diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 489264a199389b491236782227d1dfc89bac4ec5..dade76206f7b3e436dffb102ee7c2ed4489e09bb 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -1,15 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
toy_notebook_en
\n", - "\n", - "
\n", - "
March 28, 2019
" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -22,8 +12,6 @@ "metadata": {}, "source": [ "## Asking the maths library\n", - "\n", - "\n", "My computer tells me that $\\pi$ is *approximately*" ] }, @@ -49,13 +37,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Buffon’s needle" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "## Buffon’s needle\n", "Applying the method of [Buffons needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" ] }, @@ -88,13 +70,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Using a surface fraction argument" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ + "## Using a surface fraction argument\n", "A method that is easier to understand and does not make use of the sin function is based on the\n", "fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1]=\\pi/4$ (see [\"Monte Carlo method\"\n", "on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"