz64s0rmwSzAlt/zt6unn0Wd3suVQE19dM5v/etv8KbcyRlv+ypWYiC1/+wYGebWikR++d4K3jjQTDBi3Lszlc6uLuWF21pT7f/Y8bfn7ISrq2nn02Z0ca+7ibz+1mM9dO8PrSCJyAaFggHWL81i3OI/jzV08t+0kPyqr5uXyemZmJvLAtcXcvaKIjGmxXkeNSlNm5D446Pjheyf4m19VkJoQ4tufXcoNc7Im7P2jjUbuciW8ullHd98Am8rr+cHWE2w/fobYYIA7r87jc6tnUDojfUpMrWrkPkJFXTt/+vN97DzZykfnZfOP9ywhOznO61giconiQ0HWLy1g/dICDtV38Ox7J/jZzlP8YnctxRmJfOKafH5nyXQW5CVPiaK/GF+P3KtbzvLd1yr5yc4aUhNC/MmdC/nM8oIp/5sOGrnLlYmm2+yd7e3nxb11/HJPLe8cPc3AoGN29jQ+cc10bl2Uy6L8FF/Nz0/pkfvemlaeefcEv9h1ikDA+PzqGXzjlrmkJWpuTsRvEmNjuLe0iHtLizjd2cNL++v55Z5avvPaEf751SNkJ8exZl42Ny/I4Ya5WaTET40b3Pum3KtbzvLy/no27Kll36k2EmODfO7aYr6yZg55qVo+JTIVZCbF8eDqGTy4egbNnT28caiJLYca2VRez4931BAwWJifwsqZGZTOTGdU0LRnAAAE9ElEQVTlzAzfLq8Mq9zNbB3wz0AQeNI593ejvm/D378TOAt80Tm3M8JZ3+eco66tm701bWytOs27R09zqKEDgMUFKfz1+qv41LICkqfI39Ai8kFZSXF8ZkUhn1lRSP/AIDtPtvJ2ZTM7TrTw79urefqd4wDkp8azIC+ZBfkpLMhLZmF+CjMyEyf9vWjHLHczCwKPAbcCNcB2M9vgnDsw4rA7gLnDX9cC3xv+Z8RtPtDAf//ZXpo7ewGIDwVYOTODz6woYN1V+RRn6pJlEfltMcHA+3vbwNAa+oq6drYda6G8tp2Kunbermymb2DoHKQZ5CbHU5ieQFFGIkXpCWQlx5GeGEvGtFjSE2NJSwwN3Y4wFCQ2GCAUNMwM5xy9A4P0DTj6+gdp7+6jubOHpo5emjt7aO7sYXlxOh+dlz2+/81hHLMKqHTOVQ39R9vzwHpgZLmvB55xQ2dnt5pZmpnlO+fqIh24IC2BNfNzuKYwlcUFqVw1PWXS/w0rIhMrFPyP+8+e19s/SFVzJwfrOjh+uovqlnPUnDnLtmMtvLD73Ji3IzSDoBn9Ydy38CtrZkdFuRcA1SMe1/DBUfmFjikAIl7ui6an8A/3LIn0y4rIFBcbE3h/P/rR+gcGaT3Xx5muXlq6ejlztpfWs33v34qwt3/otoQDg45QMEDs8E3FQ0EjKT5EVlIsWUlxZCXFkTEtdkJ2vgyn3C+0hmj0X03hHIOZPQw8PPyw08wOhfH+lysLaB7H15/s9PlcnD6fi/icPp+xjOfnE9Zl9eGUew1QNOJxIVB7GcfgnHsCeCKcYFfKzMrCWQs6VenzuTh9Phenz+fiouHzCedng+3AXDMrMbNY4D5gw6hjNgBfsCGrgbbxmG8XEZHwjDlyd871m9mjwCaGlkI+5ZwrN7NHhr//OLCRoWWQlQwthXxo/CKLiMhYwlrn7pzbyFCBj3zu8RG/dsDXIhvtik3I9M8kps/n4vT5XJw+n4vz/PPxbG8ZEREZP7oTrYiID/m23M3sHjMrN7NBM9NZ/WFmts7MDplZpZl90+s80cbMnjKzRjPb73WWaGNmRWa2xcwqhv/f+gOvM0UTM4s3s21mtmf48/krL/P4ttyB/cCngTe9DhItRmwlcQewCLjfzBZ5myrqPA2s8zpElOoH/otzbiGwGvia/vz8lh7gZufcEmApsG549aAnfFvuzrkK59x4XiQ1Gb2/lYRzrhc4v5WEDHPOvQm0eJ0jGjnn6s5vCOic6wAqGLoSXRhaWOKc6xx+GBr+8uykpm/LXS7ow7aJELkkZjYTWAa8522S6GJmQTPbDTQCm51znn0+k3o/dzN7Bci7wLf+1Dn3wkTnmQTC2iZC5GLMLAn4KfAN51y713miiXNuAFhqZmnAz81ssXPOk/M3k7rcnXO3eJ1hkglrmwiRD2NmIYaK/YfOuZ95nSdaOedazex1hs7feFLumpaZWsLZSkLkgoZvyvN/gQrn3D95nSfamFn28IgdM0sAbgEOepXHt+VuZp8ysxrgOuBXZrbJ60xec871A+e3kqgAfuScK/c2VXQxs+eAd4H5ZlZjZl/yOlMUuQH4PHCzme0e/rrT61BRJB/YYmZ7GRpIbXbOvehVGF2hKiLiQ74duYuITGUqdxERH1K5i4j4kMpdRMSHVO4iIj6kchcR8SGVu4iID6ncRUR86P8D7VKw1Jfd4zUAAAAASUVORK5CYII=\n",
"text/plain": [
"