diff --git a/module3/exo2/module3_exo1_analyse-syndrome-grippal.ipynb b/module3/exo2/module3_exo1_analyse-syndrome-grippal.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..549153d4c7afb3e37cea609620a7cb989a5a428c
--- /dev/null
+++ b/module3/exo2/module3_exo1_analyse-syndrome-grippal.ipynb
@@ -0,0 +1,2562 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence du syndrome grippal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek\n",
+ "import os\n",
+ "import urllib.request"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "local_filename = \"incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Télécharger si le fichier local n'existe pas, afin de se protéger contre une éventuelle modification de l'url ou bien la disparition du Réseau Sentinelle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Téléchargement du fichier\n"
+ ]
+ }
+ ],
+ "source": [
+ " if not os.path.exists(local_filename):\n",
+ " print(\"Téléchargement du fichier\")\n",
+ " urllib.request.urlretrieve(data_url, local_filename)\n",
+ "else:\n",
+ " print(\"Fichier déjà présent localement.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202520 \n",
+ " 3 \n",
+ " 23077 \n",
+ " 17228.0 \n",
+ " 28926.0 \n",
+ " 34 \n",
+ " 25.0 \n",
+ " 43.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202519 \n",
+ " 3 \n",
+ " 16342 \n",
+ " 12366.0 \n",
+ " 20318.0 \n",
+ " 24 \n",
+ " 18.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202518 \n",
+ " 3 \n",
+ " 18115 \n",
+ " 13975.0 \n",
+ " 22255.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202517 \n",
+ " 3 \n",
+ " 22150 \n",
+ " 17291.0 \n",
+ " 27009.0 \n",
+ " 33 \n",
+ " 26.0 \n",
+ " 40.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202516 \n",
+ " 3 \n",
+ " 28564 \n",
+ " 22550.0 \n",
+ " 34578.0 \n",
+ " 43 \n",
+ " 34.0 \n",
+ " 52.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202515 \n",
+ " 3 \n",
+ " 35721 \n",
+ " 29592.0 \n",
+ " 41850.0 \n",
+ " 53 \n",
+ " 44.0 \n",
+ " 62.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202514 \n",
+ " 3 \n",
+ " 37579 \n",
+ " 31232.0 \n",
+ " 43926.0 \n",
+ " 56 \n",
+ " 47.0 \n",
+ " 65.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202513 \n",
+ " 3 \n",
+ " 39673 \n",
+ " 33686.0 \n",
+ " 45660.0 \n",
+ " 59 \n",
+ " 50.0 \n",
+ " 68.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202512 \n",
+ " 3 \n",
+ " 52543 \n",
+ " 45627.0 \n",
+ " 59459.0 \n",
+ " 78 \n",
+ " 68.0 \n",
+ " 88.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202511 \n",
+ " 3 \n",
+ " 59469 \n",
+ " 52154.0 \n",
+ " 66784.0 \n",
+ " 89 \n",
+ " 78.0 \n",
+ " 100.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202510 \n",
+ " 3 \n",
+ " 60334 \n",
+ " 53048.0 \n",
+ " 67620.0 \n",
+ " 90 \n",
+ " 79.0 \n",
+ " 101.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202509 \n",
+ " 3 \n",
+ " 84531 \n",
+ " 74994.0 \n",
+ " 94068.0 \n",
+ " 126 \n",
+ " 112.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202508 \n",
+ " 3 \n",
+ " 136020 \n",
+ " 124824.0 \n",
+ " 147216.0 \n",
+ " 203 \n",
+ " 186.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202507 \n",
+ " 3 \n",
+ " 208952 \n",
+ " 195988.0 \n",
+ " 221916.0 \n",
+ " 312 \n",
+ " 293.0 \n",
+ " 331.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202506 \n",
+ " 3 \n",
+ " 273519 \n",
+ " 258159.0 \n",
+ " 288879.0 \n",
+ " 408 \n",
+ " 385.0 \n",
+ " 431.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202505 \n",
+ " 3 \n",
+ " 334395 \n",
+ " 318416.0 \n",
+ " 350374.0 \n",
+ " 499 \n",
+ " 475.0 \n",
+ " 523.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202504 \n",
+ " 3 \n",
+ " 350043 \n",
+ " 332885.0 \n",
+ " 367201.0 \n",
+ " 522 \n",
+ " 496.0 \n",
+ " 548.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202503 \n",
+ " 3 \n",
+ " 252772 \n",
+ " 238917.0 \n",
+ " 266627.0 \n",
+ " 377 \n",
+ " 356.0 \n",
+ " 398.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202502 \n",
+ " 3 \n",
+ " 257247 \n",
+ " 242991.0 \n",
+ " 271503.0 \n",
+ " 384 \n",
+ " 363.0 \n",
+ " 405.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202501 \n",
+ " 3 \n",
+ " 231549 \n",
+ " 214627.0 \n",
+ " 248471.0 \n",
+ " 345 \n",
+ " 320.0 \n",
+ " 370.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202452 \n",
+ " 3 \n",
+ " 201726 \n",
+ " 185870.0 \n",
+ " 217582.0 \n",
+ " 302 \n",
+ " 278.0 \n",
+ " 326.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202451 \n",
+ " 3 \n",
+ " 201697 \n",
+ " 187843.0 \n",
+ " 215551.0 \n",
+ " 302 \n",
+ " 281.0 \n",
+ " 323.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202450 \n",
+ " 3 \n",
+ " 136694 \n",
+ " 126369.0 \n",
+ " 147019.0 \n",
+ " 205 \n",
+ " 190.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202449 \n",
+ " 3 \n",
+ " 108487 \n",
+ " 99037.0 \n",
+ " 117937.0 \n",
+ " 163 \n",
+ " 149.0 \n",
+ " 177.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202448 \n",
+ " 3 \n",
+ " 87381 \n",
+ " 78687.0 \n",
+ " 96075.0 \n",
+ " 131 \n",
+ " 118.0 \n",
+ " 144.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202447 \n",
+ " 3 \n",
+ " 76286 \n",
+ " 67626.0 \n",
+ " 84946.0 \n",
+ " 114 \n",
+ " 101.0 \n",
+ " 127.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202446 \n",
+ " 3 \n",
+ " 56399 \n",
+ " 49006.0 \n",
+ " 63792.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202445 \n",
+ " 3 \n",
+ " 47347 \n",
+ " 40843.0 \n",
+ " 53851.0 \n",
+ " 71 \n",
+ " 61.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202444 \n",
+ " 3 \n",
+ " 36039 \n",
+ " 30122.0 \n",
+ " 41956.0 \n",
+ " 54 \n",
+ " 45.0 \n",
+ " 63.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202443 \n",
+ " 3 \n",
+ " 46572 \n",
+ " 39928.0 \n",
+ " 53216.0 \n",
+ " 70 \n",
+ " 60.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2086 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2087 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2088 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2089 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2090 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2091 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2092 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2093 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2094 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2095 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2096 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2097 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2098 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2099 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2100 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2101 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2102 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2103 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2104 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2105 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2106 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2107 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2108 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2109 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2110 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2111 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2112 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2113 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2114 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2115 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2116 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202520 3 23077 17228.0 28926.0 34 25.0 \n",
+ "1 202519 3 16342 12366.0 20318.0 24 18.0 \n",
+ "2 202518 3 18115 13975.0 22255.0 27 21.0 \n",
+ "3 202517 3 22150 17291.0 27009.0 33 26.0 \n",
+ "4 202516 3 28564 22550.0 34578.0 43 34.0 \n",
+ "5 202515 3 35721 29592.0 41850.0 53 44.0 \n",
+ "6 202514 3 37579 31232.0 43926.0 56 47.0 \n",
+ "7 202513 3 39673 33686.0 45660.0 59 50.0 \n",
+ "8 202512 3 52543 45627.0 59459.0 78 68.0 \n",
+ "9 202511 3 59469 52154.0 66784.0 89 78.0 \n",
+ "10 202510 3 60334 53048.0 67620.0 90 79.0 \n",
+ "11 202509 3 84531 74994.0 94068.0 126 112.0 \n",
+ "12 202508 3 136020 124824.0 147216.0 203 186.0 \n",
+ "13 202507 3 208952 195988.0 221916.0 312 293.0 \n",
+ "14 202506 3 273519 258159.0 288879.0 408 385.0 \n",
+ "15 202505 3 334395 318416.0 350374.0 499 475.0 \n",
+ "16 202504 3 350043 332885.0 367201.0 522 496.0 \n",
+ "17 202503 3 252772 238917.0 266627.0 377 356.0 \n",
+ "18 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "19 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "20 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "21 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "22 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "23 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "24 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "25 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "26 202446 3 56399 49006.0 63792.0 85 74.0 \n",
+ "27 202445 3 47347 40843.0 53851.0 71 61.0 \n",
+ "28 202444 3 36039 30122.0 41956.0 54 45.0 \n",
+ "29 202443 3 46572 39928.0 53216.0 70 60.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2086 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2087 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2088 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2089 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2090 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2091 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2092 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2093 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2094 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2095 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2096 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2097 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2098 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2099 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2100 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2101 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2102 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2103 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2104 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2105 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2106 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2107 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2108 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2109 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2110 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2111 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2112 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2113 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2114 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2115 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 43.0 FR France \n",
+ "1 30.0 FR France \n",
+ "2 33.0 FR France \n",
+ "3 40.0 FR France \n",
+ "4 52.0 FR France \n",
+ "5 62.0 FR France \n",
+ "6 65.0 FR France \n",
+ "7 68.0 FR France \n",
+ "8 88.0 FR France \n",
+ "9 100.0 FR France \n",
+ "10 101.0 FR France \n",
+ "11 140.0 FR France \n",
+ "12 220.0 FR France \n",
+ "13 331.0 FR France \n",
+ "14 431.0 FR France \n",
+ "15 523.0 FR France \n",
+ "16 548.0 FR France \n",
+ "17 398.0 FR France \n",
+ "18 405.0 FR France \n",
+ "19 370.0 FR France \n",
+ "20 326.0 FR France \n",
+ "21 323.0 FR France \n",
+ "22 220.0 FR France \n",
+ "23 177.0 FR France \n",
+ "24 144.0 FR France \n",
+ "25 127.0 FR France \n",
+ "26 96.0 FR France \n",
+ "27 81.0 FR France \n",
+ "28 63.0 FR France \n",
+ "29 80.0 FR France \n",
+ "... ... ... ... \n",
+ "2086 59.0 FR France \n",
+ "2087 64.0 FR France \n",
+ "2088 97.0 FR France \n",
+ "2089 93.0 FR France \n",
+ "2090 80.0 FR France \n",
+ "2091 116.0 FR France \n",
+ "2092 149.0 FR France \n",
+ "2093 281.0 FR France \n",
+ "2094 395.0 FR France \n",
+ "2095 485.0 FR France \n",
+ "2096 544.0 FR France \n",
+ "2097 689.0 FR France \n",
+ "2098 722.0 FR France \n",
+ "2099 762.0 FR France \n",
+ "2100 926.0 FR France \n",
+ "2101 1113.0 FR France \n",
+ "2102 1236.0 FR France \n",
+ "2103 832.0 FR France \n",
+ "2104 459.0 FR France \n",
