From 46b292ad398077fdd6ae34a72c6020948473b35b Mon Sep 17 00:00:00 2001 From: db4d42e543ac9826803271b6e416a5b1 Date: Mon, 11 Dec 2023 10:32:44 +0000 Subject: [PATCH] done --- module2/exo1/toy_notebook_en.ipynb | 36 +++++++----------------------- 1 file changed, 8 insertions(+), 28 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 7a3d255..55b16cd 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -11,28 +11,22 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##March 28, 2019" + "## March 28, 2019" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "**1 On the computation of *$\\pi$* **" + "# On the computation of $\\pi$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - " **1.1 Asking the maths library**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "My computer tells me that *$\\pi$* is *approximatively*" + "## Asking the maths library\n", + "My computer tells me that $\\pi$ is *approximatively*" ] }, { @@ -57,14 +51,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - " **1.2 Buffon’s needle**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the *approximation*" + "## Buffon's needle\n", + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { @@ -96,16 +84,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - " **1.3 Using a surface fraction argument**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A method that is easier to understand and does not make use of the sin function is based on the\n", - "fact that if $X ∼ U(0, 1)$ and $Y ∼ U(0, 1)$, then $P[$X^2$ + $Y^2$ ≤ 1] = $\\pi$/4$ (see [\"Monte Carlo method\"\n", - "on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "## Using a surface fraction argument\n", + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { -- 2.18.1