diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb
index 489264a199389b491236782227d1dfc89bac4ec5..dade76206f7b3e436dffb102ee7c2ed4489e09bb 100644
--- a/module2/exo1/toy_notebook_en.ipynb
+++ b/module2/exo1/toy_notebook_en.ipynb
@@ -1,15 +1,5 @@
{
"cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "
toy_notebook_en\n",
- "\n",
- "
\n",
- "March 28, 2019"
- ]
- },
{
"cell_type": "markdown",
"metadata": {},
@@ -22,8 +12,6 @@
"metadata": {},
"source": [
"## Asking the maths library\n",
- "\n",
- "\n",
"My computer tells me that $\\pi$ is *approximately*"
]
},
@@ -49,13 +37,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Buffon’s needle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
+ "## Buffon’s needle\n",
"Applying the method of [Buffons needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**"
]
},
@@ -88,13 +70,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Using a surface fraction argument"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
+ "## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the sin function is based on the\n",
"fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1]=\\pi/4$ (see [\"Monte Carlo method\"\n",
"on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"