+ "2105 207.0 FR France \n",
+ "2106 190.0 FR France \n",
+ "2107 198.0 FR France \n",
+ "2108 224.0 FR France \n",
+ "2109 266.0 FR France \n",
+ "2110 219.0 FR France \n",
+ "2111 176.0 FR France \n",
+ "2112 163.0 FR France \n",
+ "2113 195.0 FR France \n",
+ "2114 308.0 FR France \n",
+ "2115 213.0 FR France \n",
+ "\n",
+ "[2116 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(local_filename, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1879 \n",
+ " 198919 \n",
+ " 3 \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1879 198919 3 - NaN NaN - NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1879 FR France "
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202520 \n",
+ " 3 \n",
+ " 23077 \n",
+ " 17228.0 \n",
+ " 28926.0 \n",
+ " 34 \n",
+ " 25.0 \n",
+ " 43.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202519 \n",
+ " 3 \n",
+ " 16342 \n",
+ " 12366.0 \n",
+ " 20318.0 \n",
+ " 24 \n",
+ " 18.0 \n",
+ " 30.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202518 \n",
+ " 3 \n",
+ " 18115 \n",
+ " 13975.0 \n",
+ " 22255.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202517 \n",
+ " 3 \n",
+ " 22150 \n",
+ " 17291.0 \n",
+ " 27009.0 \n",
+ " 33 \n",
+ " 26.0 \n",
+ " 40.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202516 \n",
+ " 3 \n",
+ " 28564 \n",
+ " 22550.0 \n",
+ " 34578.0 \n",
+ " 43 \n",
+ " 34.0 \n",
+ " 52.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202515 \n",
+ " 3 \n",
+ " 35721 \n",
+ " 29592.0 \n",
+ " 41850.0 \n",
+ " 53 \n",
+ " 44.0 \n",
+ " 62.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202514 \n",
+ " 3 \n",
+ " 37579 \n",
+ " 31232.0 \n",
+ " 43926.0 \n",
+ " 56 \n",
+ " 47.0 \n",
+ " 65.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202513 \n",
+ " 3 \n",
+ " 39673 \n",
+ " 33686.0 \n",
+ " 45660.0 \n",
+ " 59 \n",
+ " 50.0 \n",
+ " 68.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202512 \n",
+ " 3 \n",
+ " 52543 \n",
+ " 45627.0 \n",
+ " 59459.0 \n",
+ " 78 \n",
+ " 68.0 \n",
+ " 88.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202511 \n",
+ " 3 \n",
+ " 59469 \n",
+ " 52154.0 \n",
+ " 66784.0 \n",
+ " 89 \n",
+ " 78.0 \n",
+ " 100.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202510 \n",
+ " 3 \n",
+ " 60334 \n",
+ " 53048.0 \n",
+ " 67620.0 \n",
+ " 90 \n",
+ " 79.0 \n",
+ " 101.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202509 \n",
+ " 3 \n",
+ " 84531 \n",
+ " 74994.0 \n",
+ " 94068.0 \n",
+ " 126 \n",
+ " 112.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202508 \n",
+ " 3 \n",
+ " 136020 \n",
+ " 124824.0 \n",
+ " 147216.0 \n",
+ " 203 \n",
+ " 186.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202507 \n",
+ " 3 \n",
+ " 208952 \n",
+ " 195988.0 \n",
+ " 221916.0 \n",
+ " 312 \n",
+ " 293.0 \n",
+ " 331.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202506 \n",
+ " 3 \n",
+ " 273519 \n",
+ " 258159.0 \n",
+ " 288879.0 \n",
+ " 408 \n",
+ " 385.0 \n",
+ " 431.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202505 \n",
+ " 3 \n",
+ " 334395 \n",
+ " 318416.0 \n",
+ " 350374.0 \n",
+ " 499 \n",
+ " 475.0 \n",
+ " 523.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202504 \n",
+ " 3 \n",
+ " 350043 \n",
+ " 332885.0 \n",
+ " 367201.0 \n",
+ " 522 \n",
+ " 496.0 \n",
+ " 548.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202503 \n",
+ " 3 \n",
+ " 252772 \n",
+ " 238917.0 \n",
+ " 266627.0 \n",
+ " 377 \n",
+ " 356.0 \n",
+ " 398.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202502 \n",
+ " 3 \n",
+ " 257247 \n",
+ " 242991.0 \n",
+ " 271503.0 \n",
+ " 384 \n",
+ " 363.0 \n",
+ " 405.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202501 \n",
+ " 3 \n",
+ " 231549 \n",
+ " 214627.0 \n",
+ " 248471.0 \n",
+ " 345 \n",
+ " 320.0 \n",
+ " 370.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202452 \n",
+ " 3 \n",
+ " 201726 \n",
+ " 185870.0 \n",
+ " 217582.0 \n",
+ " 302 \n",
+ " 278.0 \n",
+ " 326.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202451 \n",
+ " 3 \n",
+ " 201697 \n",
+ " 187843.0 \n",
+ " 215551.0 \n",
+ " 302 \n",
+ " 281.0 \n",
+ " 323.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202450 \n",
+ " 3 \n",
+ " 136694 \n",
+ " 126369.0 \n",
+ " 147019.0 \n",
+ " 205 \n",
+ " 190.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202449 \n",
+ " 3 \n",
+ " 108487 \n",
+ " 99037.0 \n",
+ " 117937.0 \n",
+ " 163 \n",
+ " 149.0 \n",
+ " 177.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202448 \n",
+ " 3 \n",
+ " 87381 \n",
+ " 78687.0 \n",
+ " 96075.0 \n",
+ " 131 \n",
+ " 118.0 \n",
+ " 144.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202447 \n",
+ " 3 \n",
+ " 76286 \n",
+ " 67626.0 \n",
+ " 84946.0 \n",
+ " 114 \n",
+ " 101.0 \n",
+ " 127.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202446 \n",
+ " 3 \n",
+ " 56399 \n",
+ " 49006.0 \n",
+ " 63792.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202445 \n",
+ " 3 \n",
+ " 47347 \n",
+ " 40843.0 \n",
+ " 53851.0 \n",
+ " 71 \n",
+ " 61.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202444 \n",
+ " 3 \n",
+ " 36039 \n",
+ " 30122.0 \n",
+ " 41956.0 \n",
+ " 54 \n",
+ " 45.0 \n",
+ " 63.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202443 \n",
+ " 3 \n",
+ " 46572 \n",
+ " 39928.0 \n",
+ " 53216.0 \n",
+ " 70 \n",
+ " 60.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2086 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2087 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2088 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2089 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2090 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2091 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2092 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2093 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2094 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2095 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2096 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2097 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2098 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2099 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2100 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2101 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2102 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2103 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2104 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2105 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2106 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2107 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2108 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2109 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2110 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2111 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2112 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2113 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2114 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2115 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2115 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202520 3 23077 17228.0 28926.0 34 25.0 \n",
+ "1 202519 3 16342 12366.0 20318.0 24 18.0 \n",
+ "2 202518 3 18115 13975.0 22255.0 27 21.0 \n",
+ "3 202517 3 22150 17291.0 27009.0 33 26.0 \n",
+ "4 202516 3 28564 22550.0 34578.0 43 34.0 \n",
+ "5 202515 3 35721 29592.0 41850.0 53 44.0 \n",
+ "6 202514 3 37579 31232.0 43926.0 56 47.0 \n",
+ "7 202513 3 39673 33686.0 45660.0 59 50.0 \n",
+ "8 202512 3 52543 45627.0 59459.0 78 68.0 \n",
+ "9 202511 3 59469 52154.0 66784.0 89 78.0 \n",
+ "10 202510 3 60334 53048.0 67620.0 90 79.0 \n",
+ "11 202509 3 84531 74994.0 94068.0 126 112.0 \n",
+ "12 202508 3 136020 124824.0 147216.0 203 186.0 \n",
+ "13 202507 3 208952 195988.0 221916.0 312 293.0 \n",
+ "14 202506 3 273519 258159.0 288879.0 408 385.0 \n",
+ "15 202505 3 334395 318416.0 350374.0 499 475.0 \n",
+ "16 202504 3 350043 332885.0 367201.0 522 496.0 \n",
+ "17 202503 3 252772 238917.0 266627.0 377 356.0 \n",
+ "18 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "19 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "20 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "21 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "22 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "23 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "24 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "25 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "26 202446 3 56399 49006.0 63792.0 85 74.0 \n",
+ "27 202445 3 47347 40843.0 53851.0 71 61.0 \n",
+ "28 202444 3 36039 30122.0 41956.0 54 45.0 \n",
+ "29 202443 3 46572 39928.0 53216.0 70 60.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2086 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2087 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2088 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2089 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2090 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2091 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2092 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2093 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2094 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2095 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2096 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2097 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2098 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2099 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2100 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2101 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2102 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2103 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2104 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2105 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2106 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2107 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2108 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2109 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2110 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2111 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2112 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2113 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2114 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2115 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 43.0 FR France \n",
+ "1 30.0 FR France \n",
+ "2 33.0 FR France \n",
+ "3 40.0 FR France \n",
+ "4 52.0 FR France \n",
+ "5 62.0 FR France \n",
+ "6 65.0 FR France \n",
+ "7 68.0 FR France \n",
+ "8 88.0 FR France \n",
+ "9 100.0 FR France \n",
+ "10 101.0 FR France \n",
+ "11 140.0 FR France \n",
+ "12 220.0 FR France \n",
+ "13 331.0 FR France \n",
+ "14 431.0 FR France \n",
+ "15 523.0 FR France \n",
+ "16 548.0 FR France \n",
+ "17 398.0 FR France \n",
+ "18 405.0 FR France \n",
+ "19 370.0 FR France \n",
+ "20 326.0 FR France \n",
+ "21 323.0 FR France \n",
+ "22 220.0 FR France \n",
+ "23 177.0 FR France \n",
+ "24 144.0 FR France \n",
+ "25 127.0 FR France \n",
+ "26 96.0 FR France \n",
+ "27 81.0 FR France \n",
+ "28 63.0 FR France \n",
+ "29 80.0 FR France \n",
+ "... ... ... ... \n",
+ "2086 59.0 FR France \n",
+ "2087 64.0 FR France \n",
+ "2088 97.0 FR France \n",
+ "2089 93.0 FR France \n",
+ "2090 80.0 FR France \n",
+ "2091 116.0 FR France \n",
+ "2092 149.0 FR France \n",
+ "2093 281.0 FR France \n",
+ "2094 395.0 FR France \n",
+ "2095 485.0 FR France \n",
+ "2096 544.0 FR France \n",
+ "2097 689.0 FR France \n",
+ "2098 722.0 FR France \n",
+ "2099 762.0 FR France \n",
+ "2100 926.0 FR France \n",
+ "2101 1113.0 FR France \n",
+ "2102 1236.0 FR France \n",
+ "2103 832.0 FR France \n",
+ "2104 459.0 FR France \n",
+ "2105 207.0 FR France \n",
+ "2106 190.0 FR France \n",
+ "2107 198.0 FR France \n",
+ "2108 224.0 FR France \n",
+ "2109 266.0 FR France \n",
+ "2110 219.0 FR France \n",
+ "2111 176.0 FR France \n",
+ "2112 163.0 FR France \n",
+ "2113 195.0 FR France \n",
+ "2114 308.0 FR France \n",
+ "2115 213.0 FR France \n",
+ "\n",
