no commit message

parent 991421c5
{ {
"cells": [ "cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# On the computation of $\\pi$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## Asking the maths library\n",
"My computer tells me that $\\pi$ is *approximatively*"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 1,
...@@ -37,24 +18,6 @@ ...@@ -37,24 +18,6 @@
" print(pi)" " print(pi)"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## Buffon's needle"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 2,
...@@ -80,24 +43,6 @@ ...@@ -80,24 +43,6 @@
" 2/(sum((x+np.sin(theta))>1)/N)" " 2/(sum((x+np.sin(theta))>1)/N)"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## Using a surface fraction argument"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 3,
...@@ -132,15 +77,6 @@ ...@@ -132,15 +77,6 @@
" ax.set_aspect('equal')" " ax.set_aspect('equal')"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 4,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment