From 33c59d8fc6b19fd6968ce4eee27ad1323eb36d56 Mon Sep 17 00:00:00 2001 From: db4d42e543ac9826803271b6e416a5b1 Date: Mon, 11 Dec 2023 10:41:04 +0000 Subject: [PATCH] final done --- module2/exo1/toy_notebook_en.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index ed88209..b6b66c1 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -18,14 +18,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# On the computation of $\\pi$" + " **1 On the computation of $\\pi$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Asking the maths library\n", + " **1.1 Asking the maths library**\n", "My computer tells me that $\\pi$ is *approximatively*" ] }, @@ -51,7 +51,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Buffon's needle\n", + "**1.2 Buffon's needle**\n", "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, @@ -84,7 +84,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Using a surface fraction argument\n", + "**1.3 Using a surface fraction argument**\n", "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, -- 2.18.1