+ "[2115 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data['inc'] = sorted_data['inc'].astype(int)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXe8JUWZ93/PCTdOjk5kBhkyShgGUBQWkCAquqsrusqo7Iu6vKb1dRfUXVRkF1ZEFxEVlWQCxACKgOMwBJE0xMlMgMn5Trp3bjih3j+6qk91d3V1nz597jl35vl+PvOZc7u7QldX11NPqGoSQoBhGIZhaiXT6AowDMMwBwYsUBiGYZhUYIHCMAzDpAILFIZhGCYVWKAwDMMwqcAChWEYhkkFFigMwzBMKrBAYRiGYVKBBQrDMAyTCrlGV2AwGTdunJgxY0ajq8EwDDOkeP7553cIIcZHXXdQCZQZM2Zg4cKFja4GwzDMkIKI1sa5jk1eDMMwTCqwQGEYhmFSgQUKwzAMkwosUBiGYZhUYIHCMAzDpEKkQCGiW4loGxEt1o6NIaJ5RLRS/j9aO3clEa0iohVEdJ52/CQiWiTP3UhEJI+3EtHd8vgzRDRDSzNXlrGSiOZqx2fKa1fKtC21NwXDMAxTC3E0lNsBnO87dgWA+UKIWQDmy79BREcDuBjAMTLNzUSUlWl+AOAyALPkP5XnpQB2CSEOA/AdANfJvMYAuArAKQDmALhKE1zXAfiOLH+XzINhGIZpIJECRQjxOIAu3+GLANwhf98B4L3a8buEEP1CiNcArAIwh4gmARghhHhKON8cvtOXRuV1L4CzpfZyHoB5QoguIcQuAPMAnC/PnSWv9Zd/wPHS+t1YvHFPo6vBMAwTSdKFjROFEJsBQAixmYgmyONTADytXbdBHivI3/7jKs16mVeRiPYAGKsf96UZC2C3EKJoyOuA473ffxIA8Pq1Fza4JgzDMHbSdsqT4ZiwHE+SxpZXsEJElxHRQiJauH379rDLGIZhmBpJKlC2SjMW5P/b5PENAKZp100FsEken2o47klDRDkAI+GY2MLy2gFglLzWn1cAIcQtQojZQojZ48dHbkXDMAzDJCSpQLkfgIq6mgvgPu34xTJyayYc5/uz0jy2j4hOlT6QS3xpVF7vB/CI9LM8DOBcIhotnfHnAnhYnlsgr/WXzzAMwzSISB8KEf0KwJkAxhHRBjiRV9cCuIeILgWwDsAHAEAIsYSI7gGwFEARwOVCiJLM6tNwIsbaATwo/wHATwH8jIhWwdFMLpZ5dRHR1QCek9d9QwihggP+HcBdRPRNAC/KPBiGYZgGQs6E/+Bg9uzZYqjtNjzjigcAsFOeYZjGQUTPCyFmR13HK+UZhmGYVGCBwjAMw6QCCxSGYRgmFVigMAzDMKnAAoVhGIZJBRYoDMMwTCqwQGEYhmFSgQUKwzAMkwosUBiGYZhUYIHCMAzDpAILFIZhGCYVWKAwDMMwqcAChWEYhkkFFigMwzBMKrBAYapm3tKtmHHFA9i6t6/RVWEYpolggcJUzS+fWQsAWLxxT4NrwjBMM8EChWEYhkkFFigMwzBMKrBAYaqGiBpdBYZhmhAWKExihGh0DRiGaSZYoDBVw/oJwzAmWKAwiWEFhWEYHRYoTNWwC4VhGBMsUBiGYZhUYIHCMAzDpAILFCYxgsO8GIbRYIHCJICdKAzDBGGBwiSG9ROGYXRYoDBVw1FeDMOYYIEyhNm9fwCHf+VBPL1mZ6OrwjAMU5tAIaIvENESIlpMRL8iojYiGkNE84hopfx/tHb9lUS0iohWENF52vGTiGiRPHcjyc2iiKiViO6Wx58hohlamrmyjJVENLeW+xiqvLh+NwZKZdz86OpGV4VhGCa5QCGiKQA+C2C2EOJYAFkAFwO4AsB8IcQsAPPl3yCio+X5YwCcD+BmIsrK7H4A4DIAs+S/8+XxSwHsEkIcBuA7AK6TeY0BcBWAUwDMAXCVLrgOFhpteeIgL4ZhdGo1eeUAtBNRDkAHgE0ALgJwhzx/B4D3yt8XAbhLCNEvhHgNwCoAc4hoEoARQoinhBOHeqcvjcrrXgBnS+3lPADzhBBdQohdAOahIoSYOtNoQcYwTHOSWKAIITYCuB7AOgCbAewRQvwZwEQhxGZ5zWYAE2SSKQDWa1lskMemyN/+4540QogigD0AxlryYgYVVlEYhqlQi8lrNBwNYiaAyQA6iegjtiSGY8JyPGkafz0vI6KFRLRw+/btluoxceEoL4ZhTNRi8joHwGtCiO1CiAKA3wJ4C4Ct0owF+f82ef0GANO09FPhmMg2yN/+45400qw2EkCXJa8AQohbhBCzhRCzx48fn/BWm5tGrVhnHwrDMDq1CJR1AE4log7p1zgbwDIA9wNQUVdzAdwnf98P4GIZuTUTjvP9WWkW20dEp8p8LvGlUXm9H8Aj0s/yMIBziWi01JTOlccOKvjLiQzDNBO5pAmFEM8Q0b0AXgBQBPAigFsADANwDxFdCkfofEBev4SI7gGwVF5/uRCiJLP7NIDbAbQDeFD+A4CfAvgZEa2Co5lcLPPqIqKrATwnr/uGEKIr6b0wDMMwtZNYoACAEOIqOOG7Ov1wtBXT9dcAuMZwfCGAYw3H+yAFkuHcrQBurbLKBxSN0k+I47wYhjHAK+WZxLALhWEYHRYoBwCD7Rxn1w3DMCZYoAxhGj2wc5QXwzA6LFAYhmGYVGCBwgwqA8UyPnbbs1i8cU+jq8IwTMqwQGGqphZT2/Ite/Hoiu244revpFchhmGaAhYoTUzcFfCiQfFWtZTLoccMc+DBAmUIowblQY/yYmHAMIwBFihNTJSgGIpRXhwZxjAHLixQmOpJQZA1WhgyDJM+LFCaGJ7MMwwzlGCBcgDAZiSGYZoBFihNTFSUV6OtRknkGMs+hjlwYYHCVE0agqzRwpBhmPRhgdLENPtsvlFfimQYpjlhgdLExB2vB3thYy1fimQhxDAHLixQhjJyXB+SYzTHDTPMAQcLlCYmSvPgFesMwzQTLFAYhmGYVGCB0sQ0qymrFr2oSW+JYZgUYIFyANCoQboWgcfGOoY58GCBMoRplF+b/ekMw5hggcIkJkm4crOa8RiGqR0WKE3MgTz4spbDMAceLFCGMAeywGEYZujBAqWJiW1SGvQvNtaP3oESunoG6lgCwzD1ggVKFTyyfCteXr+70dVwUQKnYd+UT1SsPdG7vvcETrx6XqL6MAzTWHKNrsBQ4hO3LwQAvH7thYNSXuSA3SCTVy17ebl5hBxfvb2n5rwZhmkMrKEMYRrtQmEfDsMwOixQmphIBWUIDuhDsc4Mw8SDBcoBwFAcpNMwmzEM01zUJFCIaBQR3UtEy4loGRGdRkRjiGgeEa2U/4/Wrr+SiFYR0QoiOk87fhIRLZLnbiQ52hBRKxHdLY8/Q0QztDRzZRkriWhuLffRrER9O6RRzngWBQzDmKhVQ/lfAA8JIY4E8GYAywBcAWC+EGIWgPnybxDR0QAuBnAMgPMB3ExEWZnPDwBcBmCW/He+PH4pgF1CiMMAfAfAdTKvMQCuAnAKgDkArtIF18FCozWTIagYMQxTRxILFCIaAeDtAH4KAEKIASHEbgAXAbhDXnYHgPfK3xcBuEsI0S+EeA3AKgBziGgSgBFCiKeEMyW/05dG5XUvgLOl9nIegHlCiC4hxC4A81ARQgcMTRrkVZOKwkKIYQ5catFQDgWwHcBtRPQiEf2EiDoBTBRCbAYA+f8Eef0UAOu19BvksSnyt/+4J40QoghgD4CxlrwOKpRJbCgO0mw2Y5gDj1oESg7AiQB+IIQ4AUAPpHkrBNMYIizHk6bxFkp0GREtJKKF27dvt1Sv+Yj9TfkG2b74+/AMw+jUIlA2ANgghHhG/n0vHAGzVZqxIP/fpl0/TUs/FcAmeXyq4bgnDRHlAIwE0GXJK4AQ4hYhxGwhxOzx48cnuM3mZSgO5yyDGObAJbFAEUJsAbCeiI6Qh84GsBTA/QBU1NVcAPfJ3/cDuFhGbs2E43x/VprF9hHRqdI/cokvjcrr/QAekX6WhwGcS0SjpTP+XHnswKJpnSi1w1HDDHPgUevWK58B8AsiagGwBsDH4Qipe4joUgDrAHwAAIQQS4joHjhCpwjgciFESebzaQC3A2gH8KD8BzgO/58R0So4msnFMq8uIroawHPyum8IIbpqvJemRggRWLvRuLBhlgYMwwSpSaAIIV4CMNtw6uyQ668BcI3h+EIAxxqO90EKJMO5WwHcWk19hxpRAqPR5qMkxbPfhWEOXHilfBOjj722cXiwh+g0zFWs5VS4/cnXMOOKB9BXKEVfzDBNDAuUIUzDJ/sJym90lZuRmxasAgDs7Ss0uCYMUxssUJoYEfLbdqzZKSspeJAoKH2FEhYs3xZx1UHSGMwBDwuUIYy7sHEoSZahVNcU+Nr9S/Dx25/Dkk17Gl0Vhqk7LFCaGN2BbXJmN2psrmU+bVuxeiDy2g7ng2F7emOYswb5gS7fshdrd/IHzZj04C82DhFsY02jBEuSsOVGalO/eX4D+otlfPiU6YNWphvAYLnvRq3JOf+7TwAYvC+QMgc+LFCamGb9wFYtA2Cj1s4AwBd//TIADK5AkbpYnLs+yKyBzAEIm7yGCGbh0dghKIlAc33yB4nNS92nra0OkqZIhe8vWIUZVzyAQqnc6KowBligNDFRA3ajnfGJFjamXgtf/kJgfdf+OpcSH1egsP6RCj9+Yg0AYG8cnxQz6LBAGSJYB6QGSZYkM+t6r5T/4WNr8Lb/WYCVW/fVtZy4uCavGLfd6AnCUKAj73yTr5cXgTYlLFCamMitVwapHn6q8Qv4qXedn1y1AwCweU9fnUuKh3qGtvtWWkyZJUokbS1SoAywQGlGWKAMEUxjTaPHn0Tlu+sa6+M5ULb1XLY5PBOqjWzCQrUFC5RochmnrUrcVk0JC5RmJsqHEmP2W08ShQ3XubalspN/Pptu1y6UyliwImrFe5CKUz76vnmMjA+3VXPCAmUI0+iXqpYor3pRkAIlm0lXQ7lh3qv4+G3P4ek1O6tKl5ESJU5QUpK22b6vH/OXba0+4RCHtbnmhAVKExP3lWnUu5Vs+3rn/3qFDReKzsidz6TbtdftdCLHdnT3J0pvNXnV4EP58I+fxqV3LDzowmhZnjQnLFBSQgiBmx5ZWbeQVaMPpS4l1Zf4QjLZ3cXxoZTL1eetBv1SlWmVhhKnzCQC5XW5dcpQGmB/8sQa/P3NTyZKW03UHDP4sEBJiQ27enH9n1/FpXc8F31xTDzfQzEMxQ3/WFWC8uPWOemt9RWjo38GEszmlQmt2npVtA/LNYi+JoqhtM7lmw8swwvrdteUB5u8mhMWKCnT0z/44YyNGkzqGTac9I56BxxhYRtvkpiHKr6Q6mpWERb12XzlYJ2xs0BpTligJGCwNANdUBwoYcNxfShJ27hfLnizDThJNIGkfg7X5BUjXSINpQ5rWMplgWWb96aWXxjVCmcdFifNCQuUBJhehEymcWsJGuaUr2UhSipXBSnGGaQSZK4EQ3KTl80pX3vfqcVc5uemBatwwf8+UfdvuHT3FatOU00YNjP4sEBJgGlRVT0+duX1oRjON3pzyCRpYiaqtR1t6ZMM3FlKtqCOqggbLicI1KrOpBaPR+QXJuu1Gn14q7PJ+boaAljSFKBMerBASYDpxVfHBlNDUUU1TkNJkEb+H7VSPqmwrCz2tJm8qs87qQZazYCfpF7ujD3FqOGi7MwtufoMDyrfmjQylihNCQuUBJheBDVzTbOb63kZv9g4BN+pemsocYRskrFIrZOsdiCrJmw4CfXYtqXejv409i5jedKcsEBJgMnsofwqgznIN/qdSuZBGayAhnTrUNmGPlk6a9hwKgNsigJlkLZBO1jCpA8mWKAkwDTbVC90ms5CzzflbdelVmJ1JLnXuElqHSBt6QdT6FcjLGqLPqs+bRT1ayalAdUQ5cXypClhgZIAU5SXOpbm7M7jlDeGDacvxOqN60OJDBuuLf+0nfJJd0emKgbPRL6dhBFitvqoO60lrNdGLUIwjYg4pn6wQEmAzeQ1mB90bfQrlWwdSn3DhisJ012HkpRqTDNJ2jNplJf1cqpdg4gD+1AOPFigJMD0HqiXo272Z3PccEMYjM/a1jqYWTWUBoxGMcbvmu652luy1idhnnFJI9R5KGnlBxMsUBJgNXkNYj0atuVKLc7UuFFeyYtIJX1ovtUO3DGur0RqJahQwuizepngqqtDY9Iy9YMFSgJMAqUeGkrU5pCm6waTZOtQYpq8EvtQnIS2AbaW9R5JiVNkMt9O/Pxj55lQSFWdfw33yz6U5qRmgUJEWSJ6kYj+KP8eQ0TziGil/H+0du2VRLSKiFYQ0Xna8ZOIaJE8dyNJzxsRtRLR3fL4M0Q0Q0szV5axkojm1nof1WBchyIXltXr07Ym3DUXQ2lzyLiJal2HYrlmUH0oVZRVyxhZtQ/Fcq7+Jq8aNDIJ+1CakzQ0lM8BWKb9fQWA+UKIWQDmy79BREcDuBjAMQDOB3AzEWVlmh8AuAzALPnvfHn8UgC7hBCHAfgOgOtkXmMAXAXgFABzAFylC656Y+rMSmtJ80OBkZtDpldUImrZHDLyuhrvLu0or0q+1Q7c0ZF4tfhQkkY92S4frEiqZll3w6RHTQKFiKYCuBDAT7TDFwG4Q/6+A8B7teN3CSH6hRCvAVgFYA4RTQIwQgjxlHDeqDt9aVRe9wI4W2ov5wGYJ4ToEkLsAjAPFSFUd+wmr8HXUAabWpzylbDhiK1Xag0bbhITYTVlDeY6FFv7uGHDdfeh1CLYU6wIkxq1aijfBfBvAPSdhCYKITYDgPx/gjw+BcB67boN8tgU+dt/3JNGCFEEsAfAWEteg4LZ5JV+D4+7OeSrW7vr9qVIG00ZNhwjg0ZECMUzMdXiQ0lTQ0mWZ7UkCpPm3YabmsQChYjeBWCbEOL5uEkMx4TleNI03kKJLiOihUS0cPv27bEqakLvwMYorzqHDUe9QFf+dlF9CjZQU3RO7DKSFaLS2eR7Ik0gUW2qE4zNti4jye7HcUhjdf9g+1C27e3DzY+uYkEWQS0aylsBvIeIXgdwF4CziOjnALZKMxbk/9vk9RsATNPSTwWwSR6fajjuSUNEOQAjAXRZ8goghLhFCDFbCDF7/Pjxye4U3kHUaPKqh4YSdX4o9m1Z56gBuvaw4XSjvGolTpGJoobr6O+oVzvVpJHV4YNicfi/v3wR//PQCizfsm9Qyx1qJBYoQogrhRBThRAz4DjbHxFCfATA/QBU1NVcAPfJ3/cDuFhGbs2E43x/VprF9hHRqdI/cokvjcrr/bIMAeBhAOcS0WjpjD9XHqsbevc1L2x0/q+bhhLz2GCSaC+vuocNR6cfDA2rmrKohpXp9VgpX48djM11qMGHkmI94rCv3/kYWL22ozlQqMc6lGsBvIOIVgJ4h/wbQoglAO4BsBTAQwAuF0KoL/h8Go5jfxWA1QAelMd/CmAsEa0C8K+QEWNCiC4AVwN4Tv77hjxWNzwmL4sPJc2w4cgXTjtfrSATQuA3z29AXyH5R5SaMcorXthw8miqpMTyodRgYgq7pW17+zBQDGZsbd86bjgJ6FpV8jwG2/Q0mAuWhzK5NDIRQjwK4FH5eyeAs0OuuwbANYbjCwEcazjeB+ADIXndCuDWpHWuhcFa2KiT9vvz+Mod+OKvX8biTXtw1buPqSpt0q3cq0pT4/3aBpzBHYviF5a2CahcFpjzX/Nx4Zsm4fsfPtFbq2h50pRhw4OlPflhvSQevFI+JnqHskV5pSlPIn0oNeS9X6rwm3b3Js6jFg0lcrfh6rOOnb4xPpToMpPVKny2rzTphxZvqS5H+Wzqbd6pySlfp4CBKAZxVcCQhAVKTPTxoL8Q7M31XodiMlHUMi7mss6jL5ZqsWM3nw+lkt6iodSUbx2ur2lho/N/tZMcuwlucL7YWNtmmIOsoQzJCJjBhwVKTPSBcP9AMXC+LhpKpAsleSfPZZ2aFhJME2vbIsT5PzrKq7YXuF4r5etJ2j4F2zd6mmFzyJp2LEixHtUwmFsrDUVYoMRE7/u9Bkd2Ke5ImbgCsQ7FJp9RGkpy20Gi8SCmJle7hmI7N3jDURUKSo2bJQbPlSxtbdVQ6u6Ul/kn6Hq8sLG5YYGSAFNklGvySrWk+r00SkOpzeRVvzT19aEkzzfprDpOspq2XjEtti1ZTF42p3yddxtWNNtCzgONmx5Zif9z58JBLTOVKK+DAe/CxuB5d7fhuvlQ7HWqlqzcxTLJfk2uOSpJ2rhhwzXOQG3paxkoq/ehxE+QbB1KtFO+2i5Z70iqNHw0zWq2bCau//Org14maygx0W36JYOuXqqDhuLZyytlk1ct9Yyz1iM87eA45W0yoyanfNL1MbbNGKn2AdbqQzE97TppTHFIY7V7o+RJoz4VMVRggRKTuFuvDGZYoT6IVKsZ1WKLVikShQ2r8qtPmrCkIINpaqm7D0WF+FbrlLcKuPA806SWPdUa5UNhxcgOC5QEFK2fAE5xpbznd9o9Oflq5YqGUk+TV9VZx05fmyZQv3S1DLD2b/QYnPIxyqrXoJ3GwslG+VCGoqltMIUvC5SY6I/EuCq5Divl69sPGjTDi3ldrS+u3SmfXBNIc8+s4LVJ6hXu70i6DkVRb6d8ooFukD7+FcZQDAYYzP3HWKDERO/8Ng0lKeWywLa9fZby4x2LXV4tfhD3K4QJ0sYUvFFZf/l3i/DXlTss5djqEJG5hcTb6lvOVcyPibKWaQ190t2WoLq8lJCqIQAwVv5Dafv6SrlDT6KYxqt6wQIlJh4Nxfo9lGQqyg8eW405/zXf86GsKJOSfr7aUt33ogZHSD27adTA/ctn1uEjP30mPH2dfChVR3lVcW1NmpMx8tCioVjKGiw/xWB+irlWXDPvEBQogykEWaDERH8mJolftry8cXj8VefjX+t3mb+8aOoSacxok2koycuP7UOxnIujDVqjvBL5KmqbVVvXfdSYN2Bur4pTPunCRvNV3f1FnPbf8/H7FzdWWUtfHRrgy6oVNnnZYYESF+2ZGDUUdx1KsuzVQkN9phm59Uqyopxy3BlX9WkrwiiBUz6FvbwKMVb3W9ehDOIeUtXMaNOuV8Upb6pXnDzNx3d292Pznj5c++Dyaqroks7OAOa0e3oLOO5rD+PpNTsT1S0M1W/r7VeqByxQmhB9IDT6UCJejvVd+7F2Z0/oeRWJUwzZjyJqYKp6oEMtQsH/o4q0bprk32yMI1Di1aGKNG57JSwzRspaXnvTPdk1lGiTV9hApI7XGlachg/Qz+KNe7Cvr4jvPbKyqvyuf3gFvvVwtICsdyh1PWCB0oR41qGYorzKdkf12/5nAc741qOh+ecyweiVyIWN2jHTR5Ss1KCh1ELc4mz1UtvFZE1T75D0ukBOMjOupw29ljVBtrRJF9tGfUFSjU+JZ+spLGyMSltt1jctWIXvL1gded0QlCcsUJodm1M+6UuSzVS/nbw+y6x21h7H5LVtXx+eMZgOalspH/M6yzl1r1aB4stBf2TJ1t7U9nxjmZhq2PnZ7kMxJQzP07a2xSkzWkNZuXUf/rbKHIUXlX8t1HvB7FCM8hpMrYoFSkz0R2JzyidFaSh63pFRXrrWVGX5cUw4F930JD54y9OGtKr85D6UyLBhS9YDSqBYMvFbDr2aX/X1Tupzqub62ravDx6r9IlgO8UpK9TkpQSKZfLzju88jg//JDwKz6lDco0s6n2r1xg6BF0oNW0AWy0sUGLiMZlY1qEkncFIBSX5Suxqr49hwtm8x7wuxnXK1+RDibjOckfqBclZNRQvHoESkubnT68NdTS7Ttk6vptJso76BDBgdsrHmbWGmryksN7XH/wuUByiTGpxCH0O7uep031QqqpDUUPhsOEmJEpDqZi8ai0nvg9Fp9pOU831/hdf+P6vBzaNa/mWfQCAbNbmQ/HV2WPyMuf91d8vxg8fM9vRk/pQqhnYahlgTSmLFpOXbYZfjujLaQ1QjfiMQK1wlJcdFigxiRqQyjVqKEn2ANMHoKQL7uKkK4SozLWEHEdh+/jSp37+PAC7ycumoSR5v2rZWQCw37dt+5Ra8q845YPtZBtkXKd7SH1qHctrCRuO8t/Z+s3jr27H82u7qi7Tk//QkyeDKlD4eygx8YQNGwZY9fLW+rKFpY/6pnzV5bovZnTCYrmMFn3ukYKtP0p8xjHJ2Jzy/jp62yrJDcgJQ7W+qhiXp+GkNvpQ1Ae2qjR5iYhr0nLyJgqOUP+H1KFQDg/YuOTWZwEAr197YfUFS4aiyYud8s2I9kzMW4U7/yfucK7tN1GVqvehVLEfl19DSWUNSwRxZlV2H4o3vVdDqb7eZff5Vp3UqU+MdGH1WrBiGzbv6bXnb2hZW9iwrX2jfGS1DqplN/8kGordElCQ4fP+HZbTMlUNxa1X2CnfhOiPxPQyuqGUkdEn5vNRn2mNWodSbUdXA2ScVP7vzlf8CVUVGZmm2rUiNh+K/zGUI9oyiqRCtJqywq79+G3P4cIb/2pNazL1VL7RYzd5hfmbwgZhr6k1+aSiFpNX2Gum/EZ+DWXX/oGqy/KUC3u5zQw75ZuQqBBdN8orosdFdciwFzSqSyT3ocQxeZkHnCgeXbENb/nv+egrlLRyw80w5Yg29pPLhHdffx29wioy6wC1bFUD2J+fug3bPXf12AdEU0qbU94rULzn1AAUavIq67/TFwo2KgEDIRpKSEh5f7ULfyPKHwzWbO/G+3/wN3QnjKZT8G7DTY5RoES8hLa0YVSz23D1M2c1447Gv2iyYi6zp/7GH5Zi054+bNhVMdfE1lBitFPyhY21DIJVtnOMFna33UmwpYzt+++2b/TYwqijNFA9bRL7fC2LRN0kYRqK6zfy3nSt2/UoBtPB/a2HV2Dh2l14bMX2qtNW+y6lBQuUmHi/KW94ed0oL3s+1YXr6r9NZjbz7ziUI15MnTAbbGRSy6fMjSY87Xcsp7wtysuiodRiuw9LumVPH378+JpwDdMqSJ3/CxZTanQFg4fcwTUiysvfJ6O0AI9ASaKhqP+i0C2oAAAgAElEQVQTmR6DddBRe+H5/WtpCZTBdKGosmyxJ2EMaPfLYcNNSKTJK8LubEsLaB818qyUj6iT9rv62V58DcW/YWX1PpR4kq/agcquofjzjlWFyPzC2vmzd72Ia/60DKu3d3vTxShLTVZMGkrcscDqlI/SUPzC13CN53zEu+ApxzT5UgIrkbnMPnErhOzzNlBMZ1AdTJNXLV+B1QNpWKA0IVGzZ/VyRJq8IpzyYaYZY6qo8xYqQiE6ZTDKS/1vT2vbQsqUUoTcexj2zSFF6N+17eVlPt874PiJevpLxvPWD35JOWJa7xN3MDBdVlkpH2wnXev0160SYGIuy6PdREz8Tf29Fh9KlOlRCeVMyhpK1POvB5Wiqpco+maxHDbchIiI2bO7pXeUhhIRwqfP2qrqBwlNXrE0FL9AqXJAMJnmou4tzvtfzW7DtfpQKunNadvyzqukByCEX+1FXWMa9OLW1XSZ65Q3XK8PMkHzoPrfXLaeNuxzC+61RjOe83+y5yA8efhxNRTyHx96TnnV/olMXppAYad8ExJt8oqnxodqKGQ6bxcu5iu9dPcXcc/C9YbtU+wvpk4hMGiotBEaivU7HOGmECCFdSghfgHTuTi4ZqCQcUlFnAXqHcfkJetTi0CxOeVNEsX2IbdIH4p2j1GzX9NgFiWEbLi9JyzKq2zWUNIaVAdzHYr7+Cw2r0eWb8UWw557ukAZEk55IppGRAuIaBkRLSGiz8njY4hoHhGtlP+P1tJcSUSriGgFEZ2nHT+JiBbJczeSbEEiaiWiu+XxZ4hohpZmrixjJRHNTXofSbA55aNesLCHa9qOIqrvRjntAeCq+5bg3+59BS+s22VMG2ulfIhWFXdcMPkvbDNXJ010vVrzlrBhy99JXq+oQdb9LklYfSyFqnOmdo7vQwlSccoH0fup/55K7jMyl1WVyctwT6petWgooetQXA3Fe9dp+RFSUnRioe41bN4khMAnbl+If/jB3wLnhqJTvgjgi0KIowCcCuByIjoawBUA5gshZgGYL/+GPHcxgGMAnA/gZiLKyrx+AOAyALPkv/Pl8UsB7BJCHAbgOwCuk3mNAXAVgFMAzAFwlS646kHUYBd3c8hqBI43L8MAjLBrK2zd68xe9g94TTFRpgOdsIWNUQOC6ct/7kw/QuOK8xK05rKev21+Ek+7Jll8Kjz/BQjb9TfelxqlhmIxpUZnEq6hmGa4ZcMzqWRl10D1e4w0eRnyUNpCWP8554bHcNmdC80ZRvS938nv3PtvOa6GEr2OzHz+9y9uxNJNe2OVERdVFZMPDKjc08bdwV0UPD6UoSBQhBCbhRAvyN/7ACwDMAXARQDukJfdAeC98vdFAO4SQvQLIV4DsArAHCKaBGCEEOIp4fTgO31pVF73Ajhbai/nAZgnhOgSQuwCMA8VIVQXvC9R+Itfa5SXdzYfX1uJHtzNnTKeycs/SKoyo9M61wVnw1YTTch5P/6ZW1jbOX+brzNhKjpKQ1GELQK1pVLXFAyL76JMLLZt9W3flLetlI/6FEPRI5yt1TMKHDVBCXsOq7Z1489LtxrPRWkor+1wPrMdMOPF7KxRE76w5/H5u1/CO298IlYZcXFLCtFQbH6hTZqQGXJOeWmKOgHAMwAmCiE2A47QATBBXjYFwHot2QZ5bIr87T/uSSOEKALYA2CsJS9T3S4jooVEtHD79uoXCCn0R2ILhYzWQOzlhIUNm3I1ObsD14SsTK+mjwU1FPsMVqHK9Hw0THj/D6tTnFlVQAux+GCqEVa2yKSwpEpgBwIYrCV562MafOMrKOGagGky4REKgXa0l623bZKFvGqCUosvK6pl/cXG1VAiw6AHb2x22yfMg2L77Pfu3oL7e0hoKAoiGgbgNwA+L4Sw6XxhUaS26NIkabwHhbhFCDFbCDF7/PjxlurZiauhCGF/UcJMBFE+FKPPwVZhlV/Zm797vIqXOSxsOG4engHINvuNKVDa81ljHrZnVM39mq6NuztAKbBmJ0ISQY/yCu9XoWktg39lLy/DOc9sxJ+nfXLkFdzVR3lVtHlrUmvZUWmDWlc59JxO1BYtgxvl5f3fz4BFQykb3rnBoCaBQkR5OMLkF0KI38rDW6UZC/L/bfL4BgDTtORTAWySx6cajnvSEFEOwEgAXZa86kbU4K53cPu3JkKnuIHzUavz4zjl3TxCNBTbC1LRMMJ8KKFJZZHBxZquJmcUkPG0iDD/j+0ZVRM2bNxoMeKeVVuFCV8rQqVNYPJSg47hnG1WblspX4rQILx7eVmrF3gOQoiavm4a1W/HDWt1yvWdL8YcYP1h3265MdLWwvcXrMIvn1nnKzP8XQHsGoo3tHsICBTpy/gpgGVCiBu0U/cDmCt/zwVwn3b8Yhm5NROO8/1ZaRbbR0Snyjwv8aVReb0fwCPSz/IwgHOJaLR0xp8rj9WNqJ1w9QdoMwNEv4B6mZXftlmz89uMSuZ37AnfeRMqRWiUVwINpewOVqb89DTh+YUNKvqfwZdIf37W6prbOoYABkwDqL/08PJMAiWu/ds0+McRyqa6RWkB+mw/aoD1Pwdd4CYZ56ImM/1SIPjPxzXThQkUf/neY7UP2N96eAW+/LtFnmOqmcPqG/bhO8D8zg0GtXxg660APgpgERG9JI99GcC1AO4hoksBrAPwAQAQQiwhonsALIUTIXa5EEI9vU8DuB1AO4AH5T/AEVg/I6JVcDSTi2VeXUR0NYDn5HXfEELU9im2CCoRF3aTl1O/8HxCnfKGTf6qcSSHbpPh5m++3q6hECCEYXPIYP3M6Z3/TS+zedDWZ5EWdT5EQ/H4SXwNpt9CMh+KLNOa0rSRZjS22W90AEG4gLZpAnG2r09jt2H/c+grajtPJ9JQ1HMwp+0ZcHbm9d+zPimymcv29Zl39rV9ZbJe47UbcBFSgM0pX+sGnklJLFCEEH9FuL/o7JA01wC4xnB8IYBjDcf7IAWS4dytAG6NW99aUQ83l8lYnfKAWc03XWfCG84ZoaZrh0KzlccDoaMxZtyuhhJyP7E1FM/9h5erH4ljNqzGhxJX4AOAMLynFSFanYYCy4Dvr4/NDxKFcS8vV6DY6+k/v8aNlAoRKFUMVv7noGsAtexYYNRwy0I773v+Mev8+s4eHDtlZGT5OrUs1LShygqrr9XkNRR9KAcTqs/kshSpofg7QDUPN2xLjKgBOFyeqAFNGI/v6B4IHTiitlWPb/IKrto1Dp6elz48vzCh5DWZlX3nwmfkgfpazEdhY4cS2GEh1jbihlKbEO51wXOxNRStlru1D1GFddVqHL7+8/0FrS8kGOcqYdLBxLZwZs87aOlcvQN2H4qx3Hp9EVEJlDAfilVDqfxmgdKEVDQUMs4abTbLahxkYc5j21ci/b+91wTr4C/nkeXbYCTM0WyZUXuSuzso6+VatBv93kMyt27y6HmJvKdsM3I/tgCIqIWKoV+3tKRzn1FEvzJhW6BainHOfz7OCutqJkj+/t5fTEdDiZqQBExeMX0ovZE+FLsgSxOb8ATsGsqQjPI6mFDPtCWXsc5ggXDHrP867zVqBqzPHO3p9EMfmjPdnK9K7+t7etqwl6hi8jJ33Mh1KPJ/rxNX1ifK5BWSt960/vKLnnK8dbZtNRKoh6Vu1QqjWCvlXSEbPBd3LLCZvGxbBTnlezLSyq5doAQ0FG0QTGLar0xmIjQU3+mSRVDqbRGmoVTSmo7VZ8B2TV4hcsPmQylZxqN6wgIlJqoD5zKZyJlkEpOXcWGkZ8ZurpfaILEtnzWeD1tToA9A7SFpw0NhwwdAE0YNxRiaG7+dTOXr9QysQ6lGQ7E55SNGwTBtzupDMdRREWWqs+WfxOSlayhhda5GOPufo2fTQks7h1FZ12MvKzjZCO9bej2iNBSzyas+PhTTJFNnZ7djnoz6xPOQCBs+2FD9KJuhyGgcf5/zvIChA6X63/yiGwc5RH98J2yw0rPz74mlCF39bZkletIb1rHYTF4eTS6WQPFeU7DMQku2B4QIUxqiBYNJG7Ndb6pbtZovYA8W0BfbBs55NJHKb080VAwNJWqw8mu3hYj84/oYo9KGra3R86hcW/kdJlAqz9+uGaWJzSm/r6+Az9/tBNeahoBq9q5LExYoMVEdtCWXiXbKW2bHUauPw0wRpk4hhH1raydfc530FyMsC/dLggkXNlbqEGybpCYvr/nQe67fsiGeKdJM58dPrKmct2gKUULUr6G4Pg5LGlveUYO37VnY2jpswCnGWGNSzWDl10S9Gkrw+qjBuWTZqdg7cfGls0zq9LzuXbgBJmx7iNXLpKRyNeW/Wduy3rR5ZDWReGnCAiUG63buxwLpuI7jlLfNjsM6X8UxWzkW5qB300BEf8st1ORVIcwWG/YlwbjbkLgaiv51QMsAGGegspmAbBpK2WB20/n9i5us56OEaNh+XHEGG9vGonpVzM/JpoXYBl/zbP6cGx43lh2WNtop79dQ7Fug2MxWetnm/qP99msoNnOodu3OngGYsAn9tL4GaTgRWqYefm0SKPq2O4PpQ6llYeNBwznfecydWWUzFGqayGWckOJAZ47hGzDNJqO+EilEpTOFb70i62cxeYXVSQ0GSbevV8TVUHTiOOVtJi//oGGbvYbV0XQ+rNZKaIatf7Hdrs20EdcBbnfKm8qsXB86oYjQpgGzRmGLMFI+mgxFayjFskDe9+lFW3uaTKumfG0TvlEd+WDGqAiremgoYVpZmHUB8AYPmCwMBa3t2CnfZOhqej6bMTqUS2WBXMgDjLPPl+kbEfqVYS93pA8lZLCKMyiow6EdPmJi5vpgDCY/0+14hZw5z7CdBAD7NyDCfFMKfVA1+lDcMu0TAr+/KY593V2bEznwV6c52fbk0tsnbEPE8JXyZu3GlM5//+oZteayZg0kImy50n/s92Rbh2JbvxSGXUOpUaCEpLft5dWnPTPTl0v7C2W05rLIkNnnWy9YoFRJNkNmm7QQyGcz7m+dOFExypkbNmCGDbCqK4VqzSGdUr/e1KFLnoHMvJ1IbA3FYMYIM+G5acI0Lotwtq2hCNsjTdFXCJ/dyspZ66Vmx2GzX1v4sM00pWenPpbmLVdeYBlgo3wzpgExn6XQgTZK47atyVJ9qS2fiZztB/qdsG8saRMaNg1F9cmWXCZ0Ly+TjzMsv2oJfmJblmkJsdc1lI7WoKFpoFRCay6DXEgQUb1ggVIlOYPJSwiBHd0DrkAJOGY9ndmcr+mzq1FbtgghKiaviHr70+t/mdaZeJzB/gEnfAzzXSZn7YaXOSpSLl7YsHn26y/Tn59pUIhacBe1Ul7l7x8E42zLYW+TyrHt+/pD09oGZ6MGGmHyCtMgALtJy5+3TUMxzvZjmqaihJE/a9uGlurvzpYs+gpl432rJGYzXW0+lKjNV01jhi74TM+gv1BGSy6DTIiJvl6wQKmSbIYghHewv/9lx6HbJR16/g7i3VIkQkPRX4qQPCrHgEzYB6dVHgZB5RyPP8v0z6CiVvC69VO7pXpMXt56VVMnf5lhO9k6jsjwrVdMWesaim2QjDJZ+s+rvrBlT1C78OcdFY3V3R/cuFANZiYNSOVnMmnp9TStuG7JZSzaWPy+4z+vhFdrPmPsA3pd/BOzsEACtyzLZEPPK2gOdf7vaHFm+qb2qmwZFCxXr9f3F6wKnI8iLFDBDfQwSBRdoJgmBP3FMlpzmdBlDvWCBUqVKD+J/oz8M0f/AOx9wcyzmaIhHDLKcV4SAtkMBa7VcW3sVZq89JckfOsVe0dVZ02RO1Fhw+EO4crvsMGqPZ+1bw5pGHz7PbvgBstVTRBmnqhoKOZB8L6Xwj/XY9UytMr0mASKLM/spHYODhSDs26PQCkFJzOtuUy4H8vgEwvL2/+M1GDdFqah2CL1IvqbbQ2NfR2K1FBanfVYJrOXG5Rh9PtUjn3r4RXWOpoICyaxaZhqvcw/nDjVODYMFB0NhU1eTU4u4zSZ7SFZNZQIk4lnj6WI3YZ1k1cYKlXQ5BU+0/eXF745pLVo9+UzvSRRq6TDw6v1enmvUbPb9nxwsLI58wH7DNY5piLe7LP2asOGhagEPxg1Iy07/2aAQghrGK3N8e7RQOU5/Tnls5nwAISI52TTYFQ7t+bNGpBXQ/GFHBcjNBSLSSzOSvl2qaGYFje6zyii3JZc9UOq3qf03+p5m0xqSqMe3pYz9sn+Yomd8kMBFVFhM734B2D9ZQ5bX6Hy0Ptr2G9FqSygLF5hTt+wrVf0apg6rH4s7CuEUd3UpB3Z7MJ6Ffdo38TWsWkoA67DNxt4yaIik94wos16XtU3LMRW5e+f3UbZ1/VbMPUNvTy/aUq/3Kh1aWY8/Tfg7Q+q3fQ2mjSyzRJAYv7WTeV8+Lsx4NFQgnnbAiv0b6nYAkmcz/iEv5NhJq/OFqWhGExermYdrLOutV5w7BuCF0Sg9xH9t3pm31+wOhCQoYReZ2vWqDUPlMrslB8KDG9zZjH6y+Z/0f1bmHtmv6EvqfD87y/DvPYFrskrjKQmL72PBlfKh6v/3voFNRSVlW0DRgDYsKvXmmdLNrhjgWvyaslGOHSDZR83daT1vGq/sDBg1Ua793sFYdTLbAsyALwCxa9leG3vwbz1mbZu0gO8/UHlowamL7/zSIwb1hpa91K5HBrR6K+Xv98WSmVkyDEdm/qAN7DCe7+6sDZt3a7qm88GN3C1BWWov5UPxbRBZOVLowZBpmsVEd+kN1GI0FAAYNnmvZ40/QUnisvRJCv127S7F2d8awGeXLWz4pRngdK8jOpoAVCZqfz+xY24Yd6rnmv8GorNLuy/JsycEOYorixstNc76FOw16nfMhtUf0UuTjQISXuIbGWGua/PrKFUBg0K+KN0k5dt3Y1xZhyxJYjKL8z8pwYVv0CJ3Eokwh9RsAxWJt+Ujj4A+2fdnrBwaUpS95DPOgNR2OMtlYFWKVCM/jd9AmV4F1pyGWTIHJZsi9TzCEiDFqHaozWXsa4HClsp7/pQiuEmL5PCqfLLULJV8x6Tl26m1O7RH5DRWyihvSVbiSyVFVu+ZS/W7twPwDG/hS3ErhcsUKpk0kjHNKI6773PV/b+ufbvjwMQNBFF7bAKVEw8YT6CsFlzlIZi2v4E8DndDW/J/oHwKBJhebl0VL56/jbTgcp3RFs+9FOsqt3bDI73XTLKzqyhBMvR0QWozYwTtohN1WWX/oGqsogU9Kpt81kytqfH5FUyC1AgXENRNn2/hqJn1e/a6p1MchmSK9nNlS8L4eYbtaeWv879xbIrsEzC2eOg9rW1EoqdLVnjoK+eUXs+aw3fDtNelIZic8rb7rc9n8VAgkWOehuFtZ0/IKN3oIS2XNY1wau20n2qw1pzHOXVzPzz6TMrL5KalWgD+qHjhwEIqurXPbTc/W02Lwl3s7cw+7N5w8KKySusy6gO5n+xPTNjQ510gRL4BLBbvr2jqnv1OFOtTnnn/xHtOWOIrF4X0yz0xkeckM12kw9FVGaRYaaWlmx4wEUl4sbuQ9m9v2AMRgjDdVLHiHryayj/O3+l+9tUVF+hhFHtefnb//zLaMvL2W3R60PJZcM1CHVd3tJWutD1l1soOe3clssYw3NtTnk10I/qaDFqKEVtshGItisF+6D7t/yzoyU6ysvUJirv9pYcBgyCLoqiQYgWS2VP2/77bxZ50vQVy2hvybrvv/uuafc5vC2HLDvlm5dZE4e5A7TqYPq2B0pl9j/AVzbscX+bBo1fPLPW/a2/Q95ZVbA+JSEqW6+EDO7qvMlc4s5uDB1O2ZGdwTnMh2Is0qXgdvKgOcm2o++Itjz2D5SMM1jVJq35oBaicEJefYOGNliankF/sYyRHWrwDZ/9RkV5DZTK2Cu1qzgvsrrH1pAPt9lMXs++1uX+NjnlewdK7t5UJg1FfQen4Goozv/ZDFk3FSwJgXwuvO/obeSPmFLhrG35rLGdbU55ldeI9nzI2hoVlJEJ9J1SWWifU/BNkJTJK8QpL4Rwn4Nto8YRbblE27Ds1bRxvR+FlXP9wyvwh5c3uT4UoGIF0PvI8LY8ayjNyNtmjQMA/OPsaa5GUpnxagJFqsy2TmU6t3p7j/s7LLrKvBOt40OxRQ6rDuaf7ZXKzt5j2QwZZ937B5xOPqI9F3jBTGtmTLjOXsMgYfRTyIOjpZ/KuJDPndFnAvU+YfooAHanbD4TnHkLIbBk0163jU3lqnu1RXlNGdUOAFixZZ9T15BgBh09Mk2I8B2U81kKCJT3HD9Zyzt4T33Fsuvz8w/AZSHcj7IN+DWUDCFL5i2GAEejVdqcMTJNu2+/g7tQckxebfmMMZrKtrCxX2ko7fmAgHTSVkxXftNTsRxeZ9VX1BYmwTpr76FFoAxvy1XtQ1m5dR/+z50LK3UxCAaFWu92k1w82VcoYZisc7cUSnr5w9nk1Zxc+w9vwmNfOhNEhLxPxdQ7mDKH+WdHLbkMPvaWGQC85i/A6dy3/+11AMDJM0Z7nZK6DXXAMMiVgWzE1ivK1hy0KQvkMhkpUMJNXhNHtGH9rv2+tE5e0SYv+XJ4NBSbLdo5pmbVJj+KbvIqC+/g0JLNYM7MMcaXSJWXNTibF210NEi1dfl+Q5RPZZ1JmIZSxtTRjkBR9m5Vh3HDWgGYZ50FTUA69fSfl36D1uBgpe6jNRdcM1IoOfteVUxefg1FuGVWNJRKG+WymdCJUUkItMiPspm0qj6t/fyD80BJ01AMQkHf9DBMQxkZoqFU2srsQ1H3GzbZcDWUYrDOCqNpUdZleFu+6iiv1du7ffcgNRSZzzffe6x7TvfPAc4kYcwwZ8Kg+q5e/rA2R6CYxo56wQIlBlNGteOQsZ0AKrMYNYNXnfTDp0x3V9H79yMaKJbdmYSfGx+p2MFbc1nPi6Je8JZsxrguQ5m8ciFCAahEivgHh5J06OczZPWhHPmG4dg/UPJ9hCmmycvgyFYvuimtEkBjOp2XxCRQSprJC/AODv3FMtryWeQMs/nKgrps6AfDFKYV6VEmr1JZYIQcvJWGo9pJ2eZtg6CajIQtBOxsybnOc4UaYNvywTUdva6/QZm8glFemQyhJZdxZ/MVDSWD1lwm1B/gBIM4/ijT7Fc3cwVNXkJqKGaTl972/mARpdGM6nAG7rCNJztacoFJXbEkKn3Gl071lREh/qZ+rZ5RGopp0mBDRWQpVN3U82rNZfCVdx4FIKg5b97Th7HyXenqGcArG3Zj/vKt7vnhbXlMH9OBNZoFpN6wQKkSNYvp7nc60RMrdwAAvvbuY5DPBDUUJQjUIOnnL8ucDnDo+E605DIeVb6/WAYR8MYJw7B8875AWiEcoZDLBG3G6rx6of0dvVguO6aNEGHU1eOo15OlGcf0NcS4GkrBYMYYKJVx1vWPYu6tz2p1UhqKEihBIVr0zej9q8Fbcxl0tAQHqwF3FpkLCBt/pNw3H1gWKFe9zKaIuL5CCYWSwIg2Z0BSk439/ZUZtV4HHTWDVxOOsG+8dLZmA+nVWoRshgI+lN1yNqvMh35NoVwWyBKhNVvZYVe1bTZDjkAJGRz7ZQBDLmu+RvW5bIYCAkWFDbflMsaNGHWB4p/oqHtQvi5/2W5btQSd8iXN5BW2HcyIEG1OL8ccnl1GPkvG6LIovvuXlZ6/VXrld23JZXDaG8cCqJi19G+2qOe7q2cA77npSTy8pCJQhrXmMHNcJ7Z39w+a2YsFSpV0yhf/9R2O1FcDTUsugw7plNdn1kpNHdPZgn85843S5OI83HlLt2LxRrlgSUDOCp0Otae3gBvnr4QQwFFvGI51Xd6ZzIZd+/Hkqp3IECGfJaN54pJbn3XrYnLKZzKEfDboiwAce+2ItpxrMtEHBlNEiZ+e/qI7a/aGglZ+r9nRg8de3V455/pQ4pi8sp6/gcoA29mSC6j5A6USshlCZ0suMGDkskEnlP4CdvUMuM5kIYID0n/9yRFA7S0Zee9O/jukUJ5iEMqKa2Ra04JZwGmvDMmQVF/6vkIJbfms0b/ifm9cmkTvfHqt57xaxzCsLecO4rpTvkVGYZkG0O7+Ioa15Z1ILYMfRH39cvyw1kBb7x8oojWXcbUFf5vos3B/v9RNXkBwLYpqg47WHAplb90LmokvTEMZ1ppDhoICRbcOmO63r+CE8OazGU9EYxzOOXqi529Vt8t/+QIAZ0xw/SQGzXmsNHm9ujU44WxvyWJkex5CmE3m9YAFSpUox/vn734Jv39xIwC44ZetuSzGD2/1PNwX1u4C4MwqxnS2oFQW2Cc7hu6MAzmdR71gX/ldJUxwRHsee32z9fd+/2/uC5bPZowzI6U9AUEfyv6BEtrzTtihyYzz6tZujB/e6jpu9ZdMvei2Tqqr8voMb6Ak3PbyEzB59Qc1FKXBuRF1Ja+G0pbPoqPFCSTQhZcKC9bbWKG0pJnjOl1tRbdXf/z25wDA1UC6fJ+JvfMpZ7BWARpKQ9khnaiHjO0AUJlh6qhILTU79gvpGx9ZhbJwJix+odFbcJ6had3Oi+t2A6ho1C+v3+05r57/sNYcdsnFmHpkX4tcgW2aNPT0FzGsNYt2gyYIVLTuKaPbA/6o9V29mDa6I3SQ7PEIFG/Z63bux5jOFvc5+B3z63f1oiWXwdjOloDgL5XLoWtnBjTzUls+G9DmlDOcyDyo9xdLaM1nkc+R5z3btq8Pv3l+g3VHiW7fe21q72FysqHaRgm1ez55GjpacmjLZ7BQjjM6WSJ3ohK2rittWKBUib75m5oFXnLaDPfYCdNGuVE+fYUSvnTvKwAc1VTNrPbsDw6UGZKzQtlZjnzDcPfcsFZnFql3zB3dTiff11dALmsWCjq7fGXu6S1gVEce+WxwoBoolvH0azvx9sPHGwWKelH39hZCX5Z3fe8JeV9eYVYolV0ntR/1MimTl38A3j9QxOd+5bS5akvP3kdFqaFIYbO/4DUftuadAcPjpyqVsRAQI1YAABtrSURBVHWv05ZfvfAofPsDb3bvTaEG4ynS6b5yW3A2CMiZfTaDHjkgKUfp4ROHy7+D3zNRKNPifk1I64NX3mBe6is4a0mGt+UCA4bqP/4ZsKJ3oISOlixmjuvEKnk/aoLQ2ZrF1DFOfdbs6A6k7e4vorMlZ/SD6H6N0R15z+BcLgvs6O7HhBGtmCj3TvNv69/TX3L3p/P36c17+zB1dLvbJ/0Tg937BzCmo8VdoKgPzv2FsuvL8guqir8ii3ZDsMA22T9mjusMCBQhBH717Hrs7S2gJevVIv/z90vwxV+/7Ini1NnXV8CCFds9xz75s4X4sjaZFKJiDt3bV0RfoYTeQglfOu8IzJk5BgAwtrMVL/kmDICjocwc56yNe8EgcOoBC5QqUZE8OiPaKg73Q8Z2YF3XfpTLAg8t3uIenz6mwx0o/dtzAM5swnHKO51ZhScv+fp5GNaWQ1mYd0Ht7i8hl8kEbPv+2dvjmmlp9fZuPLpiO4a35TC6Mx+IHrnk1mekqW2Eq03ojkr10pQF3MFT58V1u1xz1+RR7Z6BoVAqY2yoQJEaimynvb5B8tEV213tbpRhRq9m3WpAUT6MpZv24uX1u10NRR8E9TKyGUK7HHT0mbV6vkdPGgEAWO8zPyrGdLSgszXrziTVVuZKoPg1G33wneHTYoQQrlkVCNdQ2vJZowZ74iGjMbazBUdNGoFTDx2Dk2eM9pzf01vAiPY8Jo5ow24pPL/yu8UAnAHsyDc497rw9eBA1N1fRGdrDm25bKBPqjVVsyYMCwicvX0FFMsC44a1uhMCf71XbN2HSSOdd8w/8O/Y14/xw1q1Pukt+56FG7Cju9/9lronfLlQwjCp2fid+cpXN6zNEZKq3yi2y8nboeM6AwEbajIyUCojnyOP0FeDvOnDaADw9JquwLG9fUX88pl17t9nHOFM6tryGezeP+DucafMqABw2IRhgXyufu+xOHH6KJx0yGjkMoTlW/YGrqkHLFCqpLM1h4uOn4xxwypOdt3GOn1sJ/qLZWzb149NeyobHI7ubHGdaQ8s2ozNe7ybHxJ5fSg9/UVkM4SOlqzrtzGq23J7DX2FNgBs3h38oJPSLN79vb8CAFZv68HYzlZ3Jg04L5fq6DPGdbpmnKVyczohBPYPlFw/x15D9Nn7bv6b+3vWhGHuDFAIgf5iGROGmwWKGlzGDW9BPktWNX26jLrbI7Wk781f6dSrs8XVUNSM+503PoGXN+xBPptBa95r8tKfXVkIdxZ793PrAQDfmfeqK3T+811HI5shrO/yPjslDD721hnoaMm5PhT1vNQk5MlVFRPktr19OPTLf3L/njC8zZPmO/Nexbvkc/rhR05Cez7r0V6Aig9leFs+8Bx6+ouuqaSzJRcwPW3f149xw1oxYXgrdu8voKtnwN2tYcLwNtfZ+9XfL/akK5eFNHnljGtJnly1E4AzaWnPewWO0qrHDWtxTTG6Frqzux+rtnXj+GnOeiLdZLlu536s3dmDccNaMbwtKIx2yryL2ip+XQD3FUoV34tPMKt+NkJOsHb72nL7vn50tGQxYURb4B1U9wQ40Zj62qstcofgdV09+OlfX8NZ1z/qeYaPLN8GAPi7I8bDxG0fP9mdHE0e2Y4lm/Zigwzh1ye2F75pUiDtR089BESVoJvvL1jtBmrUExYoCTjj8PHY0V15OMdNHeX+PmSMM7is3dmDjXI2sewb5wOoOJt/+NhqXHTTkwAqEUZKeOwvlNDdX0R3n/PSEhGGyQFSDRr6DOtDp0zHazt68Mjybfi5dLxu2dOHM69/FABw76dOw5fOOwJAZbCqhCaWMLazBTu1e9EHy1kThrkzrnufdwbY13b0oFgW7oAetiswAHzt3UdjdGeLOzN/avVOlMoC02UbKZRZRA3uo9pbUCgJPLGyolV19xfxL794wf178ihnAP7NCxuwdPNefFtu0DlaM3n4Z5obd/d6tEAAnpds7c797mzvT4s24/6XN3m2N2lvyeKQsR2e2d7rO3rw+s79mHvaIRjelkdna2XgP2RMB847ZiJGS5/Qr55d77b9PQvXu3lc+/fHuZMGJYzUNjIAcNaREzBtTAfW7+p103/p1y/jiZU70JbPYMqodmzc3esOwBt39+K+lzZpW4J4/QI9/UX0FkoYP7zV3WV51baKaWtEe84dfP189b7FKAtngtTmExhb9/bhoSWOVn7LR2c75crz+/oKOOeGxwE4nwowTZIuvNERoKce6qwlWqtpgm//1gL0DJQwbniLq8F29Tj9pa9QwpW/rZiJ/H6Doty9YLzUjP0+kn19BRA5gnd0R4tnggU4Gy5OGN6K4W057O0tet4/Zd5+6PNvQ0vWWRs1UCzj1r++5l7z779ZhKv/uBRrdvS4Wsuqbfvwq2cdTeTHl8zG4q+fF2hr/ZMKJx4yGn9bvROLZPTX1NGVd+ikQ7za5+SRbTDhN3vXgyEtUIjofCJaQUSriOiKwSr3dLlyXvGeN1dWLCsH7A8fW41Nu3txzOQRrhllyqhKJ9gm1eAPzZkGwPGhnD5rPIQAFizfhu7+yipYZSo754bH8eK6Xe7A+5mzDsMV5x/p5vmnRc7L/LfVlZnwcVNHui/SIzJGXfkwfjL3ZIwd1oKNu3td7WbtTsfMcsM/vhmjO1tw9pGODf6MwycAAM769mMAgJnyPp97vaK2/3XlDsy44gH3vj721pnoaMli4+5e7NlfwId/8gwAx5x0/LRR7v2pWZey8yqTxpJNe92B7tM/f94t59mvnI2xnc493PL4GvfFBIAxnXnXEW0KGmjLZ7C+qxffm78Se3oLHg3lw6dMx6SR7bjwTZOQz2bw2V+9GEh//LRR+Muybbj8Fy/gyVU7XME9Uj6jjpYcegZKKJTKWLmtO+AvUgJKH4h1rarbEIjQkstgxthODBQrs95fy01JJ45ow5RRbSiUBLqkcHzrtY8AcASLU6esR0NRmsi4Ya2YJoX7fS85ASafPONQEDmmv+OmjHQ3Q3XqVjHHDGvNBkxap1/3iPv77KMmSK3KOa+bziaNbHef/b/e8zJ+/PgabNvX597biYeMxnFTRrq+K10AjGzPY3SnI+zUZqA/f3ot/rzU6dvffO+xrklVaS1f+8MSDBTLOH76KOSz5PGt/WnRZtz4yCoI4ZiZx3a2uPkCjla9aMMeTB/biUPGdGKgVHbbFXD6aFs+g1kThrs+trU7e4yLY4FKsMSjmu8kl80Y16lN1sxah453JnBq4qRr+br567p/OA63f2KOJx+VVhdQ9WLIChQiygL4PoALABwN4ENEdPRglD1heBv+7fwjjOfUw12wYjsWrNjuCg4ArmDROX6aM7s4ecYYvHmaM1v8zK9exG9e2IBWObAeNr5iI33fzX/DN/64FAAwa+JwZDKEp648C4ATSfbkqh3ui/mGEW1ozWVdAfiFu1/Gxt296OoZwKWnz8RJh4x2naNqtf7LG/YgQ8B5xzgfCmrLZ0AE3PL4aryyoeL4+893H4NDx3XiqdU7sa+vgL5CCU+tqQiyz549C0AlKu6nT1ZmbKe9cSx+f/lbcYfs+Es378W8pVvxl2WOCYCI8L4TpgAAPiUFiZoJAo4TUl/X8/OnKwLl+Gmj3dnv7v0F/HlJxY8FAI/JF/nb817Fyd/8iytQ/ut9x7mhyCdMG+W2oeKcoxzBOl6+yA8s2ox/kgISAM6UZothrTk8/up2PPDKZs/1ihvnr8Sltz/nEWRzZoxx/Qb3yqggtWbixg+dAKAShPDC2l2eAe8fZ09zB9A/vrzZM3v+34uPB+AscNuytw99hRJe39GDc25wJgWdLVm3v/5CCgrdBHXu0ROxeU8fNu3uxbylW7F0U0Uz6x0o4dDxnVi+ZZ97L8qfdc5RE0FEzhYoxTL6iyX8adFmN+3Eka2eAfSaPy3DxT962v37mMkjMW1MB1Zv78ae3gL+vLTyDC86foo7mVDP6IePrZbpRuAjpx7iLvbb2TOAvkLJ7R+nHzYOhZLADx5d7U6gdK0XcIS73r4/e3ot9vYVcc5RE1ztVa1uX7O9G7c++RqEcCwMR8hAiKWb94Zuh3TnU6/jX+9+yV3rdPM/nWi+EPBoiR859RD3dz5Lnk1p2/JZfP09x+DBz70NHzx5uuuzU9z7qbfg9o+fbBx/0sa8fHtoMAfAKiHEGgAgorsAXARg6WAU/qm3vxH/89AKnHeMN4oml81g/PBW1xF3hO/h3vbxk/Hx255z/z7nqAn48xfejpnjOpHPZjB5ZBs2yRmkWuE6bUwHvvneY1179u9kuLLSPCaNbMeRbxiOBxdvwYOLt2DyyDaM7si7gmbyqHZ3rYqavSob7MVzpuP6P6/A1/+wFF//Q6Xp1KBM5GxVsmt/Ae+RZrorLzgSYzpbMHlUO/66ageO+9qfPff480tPcQfIfz33cPzo8TW4Uc7Mv3rhUa5Gd/y0UehoyeJzd73kplVb1Py/847A717ciFXbul2tB3AGhWyGXPOhzstXnYuR7XlXw/mUptUAwPnHvAFnHzXBjbwbKJXdss/VnuME30zuzCPG47tycB5vCCj4z3cdjROnOxODEe2VsHIAeMsbHWH+/FfPwUnf/AsAYL60nR87ZQT++Jm3efL6y7JtmHml41v5j3cd7baVWuPymV+9iAuPq9jMT54xxjWjfOOPS93JxgXHvgEXHe8I5TdJs9aR//GQp6xzjp7o+hsUX72wMic744jx+Pa8V/GWax/xXNOWz+Cdb5qELXv6cNuTr+PNX/c+/6ve7eSh+tgRX62Uu/zq89GaywaiA9fIAIS7LjvVKSOXwda9/Z68H/js6e4ECABumPcqhAB2dA9g6uh23PPJ0wBUZvaf/Fnl+Y/pbMGYzhacftg4/HXVDvzLL17waBofPmU6AEf47usv4tirHsbFJ0/DT6Tp6q2HjXP9Sv9x32L83787DNc95ARdnH6Y84wPmzAMI9pybp/qaMnivsvfivte2oQvvONwfO6uF/HHVzbjt/L9/eTbD8U7tWf53FfOQU9/ER+85SmPSQtwQtZ/+JETcf2fX8V3P3g8/MyV742JMZ0tOPOICaHn02TIaigApgBYr/29QR4bFDIZwitfOxc3fTg4w/jLF85wf1/zvmM95/7uiAn45NsPBQDc9OETMKqjBYdPHO6+2H/4zOnutX/6bGWw+ciph+CJf/s7T17HThnh/j5uSuWLg5v29OGYySPdRW0A8OQVZ7mqL1CJDBnWmsMX3+HVti49fabn70tOO8Tz9wXHOi/BZfI+dMYPb/WYBFtzWVx88jT377cfXnFAZjPkGRzHdrbga+85BoCj6amXXPHldx6Jn13qaDW5bAafP2eWG2I6Z+YYd0Y3qqPi9NXv/4cfPQkfmD0NV190TKDeYzWN54xZXifptX//JndG/YHZ0+DnE1p7ffBkb53VoDp2WCtu+Mc3e87NPmSM52+/2UM5pwHgTZqf7gE523/qyrPQksvgqEneSQsA15QFAGceHhxM7r7sVLfPvfK1czFn5hjc88nTPLPYN00dhc+cdVgg7bJvnI8Jw9s8fU7x80tPccvWv4IJAG89bKwb8ktEOHyiNzrp/GPegFMPdVaF+8Od/+6I8ThmciW/YyY7ff87f3FMQFdccKQ7CRrT2YK/P8E7FDz2pTMBwL2fBxdvcVejf+7sWbj6Iuc9PVbm291fdIXJD/7pRLxx/DBXK17f1Yt//80idPUM4H0nTMEtl8wG4PT1s4+q1Pudx03CrInD8f/OOwLZDOGqdx+DzpYspo/pwE8umY1/18zVgPPuzBjXiYc+93bc6TNbAcD5x07CX/71DBxraPdmgaI+49qsENEHAJwnhPhn+fdHAcwRQnzGd91lAC4DgOnTp5+0du3aQF714KX1u7F5dy8uOC4YgVEuCwyUyu7LVQ37+gpYuHYXzjx8vEdgFEpl/PiJNdjXV8STq3bgxotPwIxxnYH0dz+3DtNGd+C0N471pC+WyshmHC1GX2uj6CuUsHp7N46eNCJQ7tV/XIqNu3rxkdMOwdsOG4dcNpj+9y9uxJjOFo9AAZwAgcde3YbfvLARn3z7oZ6Bs1AqY8WWffjrqh2YMqod79Z8VYr9A0XMX7YNFxz7Bk+5zqdmCc+v3YWjJ48w2qi/+vtFeHpNF37xz6d4Zr6AE7Bw84LVGN6Wwz+/LSg4l2/Zi4cXb8V7jp+Mmb523rBrP5Zs2oud3QMBoah49rUuzD5ktMd0USyV0dNfwq+eW4c3Tx3lbrmh88tn1uHLv1uE/3rfcZ689/YV8PzaXfjP+xbjiInD8e0PHO9uUQI4kUp3/O11zJ4xGiPb8zhh+uhA3iaEEHj2tS50tOTwy2fX4YoLjvSYYvoKJby+swcPLtqCS9820110qFi1rRulsoCAcEORFZv39GLVtm5s3NWLfDaD950wJdAer+/cj/aWLIa35QJ57+kt4NnXuvDKht34lzMPC5h0unoG8MCizTjz8PGukCuVBX70+Gqs79qPdxw9EbMmDMfU0e2ePv0jaUKbMa4Th00YhjdqJuf1Xftx/8ubsG7nfhw9eQQ+ePI0z3u8q2cAC1Zsw4xxnTh28sjAu6TGWwqziTUpRPS8EGJ25HVDWKCcBuBrQojz5N9XAoAQ4r/D0syePVssXLgw7DTDMAxjIK5AGcomr+cAzCKimUTUAuBiAPc3uE4MwzAHLUPWKS+EKBLR/wXwMIAsgFuFEEsaXC2GYZiDliErUABACPEnAH+KvJBhGIapO0PZ5MUwDMM0ESxQGIZhmFRggcIwDMOkAgsUhmEYJhVYoDAMwzCpMGQXNiaBiPYB2AJgj+WykZbz0wGsCzkXldZ2rta0tnrVs9wDra1qybtRbdWoetWSb9R57u/ppU2rrY4QQgT3+PEjhDho/gFYCOCWiGtCzwPYXkPaWsqNShtarzqXe0C1VS15N6qtGlWvWvKt5zNsxraqc7mD0lYAFtquVf8ORpPXH2o4H/xwc/y0tZQbldZWr3qWe6C1VS15N6qtos7Xq1615Bt1nvt7emnr+QwDHGwmr4Uixn409UpfL5qxXs1YJ6A569WMdQK4XtXQjHUC0qtX3HwONg3llganrxfNWK9mrBPQnPVqxjoBXK9qaMY6AenVK1Y+B5WGwjAMw9SPg01DYRiGYerEQS9QiOhWItpGRIu1Y28moqeIaBER/YGIRsjjeSK6Qx5fpr7BIs89SkQriOgl+S/xNzerrFMLEd0mj79MRGdqaU6Sx1cR0Y1U41d9UqxXmm01jYgWyOexhIg+J4+PIaJ5RLRS/j9aS3OlbJMVRHSedjyV9kq5Tg1rKyIaK6/vJqKbfHml1rdSrlcq7ZWgTu8goudlmzxPRGc1SVvZ6pVa33KJEwp2IP8D8HYAJwJYrB17DsAZ8vcnAFwtf38YwF3ydweA1wHMkH8/CmB2A+p0OYDb5O8JAJ4HkJF/PwvgNAAE4EEAFzRJvdJsq0kATpS/hwN4FcDRAP4HwBXy+BUArpO/jwbwMoBWADMBrAaQTbO9Uq5TI9uqE8DpAD4F4CZfXqn1rZTrlUp7JajTCQAmy9/HAtjYJG1lq1dqfcvNM83Mhuo/ADPgHST3ouJfmgZgqfz9ITihdDkAY+XDHFOPh1NFnb4P4CPadfMBzJEdb7l2/EMAftToetWjrXz1uw/AOwCsADBJHpsEYIX8fSWAK7XrH5Yve13aq5Y6NbqttOs+Bm3grmdb1VKverZX3DrJ4wRgJ5wJQlO0lb9e9Wqrg97kFcJiAO+Rvz8AZ6AEgHsB9ADYDGf16fVCiC4t3W1SdfyPWtTaKuv0MoCLiChHRDMBnCTPTQGwQUu/QR5Lm2rrpUi9rYhoBpwZ2TMAJgohNgOA/F+p81MArNeSqXapS3vVWCdFo9oqjLr1rRrrpUi1vRLU6R8AvCiE6EdztZVeL0WqbcUCxcwnAFxORM/DUSsH5PE5AEoAJsMxTXyRiA6V5/5JCHEcgLfJfx8dpDrdCqeTLgTwXQB/A1CEMxvxU4+QvmrrBdShrYhoGIDfAPi8EGKv7VLDMWE53sg6AY1tq9AsDMdq7lsp1AtIub2qrRMRHQPgOgCfVIcMlw16WxnqBdShb7FAMSCEWC6EOFcIcRKAX8GxaQOOD+UhIURBCLENwJMAZss0G+X/+wD8Eo7wqXudhBBFIcQXhBDHCyEuAjAKwEo4g/lULYupADalWaeE9Uq9rYgoD+fl+oUQ4rfy8FYimiTPTwKwTR7fAK+mpNol1fZKqU6NbqswUu9bKdUr1faqtk5ENBXA7wBcIoRQY0bD2yqkXnUZs1igGFDRDkSUAfBVAD+Up9YBOIscOgGcCmC5NOuMk2nyAN4FxxRU9zoRUYesC4joHQCKQoilUu3dR0SnSlX2Ejj21lSptl5pt5W8t58CWCaEuEE7dT+AufL3XFTu/X4AFxNRqzTFzQLwbJrtlVadmqCtjKTdt9KqV5rtVW2diGgUgAfg+MKeVBc3uq3C6lW3MStNh8xQ/AdnVr0ZQAHObOJSAJ+D43B/FcC1qDidhwH4NYAlAJYC+JI83gkniukVee5/IaN0BqFOM+A45JYB+AuAQ7R8ZstOshrATSpNI+tVh7Y6HY4J4RUAL8l/74QTNDEfjlY0HzJ4Qqb5imyTFdAibtJqr7Tq1CRt9TqALgDd8pkfnXbfSqteabZXtXWCM5nq0a59CcCERrdVWL3S7lvqH6+UZxiGYVKBTV4MwzBMKrBAYRiGYVKBBQrDMAyTCixQGIZhmFRggcIwDMOkAgsUhmkSiOhTRHRJFdfPIG3nZ4ZpNLlGV4BhGGehmRDih9FXMkzzwgKFYVJCbtb3EJzN+k6As9jzEgBHAbgBzsLYHQA+JoTYTESPwtnj7K0A7iei4QC6hRDXE9HxcHYd6ICzIO4TQohdRHQSnH3S9gP46+DdHcNEwyYvhkmXIwDcIoR4E5yt/S8H8D0A7xfOfme3ArhGu36UEOIMIcS3ffncCeDfZT6LAFwlj98G4LNCiNPqeRMMkwTWUBgmXdaLyp5JPwfwZTgfNpondwfPwtm+RnG3PwMiGglH0DwmD90B4NeG4z8DcEH6t8AwyWCBwjDp4t/LaB+AJRaNoqeKvMmQP8M0DWzyYph0mU5ESnh8CMDTAMarY0SUl9+mCEUIsQfALiJ6mzz0UQCPCSF2A9hDRKfL4/+UfvUZJjmsoTBMuiwDMJeIfgRn59fvwfmk743SZJWD88GxJRH5zAXwQyLqALAGwMfl8Y8DuJWI9st8GaZp4N2GGeb/t2vHNADAIAAEDVV+/dGlEj5huVPA9oEQ+V9ed2bO8iiwwskLgIQNBYCEDQWAhKAAkBAUABKCAkBCUABICAoAiQf3vmkpILG9KgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcXHWZ7/9+auu9O70l6aQTskIggQQSQxBxUGSdUdCBK+oIMzqDo3iv3pnRkbl3fowL98odRkdUdBhAEVFAREEUGASRPUmzhSyEdBaSTjq9pPel9u/vj3NOdXV3dXd1d1V3nern/XrVqyrfOt/T55xU1ec8y/d5xBiDoiiKoqSDZ7YPQFEURXEPKhqKoihK2qhoKIqiKGmjoqEoiqKkjYqGoiiKkjYqGoqiKEraqGgoiqIoaaOioSiKoqSNioaiKIqSNr7ZPoBMU1NTY5YtWzbbh6EoiuIqXnnllXZjTO1E2+WdaCxbtoyGhobZPgxFURRXISLvpLOduqcURVGUtFHRUBRFUdJGRUNRFEVJGxUNRVEUJW1UNBRFUZS0mVA0RKRQRLaJyBsisktEvmqP/4uIHBWR1+3HZUlzbhCRRhHZKyIXJ41vFJE37fduFRGxxwtE5H57fKuILEuac62I7LMf12by5BVFUZTJkU7KbQh4vzGmT0T8wPMi8pj93reNMbckbywipwFXA2uBRcDvReRkY0wM+AFwHfAy8DvgEuAx4NNApzFmlYhcDdwMfFREqoAbgU2AAV4RkUeMMZ3TO21FURRlKkxoaRiLPvuffvsxXo/Yy4H7jDEhY8xBoBHYLCJ1QLkx5iVj9Zj9CXBF0py77dcPAhfYVsjFwJPGmA5bKJ7EEhpFURTXYIzhge1HCEZis30o0yatmIaIeEXkdaAV60d8q/3W50Vkh4jcJSKV9thi4EjS9CZ7bLH9euT4sDnGmCjQDVSPs6+Rx3ediDSISENbW1s6p6QoijJj7Gnu5cu/3MHv3mye7UOZNmmJhjEmZozZANRjWQ3rsFxNK4ENQDPwb/bmkmoX44xPdU7y8d1ujNlkjNlUWzvhKnhFUZQZZTASBWBvS+8sH8n0mVT2lDGmC3gGuMQY02KLSRz4T2CzvVkTsCRpWj1wzB6vTzE+bI6I+IAKoGOcfSmKoriGUDQOwL6Wvgm2zH3SyZ6qFZF59usi4APAW3aMwuHDwE779SPA1XZG1HJgNbDNGNMM9IrIFjtecQ3wcNIcJzPqSuBpO+7xBHCRiFTa7q+L7DFFURTXELZFY+9x91sa6WRP1QF3i4gXS2QeMMY8KiL3iMgGLHfRIeAzAMaYXSLyALAbiALX25lTAJ8FfgwUYWVNOVlYdwL3iEgjloVxtb2vDhH5OrDd3u5rxpiOaZyvoijKjOOIxtGuQfpDUUoK3FsrdsIjN8bsAM5MMf7JcebcBNyUYrwBWJdiPAhcNca+7gLumug4FUVRcpVwLJ54va+1jw1L5s3i0UwPXRGuKIqSZRxLA+Btl7uoVDQURVGyzDDRcHkGlYqGoihKlnHcU3UVha5Pu1XRUBRFyTKOpXHygjKaOgdn+Wimh4qGoihKlnHWaVSVBBgIR2f5aKaHioaiKEqWcSyN8kIfA2F3159S0VAURcky4Vgcv1coLvC5vmihioaiKEqWCUfjBLweiv1eIjFDJGndhttQ0VAURcky4WicgM9DUcAL4GoXlYqGoihKlnFEozhgFeEYVNFQFEVRxiIcc0TDsTTcm0GloqEoipJlnJiGuqcURVGUCQlF4wR8Xor8lmi4OYNKRUNRFCXLjHZPqWgoiqIoYxCOxihQ95SiKIqSDqOypyIaCFcURVHGQN1TiqIoStqMzJ7SdRqKoijKmCRWhPvngKUhIoUisk1E3hCRXSLyVXu8SkSeFJF99nNl0pwbRKRRRPaKyMVJ4xtF5E37vVtFROzxAhG53x7fKiLLkuZca/+NfSJybSZPXlEUZSZwRMPv9eD3CoN5nnIbAt5vjFkPbAAuEZEtwFeAp4wxq4Gn7H8jIqcBVwNrgUuA20TEa+/rB8B1wGr7cYk9/mmg0xizCvg2cLO9ryrgRuBsYDNwY7I4KYqiuAEnpgFQ5Pfmt3vKWPTZ//TbDwNcDtxtj98NXGG/vhy4zxgTMsYcBBqBzSJSB5QbY14yxhjgJyPmOPt6ELjAtkIuBp40xnQYYzqBJxkSGkVRFFcQsmMaAMUBX/6XERERr4i8DrRi/YhvBRYYY5oB7Of59uaLgSNJ05vsscX265Hjw+YYY6JAN1A9zr4URVFcQzgap8DniIY3v2MaAMaYmDFmA1CPZTWsG2dzSbWLccanOmfoD4pcJyINItLQ1tY2zqEpiqLMLMaY4e6pQJ67p5IxxnQBz2C5iFpslxP2c6u9WROwJGlaPXDMHq9PMT5sjoj4gAqgY5x9jTyu240xm4wxm2praydzSoqiKFklGjcYQ8I9VeTPc0tDRGpFZJ79ugj4APAW8AjgZDNdCzxsv34EuNrOiFqOFfDeZruwekVkix2vuGbEHGdfVwJP23GPJ4CLRKTSDoBfZI8piqK4Aqc/+DBLw8XZU740tqkD7rYzoDzAA8aYR0XkJeABEfk0cBi4CsAYs0tEHgB2A1HgemOMc4U+C/wYKAIesx8AdwL3iEgjloVxtb2vDhH5OrDd3u5rxpiO6ZywoijKTDJSNIoDXlp7QrN5SNNiQtEwxuwAzkwxfgK4YIw5NwE3pRhvAEbFQ4wxQWzRSfHeXcBdEx2noihKLhKOjRQNHwNae0pRFEVJRcLS8M7BQLiiKIoyOUIj3VP5HghXFEVRpo5jaRSMCIRbuT7uQ0VDURQli4yMaRQFvBgzZIG4DRUNRVGULDIU07BK8BW7vNKtioaiKEoWGZ1yayWturX+lIqGoihKFgnHLIsi2T0F7m3EpKKhKIqSRUam3Lq95auKhqIoShYZmXLr9u59KhqKoihZJFXKLUDQpfWnVDQURVGySKoyIqCWhqIoipKCsWMamj2lKIqijCBVaXTAteXRVTQURVGySKrS6KDuKUVRFCUF4VgcEfB5rO7VhT4VDUVRFGUMwtE4Aa8Hq2EpeDxCod/DoMY0FEVRlJGEovGEa8qhOODTmIaiKIoymnAsnlij4VDk4p4aKhqKoihZIhY3CfdUMsUu7t43YY9wRVEUZfLsa+nlQ997gZqyQAr3VB5bGiKyRET+ICJ7RGSXiHzBHv8XETkqIq/bj8uS5twgIo0isldELk4a3ygib9rv3Sp2ZEhECkTkfnt8q4gsS5pzrYjssx/XZvLkFUVRssWe470MRmIc6RgcJRqFfvdaGum4p6LA3xtjTgW2ANeLyGn2e982xmywH78DsN+7GlgLXALcJiJee/sfANcBq+3HJfb4p4FOY8wq4NvAzfa+qoAbgbOBzcCNIlI5nRNWFEWZCVp7gonXKS2NSJ5mTxljmo0xr9qve4E9wOJxplwO3GeMCRljDgKNwGYRqQPKjTEvGas57k+AK5Lm3G2/fhC4wLZCLgaeNMZ0GGM6gScZEhpFUZScpaUnSIHPw4fPXMzauoph7xUHfK61NCYV07DdRmcCW4Fzgc+LyDVAA5Y10oklKC8nTWuyxyL265Hj2M9HAIwxURHpBqqTx1PMURRFyVmO94RYWFHItz+6YdR7RS4OhKedPSUipcAvgS8aY3qwXE0rgQ1AM/BvzqYppptxxqc6J/nYrhORBhFpaGtrG/c8lPzm8z97lfu3H57tw1AUWnqCLCgrTPme5Z7KY9EQET+WYNxrjHkIwBjTYoyJGWPiwH9ixRzAsgaWJE2vB47Z4/UpxofNEREfUAF0jLOvYRhjbjfGbDLGbKqtrU3nlJQ8pC8U5dEdzTQc6pztQ1EUSzQqUotGUZ5nTwlwJ7DHGPOtpPG6pM0+DOy0Xz8CXG1nRC3HCnhvM8Y0A70issXe5zXAw0lznMyoK4Gn7bjHE8BFIlJpB8AvsscUZRRvNfcAQ/0LFGW2MMbYlkZByveL/F7C0Tix+CjHSc6TTkzjXOCTwJsi8ro99k/Ax0RkA5a76BDwGQBjzC4ReQDYjZV5db0xxpHUzwI/BoqAx+wHWKJ0j4g0YlkYV9v76hCRrwPb7e2+ZozpmNqpKvnObls0QhEVDWV26QlGCUbiLBzD0kjuqVFW6J/JQ5s2E4qGMeZ5UscWfjfOnJuAm1KMNwDrUowHgavG2NddwF0THaei7D6mloaSG7TY6bbzy8dyT1k/vYORmOtEQ8uIKHmDY2k4/QsUZbZwRGPhGKJR7LcbMbkwrqGioeQF0Vict473AhCKuu+LqOQXx7st0VhQnjqm4eZGTCoaSl5woL0/YWGopaHMNq29IQAWjOmeUtFQlFnFiWcsqy4mpKKhzDLHu4NUFPkp9HtTvl+k7ilFmV1aey13wPKaErU0lFmnpSc4ZjwDrDIiYGVPuQ0VDSUvGAxbQlFR5FdLQ5l1WnpDzB8jngFD7ik3du9T0VDygmA0RsDroSjg1ZRbZdZp7w1RWzq2aDiBcHVPKcosMRiOUeD3EPB6CLnw7k3JH4wxtPeFqBljNTho9pSizDqhaIwiv5cCv1oayuzSF4oSisapLgmMuY26pxRllhkMxygKeAl4PYSjcazSZYoy87T3hQGoGcc9FfB68IgGwhVl1hiMxCj0eQn4PMQNRF1YCE7JD070WWs0xnNPiQjFAZ+6pxRltghG4hQGvBTYbTU17VaZLdod0Sgd2z0F7m3EpKKh5AWWpeFJ9GJW0VBmizbbPTVe9hRYwXCNaSjKLBGM2DENWzR0rUZ2CEfj/Oq1JoIu/LGbKdrtEiKV4wTCwVoV7kb31KR6hCtKrhKM2NlTPisrRS2NzGOM4SsP7eChV49S6PNy6el1E0+ag7T3hags9uP3jn9PXqzuKUWZPQYjMQr9Q5ZGOOa+L2Ouc8dzB3no1aMANNtVXJXRtPeFxs2ccrBavmr2lKLMCsFI3BIN++4uqN37Ms7v97SwbnE5Aa+Hll4VjbFo7wunJxp+zZ5SlFkjGI5R6PdQ4HcsDRWNTNMXirKgrJDasgJae0KzfTg5y4m+ENUTZE6BBsIVZVYZdGIaXs2eyhZ9oSilhT4WlBckOtMpo0nX0igOuDMQrqKhuJ5ILE40bijya/ZUNukPRSkt8LGgvFBFYwyCkRh9oSi14yzscyj0e12ZhTahaIjIEhH5g4jsEZFdIvIFe7xKRJ4UkX32c2XSnBtEpFFE9orIxUnjG0XkTfu9W0VE7PECEbnfHt8qIsuS5lxr/419InJtJk9eyQ+cL16hZk9lld7gkGioeyo1bb3pLewD6/MacmHsLR1LIwr8vTHmVGALcL2InAZ8BXjKGLMaeMr+N/Z7VwNrgUuA20TEaV/1A+A6YLX9uMQe/zTQaYxZBXwbuNneVxVwI3A2sBm4MVmcFAWGir4VJq3TUNHILJFYnFA0TmmBj/nlBfSGovSH3Jf5k00isTiNbX3A+HWnHAr9HsKxODGXlbyZUDSMMc3GmFft173AHmAxcDlwt73Z3cAV9uvLgfuMMSFjzEGgEdgsInVAuTHmJWNVk/vJiDnOvh4ELrCtkIuBJ40xHcaYTuBJhoRGUQASd2vJK8JDUfeZ/bmMIxClhT4WlFkd6Zw+2IrFtXdt469+tB0Yuzd4Mk4rWLe5qCYV07DdRmcCW4EFxphmsIQFmG9vthg4kjStyR5bbL8eOT5sjjEmCnQD1ePsS1ESOJZGkdaeyhq9QUs0Sgp8LKywfhA1rjGcd04McNbSeXzv42eydlH5hNsX5btoiEgp8Evgi8aYnvE2TTFmxhmf6pzkY7tORBpEpKGtrW2cQ1PyEedLVzRscZ+KRibpsy2NsgIrewpUNEYSjMQ4bVE5f3bGIuxw7bgU2unhQZfd4KQlGiLixxKMe40xD9nDLbbLCfu51R5vApYkTa8Hjtnj9SnGh80RER9QAXSMs69hGGNuN8ZsMsZsqq2tTeeUlDzCKcWQvCLcjQHGXCbZPTXfdr1oMHw4A+FYwnpIh7x1T9mxhTuBPcaYbyW99QjgZDNdCzycNH61nRG1HCvgvc12YfWKyBZ7n9eMmOPs60rgaTvu8QRwkYhU2gHwi+wxRUkwOCx7Si2NbNAbGnJPlRX4KPJ71dJIwhhjrRUKpF/OzxENt9WfSucMzwU+CbwpIq/bY/8EfBN4QEQ+DRwGrgIwxuwSkQeA3ViZV9cbY5yr8lngx0AR8Jj9AEuU7hGRRiwL42p7Xx0i8nVgu73d14wxHVM8VyVPcUqGFNo9wkHXaWSavuCQe0pErAV+GghP4HwGp2JpuC1pY0LRMMY8T+rYAsAFY8y5CbgpxXgDsC7FeBBbdFK8dxdw10THqcxdkmMaIpJo+apkjmT3FMB8XeA3DMfaLQ5MQjR87qyTpivCFdeTnD0FUODzuO7uLdfpS3JPgdVgyOlQpwz1+p6MpeF8Xt3mnlLRmAPE44Yv3vca2w7mp2cvsSLcXg0e8KmlkWkSKbe2z760wJdwWSlJn8HJWBpOINxlNzgqGnOAjoEwv379GE/taZntQ8kKIy0NFY3M0x+KUhLw4vVYnuqSAp+uCE9iMGx93oonE9PwOdlT7vqsqmjMAZzUyLY8DVw6Xzonc8pyT7nri5jr9IWiCdcUQGmBl/5wjLjLSmBki4R7ajKWRsD6vLqtPLqKxhygzfY952vZh2DE6qXhLKhSSyPz9Npl0R0cARlw2Q9ethhp7aZDInvKZddQRWMO0GpnueSrpTE4YlFVwOfRdRoZpj8UpaxgtGioi8rCCWZPKuXWl6eL+xT3M2Rp5GeKZNDuD+5Q4PNq9lSG6QsOd0+V2VZHn4oGMLWUW79X8HpE3VNK7uHENDoHInnptnG69jnoOo3M02c3YHJwsqjU0rAYmIKlISIU+jwaCFdyj2S3VD7m1o+0NDSmkXn6xohpqKVhEZxCTAPc2b1PRWMOkCwa+RgMD0biiYqhYImGZk9llpGWRmkipuGuH7xsMRVLAyzRUPeUknO09gZZVl0M5Gcw3CoUlxzTUEsjkxhj6AuOcE8VWNdb3VMWg5EYAa8Hn3dyP6mFfo/rKjKraMwBWntDrF1UYb/Ov2B4MBJLZKKAWhqZJhSNE42bYe6pUnVPDWMwHBtm7aaLuqeUnKM/FGUgHOPUujIgfy2NwhGWhopG5nCEoVRTbsdkMBybdDwDLHeWlhFRcgonhlFXUURVSSA/Yxoj1mkU+LyEXfZFzGWcGlPJolEc8CKiouEwGIlRPIleGg6Ffq8WLFRyC8eymF9ewPyygry0NILR0YFwXdyXOVJZGiJCScBHnwbCASsQXjjJIDhYMQ1NuVVyCieGMb+skNqygry0NAbDI2IaXss9ZTV/VKZLKtEAKxiuloZFMBKb1MI+h0J1Tym5hrOwr7asgNqyAtrzTDQisTiDkRhlhf7EWIHPgzEQ1WJ6GaFrIAzAvOLAsPGSAp8Gwm0GwtFJp9uCLRrqnlJyiba+ED6PMK/Iz/yyQtp6Q3l1B+70eagoGroLDjh9wjUYnhE6+iMAVJUMF41SFY0Eg5H4lALhhX4PQZd9TlU08pzuwQjziv14PEJFkZ+wfWeeL3QPWj9o5UVDloYjGppBlRk6E5aGf9h4SUB7ajgMTtHSKNKUWyXX6A1GE66bUntBVj7dHfY4ojHMPWWdp1oamaGjP0xJwDsq0KvuqSEGpxHTGIzEXGX9TygaInKXiLSKyM6ksX8RkaMi8rr9uCzpvRtEpFFE9orIxUnjG0XkTfu9W8VufiAiBSJyvz2+VUSWJc25VkT22Y9rM3XSc4m+YCQRwCzJw9IPPUFLNCqS7oKL7OY2TmMcZXp09oepHOGaAqcRk15jmE72lBdjcFW2XzqWxo+BS1KMf9sYs8F+/A5ARE4DrgbW2nNuExHnSv4AuA5YbT+cfX4a6DTGrAK+Ddxs76sKuBE4G9gM3CgilZM+wzmOZWmMFI38+aL3DFrnkmxpOAHbzoHIrBxTvtExEB4VzwAoLfTl1Q3IdJhO9pQ1P49EwxjzLNCR5v4uB+4zxoSMMQeBRmCziNQB5caYl4xlh/0EuCJpzt326weBC2wr5GLgSWNMhzGmE3iS1OKljENvUs2g0jwUjaGYxlAgvMoRjf7wrBxTvtHZH6ayeLRoqHvKIhKLE4mZKWZPWT/BboprTCem8XkR2WG7rxwLYDFwJGmbJntssf165PiwOcaYKNANVI+zr1GIyHUi0iAiDW1tbdM4pfyjLzQU00hYGnnkUki4p5IC4c5dcceAikY6GGM42jXIAw1HuPWpfaP6fo9paQR8hKNxIi5yrWSDqbR6dXBj977Jr3u3+AHwdcDYz/8GfAqQFNuaccaZ4pzhg8bcDtwOsGnTJvdElGaAnmAk4Z4aCoS75wM6ET2DEXweGXaXlxANtTQm5IXGdj5zzyvDLIbLTl/IqvlliX939kfGtDTAslxHruGYSzjrLKZUeyqQh+6pVBhjWowxMWNMHPhPrJgDWNbAkqRN64Fj9nh9ivFhc0TEB1RgucPG2peSJvG4sS2N/I1pdA9GKC/yY+dVAFZdpIDPo+6pNHj5wAkGwlG+fsU6/uWDpwFwom/ouoWiMfpCUSpHpNuCVrp1mGovDRhyT7kpDX5KomHHKBw+DDiZVY8AV9sZUcuxAt7bjDHNQK+IbLHjFdcADyfNcTKjrgSetuMeTwAXiUil7f66yB5T0mQgEsMY8lo0eoLRYa4psOoiVRUH1NJIg2NdQRaUF/LJLSfxruVVwNC6DIAuO5kgVfZUPmbjTYWp9Ad3yEv3lIj8HDgfqBGRJqyMpvNFZAOWu+gQ8BkAY8wuEXkA2A1EgeuNMc7V+CxWJlYR8Jj9ALgTuEdEGrEsjKvtfXWIyNeB7fZ2XzPGpBuQV4Be29+fiGkE8u/OsGcwQnnh6I9xVUlg2I+fkprm7kHqKgoBqC4pAOBEktg6wpsqplGSh+t+poJjaUwp5TaQh6JhjPlYiuE7x9n+JuCmFOMNwLoU40HgqjH2dRdw10THqKRmZElrr0co9HvyytJw3FMjqSoJDPvxU1LT3B3ktEXlAFSWWNcx2a3nvE4V08jHbLypEExYGlMoje6bIzENxR302KJRNqLjWl4FwoOpRaOyJKAxjQkwxnCsa5BFtqVR4PNSWuBL1JqCoQy01JaGigZkJqbhJktDRSOPGXJPDe+4lk9f8p7B6LCFfQ5VxX6NaUxAR3+YUDROXUVRYqyyxE9H/1Al5ISlUTL6GjufKyftea4ynZTbIhe6p1Q08hjH15xcNjyfiswZY6yYRlGqmEYBPcHonF9DMB7N3VavlUXzChNjVSUFdCStpHesjlTuKcf6mOsr750FpmUpYmsT4VgneZ89pbiD3jHdU/khGqFonHAsntrSsO+Mu+b4D9p4HOsaBBhmaVgWWpKlMRCmrNCH3zv6p6LI76XA55nzFl1bbwgRqE7hwpsIJw7iphs5FY08xnFPJXdcK8mjInNOhduRKbcwlCI613/QxsOxNOqSLA0rFpRsaaReDQ5WanN1iaY2t/WGqC4J4EshrBMR8HkIeD2uijOqaOQxfcEoIkOptuDENNzzAR0Px5eeMnuqWEVjIo51DxLweqixU23Buls+McLSSOWactCEA0s0akoLJt5wDKzCj+65kVPRyGN67GKFHs/QaunSPAqEJ4oVplqnUer42+f2D9p4NHcFWVhROOzzUVkSIBiJMxi2ejzsa+lj8byiMfdRVRKY8zW+2vpC1JZNXTRKCryuchmraOQxfaEoZQXDf1DzKXvKKYueyj2llsbEJC/sc6hOKva461gPx3uCnH9K7Zj7qFL3FO29IeaXFU684RiUBNwVZ1TRyGN6g5FhmVNgi0Y4NqqSqRsZzz01T0VjQo51BVk0wopwXFEdfWH+a3cLHoH3r5k/5j4q53i5FmMMbb3TszTcZv2raOQxyQ2YHJxKtwMuSvEbi+4UrV4dAj4PZQW+Of2DNh7BSIzjPUGWVA4XjerSIUvj97tb2HhSJdXj+OurSgL0zuHU5u7BCOFYfJruKRUNJUfoC0UpHSEabkzxG4vugdENmJKpKtX6U2Oxu7mHWNywdnHFsHHH0th5tJvdzT184NQF4+4nsVZjjopzW6+VNDAtS6PQR6+Lvo8qGnmMZWkMvwvPp3LWbX0hygt9FPhSr8QtL/Qn0nKV4bzZ1A3A6SNEwxGBH71wCBG4ZN3Ccfcz1xteJURjOtlTLltwq6KRx/QGI8PWaEB+1Qs63m1l/4xFeZEvUX9LGc6bR7upKQ2MCoSXF/rxeoT2vhB/enodJ1WXjLufyjkeO2rrm76l4bY0eBWNPKY3GB2VjppP5axbeqxeEGOhlsbY7DzazbrFFcOaVwF4PEJlsR8R+B8XrJ5wP4kYyFwVjUy4p+wFt1Ybodxnqu1elRwnHI0TisZTBMLzp3HO8Z4gJy8oG/P9skJfopSKMsRgOMbbLb1cdFrqeMWpdeUsLC8c99o6OJbGXI5pBHyelGuF0qW00IcxVrXckoLc/0nO/SNUpkSqEiKQP+6paCxOW29ofPdUoX/OV2BNxe7mHuIG1o2IZzj85FObSfemd57dBja5nPpcoq03RG1pwSiLbTKUJMUZ3SAa6p7KU5ysoZFtOvMlEN7eFyZuGNc9VVboZyAcIzpH00HHYudROwhen1o0RGTYKvHx8Hs9VBQNL3I4l5juanBw33dSRSNPce78qkuGf6DzxdI43mMV21s4XkzDTsVVF9VwDncMUOT3jnvtJoNVSmRuWhqtPSHmT1M0SlyWBq+ikac4d34jm+cU2/X73fIBHYvjdoXWidxToE2CRtLaG2J++fRcKslUFvvnbEyjpTfI/PJpioZaGkouMJal4fEIJQEv/WF3B8JbbEtjvC+skwSglsZwWnuC0747TqaqpGBO9mPvDUboGohQX1k8rf04n9M+l3xOJxQNEblLRFpFZGfSWJWIPCki++znyqT3bhCRRhHZKyIXJ41vFJE37fduFfs2R0QKROR+e3yriCxLmnOt/Tf2ici1mTrpucBYlga4r2xBKlp6gvg8Mqys90icmlSadjuctmkW2BtJVcnctDSO2k17ehRsAAAgAElEQVSs6ivHrgKcDgmXsUv63KRjafwYuGTE2FeAp4wxq4Gn7H8jIqcBVwNr7Tm3iYizXPcHwHXAavvh7PPTQKcxZhXwbeBme19VwI3A2cBm4MZkcVLGp6PfWtiXarV0SR507ztu3y2PF7Ad6mHt7nPNNK3TLLA3kkq7PLpb1hlkiqYORzSmZ2kMrZ1yh/U/oWgYY54FOkYMXw7cbb++G7giafw+Y0zIGHMQaAQ2i0gdUG6MeclYn6yfjJjj7OtB4ALbCrkYeNIY02GM6QSeZLR4KWPQ0R8as+NaSYE3LyyNBePEM0BjGqkYCEfpC0Wn7YdPprokQDgad73Lc7Ic6RwApm9plLosOWWqMY0FxphmAPvZqZ28GDiStF2TPbbYfj1yfNgcY0wU6Aaqx9nXKETkOhFpEJGGtra2KZ5SftExEBmVbutQEnBX2YJUHO8OTpj9o+6p0bT2WG7LBRl0T83VBX5NnYMU+b1T6g2eTJHfi0fyKKYxSVL5Csw441OdM3zQmNuNMZuMMZtqa8duGDOX6OgPjflhLs0D91RLT2jcNRowdAc3MhAejxvueO4Am77xJK8e7szaMeYirXbZi0xaGlVztB97U+cA9ZVF085CExFXuYynKhottssJ+7nVHm8CliRtVw8cs8frU4wPmyMiPqACyx021r6UNOjoG7u3s9WIyR0f0FT0hywXy0Si4fUIZQW+Ue6p//vYHr7x2z2094X52dbD2TzUnKO11846y2ggfK6KxuC0XVMObmrENFXReARwspmuBR5OGr/azohajhXw3ma7sHpFZIsdr7hmxBxnX1cCT9txjyeAi0Sk0g6AX2SPKWnQMRBOFJMbiduzp9rtyqLppI2WFfoSbWEdntvXzntW1XDlxnoe33mcYB40pEqXlp70r126zFXRONIxMO0guIObbuTSSbn9OfAScIqINInIp4FvAheKyD7gQvvfGGN2AQ8Au4HHgeuNMc438rPAHVjB8f3AY/b4nUC1iDQCf4ediWWM6QC+Dmy3H1+zx5QJGAhHCUbiY1oapS5rZD8Sp7JoTRo/fOVF/kQdLrDacx7pGGD1glKu2LCYvlCUp99qHWcP+UVrb5CA15OoGZUJnNiZ2xpe3f3iIS7//gtce9c2jnQMTGpu92CEnmA0Y5ZGSYF7imtOWB3LGPOxMd66YIztbwJuSjHeAKxLMR4ErhpjX3cBd010jMpwnDu+sWIaJQU+gpE40Vgcn9d96zsn0/hmZNHCzoEI/eEYSyqLOWdlNbVlBfz6taNcdnpd1o43l2jrsdJtM7UaHKCswIffK65b4PfIG8d450Q/u4JRfvTCIf6/D56W9tyjnVa67ZKqzFgapS7KaHTfL4YyIY5ojJVym0jxc2mKZPskGt+MLI9+2L6jXFJVjNcjfODU+Ww92DFn1hhkeo0GWIHcyuKA67KnOgfCnLuyhovXLuSh15om5aZsylC6rUOpixoxqWjkIY5ojJly67K88JG09YbwyNiimEx50XBL40hCNKwv+9pFFXQPRhKre/Od1t7MlhBxqCoJuC6m0TUQYV6xn49tXkrXQIQndh1Pe+6B9n4AlmQwpuEWl7GKRh6SjnsKXCwafSGqSgrwplG+e2Qg3FmQ5XzZ1y4qB2DXsZ4sHGnu4RQrzDRVJQFXxTTicUPXgJVh+O6V1SytKubel9PPpGs41MnympIxb8wmS2k+BcIV9zGhpRFwd8vXtt5w2i6W8kIrEO64n450DFJVEkgI55qF5XhkbohGXyhK10CEuorMuFSSqSwJuCqm0ROMEDfWcXs8wjXnnMS2Qx288s7E63biccP2Qx28a1nmqhrNK/LTPRgh4oLeLyoaeUhHfxifR8ZsQen8YA64NKYxmcY35UU+4mYoftPUOcCSJD90UcDLytpSdh/rzsqx5hJvHOkCxu7YNx2qXBbT6LT7f1TaWWQfP3splcV+bvtD44Rz97X20T0Y4V3LqjJ2PAsrijBmKMkjl1HRyEM6B8JUlgTGzJBxW6ewkbT3hqgZYw3KSMrs+lNO2u2RjgHqR2S8nLaofE5YGq+804kIbFgyL+P7rioJ0DUYIRZ3R0JBorOlnZZeHPDxqXOX89RbrexpHv+zsO2Qlfl/9vLqjB1P3TxrsWWz3Scml1HRyEM6+yOJO6hUuDmmYYyZlKVRYdefOtEXJhY3HO0aHBW8XLuonObuoOsCuZPl1cOdrJ5fmrgmmaSqJIAx0OWSuIZznMnrVf5iy0mIwJO7W8adu+1gBwvKCxLJFJmgzi6+eVxFQ5kNOgfCzBtjYR8MlWJ2o2j0BKOEo/G01mgAnGH3wX5xfzstPUEiMTPqy752kbXNrmPdBCMxrvrhi/zrE28RirrTfZeKeNzw2uEuzlqane4Cblvg5zQpS87AqywJcPL8sgnjGg2HOnjXsqqMrnWpK7c+k83duZ/Fp6KRh3QPjm9pDLmn3PejmFjYl6alUV9ZzGl15fx+95DbYWnVaEsDrGD47uYeth/q5Pt/2M/l33uB3XnitjrQ3k/3YCRrolFV7JQScUdF4SFLY/jN1cZllbx6uJP4GG62vlCU5u4gp9aVZ/R4yot8FPm9amkos0PnQJh5RWNbGk4pZjdaGpNZDe7wgdMW0PBOB9968m0WlheOCmDOKw6weF6RJRq2SHz98rWc6A9z+fef5w85XmbknRP97GvpHXcbp5rvWSdlPp4ByfWncj+QC9Z3xJsiWWTj0kp6g1H2tfalnHf4hJWyfVJ1ZtZnOIgIdRWFNPeoaCgzjDGGzoEI81K0eXUQEUoC7llMlMxkVoM7XHjqAuLGsiQ+976VFPpHdzO0guHd7GnuobzQx19sOYn/+uJ7WVBeyI9ePJSpw88K1//sVT70vRd4s2nsDLDdx3ooCXhZUVOalWNwRKO9zx3uqc4Byxof6WLaeJJliY3lonIqCpxUVZLxY1pYUaiWhjLzBCNxwtGxixU6uLXS7WTdUwDrFpdTV1HIwvJC/tumJSm3WbuonIPt/bzyTien1pVbpTFKAnxo/SJeaGzP2SD5sa5Bdh7tIRiN8em7t4+ZstnUOcCSquJx2+NOh/llBZQX+tjlktTlrjHifidVF1NTGqDhndS1UZ2KAiNdnJlARUPJKMe6BvnMPQ080HBk3Bo5TiBy3gQZMiUFXtesQE2mrS+E3yuTygASEb738TO5/ZqNKa0MsILhxsBbx3uH+av/9Iw6YnEzqRITM8lTe6xMn3//6AZae0P8dkfqljNNnYMsnpf5RX0OHo/wrmVVbD3ojkLUHf3hlHE/EeGspZW8drgr5bzDHQOUF/qoyGCVYIe6ikJaeoI5n7asouESntzdwhO7Wvjygzv43L2vjrld5xgBvpFY3fvcFwg/3h1kQXnhpDNXNp5UxRn1Y/vznWA4WK6qxOu6cpbXlPDbHc2TP9gZ4Pd7WlleU8KH1i9i8bwiXj6Q+kf7WNcgizNUXG8s3rW8igNt/a5YoGbVnUr9HTl5QRlHOgaIplidfbhjgJOqM++aAmuBXzRuEi7YXEVFwyXsbemlvNDHFy5YzdNvtfL6kdR3Qt32SteJ+iUUB9zpnjqapTvmuorCxJ3naUmWhohwybqFvLi/ncEcW0HfH4ry0v4TXLBmPiLCOSur2XrwxKjMn96g1fshm5YGwOblVoJBw6HctzY6B8KJjK+R1FdaP94tKcTvSMdAVlxTAHXl7ljgp6LhEvYe72XNwnL+5r0rmFfs53tPpy53MFQeIT9jGke7siMaIsLaRRX4PMKq+cODxesWVRA3cNCubJorbDvUQTgW531r5gOwZUU1nQMR9o7IpHIq+Gbb0li3qIIivzfnXVQTJYs43fiaRjRmisUNTZ2DGeuhMZKFiQV+ub1WQ0XDBRhjePt4L6csLKO0wMdfvXs5v9/TwoG20WmBQ+URxrc03Ni9LxY3HO8JsihLd8wf27yUT71n+ai4x8r5ljuiMcX1nk2c9ODT7QWMW1ZYd/ovHzgxbDunYVC2rptDwOfhrJPmsS3HRWMgHBs3WcTpkdHUOfzH+3hPkHAsnjVLw/n/eXRHM++cyK0blGRUNFzAse4gvaEoJy8sA+Cy0xcC8ObR0ZkqzqKliQJ1JQU+1xUsdIKE2frx+9Mz6viny04dNb6sugSPwP4xcvdni93HelhaVUy5XV+rvrKYJVVF/H5PC+HokD/esTTqsywaYNVj2nO8J6eLF050Y1U3rxCR0aKRrTUaDpXFft6/Zj6P7mjmsu88l7MZeyoaLuDt45a7YY0tGkuqihFJ7S7pGohQHPBS4EudJeRQ6qKmLw7HZsjNMpJCv5clVcW5Z2k09wyLvwB85Mx6Xmg8wSX//mxCLI52DhLweqiZxILIqfKe1TUYAy/sb8/635oqXRO4cAt8XhaUFSa68zlkM90WLBfpXX/5Ln59/bn0h2P8+rWjWfk702VaoiEih0TkTRF5XUQa7LEqEXlSRPbZz5VJ298gIo0isldELk4a32jvp1FEbhU7NUZECkTkfnt8q4gsm87xupFgJMZbtmicPN8SjUK/l0UVRRxKIRrWoqWJK8CWFPgIR+OuqN/vkPDN2xVBZ5KVtaU5ZWn0haIcOtE/LNML4IsfWM0d12ziQHs/v3q1CYCmrkEWzSvM2hqNZM5YXEF5oY/n3p4Z0TjWNTjpGmFOdlL1OJWS6yuLRlkau5t7KPR7EsUFs8WGJfM4o76CBxqO5GQb4kxYGu8zxmwwxmyy//0V4CljzGrgKfvfiMhpwNXAWuAS4DYRcW6HfwBcB6y2H5fY458GOo0xq4BvAzdn4HhdwyNvHGPdjU/w05ffoa6icJjLaUVtyRiWRjitNQxO+QTnrssNOKKRjSZCE7FqfikH2vtzJod+7/EejGGUpSEifOC0BayaX5pY1Xy0M/vptg4+r4dzV9Xw3L62rP/gtfWGeN8tz/CjFw5Nat6xLis7abzPUX1lEU1dQ5aGMYan32rl3JU1+LzZd9BctWkJbx3vZefR3Kt9lo2zvxy42359N3BF0vh9xpiQMeYg0AhsFpE6oNwY85KxPmU/GTHH2deDwAWOFZLvGGO4/dn9eDzC0a5BTl5QNuz9ZdWWaIz8YnYNRqgcp4SIg5MBcrgjdwNuIznWNci8Yn+itPtMsrK2hHA0nggqzzZOEHykpeGwcWklrx3pwhiTtYyzsThvdS3HuoPsb8vuZ+vXrx0lFI0nmkuly7GuQbweGbdXen1lMc1dwcRajf1t/RzuGEhkqmWbD61fRMDn4ZE3cs9FNV3RMMB/icgrInKdPbbAGNMMYD87V3kxcCRpbpM9tth+PXJ82BxjTBToBjLX+SSHeaOpm51He/jnPz2VH/7FRm64bM2w95fVlNATjCZSbB0mKouePB/gUPvABFvmDse6gjP645eMk4bb2DZ+YcCZYndzD/OK/WO6Ss46aR5dAxF2N/fQ1hti8bzs+OFTcd7qGgCe29eWtb9hjOGBBuvnxHHfpsuxrkEWlheOazE4azWO2wUEnaKVMyUaFUV+1i4qH3M91mwyXdE41xhzFnApcL2IvHecbVNZCGac8fHmDN+xyHUi0iAiDW1t2fugziT3vPQOJQEvV5y5mEvWLWTNwuF3lCvsH/2D7cP97F0DkQlLiAAsqSzGI3Aox1L7mjoHuPBbf+SGh95k/4jA89HOwaynjY7FylpbNHIkrrGjqZvT7BpZqXBKoP/Tr3YCZLSf9UQsqSpmeU0Jz+3LbFwjHjeJ+MUbTd3sa+1jaVUxh070MzCJkjjHuq0Yz3gk1mrYluVTb7WwZmHZjN60rK+fx86jPTnjEnWYlmgYY47Zz63Ar4DNQIvtcsJ+dupKNwHJ1eLqgWP2eH2K8WFzRMQHVACjksCNMbcbYzYZYzbV1tZO55Rygljc8PjOZv7sjEWJdqUjWZYQjSFLIR43dA2E0wqEB3we6iuLc27B2r1bD7O/rY+HXm3iQ999fli10WMz7GZJZl5xgLqKQnaMU0l2pugJRtjT3MOmcXpUr6wtpbzQxxtHujhnRTXnrJxZA/09q2p4af+JjDayuvGRXZx38x9obO3jm4/tocjv5QsXrMYYa/Fruhzrmnitj7NW40jHAP2hKA2HOjn/lJmxMhzOqK9gMBLLmRsVhymLhoiUiEiZ8xq4CNgJPAJca292LfCw/foR4Go7I2o5VsB7m+3C6hWRLXa84poRc5x9XQk8bXIxnSDD7GvtpT8c4+wVY/8o1FcW4fXIsAyq3lCUuJm4hIjDspqSnLI0wtE4v2g4wvvXLOCZL53P/PJCrr1rG42tfXT2h+kNRSe8Q8wmZy+v4uUDHbOe0fLKoU7iBrYsH/vz4fEIZ9rWxj9euiajXebS4bzVNQxGYrz6TmbcK229Ie7ffoTW3hCX3focLx/o4KYPr0uULknXRRWPG5q7J7ZYF1cWURLw8ubRbl4/0kU0bmZceJ1aaW805ZaLajqWxgLgeRF5A9gG/NYY8zjwTeBCEdkHXGj/G2PMLuABYDfwOHC9Mca5DfkscAdWcHw/8Jg9fidQLSKNwN9hZ2LlO6/bFTY3LBm7wJ7f62Fp1XBLwVkMlI6lAbC8uphD7QOz/iPo8NSeFtr7wnz87CXUVRRx71+fzWDEyld3LI714xQdzDZbVlTT3hca5TabaV4+eAK/d0gUxuL6963iqx9aO+7nKFucs7Iar0d4vjEz7uJ7t75DOBbnlqvWU+Dz8D8uWM1Hzqpn8bwiSgt8vNWcXpZRe1+ISMywaIK0Wb/Xw6ZlVby0/wTbDnbgEThr6cxexxU1JZQW+NiRY6Ix5TQUY8wBYH2K8RPABWPMuQm4KcV4A7AuxXgQuGqqx+hWXj/SRUWRn+U141fTXFlbmmhhCkMrlpfXpleF86TqEvpCUdr7wpPqT5EN9h7v5ZuPv8WiikL+5GTLDbBoXhHr6yt4vrGdYCRGgc/D+ln4AXTYssK603zpQAer5pdNsHX22HqggzPq51EUGH8B5+blVYk78ZmmrNDPWUvn8dy+dr508cTbj0coGuOnL7/D+06p5cqN9Vy+YRF+O4jt8QinLCxjT5qWhpO2nU5sbMuKam5+/C2e2HWcNQvLx3QVZwuPR1i3uDwnXKLJ6IrwHOS1w12sXzJvQpfCu5ZVcqB9qBS1U6hu9fz0urM5ojTbdW4Otvdz+fefpz8U4zsfOxNv0iK0c1fVsKOpi6feauWspZVj9sOYCU6qLmZheeGo2k4zSX8oys6j3Zw9S2IwGc4/ZT47mrqn7ZO/f/sR2vvC/PV5KwASguGwZmEZe5p7xu0z4+Cs0UhHNBx31FvHe2c0kSCZ9fXz2NPcQ2NrbmTtgYpGztEXivJ2ay9npnFH7dxFbrdLUe9r6WVRRWHad0RDwfTZFY2n9rQQjMR58G/PGdW/+9xVNYkKs86d/mwhImxZUcXWAydmzaW37VAH0bjh7Fm+Fulw9buWUOj38INn9k95H8FIjO//oZHNy6p49xgxhUvWLaQ3GOXLD+6Y8P+luTt9S2PdonJK7TVB4yUdZJOPnFVPWaGfD373BR58pWniCTOAikaOseNIF8bAhjT8p+sWV1Ac8LLVvvN9u6WP1QvSd5skgulTtDT++HYbdzx3YEpzk9l+qIMlVUUJEUvmzKXzKLKtiy3jJAbMFOesrKa9Lzyq/PhM8YuGI8wr9rvC0qguLeBjm5fy69ePJuo2TZY7njtAS0+I/3nhyWNa3uetruVLF5/CI28c496th8fd39GuQUoLfImKCOPh83oSFsbIm5mZ4pSFZTz2hfM4o76Cf/jFG3zpF2/MegquisYs0j0Q4U/+9Q/82Xef46u/2cWND+/ks/e+SpHfm5al4fd62HhSJVsPdhCLGxrb+jhlYfqi4fd6OGVB2ZRKWRtj+Ooju7j58bemlVZpjGH7oU42L0t9F1ng87J5eRWBWY5nOLz3ZCul+9m3Z349UGtPkP/a1cJVG+tn1U03Ga577wo8Al97dPeo5lDjYYzhq7/ZxS3/9TYXnrZgwsylz52/klMWlPHYzvE7LB7rGqSuIv3Oj9e+exnXnHNSotfFbLCgvJB7//psrnvvCn7xShPPZnHRZDqoaMwitz69j8MdA/i9Hn6+7TD3bT/CppMqefCz56S1qhtg87Iq9rb0sqOpi3A0nnY8w+GitQtoeKdz0i06XzpwggPt/URihj3NU7/r3t/WR0d/mM3Lx/YZf/mSU/jORzfkxA9lXUURq+eX8uwMFeRL5oGGI0Tjho9tXjrjf3uq1FUU8ZVLT+XJ3S1856l9ac/bfqiTH71wiL/YspTbPnHWhNuLCOeuqqHhUOeYsY1Y3LDzaM+k2rWef8p8vnb5qBydGcfn9fD3F53MvGI/v5xlN5WKxixxsL2fn7x0iI9uWsKvPncub339UvZ+41Lu/Mt3sXZRRdr72bKyGmPgX5/YCzCqRtVEXLx2IcbA7/e0TGrez7YeTriNJlv7J5ltB61U2vHM/7WLKrj09Lop/41Mc97qWrYd6pjR9q/BSIyfvnyYd6+sZkXt5G4MZptPnbuMPz+rnu88tY+/vnt7yurMI3HidP9w0SmjAt9j8e6V1YSicV47nPrz+Ps9LRztGuTKjYtTvp/rFPi8fGj9Iv5rdwvdg7NXaFRFY5b43tON+L0e/u6ik6e1n00nVXLBmvm8uN+Ka6xeMLkflDULy1haVcwTu46nPae9L8QTu45z9eYl1JYVTGvx0fZDHdSUBiZML84l3ntyDeFonK0HZy6L6p6X3uF4T5DPv3/VjP3NTCEifPPPT+eGS9fw4v4TXPCtP/LlB98Yt1HTa4c7WVlbkrbFDbB5RRUesazgVNz94iEWVRTygVMXTPoccoU/P6uecDTOb3eM74bLJioas8CJvhC/eeMYV26sZ37Z9HylIsK/XrWeheWFLKsupjgwuaU3IsLFaxfwQmM7vcH07l5+0dBEJGb4xNlLWV8/b8qWRiQW549vt3HOypoZX7E8HbasqKbA5+GfH97JD/+4f1K++qnQG4xw2zONnLe6hnevrMnq38oWfq+Hz/zJSp750vlcc85J/Oq1o1z0788mkjiSMcbw6uGuRP2sdCkv9HP64gpeGtEAqrG1l5t+u5sX95/gk+csm5HS5tnijPoKTl5Qyn3bxw/4ZxP3Xj0Xc9/2I4Rjca45Z1lG9ldVEuC+67bwvY9P7PtNxfvWzCcSM2kFxONxw8+3HWbz8ipWzS9jfX0F+9v66UlTcJJ59u02OvrDXL5+0VQOe9Yo9Hv5/sfPYn5ZId987C2eb8xufOOBhiY6ByL8w0WnZPXvzATzywq58YNr+fX151IS8PKF+14fVWzw0IkBOvrDbDxp8msjzllZw2uHuxKr9oORGB/9j5f50QuHOP+UWj5+tnviQakQET5x9knsaOqellt4OqhoZJFUOePRWJyfvvwO562uSZTbzgTLakpYtzj9WEgyZy2tJODzJFxc4/HC/nYOdwzwCfvL52Q07Tgy+VWrD712lMpifyIjyU184LQF/OxvzqaiyJ/1/PmHXz/K2kXlOZE9linWLqrglqvWc7wnyA//ODxt2ykZc9YUROMTZy9lXrGfT96xlaNdgzzy+jFO9If5yac28+O/2pxWg7Jc58NnLaY44OWnL78zbHzn0e4ppzZPBhWNLPHq4U7O/ebTo2IF2w510NwdzKkMmEK/l41LK3lpAtGIxQ3ffbqRymI/l6xbCFiiURzw8tXf7KK1N5j23+wJRnhydwsftJvNuJECn5fLNyziiV3HsxaYPNDWx46mbq7Y4M7g7XhsWlbFB9cv4j/+uJ9Wu2+FMYZn326jrNDHqikE/JdUFXP3pzbTG4py9e0v8cNn97NmYdmMFxvMJuWFfq44czGPvHGME31DWY//38M7+dSPt2d94ak7v605Tm8wwhfue41j3UH+7v7X2Ze0EOzxnccp9Hs4/5Tcurt+98pq9hzvGTc4eetT+9h2sIMbLjuVAp+VOVVR5OfOa9/F0a5BPnnHtkSns4l4/M3jhKNxPnymu38Mr9xYTyga59EdxybeeAo8/PoxROCDLnPhpcvfX3gyoWicB19tYjAc429/+gqPvHGMD65fNOWe5msXVfDTT59Nz2CUA239fOrc5a6KmaXDp85dRtwYvvbobsCq3fbq4S4++q4lWT9XFY0MEo8bfvVaE39x5zaOdg7yvY+fSVHAy2fvfZVQNEY8bnhi13H+5OTaSQess805dupuqowgYwx3PX+QW5/ex0fOWsxVG+tHzf3XK9ezt6WXx9PMwnrotSaW15TMSgXWTHL64grWLirnlif2jirH8mJje8pAb7qEo3Eeeq2JLcurZ3VxWTZZVlPC5mVVPNjQxG3PNPLErhZuuHQN35jm2oj1S+Zx33Vb+Oz5K/nQhvwT3FXzy7j+fat4+PVjPL7zOD/fdpiA18NHzqqfePI0UdHIEMYY/uU3u/if91uphP/vyvX82RmLuOWq9TS29vH9P+zn9aYuWnpCCddOLnFGveVm+vsH3uDd//cpDp+wfKPGGP73r3fytUd3c+GpC/jGFetS3slcsm4hK2pK+I8/HpjQPD7aNcjLBzq4YsNi198Bigjf//hZiAifvHMrd794iN+92cyXfvEGH79jK3/5o+2JazlZfvziQY50DPI3712e4aPOLa7cVM+B9n5ue2Y/H1q/iM/8ycopWxnJnFpXzj9esiYnFoVmg8+dv4rT6sq5/mevct/2w1y0dgFVJemnKE8VFY0Mcdsz+/nJS+/wN+ct549fOp8r7bvx80+Zz4fPXMwPnmnkv//sNXwe4f1rci9PPODz8L/+9FQuO72O9v4wP/ijVWTuX5/Yy71bD/OZ967gh3+xcUwLyesR/vq8Fbx5tHvCNR+/fu0ogOtdUw7Lakq489pNBLwebnxkF5+791V++WoTf/nuZfg8wpd/+Ubaabkd/WG+8unRKeYAAAnLSURBVMsdfPnBN/jO7/fx/jXzc/Lzkkn+9PQ6igNefB7hHy9dM9uH4xoCPg8/v24LHz5zMeFo5rIxJ0JypQFPpti0aZNpaGiY0b/54v52PnHHVj54xiL+/aMbRt0ldfSH+eL9r1Pgs2IZnzj7pBk9vsnyv371Jr9oaOJjm5dw90vv8LHNS/k/H05tYSQTjMT4s+8+T2NrHx/bvIRPnbt8VAHFSCzOhd/6IzWlBTz42Xdn8zRmhcMnBugLRVlcWURFkZ/7th3mKw+9yf94/yr+boKU2R1NXXz2p6/S1huiKOAlHI3z2BfOS1nIMd+4b9thAr6Zca/kIwPh6LRd3iLyijFm04TbqWikJhSNEfB6JvyhPNo1yEdue4GSAh+/+fx7KCnIrVjFVDjSMcD5tzxDLG746KYl/J+PnD6sx8V4DISj3PLE29zz8iEiMcNXLl3D3/7JysT797z8Dv/865385zWbuPC0/L6DBsu994+/3MEDDU3ccOka/urc5aOyxYwx3PPyO3zj0T3UlhVw2yfO4vTFFQxEYonS3IqSbVQ0psGjO47x5Qd3sGVFNbdctT6ln9AYwy9eaeLrv9lN3Bge+NtzJlUzKte56/mDRONx/ua8FVOKO7T3hfjHB3fwfGM7T//D+SyeV0RvMML7bnmGFbWl3H/dFtfHM9IlEovzt/e8wlNvtVJbVsAnzl7KZafX4fd66AtG+Y9n9/Pojmbed0ot3/pvG6icAb+0ooxERWOSdPSHufKHLxKOxmnqHGTNwjIOtPVTVRLgW/9tPS8f7ODRHcdYVVvK8poS9rb08szeNjYvr+KWK9eztLo4C2fjbo52DfL+W57hPatq+PBZi/n33+9jf1sfv/rcua7Pmpos8bjhucZ2fvzCQf6wd3hpa69H+IeLTuEz712RkQCwokwFFY1J0heK8o+/3EGB18OK2hKue+9K3m7p5b///LVEKuXZy6to6w3R1DlofdEvPoW/evcy/aKPw3ef2se/Pfk2AHUVhdz852e4cgV4JjnY3s+Opi7ixlAS8LFyfikrXVa5Vsk/8ko0ROQS4DuAF7jDGPPNsbbNdCC8LxTlu0/vY0P9vER5bmMMsbhxdeGzmaSxtZe+UIzV80vzIuajKPlIuqKR899gEfEC3wcuBJqA7SLyiDFm90z8/dICHzdceurIY8LnVesiXVbNn1yPD0VRchc33CpvBhqNMQeMMWHgPuDyWT4mRVGUOYkbRGMxcCTp3032mKIoijLDuEE0UvmBhgViROQ6EWkQkYa2ttltuq4oipLPuEE0moAlSf+uB4aVFDXG3G6M2WSM2VRbO7czcxRFUbKJG0RjO7BaRJaLSAC4Gnhklo9JURRlTpLz2VPGmKiIfB54Aivl9i5jzK5ZPixFUZQ5Sc6LBoAx5nfA72b7OBRFUeY6bnBPKYqiKDmCK1aETwYR6QX2prl5BdCdwT+f6f3VAO0Z3F8un69eu9zaH+g1nC5uun41QIkxZuJMImNMXj2Ahklse3uG/3am95f2ubj9fPXa5db+9BrOres3mWOd6+6p3+T4/jJNLp+vXrvc2l82yPVzzvVrmBPnm4/uqQaTRtEtN5BP5zLT6LWbPnoNp4ebrt9kjjUfLY3bZ/sAMkg+nctMo9du+ug1nB5uun5pH2veWRqKoihK9shHS0NRFEXJEioaM4iILBGRP4jIHhHZJSJfsMerRORJEdlnP1fa4xeKyCsi8qb9/H57vFhEfisib9n7GbMpVb6QqWtnv/e4iLxh7+eHds+WvCeT1zBpn4+IyM6ZPpfZIMOfwWdEZK+IvG4/5s/WeU2aTKZw6WPCFLc64Cz7dRnwNnAa8P+Ar9jjXwFutl+fCSyyX68Djtqvi4H32a8DwHPApbN9fm64dva/y+1nAX4JXD3b5+e2a2iPfQT4GbBzts/NbdcPeAbYNNvnNKXrMNsHMJcfwMNYHQn3AnX2WB2wN8W2ApwAClK89x3gb2b7fNx27QA/VtrhR2f7fNx2DYFS4Hn7R3NOiEaGr59rRUPdU7OEiCzDuhPZCiwwxjQD2M+pTNU/B14zxoRG7Gce8EHgqWweby6RiWsnIk8ArUAv8GCWDznnyMA1/Drwb8BA1g82B8nQ9/dHtmvqn0XENf2jVTRmAREpxXKLfNEY05PG9muBm4HPjBj3AT8HbjXGHMjGseYambp2xpiLse4KC4BRvvp8ZrrXUEQ2AKuMMb/K6oHmKBn6DH7CGHM6cJ79+GQ2jjUbqGjMMCLix/rA3WuMecgebhGROvv9Oqw7YGf7euBXwDXGmP0jdnc7sM8Y8+/ZP/LZJ8PXDmNMEKs3y5zpOZ+ha3gOsFFEDmG5qE4WkWdm5gxml0x9Bo0xR+3nXqy40OaZOYPpo6Ixg9gm6J3AHmPMt5LeegS41n59LZav1HE9/Ra4wRjzwoh9fQOr4NgXs33cuUCmrp2IlCZ9wX3AZcBb2T+D2SdT19AY8wNjzCJjzDLgPcDbxpjzs38Gs0sGP4M+EamxX/uBPwNck4Gmi/tmEBF5D1am05tA3B7+Jyy/6APAUuAwcJUxpkNE/jdwA7AvaTcXYWVMHcH6sXN8pN8zxtyR9ZOYJTJ47QR4FMst5QWeBv6nMSY6E+cxm2TqGhpjku+klwGPGmPWZf0EZpkMfgb7gWexEjG8wO+BvzPGxGbiPKaLioaiKIqSNuqeUhRFUdJGRUNRFEVJGxUNRVEUJW1UNBRFUZS0UdFQFEVR0kZFQ1FmGBH5WxG5ZhLbL5srlWSV3Mc32wegKHMJEfEZY34428ehKFNFRUNRJom9oO1xrEVdZ2KVyL4GOBX4FlYF2HbgL40xzXaJjReBc4FHRKQM6DPG3GLXcfohVrn7/cCnjDGdIrIRuAurIODzM3d2ijI+6p5SlKlxCnC7MeYMoAe4HvgucOX/397dqkQQRnEYfw5qsWixegXegEHMXoKILHsDVqPJKIgWLYofRbwCMW2zy2KzGIy6iNZj2HdhGfyYHVZY8PnFw3CYt8yf84YzmTn44O8OPT+fmauZuVfpcw5slz73wE6pnwJbmbn8l4eQRuWkITXzNLRP6JL+Ookl4LZsuZ4Cnoeev6o2iIg5+mHSKaUz4PqL+gWwNv4jSKMzNKRmqvt33oDuD5PB+wi944v+0kTwekpqZjEiBgGxDtwBC4NaRMyU/yh8KzN7wEtErJTSJtDJzFegVxbkAWyM//WlZpw0pGYegFZEHNPfYnoI3AAH5XppGtgHur/0aQFHETELPALtUm8DJxHxUfpKE8Ett9KI/tM6cKnK6ylJUm1OGpKk2pw0JEm1GRqSpNoMDUlSbYaGJKk2Q0OSVJuhIUmq7ROfO0rIOg4azQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
+ "1er août de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
+ "modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAD8CAYAAABU4IIeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG35JREFUeJzt3X+Q1HV+5/HnCweHjYsKCC4/1OFqORN07zROoVveD3HDj81tqXvn7rEa5SpWYVy3ypypU6hw5Z6Si1xdrTnirdFa3bjrD/Q2S0likCBCnZcQYCg1ikoGbwkSWWfIoGCq4HbkfX/0Z7Snne7p6f729LdnXo+qru7+9Ofz6c98GPo9n1/fVkRgZmaWlQnNboCZmY0tDixmZpYpBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFNtzW7AaDrnnHOio6Oj2c0wM2spe/bsORIR06vNP64CS0dHB11dXc1uhplZS5H0dyPJ76kwMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObDkQM+xE3zz4R30HD/R7KaYmdXNgSUH1m3tZveBPta92N3sppiZ1W1cnWPJmwtXb+Jk/6lPnj+x8yBP7DxIe9sE9q35ahNbZmZWO49YmujluxZyzSWzmDSx8M8waeIErr1kFi/fvbDJLTMzq50DSxPNOHMSk9vbONl/iva2CZzsP8Xk9jZmTJ7U7KaZmdXMU2FNduSjk9x4+QXcsOB8ntp1kF4v4JtZi1NENLsNo6azszN8rTAzs5GRtCciOqvN76kwMzPLlAOLmZllyoHFzMwy5cDSAnwy38xaiQNLC/DJfDNrJd5unGM+mW9mrcgjlhzzyXwza0UOLDnmk/lm1oocWKrQzMXzgZP5G759JTdefgG9H50c9TaYmY2ET95XYfWG13ly10FuXHA+a77+pQa0zMwsv0Z68t6L9xV48dzMbOQ8FVaBF8/NzEauqsAi6YCk1yW9KqkrpU2VtEVSd7qfUpR/laT9kvZJWlKUflmqZ7+kdZKU0tslPZPSd0rqKCqzPL1Ht6TlRelzU97uVPb0+rtjMC+em5mN3EhGLAsj4pKiebaVwNaImAdsTc+RNB9YBlwELAW+L+m0VOYhYAUwL92WpvRbgKMR8UXgAWBtqmsqcA9wObAAuKcogK0FHkjvfzTVkTkvnpuZjUxVi/eSDgCdEXGkKG0fcFVEHJY0E9geERdKWgUQEb+f8m0GvgscALZFxC+n9G+l8rcO5ImIHZLagJ8D0ykEqKsi4tZU5mFgO7Ae6AW+EBH9kr6cyn8yOhqKL5tvZjZyjbpsfgB/IWmPpBUp7dyIOAyQ7mek9NnAu0VlD6W02elxafqgMhHRD3wITKtQ1zTgg5S3tC4zM2uianeFXRkR70maAWyR9HaFvBoiLSqk11KmUl2DG1MIhCsAzj///KGymJlZhqoasUTEe+m+B9hAYb3j/TQFRrrvSdkPAecVFZ8DvJfS5wyRPqhMmgo7C+irUNcR4OyUt7Su0rY/EhGdEdE5ffr0an5cMzOrw7CBRdIZkiYPPAYWA28AG4GBXVrLgefS443AsrTTay6FRfpdabrsuKQr0m6wm0vKDNR1PfBSFBZ/NgOLJU1Ji/aLgc3ptW0pb+n7m5lZE1UzFXYusCHtDG4DnoqIFyTtBp6VdAtwEPgGQETslfQs8CbQD9weER+num4D/hj4HLAp3QAeBX4saT+FkcqyVFefpPuA3SnfvRHRlx7fDayXtAZ4JdVhZmZN5ku6mJlZRY3aFWZmZlYVBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFjMzy5QDi5mZZcqBxczMMuXAYmZmmXJgMTOzTDmwmJlZphxYzMwsUw4sZmaWKQcWMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZNVXPsRN88+Ed9Bw/0eymWEYcWMysqdZt7Wb3gT7Wvdjd7KZYRtqa3QAzG58uXL2Jk/2nPnn+xM6DPLHzIO1tE9i35qtNbJnVyyMWM6uoUVNVL9+1kGsumcWkiYWPoUkTJ3DtJbN4+e6Fmb6PjT4HFjOrqFFTVTPOnMTk9jZO9p+ivW0CJ/tPMbm9jRmTJ2X6Pjb6PBVmZkMajamqIx+d5MbLL+CGBefz1K6D9HoBf0xQRDS7DaOms7Mzurq6mt0Ms5bQc+wEa/78Lf5i78858YtTTJo4gSUXfYHf/Te/4lHFOCNpT0R0Vpu/6qkwSadJekXSn6XnUyVtkdSd7qcU5V0lab+kfZKWFKVfJun19No6SUrp7ZKeSek7JXUUlVme3qNb0vKi9Lkpb3cqe3q1P4uZDc9TVVarkayx3AG8VfR8JbA1IuYBW9NzJM0HlgEXAUuB70s6LZV5CFgBzEu3pSn9FuBoRHwReABYm+qaCtwDXA4sAO4pCmBrgQfS+x9NdZhZhgamqjZ8+0puvPwCej862ewmWQuoaipM0hzgceD3gDsj4muS9gFXRcRhSTOB7RFxoaRVABHx+6nsZuC7wAFgW0T8ckr/Vip/60CeiNghqQ34OTCdQoC6KiJuTWUeBrYD64Fe4AsR0S/py6n8J6OjoXgqzMxs5Bo1FfYHwF3AqaK0cyPiMEC6n5HSZwPvFuU7lNJmp8el6YPKREQ/8CEwrUJd04APUt7SuszMrImGDSySvgb0RMSeKuvUEGlRIb2WMpXqGtwYaYWkLkldvb29Q2WxFudLgpjlSzUjliuBayQdoDAFdbWkJ4D30xQY6b4n5T8EnFdUfg7wXkqfM0T6oDJpKuwsoK9CXUeAs1Pe0roGiYhHIqIzIjqnT59exY9rrcaXBDHLl2EDS0Ssiog5EdFBYc3jpYj4DWAjMLBLaznwXHq8EViWdnrNpbBIvytNlx2XdEXaDXZzSZmBuq5P7xHAZmCxpClp0X4xsDm9ti3lLX1/GycuXL2JjpXP88TOg0QUzll0rHyeC1dvanbTzMa1ek7e3w8sktQNLErPiYi9wLPAm8ALwO0R8XEqcxvwA2A/8A4w8AnwKDBN0n7gTtIOs4joA+4DdqfbvSkN4G7gzlRmWqrDxhFfEsQsn0Z08j4itlPYlUVE/APwlTL5fo/CDrLS9C7g4iHSTwDfKFPXY8BjQ6T/XwpbkG2cqvacRc+xE3zn6Vd48IZLc3kGI+/tMxspXyvMWlo15yzyvgaT9/aZjZQv6WJjVum1rgbk5bLseW+f2YCGXdLFrNXkfQ0m7+0zq5UDi41Zeb/WVd7bZ1YrXzbfxrS8X5Y97+0zq4XXWMzMxrAsdh16jcXMxhVf0qeyZuw69FSYmbW04g/ONV//UrObkxuj8Q2g5XgqzJrOBwStFt6uXVmW3wDqqTBrOT4gaLXwdu3Kmrnr0FNh1jTNHKqPJo/IGsPbtYfXrF2HHrFYw5VbXB0vf3F6RNY4/urkyh6+qZM1113M/Flnsua6i3n4pqpns+riEYsNq96/uMstro71vzjHy4ismYo/KNdc95nr21qTOLDYsGrddVPNB+tYPiD48l0Lyy6emo1lDixWVr1/cVfzwTqW/+Ic6yMys3K8xmJl1bsG4g/W1lgD8AFDy5pHLFZWFoFhLE91VaMVRmQ+YGhZ8wFJq+jWH3cxffKkQYFhtHaWWGP5gKFVa6QHJB1YzMapLE9m29jmk/dmVhWvgVmjeI3FbBwb72tg1hieCjMzs4o8FWZmZk3lwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFrNh+CKNZiPjwGI2DH8DpNnI+OS9WRn+Bkiz2njEYlZGvd9HYzZeObBY7jVrjcMXaTSrzbCBRdIkSbskvSZpr6T/ktKnStoiqTvdTykqs0rSfkn7JC0pSr9M0uvptXWSlNLbJT2T0ndK6igqszy9R7ek5UXpc1Pe7lT29Gy6xPKmmWscrfANkGZ5M+xFKNOH/xkR8ZGkicD/Ae4A/i3QFxH3S1oJTImIuyXNB54GFgCzgBeBfxoRH0valcr+NfDnwLqI2CTp28A/i4jfkrQM+HpE/HtJU4EuoBMIYA9wWUQclfQs8NOIWC/pj4DXIuKhSj+LL0LZWvxFVGb5kPlFKKPgo/R0YroFcC3weEp/HLguPb4WWB8RJyPiZ8B+YIGkmcCZEbEjCtHsRyVlBur6CfCVFNCWAFsioi8ijgJbgKXptatT3tL3tzHCaxzZ8HZpG21VrbFIOk3Sq0APhQ/6ncC5EXEYIN3PSNlnA+8WFT+U0manx6Xpg8pERD/wITCtQl3TgA9S3tK6Stu+QlKXpK7e3t5qflzLCa9xZMPbpW20VbXdOCI+Bi6RdDawQdLFFbJrqCoqpNdSplJdgxMjHgEegcJU2FB5LL/8RVS183Zpa5YRnWOJiA8kbQeWAu9LmhkRh9M0V0/Kdgg4r6jYHOC9lD5niPTiMocktQFnAX0p/aqSMtuBI8DZktrSqKW4LhtDHr7p02ndNddV+nvGSr1818Ky32lv1kjV7AqbnkYqSPoc8GvA28BGYGCX1nLgufR4I7As7fSaC8wDdqXpsuOSrkhrJDeXlBmo63rgpbQOsxlYLGlK2nW2GNicXtuW8pa+v5kxelOJeV/DyXv76pXHn6+aNZaZwDZJfwPsprDG8mfA/cAiSd3AovSciNgLPAu8CbwA3J6m0gBuA35AYUH/HWBTSn8UmCZpP3AnsDLV1Qfcl953N3BvSgO4G7gzlZmW6miKPP7DmsHobJfO+xpO3ttXrzz+fP7O+wys3vA6T+46yI0LzmfN17+Uef1meZT37eB5b1+9RvPnG+l2YweWOoz1X1yzSnqOnSi7hpOHnXt5b1+9RvPny/wci5VX7TkLT5VZI/mSN0PLe/vqleefz4GlDtX+w+ZxDtTGDl/ypry8t69eef35PBVWp1t/3MX0yZMGnbMY2CLrqTJrJP9+2WjxGksFo32tsFaZ4+05doLvPP0KD95waa7aZZW1yu9Xq/P/D6+x5Eqe50CLeaquNbXK71er8/+PkfM3SDZYni9J4kt+tL48/361Ov//qJ2nwsYxT6WYlef/H5/yVJhVzVMpZuX5/0ftHFjGgUrnHPK6XdEsD/z/ozaeChsHfMkZM6vHSKfCvHg/hnnxsTreTmqWLU+FjWH+at/qeDupWbY8YhnDvPhYmUd0Zo3hEcsY58XH8jyiM2sMj1jGOH+1b3ke0Zk1hgOLjWs+uW6WPW83NjOzinzy3szMmsqBxczMMuXAYpZz/mrrxnL/Zs+BxSznfICzsdy/2fPivVlO+auHG8v9Wz0v3puNET7A2VhZ9a+n0j7LgcWsTo36YPEBzsbKqn89lfZZPiBpVqfiD5asv5bABzgbq57+9bXmyvMai1mNPEdfnbH6tQTj6auLvcZiNkq8BlKdsTpV5KnK8jwVZlYjf7BUNh6mijxVOTQHFrM6+IOlvJfvWlh2qmis8NXDh+bAYlYHf7CU5xHd+OU1FjNrGH/RXP1a8ZyMd4WZmeXY6g2v8+Sug9y44PzMt7NXK/NdYZLOk7RN0luS9kq6I6VPlbRFUne6n1JUZpWk/ZL2SVpSlH6ZpNfTa+skKaW3S3ompe+U1FFUZnl6j25Jy4vS56a83ans6dX+0GZmo6XWEceFqzfRsfJ5nth5kIjC5oeOlc9z4epNDWppdqqZCusHficifgW4Arhd0nxgJbA1IuYBW9Nz0mvLgIuApcD3JZ2W6noIWAHMS7elKf0W4GhEfBF4AFib6poK3ANcDiwA7ikKYGuBB9L7H011mJnlSq3brVt5O/uwi/cRcRg4nB4fl/QWMBu4FrgqZXsc2A7cndLXR8RJ4GeS9gMLJB0AzoyIHQCSfgRcB2xKZb6b6voJ8GAazSwBtkREXyqzBVgqaT1wNXBD0ft/l0LgMjNrunq3W7fy5ocRLd6nKapLgZ3AuSnoDASfGSnbbODdomKHUtrs9Lg0fVCZiOgHPgSmVahrGvBByltaV2mbV0jqktTV29s7kh/XzKxmWYw4WnXzQ9XbjSV9HvgT4Lcj4lhaHhky6xBpUSG9ljKV6hqcGPEI8AgUFu+HymNmlrUsRhytup29qhGLpIkUgsqTEfHTlPy+pJnp9ZlAT0o/BJxXVHwO8F5KnzNE+qAyktqAs4C+CnUdAc5OeUvrMjPLhVYdcdRr2BFLWut4FHgrIr5X9NJGYDlwf7p/rij9KUnfA2ZRWKTfFREfSzou6QoKU2k3A39YUtcO4HrgpYgISZuB/1q0YL8YWJVe25byri95fzOzXGjVEUe9qhmxXAncBFwt6dV0+3UKAWWRpG5gUXpOROwFngXeBF4Abo+Ij1NdtwE/APYD71BYuIdC4JqWFvrvJO0wS4v29wG70+3egYV8ChsF7kxlpqU6rAla8QCXmTWOD0ha3fJwgMvMGmekByR9rTCr2Xi4eq2ZjZyvFWY1a+UDXGbWOA4sVrNWPsBlZo3jqTCri7+PxMxKefHezMwq8nfem5lZUzmwjAE+R2JmeeLAMgbUelluM7NG8OJ9C/M5EhsPeo6d4DtPv8KDN1zqHYctwiOWFuZzJDYeeETeejxiaWE+R2JjmUfkrcsjlhY3Xi/LbWOfR+StyyOWFjdeL8ttY59H5K3LgcXMcstXdmhNPnlvZmYV+eS9mZk1lQOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFjMzy5QDi5mZZWrYwCLpMUk9kt4oSpsqaYuk7nQ/pei1VZL2S9onaUlR+mWSXk+vrZOklN4u6ZmUvlNSR1GZ5ek9uiUtL0qfm/J2p7Kn198VZmaWhWpGLH8MLC1JWwlsjYh5wNb0HEnzgWXARanM9yWdlso8BKwA5qXbQJ23AEcj4ovAA8DaVNdU4B7gcmABcE9RAFsLPJDe/2iqw8zMcmDYwBIR/xvoK0m+Fng8PX4cuK4ofX1EnIyInwH7gQWSZgJnRsSOiAjgRyVlBur6CfCVNJpZAmyJiL6IOApsAZam165OeUvf38zMmqzWNZZzI+IwQLqfkdJnA+8W5TuU0manx6Xpg8pERD/wITCtQl3TgA9S3tK6PkPSCkldkrp6e3tH+GOamdlIZb14ryHSokJ6LWUq1fXZFyIeiYjOiOicPn16uWxmZpaRWgPL+2l6i3Tfk9IPAecV5ZsDvJfS5wyRPqiMpDbgLApTb+XqOgKcnfKW1mVmZk1Wa2DZCAzs0loOPFeUvizt9JpLYZF+V5ouOy7pirRGcnNJmYG6rgdeSuswm4HFkqakRfvFwOb02raUt/T9zcysydqGyyDpaeAq4BxJhyjs1LofeFbSLcBB4BsAEbFX0rPAm0A/cHtEfJyquo3CDrPPAZvSDeBR4MeS9lMYqSxLdfVJug/YnfLdGxEDmwjuBtZLWgO8kuowM7McUGEAMD50dnZGV1dXs5thZtZSJO2JiM5q8/vkvZmZZcqBxczMMuXAYmbWRD3HTvDNh3fQc/xEs5uSGQcWM7MmWre1m90H+lj3Ynezm5KZYXeFmZlZ9i5cvYmT/ac+ef7EzoM8sfMg7W0T2Lfmq01sWf08YjEza4KX71rINZfMYtLEwsfwpIkTuPaSWbx898Imt6x+DixmZk0w48xJTG5v42T/KdrbJnCy/xST29uYMXlSs5tWN0+FmZk1yZGPTnLj5Rdww4LzeWrXQXrHyAK+D0iamVlFPiBpZmZN5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpapcbXdWFIv8HdlXj6Hwtce55XbVx+3rz5uX31avX0XRMT0aisbV4GlEkldI9mnPdrcvvq4ffVx++oz3trnqTAzM8uUA4uZmWXKgeVTjzS7AcNw++rj9tXH7avPuGqf11jMzCxTHrGYmVmmxmxgkfSYpB5JbxSl/XNJOyS9LulPJZ2Z0idKejylvyVpVVGZ7ZL2SXo13WY0oX2nS/phSn9N0lVFZS5L6fslrZOkLNqXcRsz70NJ50nalv699kq6I6VPlbRFUne6n1JUZlXqp32SlhSlZ96HGbev6f0naVrK/5GkB0vqanr/DdO+PPTfIkl7Uj/tkXR1UV156L9K7Rt5/0XEmLwB/wr4VeCNorTdwL9Oj38TuC89vgFYnx7/EnAA6EjPtwOdTW7f7cAP0+MZwB5gQnq+C/gyIGAT8NUctjHzPgRmAr+aHk8G/haYD/w3YGVKXwmsTY/nA68B7cBc4B3gtEb1Ycbty0P/nQH8C+C3gAdL6spD/1VqXx7671JgVnp8MfD3Oeu/Su0bcf9l1tF5vAEdDP5QPMan60rnAW+mx98C/pTCF59NS/8IUxv1S1lD+/4n8BtF+bYCC9Ivz9tF6d8CHs5TGxvdh0Xv9xywCNgHzExpM4F96fEqYFVR/s3pP3PD+7Ce9uWl/4ry/QeKPrjz0n/l2pe3/kvpAv6Bwh8Rueq/0vbV2n9jdiqsjDeAa9Ljb1D4YAT4CfCPwGHgIPDfI6KvqNwP0xDwP2cxTK2hfa8B10pqkzQXuCy9Nhs4VFT+UEprpJG2cUDD+lBSB4W/uHYC50bEYYB0PzBsnw28W1RsoK8a3od1tm9As/uvnLz033Dy1H//DnglIk6Sz/4rbt+AEfXfeAssvwncLmkPheHh/0vpC4CPgVkUpiF+R9I/Sa/dGBFfAv5lut3UhPY9RuEXrgv4A+CvgH4Kf1mUavQ2v5G2ERrYh5I+D/wJ8NsRcaxS1iHSokJ6JjJoH+Sj/8pWMURaM/qvktz0n6SLgLXArQNJQ2RrWv8N0T6oof/GVWCJiLcjYnFEXAY8TWEeGwprLC9ExC8iogf4S6Azlfn7dH8ceIpCEBrV9kVEf0T8x4i4JCKuBc4Guil8kM8pqmIO8F6j2ldjGxvWh5ImUvhP82RE/DQlvy9pZnp9JtCT0g8xeAQ10FcN68OM2peX/isnL/1XVl76T9IcYANwc0QMfPbkpv/KtK+m/htXgWVgN4OkCcBq4I/SSweBq1VwBnAF8Haa1jknlZkIfI3CVNCotk/SL6V2IWkR0B8Rb6ah7HFJV6Th6c0U5lIbZqRtbFQfpp/3UeCtiPhe0UsbgeXp8XI+7Y+NwDJJ7Wmqbh6wq1F9mFX7ctR/Q8pR/5WrJxf9J+ls4HkK62h/OZA5L/1Xrn0191/Wi0R5uVH4a/ow8AsKfxXcAtxBYWH+b4H7+XQR+vPA/wL2Am8C/ymln0Fhd9PfpNf+B2mnzii3r4PCottbwIsUrjQ6UE9n+od+B3hwoExe2tioPqSwAyhSva+m269T2HyxlcJoaStpE0Yq87upn/ZRtPOmEX2YVfty1n8HgD7go/T7MD9n/feZ9uWl/yj8EfaPRXlfBWbkpf/Kta/W/vPJezMzy9S4mgozM7PGc2AxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDL1/wERgRmeflUJDAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2021 743449\n",
+ "2014 1600941\n",
+ "1991 1659249\n",
+ "1995 1840410\n",
+ "2020 2010315\n",
+ "2022 2060304\n",
+ "2012 2175217\n",
+ "2003 2234584\n",
+ "2019 2254386\n",
+ "2006 2307352\n",
+ "2017 2321583\n",
+ "2001 2529279\n",
+ "1992 2574578\n",
+ "1993 2703886\n",
+ "2018 2705325\n",
+ "1988 2765617\n",
+ "2007 2780164\n",
+ "1987 2855570\n",
+ "2016 2856393\n",
+ "2011 2857040\n",
+ "2023 2873501\n",
+ "2008 2973918\n",
+ "1998 3034904\n",
+ "2002 3125418\n",
+ "2009 3444020\n",
+ "1994 3514763\n",
+ "1996 3539413\n",
+ "2004 3567744\n",
+ "1997 3620066\n",
+ "2015 3654892\n",
+ "2024 3670417\n",
+ "2000 3826372\n",
+ "2005 3835025\n",
+ "1999 3908112\n",
+ "2010 4111392\n",
+ "2013 4182691\n",
+ "1986 5115251\n",
+ "1990 5235827\n",
+ "1989 5466192\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
+ " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFJlJREFUeJzt3XmUZGV5x/Hv4wzCQLOZkUYHZNxiREZAGhWJ2IM74M4RFRA86miiQHA8CXJUooaIC+aoccm4Hxf6KJi4YFwCaXALMoPLiCh4YBQGAVl1gIgjT/5474RyYOjuquq+XW99P+fMmapbt+q+z1vVv7r3vffWjcxEkjT47tN2AyRJ/WGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiqxcC4Xtnjx4ly6dOlcLvLP3HrrrWy33XatLb9tw14/2AfWP5j1r1mz5vrMvP9U881poC9dupTVq1fP5SL/zOTkJOPj460tv23DXj/YB9Y/mPVHxK+mM59DLpJUCQNdkiphoEtSJQx0SaqEgS5JlZgy0CPi4xFxXUT8tGPa/SLiWxFxWfP/zrPbTEnSVKazhv5J4BmbTTsJOCczHw6c09yXJLVoykDPzPOBGzeb/BzgU83tTwHP7XO7JEkzFNO5pmhELAW+mpl7NfdvzsydOh6/KTPvcdglIlYAKwBGR0f3m5iY6EOzu7NhwwZGRkZaW37bBqH+tetvmdXXH10E195+9+nLluw4q8udLwbhMzCbBrX+5cuXr8nMsanmm/UzRTNzFbAKYGxsLNs8S2tQzxLrl0Go/9iTzp7V11+5bCOnr737x37dkeOzutz5YhA+A7Op9vq7Pcrl2oh4AEDz/3X9a5IkqRvdBvqXgWOa28cAX+pPcyRJ3ZrOYYtnAN8HHhERV0XEy4HTgKdGxGXAU5v7kqQWTTmGnpkv3sJDT+5zWyRJPfBMUUmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ilegr0iDgxIi6OiJ9GxBkRsU2/GiZJmpmuAz0ilgDHA2OZuRewAHhRvxomSZqZXodcFgKLImIhsC1wde9NkiR1IzKz+ydHnACcCtwOfDMzj7yHeVYAKwBGR0f3m5iY6Hp5vdqwYQMjIyOtLb9tg1D/2vW3zOrrjy6Ca2+/+/RlS3ac1eXOF4PwGZhNg1r/8uXL12Tm2FTzdR3oEbEzcBZwBHAz8AXgzMz8zJaeMzY2lqtXr+5qef0wOTnJ+Ph4a8tv2yDUv/Sks2f19Vcu28jpaxfebfq60w6d1eXOF4PwGZhNg1p/REwr0HsZcnkKcEVm/jYz/wh8EXhCD68nSepBL4H+a+DxEbFtRATwZOCS/jRLkjRTXQd6Zl4AnAlcBKxtXmtVn9olSZqhuw8mzkBmngKc0qe2SJJ64JmiklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaKn30NXnWb7up6SZodr6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklSJngI9InaKiDMj4ucRcUlEHNCvhkmSZqbXS9C9F/h6Zh4eEfcFtu1DmyRJXeg60CNiB+Ag4FiAzLwDuKM/zZIkzVRkZndPjNgHWAX8DNgbWAOckJm3bjbfCmAFwOjo6H4TExM9NbgXGzZsYGRkpLXlt2269a9df8sctKYdo4vg2tvvPn3Zkh3nvjGNuezvzvrbrLktg5oBy5cvX5OZY1PN10ugjwH/AxyYmRdExHuB32Xmm7b0nLGxsVy9enVXy+uHyclJxsfHW1t+26Zb/9KTzp79xrRk5bKNnL727hum6047tIXWFHPZ3531t1lzWwY1AyJiWoHey07Rq4CrMvOC5v6ZwGN6eD1JUg+6DvTMvAa4MiIe0Ux6MmX4RZLUgl6PcjkO+GxzhMvlwMt6b5IkqRs9BXpm/giYclxHkjT7PFNUkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekSvR6gQupCjVfR1XDwzV0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ileg70iFgQET+MiK/2o0GSpO70Yw39BOCSPryOJKkHPQV6ROwGHAp8tD/NkSR1KzKz+ydHnAm8HdgeeH1mHnYP86wAVgCMjo7uNzEx0fXyerVhwwZGRkZaW37bplv/2vW3zEFr2jG6CK69ve1WtKez/mVLdmy3MS0Y1AxYvnz5mswcm2q+ri8SHRGHAddl5pqIGN/SfJm5ClgFMDY2luPjW5x11k1OTtLm8ts23fqPrfiCySuXbeT0tcN7bfTO+tcdOd5uY1pQewb0MuRyIPDsiFgHTAAHR8Rn+tIqSdKMdR3omfmGzNwtM5cCLwLOzcyj+tYySdKMeBy6JFWiL4OJmTkJTPbjtSRJ3XENXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoM78UVB8DSPl/bc+WyjVVfL1Saytr1t7T2N7DutENnfRmuoUtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ilug70iNg9Iv47Ii6JiIsj4oR+NkySNDO9XIJuI7AyMy+KiO2BNRHxrcz8WZ/aJkmaga7X0DPzN5l5UXP798AlwJJ+NUySNDORmb2/SMRS4Hxgr8z83WaPrQBWAIyOju43MTHR8/K6tWHDBkZGRmb8vLXrb5mF1sy90UVw7e1tt6Jdw94H86X+ZUt2bGW51914S2v191Lz8uXL12Tm2FTz9RzoETECnAecmplfvLd5x8bGcvXq1T0trxeTk5OMj4/P+HlLW7pKeL+tXLaR09f2Mso2+Ia9D+ZL/etOO7SV5b7/s19qrf5eao6IaQV6T0e5RMRWwFnAZ6cKc0nS7OrlKJcAPgZckpnv6V+TJEnd6GUN/UDgaODgiPhR8++QPrVLkjRDXQ8mZeZ3gOhjWyRJPfBMUUmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUifavRTVN/bgM3MplGzm2ksvJSdLmXEOXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekSvQU6BHxjIj4RUT8MiJO6lejJEkz13WgR8QC4APAM4E9gRdHxJ79apgkaWZ6WUN/LPDLzLw8M+8AJoDn9KdZkqSZiszs7okRhwPPyMxXNPePBh6Xma/dbL4VwIrm7iOAX3Tf3J4tBq5vcfltG/b6wT6w/sGsf4/MvP9UMy3sYQFxD9Pu9u2QmauAVT0sp28iYnVmjrXdjrYMe/1gH1h/3fX3MuRyFbB7x/3dgKt7a44kqVu9BPqFwMMj4sERcV/gRcCX+9MsSdJMdT3kkpkbI+K1wDeABcDHM/PivrVsdsyLoZ8WDXv9YB9Yf8W63ikqSZpfPFNUkiphoEtSJQx0SaqEgT5NEbEkIpa03Y62RMRDIuLEiDi47ba0YdjrB/tgEOo30KcQEUsj4jzg68C7IuKJbbdprkXEXwPfovxmz6sj4m9abtKcGvb6wT4YlPoN9HsQEdt03H0McGFmLqMconl8RCxr5runs2UHXkQcHBEPbm4HcDBwSma+EjgdOCQixjser8qw1w/2waDWb6A3ImKHiPhwRFwKvDsi9mgeeh7w6+b2BPBL4BWbnjbHzZxVEbFnRPwE+EfgExFxcJbjWvcEdgXIzAuA7wEv2/S0Nto6G4a9frAPBr1+A/0uzwC2obxxdwBvjohFlM2sZwFk5h+AM4EnNvfvbKep/RERu0XEDh2TjgDOysyDKF9eL4mIhwOfo+mDxr8De0XE1oPcB8NeP9gHtdU/VIEexcKIeHlEfDsiToiIhzYPPwy4IzM3Av8C3AQcBXwTeEBE3K+Z71Lgyog4YM4L6JOIeGREfA34DvDWiNj0s8f/C2zb3P48cA1wKGVt5C86tlpupPxq5t5z1+r+Gfb6wT6otf6hCvRm0+lJwEuBdwJbAx9pHr4GuK75xr2S8mY9lPIG/4y7fgJ4K+CGZvrAiIjtOu7uA1yVmUuBc4F3N9NvBP4QEdtn5o3AZcADKbV+D3hdM999gT8B62a/5f0x7PWDfTAM9Vcd6BFxQES8IyKObe4H8Ejg65n5lcx8J7BHRDwBWE/5Zn5k8/RLgJFm2r9SdoI8i/JlMAr8eE6L6UJE7BwRn4yIC4HTIuL+TR8sA74bEZGZXwZujohDKVsf2zeP09zfBbiTstWyS0R8BDgD2JiZ1811TTMx7PWDfTBs9Vcb6BHxKOBDwO+BF0bE6yj1LgF+37Fn+pPASygBvRF4QjP9Isqe7dsy83zgJOBY4EDgbZl553zau70FB1FqOoSy4+ZkYAfKj6ntmnf9kM+nKH3wA0p/PRMgM7/fvMbCzLwEeBVwMfDPmfky5r9hrx/sg+GqPzMH/h9lTfoVlM2ohc209wAnNLfHgPcBhwNPAb7R8dzdKZteUAL8h5QrK+0LfAl4QMe80XatW6h/AeWDdh5laGhxM/3zwPHN7QcDpzWP708ZO1zQ0X+/bV5nCWXr5LXAJ4APAtu1XaP12wfWP/W/gV9Dj4i9KTsunwOcAryxeWg95bqnUL5Rvwu8ADgH2DUiHh0RW2UZL18fEU/MzHMpP6/5DuCLwBmZ+ZtNy8rmnZ+HDgOeDbwFOICyfwDKETqbtjiuBL4NPDMzL6SsrSwHyMwNwAXA/pm5HjiaMqx0DfDGzLx1juro1rDXD/bBsNcP9HYJulZExL7ArZl5aTPpscClmXlsRDwGODUixoBJ4OkRsW1m3hYRPwZeSDmW9HPAK4H3RcTtwFrgiub1Pgx8LjNvmbuqptaM9WVE7E/ZNPw2cHaWQyn/Erg8M8+NiCsoZ7Q+DVgDPC8iFmfm9RFxGXBrRDwIeD9wVETsQrna1A2UzU0yczWwes6LvBfDXj/YB8Ne/3QMzBp6RDwsIr5DGfN+c0S8tHnoTmBds7Z9EWVT6QDgNu465Ajgj5RNql0pa+E/bV7rPOD6zLwKylr4PA7zg4CPU/a4PwV4ezPLncClEbEoM6+g9MGjKWOBV1OOrYWyV34B5X0/i9IPRwL7AatyHh1P2ykiFjT1P4myCTxU9QM0tWWUsxOH8TOwwzDXP21tj/ls6R+wHXBAx/3DgPc2tx9H+fbcAziGspm1pHnscMp4+abHzmumb0MZblnc8Zr7Avdtu9Yt1L8t8Gru2prYCvg74DXN4zsDP2lqOIIyNri0o69WUa5wfhhlC2RHyj6Cr3XWDNyn7Vrv5f1/BeWPbiVlR9bQ1N/Rvu2BsylXBAM4cVj6oPkbOKb5uz1r2Orv5t+8XEOPiJOBy4GvRcRoM/nplGPDyXLq7Q+A4yjHkO5OOWYcylj5PpSjUz4F3BQRn6bs7PwF8P9jYZn5w8y8Y/YrmpmI2BX4KjAOfJqyE+f5lC2PjQCZeRNlp+3xlHHCXbjrkMvzKcfb35GZXwU+RjnD9QOUvfl/3LSsnIdrJM3xwudQ/vg+AjyNsv9jf8qaWNX1b2YR5XyJh0bEYsrnfAHU3QcRsRVl39fhwLsy8wXNQ/tumqfm+rvW9jfKFr6ZxymbSx8FVjbTXkcZL9s0z57Alc3tU4G3djx2IbBvc3tryiFL+7dd1wzqXwQ8ruP+sZSdPMcAP+iY/kDg6ub2ayinKu/cPP8rwIM65l08F23vYx/s1HH77yl/tEcOS/0d7T4GeBfwJuDllNPPLxyGPqAcmHDkZtOOAC4Yhvq76rO2G7CFN3LToURHcNeQyU7AzcA2HfNdSPnG3gn4AmUT6z8p38Bbt11HD/XHpn/N/cd09MMNlONnN837rU3hD/wT5YifG4B/aLuOPvTDDpT9HNcCb23u3wCM1l5/x3v/MsrQ2/OBzzbTrh+SPjiMcmLP6ZSDHN5MGUq9Edil9vq7+Tcvh1wy80/Nzf8Cto+IvTPzZsq4+as6Zr0I2L557DjKsMp/ACuy7PkeSNnomHQCZW0FyvjfiQBRfl/mV8CmQyvfQtmSWZKZ75ij5s6azPwdZWjt8ZSd2S+kDJu9Kopq6+94/w+hDDudA+wWEW+k7OxfAXV/BrIMlVxBCeejgUcBz6V8Bl5d+2egG/HnuTH/RMQHKePhr2+O8vhbSrDvTDlh6JCOL4DqRMRulPG/4zLz0ig/JraC8uFeAvwo5+MZa30WEftQvsy/Txkn3YtyqFm19UfECGW4ZWtKzX9FORnmZMqa+8Opvw+2zczbmtt7Uz7736Wcml/9Z2CmBiHQ96EctfJkyof6Nspp+LcDH87Mi1ts3qyL8vsxTwLeQBlPvYqyiXkE8PMsh2pWLyJ2p3yxvTgzb4iIo4CLM/OHLTdt1kS50Mq/UXbgnUE55O7kzHxa83j1fdApyi8dfhQ4IjNvHLb6p2MQAv1FlEP3bgPeRtnjXc9e6SlExHeBh1B+1e1q4C2Z+ZNWGzVHImJHyhf5Syg7wVcBH8jMP97rEyvVnAzzfGAiM69puz1zISK2plyrYNOQy4eAD2b5mWttZl4HekQ8mnIa/pmUHUID9ZO1vWoO3TqFMo74mUHeL9CNiFhIGWb5A6X+oXr/N4mIBcCdOZ//WGdRRLyKcrjqp4f1MzBd8zrQJUnTNy+PcpEkzZyBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkirxfxo0Erf7i0deAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}